
Dong Du, IPADS, 2021-11-10, some contents from MIT’s missing-semester

IPADS Tutorial - Git

Outline

• Background

• Data models

• Commands

• Case Studies

Version Control System（版本控制）

• Git (/ɡɪt/) is software for tracking changes in any set of files,
usually used for coordinating work
among programmers collaboratively developing source
code during software development. Its goals include
speed, data integrity, and support for distributed, non-
linear workflows (thousands of parallel branches running on
different systems) -- Wikipedia

Version Control System（版本控制）

History (many versions) Changes (in a specific version)

Version Control System（版本控制）

History (many versions) Changes (in a specific version)

Version Control System（版本控制）

History (many versions) Changes (in a specific version)

Version Control System（版本控制）

History (many versions) Changes (in a specific version)

Why version control?

• Working by yourself

• Look at old versions of a project

• Keep a log of why certain changes
were made

• Work on parallel branches of
development

• Working with others

• See what other people have
changed, learn and review

• Resolve conflicts in concurrent
development

How to “learn” Git?

How to “learn” Git?

How to “learn” Git?
Just memorize shell commands?

How to “learn” Git?

• Git's interface is a leaky abstraction,
learning Git top-down (starting with
its interface / command-line
interface) can lead to a lot of
confusion

• Its underlying design and ideas are
beautiful

• Bottom-up explanation of Git,
starting with its data model and later
covering the command-line interface

Just memorize shell commands?

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Simple model: linear history?

• A list of snapshots in time-order

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Simple model: linear history?

• A list of snapshots in time-order
这是当代 :)这是⼀代 这是⼆代 这是三代

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Simple model: linear history?

• A list of snapshots in time-order
这是当代 :)这是⼀代 这是⼆代 这是三代

Git does not use this model

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

这是4 这是⼀代 这是⼆代 这是三代

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Git: directed acyclic graph (DAG)

• simple form: a snapshot refers to a set of parents

• Snaptshots are called “commit”s

这是4 这是⼀代 这是⼆代 这是三代

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Git: directed acyclic graph (DAG)

• simple form: a snapshot refers to a set of parents

• Snaptshots are called “commit”s

这是4 这是⼀代 这是⼆代 这是三代

Thinking of history: story of snapshots
• // Skip the definition of snapshots now

• Git: directed acyclic graph (DAG)

• simple form: a snapshot refers to a set of parents

• Snaptshots are called “commit”s

这是4 这是⼀代 这是⼆代 这是三代

Commit/Snapshot: who are you?

Commit/Snapshot: who are you?
• Snapshot is a collection of files and folders within some top-level

directory

• File is called a “blob”: a bunch of bytes.

• A directory is called a “tree”: maps names to blobs or trees

• directories can contain other directories

Commit/Snapshot: who are you?
• Snapshot is a collection of files and folders within some top-level

directory

• File is called a “blob”: a bunch of bytes.

• A directory is called a “tree”: maps names to blobs or trees

• directories can contain other directories

Data model as Code
// a file is a bunch of bytes
type blob = array<byte>
// a directory contains named files and directories
type tree = map<string, tree | blob>
// a commit has parents, metadata, and the top-level tree

type commit = struct { 
 parents: array<commit> 
 author: string 
 message: string 
 snapshot: tree  
}

Objects and content-addressing
All types, e.g., blob, tree, or commit, are called objects in Git

type object = blob | tree | commit

 objects = map<string, object>

def store(object):

id = sha1(object)

objects[id] = object

def load(id):

return objects[id] Objects are addressed by SHA-1 hash

SHA-1 is not for Human, References are
• Human-readable names for SHA-1 hashes, called references

• References are mutable

• E.g., the master/main references usually point to the latest commit in
the main branch of development

References as Code
references = map<string, string>

def update_reference(name, id):

references[name] = id

def read_reference(name):

return references[name]

def load_reference(name_or_id):

if name_or_id in references:

return load(references[name_or_id])

else:

 return load(name_or_id)

The last piece: Repositories & Staging Area
• A Git repository: objects and references

• Why staging area?

• Clean snapshots

• Git: allowing you to specify which modifications should be included in
the next snapshot through a mechanism called the "staging area".

Command (finally…
• Basics

• git help <command>: get help for a git command
• git init: creates a new git repo, with data stored in the .git directory
• git status: tells you what's going on
• git add <filename>: adds files to staging area
• git commit: creates a new commit
• git log: shows a flattened log of history
• git log --all --graph --decorate: visualizes history as a DAG
• git diff <filename>: show changes you made relative to the staging area
• git diff <revision> <filename>: shows differences in a file between snapshots
• git checkout <revision>: updates HEAD and current branch

Scenario-1: work on a local project
• Start a new project with git init

• Check status using git status

Thinking using data model (TUDM): Empty project, no commits, no history

Scenario-1: work on a local project
• Start a new project with git init

• Check status using git status

Thinking using data model (TUDM): Empty project, no commits, no history

Scenario-1: work on a local project
• Start a new project with git init

• Check status using git status

Thinking using data model (TUDM): Empty project, no commits, no history
Git manages the project using .git/

Scenario-1: work on a local project [2]
• Add file (blob) to staging area using git add

• Commit the current staging area using git status

Scenario-1: work on a local project [2]
• Add file (blob) to staging area using git add

• Commit the current staging area using git status

TUDM: a file/blob is added to staging area, and we create a commit based on it to history

Scenario-1: work on a local project [3]
• Check history using git log

Scenario-1: work on a local project [3]
• Check history using git log

TUDM: A list of snapshots/commits. Head/main are referneces.

Scenario-1: work on a local project [4]
• Switch to an older version: git checkout [commit_id]

Scenario-1: work on a local project [4]
• Switch to an older version: git checkout [commit_id]

TUDM: We can turn to any prior snaptshot/commit using Git.

Scenario-1: work on a local project [5]
• Show changes on staging : git checkout [commit_id]

Scenario-1: work on a local project [5]
• Show changes on staging : git checkout [commit_id]

TUDM: We can turn to any prior snaptshot/commit using Git.

Scenario-1: summary
• Tracking history

• A better way to manage your project

• A single commit to implement a single functionalities

• Easily roll-back to a workable version

• …

Tips: How to write a “useful” commit msg?
• Formats on Linux community

Cases on RISC-V OpenSBI project

Tips: How to write a “useful” commit msg?
• Formats on Linux community

Cases on RISC-V OpenSBI project

Tips: How to write a “useful” commit msg?
• Formats on Linux community

Cases on RISC-V OpenSBI project

1. Short descriptions as title

2. Long descriptions to explain the commit

3. Your signed-off info, add “-s” during git commit

Command (finally…[2]
• Branching and merging

• git branch: shows branches
• git branch <name>: creates a branch
• git checkout -b <name>: creates a branch and switches to it

• same as git branch <name>; git checkout <name>
• git merge <revision>: merges into current branch
• git rebase: rebase set of patches onto a new base

这是4 这是⼀代 这是⼆代 这是三代

Command (finally…[2]
• Branching and merging

• git branch: shows branches
• git branch <name>: creates a branch
• git checkout -b <name>: creates a branch and switches to it

• same as git branch <name>; git checkout <name>
• git merge <revision>: merges into current branch
• git rebase: rebase set of patches onto a new base

这是4 这是⼀代 这是⼆代 这是三代

Command (finally…[2]
• Branching and merging

• git branch: shows branches
• git branch <name>: creates a branch
• git checkout -b <name>: creates a branch and switches to it

• same as git branch <name>; git checkout <name>
• git merge <revision>: merges into current branch
• git rebase: rebase set of patches onto a new base

这是4 这是⼀代 这是⼆代 这是三代

Scenario-2: Debugging
• You find a bug in your project

• You need to add many logs to debug

• Create and switch to a new branch: git checkout -b <name>
• Chekc the current branch: git branch

Scenario-2: Debugging
• You find a bug in your project

• You need to add many logs to debug

• Create and switch to a new branch: git checkout -b <name>
• Chekc the current branch: git branch

TUDM: Create a new reference named debug (i.e., new branch)

Scenario-2: Debugging
• Merge debug branch into main: git merge <revision>
•

Scenario-2: Debugging
• Merge debug branch into main: git merge <revision>
•

Scenario-2: Debugging
• Merge debug branch into main: git merge <revision>
•

Scenario-2: Debugging
• Merge debug branch into main: git merge <revision>

Scenario-2: Debugging
• Merge debug branch into main: git merge <revision>

TUDM: Create a new commit using multiple parents

Scenario-2: Debugging

Scenario-2: Debugging
• When you rush papers, you may have many branches,

implementing features, test cases, debug infos

Scenario-2: Debugging
• When you rush papers, you may have many branches,

implementing features, test cases, debug infos

Scenario-2: Debugging
• When you rush papers, you may have many branches,

implementing features, test cases, debug infos

Scenario-2: Debugging
• When you rush papers, you may have many branches,

implementing features, test cases, debug infos

• git rebase: Rebase is thought as one of the most complicated part
in Git

Scenario-2: Debugging
• When you rush papers, you may have many branches,

implementing features, test cases, debug infos

• git rebase: Rebase is thought as one of the most complicated part
in Git

•简单来说，rebase是让你在git维护的历史DAG上调整他们的结构/关
系的

Scenario-2-1: Debugging

Credits: cases from git help rebase

Scenario-2-1: Debugging
• Case-1: you want to keep master and topic branches, but applies

commits in topic branches based on latest master commits

Credits: cases from git help rebase

Scenario-2-1: Debugging
• Case-1: you want to keep master and topic branches, but applies

commits in topic branches based on latest master commits

Credits: cases from git help rebase

Scenario-2-1: Debugging
• Case-1: you want to keep master and topic branches, but applies

commits in topic branches based on latest master commits

Credits: cases from git help rebase

git rebase master topic

Scenario-2-1: Debugging
• Case-1: you want to keep master and topic branches, but applies

commits in topic branches based on latest master commits

Credits: cases from git help rebase

git rebase master topic

What’s the differences between rebase and merge?

Scenario-2-1: Debugging
• Rebase vs. Merge

Credits: figs from stackoverflow (https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150)

https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150

Scenario-2-1: Debugging
• Rebase vs. Merge

Credits: figs from stackoverflow (https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150)

Git merge

https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150

Scenario-2-1: Debugging
• Rebase vs. Merge

Credits: figs from stackoverflow (https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150)

Git merge

Git rebase

https://stackoverflow.com/questions/16666089/whats-the-difference-between-git-merge-and-git-rebase/25267150

Scenario-2-1: Debugging
• Case-2: More branches rebase!

• How to make topic based on master (without next’s commits)

Credits: cases from git help rebase

?

Scenario-2-1: Debugging
• Case-2: More branches rebase!

• How to make topic based on master (without next’s commits)

Credits: cases from git help rebase

git rebase --onto master next topic

?

Scenario-2-1: Debugging
• Case-2: More branches rebase!

• Similiar cases

Credits: cases from git help rebase

?

Scenario-2-1: Debugging
• Case-2: More branches rebase!

• Similiar cases

Credits: cases from git help rebase

git rebase --onto master topicA topicB

?

Scenario-2-1: Debugging
• Case-3: You want to remove a range of commits

• Some commits are really dirty and you do not want to keep after
you submit your papers

• e.g., How to remove F and G commits?

Credits: cases from git help rebase

Scenario-2-1: Debugging
• Case-3: You want to remove a range of commits

• Some commits are really dirty and you do not want to keep after
you submit your papers

• e.g., How to remove F and G commits?

Credits: cases from git help rebase

git rebase --onto topicA~5 topicA~3 topicA

Scenario-2-1: Debugging
• Case-3: You want to remove a range of commits

• Some commits are really dirty and you do not want to keep after
you submit your papers

• e.g., How to remove F and G commits?

Credits: cases from git help rebase

git rebase --onto topicA~5 topicA~3 topicA

Command (finally…3
• Remotes

• git remote: list remotes

• git remote add <name> <url>: add a remote

• git push <remote> <local branch>:<remote branch>: send objects to remote, and update
remote reference

• git branch --set-upstream-to=<remote>/<remote branch>: set up correspondence between
local and remote branch

• git fetch: retrieve objects/references from a remote

• git pull: same as git fetch; git merge

• git clone: download repository from remote

Scenario-3: Gitlab/Gitee/Github
• 基于Git的代码托管平台

• Github（⽹络不⼀定好）

• Gitee（国内⽤还是很靠谱的）

• Gitlab（实验室项⽬）

Scenario-3: Gitlab/Gitee/Github
• 定期的pull/push是个好习惯

• PR

• 在代码仓库平台上合并修改

• 代码Review

Command (finally…4
• Undo

• git commit --amend: edit a commit's contents/message

• git reset HEAD <file>: unstage a file

• git checkout -- <file>: discard changes

Scenario-4: You will make mistakes, sometimes

• You made a commit, but with wrong msg: git commit —amend

Scenario-4: You will make mistakes, sometimes

• You made a commit, but with wrong msg: git commit —amend

Scenario-4: You will make mistakes, sometimes

• You made a commit, but with wrong msg: git commit —amend

Scenario-4: You will make mistakes, sometimes

• You made a commit, but with wrong msg: git commit —amend

Scenario-4: You will make mistakes, sometimes

• You made a commit, but with wrong msg: git commit —amend

TUDM: Modify the msg of a snapshot/commit

Scenario-4: You will make mistakes, certainly
• You mistakenly add a file into stage area: git reset HEAD <file>

Scenario-4: You will make mistakes, certainly
• You mistakenly add a file into stage area: git reset HEAD <file>

Scenario-4: You will make mistakes, certainly
• You mistakenly add a file into stage area: git reset HEAD <file>

Scenario-4: You will make mistakes, certainly
• You mistakenly add a file into stage area: git reset HEAD <file>

TUDM: Manage your staging area

Scenario-4: You will make mistakes, certainly
• You want to discard changes on some files: git checkout — <file>

Scenario-4: You will make mistakes, certainly
• You want to discard changes on some files: git checkout — <file>

Scenario-4: You will make mistakes, certainly
• You want to discard changes on some files: git checkout — <file>

TUDM: “Recover” your files/blobs to the data in current reference

Command (finally…5
• Advanced

• git config: Git is highly customizable
• git clone --depth=1: shallow clone, without entire version history
• git add -p: interactive staging
• git rebase -i: interactive rebasing
• git blame: show who last edited which line
• git stash: temporarily remove modifications to working directory
• git bisect: binary search history (e.g. for regressions)
• .gitignore: specify intentionally untracked files to ignore

Scenario-5: Git can do more for you
• Working in a team, who write the bug code?: git blame

Scenario-5: Git can do more for you
• Working in a team, who write the bug code?: git blame

Scenario-5: Git can do more for you
• Working in a team, who write the bug code?: git blame

Scenario-5: Git can do more for you
• Working in a team, who write the bug code?: git blame

TUDM: The latest history of each line: commit-id/authors/..

Scenario-5: Git can do more for you
• DO NOT UPLOAD YOU BINARY FILES TO PROJECTS!: .o, .a, .so

• .gitignore: ignore the matched files

Summary and Q&A?

• Basic knowledge about git is necessary

• More “advanced” tools (e.g., vscode) may help you use Git

• Try to read Pro-Git (https://git-scm.com/book/en/v2) if you want to know more

• Thx

