
Shell Tutorial

Nian Liu
nianliu@sjtu.edu.cn

Control/use your computer in a
more efficient (also more geek) way

mailto:nianliu@sjtu.edu.cn

Road Map

✓ Brief Intro: all you need to know about
starting using a CLI

✓ Basic but useful command line tools

✓ How to write a bash scripts and what can
those scripts do?

✓ Real-world examples

Today’s Target
1. Using shell to get the work done (doing experiment, coding, etc.) efficiently

2. Simple Result (data) Processing using bash script

3. Automatic experiment, data collecting and plotting figures

❗It is not a detailed tutorial, find out more details (e.g., about how to
use each tools, more useful commands and techniques) yourself.

❗It is okey not having this lesson (like myself). Only a quick start,
experience sharing or something like that.

Part 1: CLI? That’s cool!

GUI vs CLI: which is better?

GUI vs CLI: which is better?

• Graph (e.g., code analysis tools)

• More intuitive user-interface,
especially in complex software

GUI CLI

• Data analysis

• Home-brew app

• When connecting to a server

When both are available (e.g., editor), use the one suit you best!

Shell: The system user-interface in CLI
Just like the Desktop in GUI world (from user’s view)

• Capability: Launch app, execute command,
manage foreground/background tasks

• A lot of shell available: zsh, bash, sh, etc.

• Mostly similar

• Differences: build-in commands, script
grammar, extensions

• Chose the one you like

• Useful extensions of oh my zsh: history,
autosuggestion, vim-like

Basic Setup
• Terminal (emulator): emulate a (texted-based)

terminal inside the GUI environment

• SSH to server

• Running sshd: daemon of SSH server

• Strong password or use ssh key to login

• Keep the connection: tmux, screen, etc.

• Keyboard shortcuts

• ctrl + r (to find history), tab (to autofill)

• ctrl + c (to kill SIGINT)

https://www.howtogeek.com/howto/ubuntu/keyboard-shortcuts-for-bash-command-shell-for-ubuntu-debian-suse-redhat-linux-etc/

More can be found here !

Install Software in CLI

• Package manager: apt (ubuntu,
Debian), brew (macOS), dnf (fedora)

• Search (e.g. apt search)

• https://command-not-found.com/

• Build from source (no suitable version,
or need to modify their code)

• README/INSTALL doc

• configure and make install

https://command-not-found.com/

Communication: Pipe & Redirect
• A lot of CLI tools, communication is required to do complex jobs

• Pipe: | use the stdout of previous command as the stdin of the next

Command 1 | Command 2

stdout stdin

ls | grep “build”

grep: Matches patterns in input text

Communication: Pipe & Redirect
• A lot of CLI tools, communication is required to do complex jobs

• Redirect: > & <, stdout to file or file to stdin (normally)

Command 2 < file

stdin

grep build < ls_out

Command 1 > file

stdout

ls > ls_out

Communication: Pipe & Redirect
• A lot of CLI tools, communication is required to do complex jobs

• Redirect: > & <, stdout to file or file to stdin (w/o explicitly specified)

Part 2: Handy tools make
things easier

Basic Tools (Commands)

• File: touch, cp, rm, cat, find, head, tail, less, mkdir, ln

• Simple functions: sort, wc
• How to use?

• -help, --help
• man [command]
• https://command-not-found.com/

• TLDR https://tldr.sh/

e.g., https://www.geeksforgeeks.org/basic-shell-commands-in-linux/
https://swcarpentry.github.io/shell-novice/reference.html

Find out yourself:

https://command-not-found.com/
https://tldr.sh/
https://www.geeksforgeeks.org/basic-shell-commands-in-linux/
https://swcarpentry.github.io/shell-novice/reference.html

ag
Usage Scenario: Find keyword

https://command-not-found.com/

pkg name

(how to install with pkg mgr) Examples

https://command-not-found.com/

ag
Usage Scenario: Find keyword in code, doc, stdout, etc.

Also support regex and stdin (pipe, from stdout of
other commend)

awk
Usage Scenario: Result (data) Processing

• Domain-specific language designed for text processing (c-like)

• Typically used as a data extraction and reporting tool

Full Tutorial: https://www.tutorialspoint.com/awk/awk_quick_guide.htm

Normal Use Cases:

• Average, max, min

• Get data in a certain column

• Simple conditional logic

awk
Usage Scenario: Result (data) Processing

cat tmp | awk '{print $2}’

Example: Grab Data from a certain column

1 a
2 b
3 c
4 d
5 e

$2$1

{print $2}
execute this code each line

awk
Usage Scenario: Result (data) Processing

cat tmp | awk '
BEGIN {cnt=0}
{sum+=$1;cnt+=1}
END {print (sum/cnt)}'

Example: Average

1
2
3
4
5

$1

{sum+=$1;cnt+=1}
execute this code each line

END {print (sum/5)}

BEGIN{cnt=0}

awk
Usage Scenario: Result (data) Processing

cat tmp | awk ‘{if($1>3) print $2}’

Example: Conditional Logic

A lot more can be done with this simple tool
Use your imagination!

sed
Usage Scenario: Result (data) Processing

• Edit text in a scriptable manner

Example: Get a certain line from a file

sed -n '3 p' ./tmp

Part 3: Lets write some
shell scripts!

Shell (Bash) Batch Script
• Basically, Batch Scripts are stored in simple text files containing lines with

commands

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

Shell (Bash) Script

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

• Passing in as an arguments
$0 $1 $2

Shell (Bash) Script

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

• Passing in as an arguments; or from the results of commands

Shell (Bash) Script

execute the command in ``

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

• Passing in as an arguments; or from the results of commands

• Support loop and conditions

Shell (Bash) Script

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

• Passing in as an arguments; or from the results of commands

• Support loop and conditions

• Functions

Shell (Bash) Script

• Basically, Batch Scripts are stored in simple text files containing lines with
commands

• With local variables

• Passing in as an arguments; or from the results of commands

• Support loop and conditions

• Functions

• Run one after another

• Can call other scripts in a script

• Decoupling

Shell (Bash) Script
Script 1: generate a random number

Script 2: avg

Script 3: use 1 and 2

Part 4: Talk is cheap. Show
me some example!

Example #1
Running Experiments Multiple Times and Get the Average Result

Dummy Experiment

Example #1
Running Experiments Multiple Times and Get the Average Result

Dummy Experiment Output
Throughput 10592 ops/s

sed get the second line
awk get the number

Run under different configuration
 and use gnuplot to plot

Q: only use awk?

Example #2
P99, P999 and plot the CDF

Dummy Request Latency

Example #2
P99, P999 and plot the CDF

Generate a dummy result

Example #2
P99, P999 and plot the CDF

Part 5: Whats’ next?

The best way to learn it,
is to use it.

Happy shell-ing!

Also read & finish:

https://missing.csail.mit.edu/2020/course-shell/

https://missing.csail.mit.edu/2020/shell-tools/

