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ABSTRACT

Today, the wide adoption of distributed service-oriented applica-
tions has rendered multi-database transactions increasingly impor-
tant. They protect cross-service workflows that access multiple
database systems from concurrency anomalies and failures. This
paper presents Sonata, a new multi-database transaction system
that provides high performance, global serializability, and seamless
integration with existing applications and database systems. Sonata
builds on the theory of commitment ordering to ensure global seri-
alizability and uses two-phase commit for atomicity and durability.
Instead of treating database systems as black box storage, Sonata
reuses existing database systems’ concurrency control yet refrains
from exposing or modifying their internals. It performs additional
non-blocking coordination only at prepare time via application-
level shim layers, allowing applications to incorporate Sonata with-
out changing their existing queries or database systems. Evaluation
using TPC-C shows that Sonata incurs 7.1% coordination overhead
on average and outperforms prior work by up to 1114.3%.
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1 INTRODUCTION

With recent embodiments like microservices and serverless architec-
tures, distributed service-oriented applications are become increas-
ingly popular [45, 47, 50, 63]. In such applications, functionalities
are partitioned into standalone, loosely coupled services. Rather
than relying on a centralized database, each service is equipped
with a dedicated database to manage its own data [47, 49, 52]. As a
result, complex workflows inevitably become distributed, touching
different services and creating multi-database transactions.

A multi-database transaction consists of subtransactions created
by different services, each reading and writing data at a distinct
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Figure 1: A banking example where cross-service workflows
without global serializability violate business constraints.

database system. Figure 1 shows an example of a banking applica-
tion comprising two database-backed services, savings and checking,
which track users’ savings and checking accounts. This applica-
tion allows overdrafts as long as a user’s total balance at both
services is not negative. Therefore, to fulfill a withdrawal, one ser-
vice must read the other’s balance before proceeding, creating a
multi-database transaction with two subtransactions.

Without proper coordination, multi-database transactions can
lead to concurrency anomalies and violate business constraints. In
this example, the user initially has $50 each in his two accounts, and
there are two concurrent $100 withdrawal requests that interleave
differently at the two services. Although each service executes
its subtransactions as serializable local transactions (e.g., Tj,s and
T, 5), the whole transactions (e.g., T1) are not globally serializable.
As a result, both services consider the total balance sufficient and
authorize the withdrawals, leaving a negative total balance.

For mitigation, multi-database transactions should be globally
serializable, e.g., only one withdrawal is allowed as if they were
handled sequentially [18]. Without global serializability, the re-
sponsibility of ensuring application correctness falls on developers,
e.g., by manually blending coordination logic for these database
operations into application code, which can be error-prone and
challenging [25, 26, 67-70, 76].

Earlier work has proposed multi-database transaction protocols
that ensure global serializability, provided each database system
ensures local serializability. However, they make conservative as-
sumptions that significantly limit their performance. For example,
the ticket method [15, 36] and altruistic locking [9, 62] disallow con-
current execution of subtransactions (e.g., T1,s and T 5) at the same
database system. Furthermore, they globally order multi-database
transactions that access shared database systems, even when there
is no conflict, forcing their subtransactions at different databases to
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execute in this order. Our evaluation shows that these restrictions
often lead to more than 20-fold performance degradation.

For better performance, recent work shifts more concurrency
control responsibilities to the application level, imposing restric-
tions on how applications interact with database systems and some-
times settling for weaker guarantees. Epoxy [46] and Cherry Gar-
cia [28, 29] provide snapshot isolation (SI) across databases. Instead
of running subtransactions as serializable local transactions, they
perform both intra- and inter-subtransaction coordination in their
application-level libraries, using the underlying database systems
for storage only. As a result, advanced database features like unique
and foreign key constraints and predicate-based updates cannot
be used. Furthermore, since they mix additional metadata and data
versions with application data, the underlying databases are no
longer directly accessible without the requisite application wrapper.
ScalarDB [78] extends Cherry Garcia to provide global serializabil-
ity by either treating all reads as writes or performing an additional
Silo [71]-style validation phase to avoid SI anomalies. Therefore,
similar restrictions still apply, and additional performance over-
head is incurred. In addition, although taking control of transaction
coordination unleashes protocol-level parallelism, it can incur great
overhead as existing database transaction mechanisms may still
be exercised, e.g., relational databases execute all operations in
transactions, including those not explicitly declared?.

This paper proposes Sonata, a high-performance, non-intrusive
ACID multi-database transaction system that ensures global se-
rializability. Compared with earlier solutions that assume local
serializability [9, 15, 36, 62], Sonata avoids the performance pitfalls
through careful reuse of the underlying databases’ concurrency
control mechanisms. Compared with recent application-level solu-
tions [28, 29, 46, 78], Sonata introduces much less application-level
coordination and does not impact application schemas and data,
making them directly accessible even without Sonata. For atomicity
and durability, Sonata uses two-phase commit (2PC)[18, 38, 48].

Sonata takes a gray-box approach to achieving global serializ-
ability. Specifically, we observe that most practical systems use one
of two concurrency control families: serializable snapshot isolation
(SSI)[21, 22] or strict two-phase locking (S2PL)[18, 32].2 This allows
Sonata to coordinate basing common properties that hold across
popular database systems, such as the absence of dangerous struc-
tures [33]. Our coordination protocol builds on a condition derived
from the theory of commitment ordering [57-59]. It involves only
subtransaction prepare and commit events at individual database
systems, allowing Sonata to intervene locally only at prepare time
while leaving intact the rest of the subtransaction execution and
commit. As a result, Sonata can work as application-level shims that
require no modification to either the applications or databases. We
have proven the correctness of our shims, and our analysis shows
that they introduce no false positives, i.e., unnecessary aborts, given
that the underlying database systems accurately detect conflicts.
Sonata can accommodate other systems, even those providing only

n such cases, operations are executed as single-statement transactions.

2881 systems, mainly PostgreSQL and derivatives [1-5, 17], are fewer in number than
S2PL systems yet still widely used. PostgreSQL is the most popular database with a
nearly 50% adoption rate by Stack Overflow’s Developer Survey 2023 and 2024 [6, 7]
and named DBMS of the Year by DB-Engines in 2017, 2018, 2020, and 2023 [10-12, 35].
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Figure 2: An example workflow of a 2PC-based multi-
database transaction. The transaction is initiated at step 1 and
committed at step 9. During its lifetime, two subtransactions are
registered, executed, and prepared in steps 1-3 and 5-7, respec-
tively, and are finally committed at step 10. Steps 4 and 8 indicate

inter-service communication.

single-record atomicity, with generic fallback shims that perform
full application-level concurrency control as done in [28, 29, 46, 78].
We have implemented and evaluated Sonata using TPC-C and
microbenchmarks in a multi-database setting. Our experience con-
firms that adapting Sonata does not require changes to the appli-
cations’ query statements, the database drivers, or the database
systems themselves. Our evaluation results show that Sonata adds
only 7.1% coordination overhead on average to a 2PC-only baseline,
where no cross-subtransaction isolation is guaranteed. We have also
compared Sonata with the ticket method [15, 36], ScalarDB [78],
and Epoxy [46]. Due to the careful reuse of existing database con-
currency control mechanisms, Sonata outperforms them by 74.1%
to 1114.3%, 305.5% to 423.9%, and 14.0% to 241.6%, respectively.
To summarize, this paper makes the following contributions.
A locally enforceable condition for multi-database global serial-
izability and a corresponding coordination framework.
Two shim layer designs for SSI- and S2PL-based systems that
enforce this condition without modifying the database systems.
Implementation and evaluation of Sonata that demonstrate its
low overhead and performance advantage over prior work.

2 BACKGROUND AND MOTIVATION

2.1 Multi-Database Transactions

Multi-database transactions lift the familiar transaction abstrac-
tion [18, 39] to coordinate data access across multiple database
systems. They are also called global transactions to emphasize the
distinction with local transactions. Figure 2 shows an example
workflow of a 2PC-based multi-database transaction. First, a client
request arrives at service A, which initiates the multi-database trans-
action and thus called the root service. @ Service A first notifies the
2PC coordinator with a unique transaction ID of the start of this
multi-database transaction and the start of the first subtransaction.
@ Then, service A executes its subtransaction as a local transaction
and prepares it when the local processing is finished, e.g., via com-
mands like PREPARE TRANSACTION <id>. (3) Next, service A notifies
the coordinator of the completion of its subtransaction. @ Service
B is then invoked to continue handling the client request with the
transaction ID propagated as RPC metadata, e.g., HTTP headers.
Like service A, service B ® notifies the coordinator of the presence



of its subtransaction, () initiates a local transaction and prepares it
when finished, and D notifies the coordinator of the completion.
When service A receives a response and has determined that
the processing is successful, @ it signals the coordinator to commit.
The coordinator follows 2PC to produce a durable decision and
broadcasts it to all participating services. Q0 Finally, each service
commits its subtransaction accordingly.

Ideally, multi-database transactions should enjoy the same ACID
properties [18, 39, 41] as single-database transactions. While ex-
isting database systems typically support 2PC via standards like
XA [77] for atomic commit and durability, global serializability is
still missing. Many serializable protocols exist for single-database
transactions [24, 31, 44, 56, 73-75]. However, it is challenging
to use them for multi-database transactions, as they typically re-
quire detailed knowledge about transaction execution that is not
exposed or even maintained by individual systems. Meanwhile,
existing global serializability protocols are either too conserva-
tive [9, 15, 20, 36, 51, 62] or rely on costly application-level concur-
rency control [78], leading to unsatisfactory performance (§6).

2.2 Transaction Model and Notation

To formally reason about multi-database transactions, we follow
and extend the model from [8]. Readers familiar with transaction
theories should find our additions straightforward, which are briefly
summarized below. We use T; to denote a multi-database transaction
and use T; j to denote its subtransaction on database system j. When
necessary, operations can be similarly subscripted to indicate where
they take place, e.g., w; j. As Sonata uses 2PC, we use p; j/c; j/a;
to denote the prepare/commit/abort events of subtransaction Tj ;.
d; denotes the 2PC decision event of T; that takes place at the
coordinator. A local history contains only the events that take
place at a single database system, while a global history contains
all events from all participating database systems, plus the 2PC
decision events. We use global and local serializability to refer to
the serializability of global and local histories, respectively, i.e., the
acyclicity of their corresponding direct serialization graphs. As
Figure 1 shows, local serializability at all participating databases
does not imply global serializability.

2.3 Commitment Ordering

Commitment ordering (CO)[57, 58] is a property of global histories.
A history H satisfies CO if for any two transactions T; and Tj in
H,T; — T;j implies d; <y dj. CO implies global serializability, i.e.,
a global history that satisfies CO is also serializable [57, Theorem
3.1].3 Therefore, ensuring that only CO-compliant histories are
produced is sufficient for guaranteeing global serializability in a
multi-database environment. Equivalently, a history H satisfies CO
if for any two subtransactions T; x and T} i at the same database sys-
tem, T; . — Ty implies d; <p d; [57, Theorem 5.2]. This definition
considers only dependencies among subtransactions on the same
database system, which provides an opportunity to enforce CO, and
thus global serializability, without communicating dependencies
between database systems.

3The original formulation considers transitive transaction dependencies, while our
model does not. The theorem holds still with an almost identical proof.
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Yet, simply combining existing databases with 2PC does not
guarantee CO. As the definitions suggest, enforcing these conditions
requires controlling the order of 2PC decisions of conflicting global
transactions. However, individual databases can only control local
transaction execution. It is the 2PC coordinator that controls the
decision order of global transactions, which is often simply the order
in which global transactions’ prepare messages are fully received.

Long-term locks used in existing systems could partially inter-
vene in the decision order but are insufficient to enforce CO. For
example, in an SSI system like PostgreSQL, writing to a data item
by one subtransaction does not prevent another subtransaction
from reading it. This is because SSI systems read from a snapshot
by default unless locking is explicitly requested via SQL clauses
like FOR SHARE. As a result, an rw-dependency is established be-
tween the two concurrent subtransactions, and both can proceed
to prepare without blocking each other, allowing a CO violation:
r1(xo), wa(x2), p2, da, p1,d1, where Ty — T but dy precedes di. CO
violations are also possible in S2PL systems like MySQL (§3.4.2).

Prior work has proposed algorithms based on serialization graphs
to enforce CO [57-59]. They require database systems to explicitly
track the dependencies among active transactions and export a
centralized view to a commit scheduler. However, to the best of
our knowledge, no existing database fully tracks transaction depen-
dencies and either exposes them to the outside or allows pluggable
commit schedulers. Therefore, instead of implementing these se-
rialization graph-based algorithms within existing databases, we
propose to enforce CO from the outside with lightweight shims.

3 SONATA DESIGN

Sonata is a middleware system between service-oriented applica-
tions and database systems that provides full ACID guarantees,
notably global serializability, for multi-database transactions.

3.1 Opportunities

Sonata is enabled by two key insights. First, we derive a suffi-
cient condition for CO that permits local enforcement at individual
database systems without involving the 2PC coordinator. Specifi-
cally, this condition states that, for any two committed subtrans-
actions T; . and T; i at any database system k, T; . — T; . implies
Cik <P j,k-4 The sufficiency is straightforward. By 2PC, a decision
event is ordered before all corresponding subtransaction commit
events and after all corresponding subtransaction prepare events.
Therefore, d; < c;x and p; . < dj, which implies d; < dj, satisfying
the alternative CO definition shown in §2.3. With this condition, CO
of global histories, and thus global serializability, can be achieved
by merely controlling the order of prepare and commit events that
are local to each database system.

Second, we observe that existing database systems deployed in
practice typically use either SSI or S2PL for concurrency control.
While specific implementation details vary, important properties
hold for all systems. For example, while a multi-version storage
engine with various optimizations is used in MySQL, the classic
principle of two-phase well-formed transactions [32] is still the

“This condition differs from the alternative CO definition in §2.3 as all events considered
here are local to each database system.
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Figure 3: Sonata architecture.

1 @GlobalTransactional

2 CHECKING:wWITHDRAW(user_id, amount):

3 s_bal := invokeRemoteService(SAVINGS.readBal, user_id)
4+ invokelnLocalTxn(lambda:

5 ¢_bal := SELECT bal FRom Checking WHERE user_id = user_id

6 if ¢_bal + s_bal < amount:

7 raise InsufficientFundsException

8 UppATE Checking SET bal = ¢_bal-amount WHERE user_id = user_id)

9 SAVINGS::READBAL(user_id):

10 invokelnLocalTxn(lambda:

11 s_bal := SELECT bal FRom Savings WHERE user_id = user_id
12 return s_bal )

Figure 4: An example of cross-service withdrawal using
Sonata multi-database transaction API.

foundation of its local serializability guarantee. Similarly, the ab-
sence of dangerous structures [33] holds for all SSI systems despite
differences in the specific mechanisms used to detect and prevent
them [21, 22, 55]. Therefore, this observation enables us to take a
gray-box approach to global serializability that leverages common
properties of popular database systems.

3.2 System Overview

Architecture. Figure 3 shows the architecture of a Sonata
application. Any service can receive client requests, incorporate
other services through RPCs, and wrap the processing with multi-
database transactions. Sonata shims sits at the application level
and communicates a 2PC coordinator to initiate, participate in,
and complete multi-database transactions on behalf of the services.
Sonata shims intercept RPC messages to incorporate and propagate
transaction information, and they monitor local transactions to
impose prepare-time coordination. Sonata’s coordination requires
a single per-database table that is transparent to the application. As
a result, reads and writes are issued unmodified during execution,
and the original schemas and data remain intact as well.

Interface. A @GlobalTransactional annotation is provided for
marking functions and all service invocations nested within as
multi-database transactions. Figure 4 shows how the cross-service
withdrawal from the banking example in Figure 1 can be pro-
grammed. The annotated withdraw function first invokes the read-
Bal function in the SAVINGS service to read the savings balance
in a local transaction in SAVINGS’s database. Then, it executes a
local transaction in CHECKING’s database to read the checking
balance and updates it if the total balance is sufficient. Due to the

13 INVOKEINGLOBALTXN(func):

1 gtid := genUuid()

15 setThreadLocal(GTID, gtid)

16 begin2pc(gtid)

17 res:= invoke(func)

18 commit2pc(gtid)

19 unsetThreadLocal(GTID)

20  return res

21 INVOKEINLOCALTXN(func):

22 gtid := getThreadLocal(GTID)

23 stid:= genUuid()

2 if gtidis not NULL:

25 registerSubTxn(gtid, stid)

26 res := SHIM.invokeAsSubTxn(func, gtid, stid)
27 updateSubTxn(gtid, stid, PREPARED)
s else:

29 res := SHIM.invokeAsSubTxn(func, NULL, stid)
3  return res

31 INVOKEREMOTESERVICE(target, request):

52 gtid := getThreadLocal(GTID)

33 if gtidis not NULL:

34 request.setHeader(GTID, gtid)

35 return target.invoke(request)

36 HANDLEREMOTEINVOCATION(request):
37 gtid := request.getHeader(GTID)
ss  if gtidis not NULL:

39 setThreadLocal(GTID, gtid)

40 res := handle(request)

4 unsetThreadLocal(GTID)
2 else:

43 res := handle(request)

4 return res

Figure 5: Sonata procedures for initiating, propagating, and
completing multi-database transactions.

@GlobalTransactional annotation, these two local transactions are
treated as subtransactions of the same global transaction.

Assumptions. Sonata assumes that the underlying databases
support serializable local transactions, use SSI or S2PL for concur-
rency control, and implement 2PC participant procedures. S2PL
systems could employ early lock release, but only for read-only
transactions. Popular systems, including MySQL, PostgreSQL, and
SQL Server, typically meet these requirements.

3.3 Sonata Workflow

Sonata follows the same overall 2PC workflow as shown in §2.1.
@GlobalTransactional-annotated functions are intercepted and ex-
ecuted with the invokelnGlobalTxn procedure, as shown in Figure 5.
This procedure first generates a global transaction ID (line 14) and
sets it as a thread-local variable, GTID (line 15). Sonata assumes
that each service invocation is exclusively bound to a single thread
of execution but does not require any specific threading implemen-
tation. Therefore, GTID unambiguously indicates the presence of a
global transaction for the associated service invocation. The proce-
dure then notifies the 2PC coordinator to begin a global transaction
(line 16) and executes the function (line 17). Any local transaction
created during execution will be treated as a subtransaction of the
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global transaction. Upon completion, the procedure notifies the 2PC
coordinator to commit the global transaction (line 18) and clears the
current thread’s GTID (line 19). Commit or abort decisions will be
sent to corresponding shims to complete registered subtransactions.

Sonata intercepts local transactions and executes them using the
invokelnLocalTxn procedure. This procedure checks if the current
thread is already within a global transaction by inspecting the cur-
rent thread’s GTID (line 22) and generates a unique subtransaction
ID (line 23). If a global transaction is present, this subtransaction is
registered with the 2PC coordinator (line 25). A database system-
specific shim is then invoked to execute the function within a local
transaction and prepare it when finished (line 26). This shim en-
sures that the CO condition from §3.1 is maintained. Then, the 2PC
coordinator is notified that the subtransaction has been success-
fully prepared (line 27). If no global transaction is active, no global
transaction ID is given to the shim (line 29). Calling into the shim is
necessary as additional coordination might be necessary, e.g., when
the selective coordination optimization (§5) is disabled.

To propagate multi-database transactions across services, Sonata
intercepts service invocation and request handling with the invok-
eRemoteService and handleRemotelnvocation procedures. The first
procedure attaches the current thread’s GTID to the request header
before sending it to the target service (line 34). Sonata does not
require specific communication protocols or message formats as
long as GTID can be included, e.g., as a string field. Upon receiv-
ing the request, the target service retrieves GTID from the request
header (line 37) and sets it as a thread-local variable before han-
dling the request (line 39). This way, local transactions at remote
services can be consistently handled and participate in the same
global transaction. Like in invokelnGlobalTxn, the current thread’s
GTID is cleared after the request is handled (line 41).

3.4 Commitment Ordering Shims

3.4.1  SSI Shim Layer. SSl is a family of concurrency control proto-
cols that ensures local serializability. It restricts an SI protocol to
produce only serializable histories [21, 22, 55]°. In SI, read opera-
tions always return the latest committed versions from a snapshot
taken at the beginning of the local transaction [16], eliminating the
need for long-term read locks to block concurrent writes. SSI ex-
tends existing SI protocols with mechanisms to prevent dangerous

structures [33], i.e., consecutive rw-dependencies T; v, T, v, T3
among committed local transactions such that Ty and T, are con-
current and T, and T3 are concurrent. Regardless of the specific
detection and prevention mechanisms, an SSI system must guaran-
tee the absence of dangerous structures in the histories produced.

We observe that, in an SSI system, CO violations arise when local
transactions have rw-dependencies, while ww- and wr-dependen-
cies do not lead to CO violations. Consider two committed local
transactions 77 and T5. If Ty 7, T,, then T} must commit before
T, starts; otherwise, they would have been concurrent, which is

disallowed in SI. If T} -, T», then T; must commit before T, starts
as well; otherwise, the version created by T; would not have been in
the snapshot of Ty. In both cases, Tj is decided before T3, and CO is

5 Although named PSSI (Precisely SSI), the algorithm from [60] is essentially a graph-
based detection algorithm for dependency cycles, not dangerous structures. It is not
used in practice due to its overhead [55]. Thus, we do not consider it in this paper.
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SSI::INvOKEASSUBTXN(func, gtid, stid)
BEGIN TRANSACTION
res := invoke(func)
dummy_key := prepareHelper(gtid, stid)
UpDATE Dummy SET value = rand() WHERE key = dummy_key
if gtid is not NULL:
PREPARE TRANSACTION gtid + stid
else: # directly commit if not part of a global transaction
CoMMIT TRANSACTION
ABORT PREPARED HELPERS[gtid + stid]
return res
SS1::suBTXNCoMMIT(gtid, stid)
CoMMIT PREPARED gtid + stid
ABORT PREPARED HELPERS[gtid + stid]
PREPAREHELPER(gtid, stid)
dummy_key := uniqueRand()
BEGIN TRANSACTION # not nested in the caller's transaction
SELECT * FROoM Dummy WHERE key = dummy_key
hid := genUuid()
HELPERS[gtid + stid] := hid
PREPARE TRANSACTION hid
return dummy_key

Figure 6: SSI shim procedures.

maintained. However, if T v, T3, due to the absence of long-term
read locks, CO violations might arise, as in the history shown in
§2.3: r1(xo), wa(x2), p2, do, p1, d1, where Tj is decided after T>.
Interestingly, rw-dependencies are the only ones that constitute
dangerous structures, presenting an opportunity for reusing exist-
ing SSI facilities by turning CO violations into dangerous structures.
At a high level, our shim introduces temporary rw-dependencies
(dashed below) towards ready-to-prepare local transactions (7;/T;)
using additional helper transactions (T/ T]’)
T/ T;

w

As a result, any pair of concurrent transactions that already has
an existing rw-dependency is promoted to a potential dangerous

structure, e.g., Tl.’ AN T; AN T;. In the case of a CO violation,
i.e., Tj decides before T;, T; will be aborted by the underlying SSI
database’s dangerous structure prevention mechanism; otherwise,

the temporary rw-dependency, T/ AN T;, will be removed and
T;j will be able to prepare and decide afterward.

Figure 6 shows the specific algorithm. The invokeAsSubTxn pro-
cedure starts a local transaction (line 46) and executes the given
function (line 47). Before preparing the transaction, another local
transaction is spawned by the prepareHelper procedure (line 61).
This helper transaction reads a random row from a two-column
table Dummy maintained by Sonata (line 62) and prepares itself
(line 65).° Helper transaction IDs are randomly generated (line 63)
and stored in a service-local in-memory map HELPERS indexed
by the global transaction ID and subtransaction ID (line 64). After
preparing the helper, the original subtransaction updates the same

®Dummy key uniqueness is not required for correctness, but helps avoid false positives
and head-of-line blocking. Thus, unique keys are used in Sonata.



row with a random value (line 49), establishing an rw-dependency
with the helper. If the global transaction ID is present, the origi-
nal subtransaction prepares itself (line 51). When committing or
aborting the subtransaction, Sonata aborts the associated helper
transaction (line 58). If the global transaction ID is NULL, indicating
that a single-database transaction should be used, the shim directly
commits the local transaction (line 53) and aborts the helper (line 54)
as if this transaction is prepared and decided immediately.

We now revisit the previous example and provide an intuitive
argument for the shim’s correctness. If T; prepares and decides
before T;, which violates CO, since the helper T} is prepared before
T;, the database’s dangerous structure prevention mechanism will
not allow T; to prepare. Otherwise, once all three local transactions
are prepared, though they have not yet strictly formed a dangerous
structure, it is up to the 2PC coordinator, not the database system,
to make the commit decision. Suppose the coordinator decides to
commit all three transactions. In that case, the database faces a
dillema: it must either proceed as decided and keep the dangerous
structure, thereby violating its local serializability guarantee, or
abort one of the prepared transactions, which would break the
2PC protocol. For the same reason, Tj cannot prepare either if T;
prepares earlier until the helper T/ is aborted, which happens after
T; is decided at the 2PC coordinator. After that point, preparing and
deciding T; will not cause CO violations.

3.4.2 S2PL Shim Layer. S2PL is a classic family of pessimistic con-
currency control protocols that ensure local serializability. It inher-
its the two-phase property from 2PL, meaning long-term read/write
locks are only acquired in the first phase and released in the sec-
ond [32]. Being strict means that all write locks are held until the
local transaction commits or aborts.

We observe that, in an S2PL system, CO violations can only
arise from rw-dependencies as well. Since write locks are held until
commit, similar to SSI systems, no ww- and wr-dependencies are
possible between two committed concurrent local transactions, and
thus, they cannot violate CO. However, a S2PL system does not
necessarily hold long-term read locks until commit. When releasing
them early, e.g., immediately after prepare [37], CO violations can
occur. For example, consider two local transactions T; and Tz such

that Ty v, T, and T; has prepared but not committed yet. If T ’s
read lock is released immediately after it prepares, T,, which modi-
fies the data item that T; has read, can prepare and commit before
Ti commits, violating CO: r1(xo), p1, wa(x2), p2, d2, d. If the read
lock is held until commit instead, such violations are not possible.

Fortunately, many S2PL systems do not release read locks early
(e.g., SQL Server), and others only implement it for read-only local
transactions (e.g., MySQL and Db2).” Therefore, our S2PL shim
only needs to introduce a dummy write operation to read-only
local transactions to disable early lock release for the latter systems.
Figure 7 shows the full procedures. The dummy write is performed
on a randomly chosen row in a two-column table DUMMY that is
maintained by Sonata. A simple heuristic to determine whether a
local transaction is read-only is to check whether the local transac-
tion contains any statements other than SELECT. In some systems
like MySQL, seemingly read-write local transactions are treated as

7We restrict our attention to the top 10 database systems from the DB-Engines Ranking.

67 S2PL::INVOKEASSUBTXN(func, gtid, stid)
68  BEGIN TRANSACTION

6  res:= invoke(func)
70 if gtidis not NULL:

71 if isReadOnly():
72 UpDATE Dummy SET value = rand() WHERE key = uniqueRand()
73 PREPARE TRANSACTION gtid + stid

u  else: #directly commit if not part of a global transaction
75 CoMMIT TRANSACTION

76 return res

77 S2PL::suBTXNCOMMIT(gtid, stid)

78 COMMIT PREPARED gtid + stid

Figure 7: S2PL shim procedures.

read-only ones internally if there is no change in concrete values,
rendering above heuristic insufficient. For such systems, dummy
writes are added to all local transactions for such systems. While
we are unaware of any S2PL systems for which dummy writes are
insufficient, for completeness, mitigations for such cases include
SQL clauses like For UPDATE that upgrade read locks to write locks,
shim-layer read locks that take effect only after the owner local
transactions have prepared, and fallback shims as discussed in §3.6.

3.5 Durability and Failure Recovery

Sonata follows the standard 2PC protocol to persist and recover
both the participant and coordinator states [18, 38, 48]. Addition-
ally, after a participant has finished 2PC recovery, Sonata must
handle potentially dangling prepared helper transactions due to the
lost in-memory HELPERS map of the SSI shim. Specifically, after
restarting, the participant blocks all requests that would create new
subtransactions. It periodically polls the 2PC coordinator for any
decisions on subtransactions that the participant has previously
prepared. When the 2PC coordinator signals that no such subtrans-
actions exist, prepared transaction still pending at the participant
are the dangling helpers. The participant then queries the database
for such transactions and aborts them, e.g., using the XA RECOVER
command in MySQL or querying the pg_prepared_xacts table in
PostgreSQL. Finally, the participant resumes normal operation.

3.6 Discussion

Supporting Other Databases. Databases beyond SSI and S2PL
can be accommodated as well. If the database provides transac-
tions (not necessarily with local serializability), a fallback shim that
serializes them via sequential execution can trivially enforce CO.
When local transactions are unavailable, notably in NoSQL systems,
generic fallback shims that perform application-level CO-compliant
concurrency control, e.g., S2PL without early lock release, can be
used. Designing such shims is straightforward and should resemble
those from [28, 29, 46, 78], requiring only single-record atomicity.
We expect performance overhead to be similar to the gap between
Epoxy/ScalarDB and Sonata shown in §6. Nevertheless, this over-
head is restricted to generic shims only; SSI and S2PL systems in
the same cluster are unaffected.

Changes in Database Internals. Changes in database inter-
nals, although unlikely for stabilized mainstream systems, may
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affect Sonata’s effectiveness. For example, in principle, an SSI data-
base may conservatively abort any helper on a potential dangerous
structure, forcing the shim to abort the corresponding local trans-
action. While the correctness is intact (§4.1), unnecessary aborts
may appear and degrade performance. Yet, PostgreSQL’s safe retry
property [55] forbids this change, as it always tries to abort the
middle transaction, which would never be the helper, to break dan-
gerous structures. Similarly, examining the source code of MySQL,
we find its early lock release behavior also unlikely to change, e.g.,
extending to read-write transactions. MySQL checks if a finishing
transaction has an empty redo log and, if so, directly rolls back the
transaction to reduce disk IO, early releasing any read lock acquired
as a side effect. Therefore, extending to read-write transactions,
which always have non-empty redo logs, would require building
new mechanisms from scratch.

Enforcing CO inside Databases Enforcing CO inside databases
when source code is available potentially reduces shim layer over-
head if tailored modifications based on our shim design are used,
instead of prior generic serialization graph-based algorithms [57-
59]. For example, PostgreSQL already maintains per-transaction
pointers for rw-dependencies. Therefore, our local condition can
be maintained by checking the prepare/commit state of the pointed
transactions at prepare time and aborting the to-be-prepared trans-
action when the pointed ones have already prepared or committed.

4 CORRECTNESS ANALYSIS
4.1 Global Serializability

In this section, we prove the correctness of Sonata, namely that it
ensures global serializability for multi-database transactions. As
discussed in §2.3, CO implies global serializability. Therefore, we
prove that Sonata produces CO-compliant histories only. Specifi-
cally, we show that each shim satisfies our local condition derived
in §3.1, which is a sufficient condition for CO, and we restate below.

Definition 1. A system is locally CO if, for any two subtransac-
tions T; and Tj in its local history H, T; — T implies ¢; <g p;.

4.1.1  Correctness of SSI Shim.

THEOREM 4.1. An SSI system with local transactions intercepted
by Sonata SSI shim is locally CO.

Before proving the theorem, we present two useful properties
adapted from [33]. They are originally proposed to describe SI histo-
ries. SSI histories are a subset of SI histories, as dangerous structure
detection mechanisms do not affect transaction scheduling during
execution. Therefore, these properties also hold for SSI histories.

LEMMA 4.2 (LEMMA 2.2 IN [33]). In an SSI local history H, if there
are two local transactions T; and Tj such that T; — Tj, then T; starts
before Tj commits.

LEMMA 4.3 (LEMMA 2.3 IN [33]). In an SSI local history H, if there
are two local transactions T; and Tj such that T; — T; and they are
rw
concurrent, then T; — T;.
Proor oF THEOREM 4.1. A local CO violation in a local history

H is defined as a local transaction dependency T; — T; where
Pj <H ci. We first show that, for any local CO violation in a vanilla
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SSI system, such T; and T; must be concurrent, and the dependency
must be an rw-dependency. Assume, for contradiction, that T; and
T; are not concurrent. There are two possibilities: (i) 7; commits
before T; starts, or (i) T; starts after Tj commits. In case (i), T;
would be decided before T}, which contradicts the premise that T;
and Tj constitute a local CO violation and thus p; <p c;. Case (ii)
contradicts Lemma 4.2. Therefore, T; and T; must be concurrent,

and, by Lemma 4.3, T; AR T;.
We next show that, with the algorithm in Figure 6, concurrent
local transactions T; and Tj cannot both commit in local history H if

pj <H ciand T; = T;. Assume, for contradiction, that such T; and
Tj both commit, meaning they both prepare successfully along with
their helpers T; and T]f . There are two possibilities: (i) p; <g p;j or
(ii) pj <g pi. In case (i), since p; <pg c;, when T} prepares, both
T; and its helper T, are in a prepared state. Given that prepared
local transactions cannot be unilaterally aborted by the database
system, they are conservatively treated as committed by the dan-
gerous structure detection mechanism of SSI [55]. Consequently,

T;j cannot successfully prepare; otherwise, a dangerous structure

T/ = T; = T; is permissible, where the former dependency
is established by the dummy read and dummy write in T; and its
corresponding helper T, respectively, according to the algorithm
in Figure 6. In case (ii), when T; prepares, Tj is in either a prepared
or a committed state. Since T;’s helper is prepared before T;, T; can-
not successfully prepare; otherwise, the same dangerous structure
as described above is permissible as well. In both cases, T; and T;
cannot both commit. Therefore, local CO violation is impossible,

and by Definition 1, the system is locally CO. O

4.1.2  Correctness of S2PL Shim.

THEOREM 4.4. An S2PL system with local transactions intercepted
by Sonata S2PL shim is locally CO.

Proor. Assume, for contradiction, that T; and T; constitute a
local CO violation in an S2PL system with the Sonata shim. Since
S2PL produces only well-formed local histories [32], T; must have
acquired the corresponding long-term locks to either read or write
a data item before T; accesses the same item. In the case that a write
lock is acquired for the data item that establishes the dependency
in the CO violation, due to the strictness property of S2PL [18], this
lock is held and blocks T; until 7; commits. Therefore, T; commits
before T; prepares, which contradicts the premise that T; and T;
constitute a local CO violation. In the case of a read lock, due to
the algorithm in Figure 7 that disables early lock release, this lock
is also held until T; commits, and the same contradiction arises.
Therefore, local CO violation is impossible in an S2PL system with
the Sonata shim. By Definition 1, this system is locally CO. O

4.2 TFalse Positives

False positives refer to local transactions aborted by Sonata shims
whose commit would not have caused local CO violations. Unlike
correctness, which can be proven based on common properties,
analyzing false positives requires concrete implementation context.
We use PostgreSQL and MySQL as representative systems and show
that false positives are only possible when these systems fail to
determine transaction conflicts accurately.



We begin assuming databases accurately detect conflicts. In Post-
greSQL, serializable local transactions are aborted when (i) dead-
locks occur, (ii) SI anomalies occur, or (iii) dangerous structures are
detected. Helpers in the SSI shim are read-only and non-blocking.
Thus, they cannot cause deadlocks or SI anomalies, i.e., violation
of the first-committer-wins rule for concurrent writers [16]. We

now consider the last case. Let Ty o, T o, T3 be the depen-
dency chain of the dangerous structure that is caused by a helper
and triggers a PostgreSQL abort. Since helpers are read-only, only
T; can be the helper (of T;), as others sit on the writer ends of
rw-dependencies. PostgreSQL intervenes to break the dangerous
structure only after T3 prepares [55]. Since T3 has already prepared,
depending on when PostgreSQL detects the dangerous structure,
either T1 or T, will be aborted by PostgreSQL and the other will
be aborted by our shim. If T, was not aborted and able to commit,
since T3 has already prepared, such a situation is always a local CO
violation by Definition 1. Thus, such aborts are not false positives.

MySQL aborts serializable local transactions when deadlocks oc-
cur. Suppose a deadlock is caused by the S2PL shim’s dummy write.
Then, there are at least two transactions T; and T, on the deadlock
wait-for cycle, where T; waits for a lock held by T, on the dummy
table, and T, waits for another lock held by some transaction. Since
T, has already acquired a lock on the dummy table, which is only
accessed by the S2PL shim’s prepare-time coordination, T, must
have executed the last dummy write and all preceding operations.
As a result, T, cannot be waiting for any additional locks, making
deadlocks caused by dummy writes impossible. Therefore, the S2PL
shim introduces no new aborts and thus no false positives.

Prior conclusions assume accurate conflict detection, which
might not always hold for PostgreSQL. PostgreSQL detects rw-
dependencies with tuple-level locks by default and will promote
them to coarser-grained ones when space is constrained [55], caus-
ing false positives. For example, for the dependency chain men-
tioned above, T, might not be the subtransaction associated with
the helper, i.e., a different dummy key is used. In contrast, MySQL
does not promote lock granularity and always acquires row-level
locks for dummy writes, avoiding false positives.

5 OPTIMIZATIONS

Helper Sharing. The basic SSI shim creates a helper trans-
action for each subtransaction. Although this helper is read-only,
disk writes are still required for 2PC prepare states. This optimiza-
tion allows a batch of N subtransactions to share a single helper
transaction, which now reads N distinct random rows from the
Dummy table. The N dummy keys and the helper ID are recorded
as global variables. Each time prepareHelper is invoked, it attempts
to return an unused dummy key and only spawns a new helper if
all keys are consumed. Similarly, subTxnCommit only aborts the
helper if all associated subtransactions have been completed. This
design effectively amortizes the helper prepare overhead. Since the
helper lifespan still covers all associated subtransactions from their
prepare to commit, the correctness of the algorithm is not affected.

Selective Coordination. Our basic algorithms add helpers and
dummy table operations to all local transactions, even those not par-
ticipating in global transactions. Fortunately, it has been shown that
the requirement for multi-database transactions to be decided in
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their dependency order is only necessary when more than one sub-
transaction is involved at both ends of a dependency [59]. Therefore,
Sonata coordination can be skipped for single-database transactions
while still preserving global serializability.

6 EVALUATION
6.1 Evaluation Setup

6.1.1 Sonata Implementation. We have prototyped Sonata in Java
based on Apache Seata, an open-source distributed transaction mid-
dleware [13]. We introduced less than 600 lines of code of changes
to perform prepare-time coordination and maintain metadata like
the HELPERS map. Deadlock detection for multi-database trans-
actions is an orthogonal problem, and we use a simple 5-second
timeout to break all potential deadlocks.

6.1.2  Baselines. The Ticket method [36] is a classic globally seri-
alizable multi-database transaction protocol. It takes a black-box
approach, only requiring local serializability from local databases. It
coordinates subtransactions with ticket operations, i.e., reading and
incrementing a per-database shared integer counter. ScalarDB [78]
is a recent globally serializable multi-database transaction mid-
dleware using application-level concurrency control. It abstracts
local databases with a Bigtable [23]-like key-value (KV) model
and performs Silo [71]-style concurrency control. The open-source
implementation (version 3.14.0) is used for evaluation. Epoxy [46]
is a recent multi-database transaction protocol that provides SI also
with application-level concurrency control. A PostgreSQL server is
required as the primary database for global coordination. Additional
database servers are as simple multi-version storage and termed
secondary databases. We ported its open-source implementation,
including its two optimizations: (1) subtransactions at secondary
nodes are executed in local transactions with default isolation level,
and (2) snapshots are cached for read-only transactions. The 2PC
baseline runs the original Apache Seata middleware [13], providing
no cross-subtransaction isolation but only atomicity and durability.
The Local baseline discards both cross-subtransaction coordination
and 2PC. Subtransactions are executed as serializable local transac-
tions and commit independently. Thus, this baseline guarantees no
ACID property and serves as a performance upper bound.

6.1.3  Testbed and Configuration. By default, a three-node cluster
is used for evaluation: one benchmark client and two service nodes.
Each service node runs a workload server and an exclusive, colo-
cated database. Multi-database transactions are initiated from one
of the service nodes. Service nodes can be invoked multiple times to
simulate scenarios with more than two database systems, creating
multiple subtransactions in the same database system. Each node
is a Huawei Cloud ECS c7n.2xlarge.2 instance with 8 vCPUs, 16
GiB memory, and virtualized SSD storage, running Ubuntu 22.04.
One service node deploys MySQL 8.0.39, and one runs PostgreSQL
14.13. Both database systems have undergone basic tuning using
MySQLTuner [42] and PgTune [72].

Each database system maintains a 1M-row dummy table, which
takes around 56 MB for PostgreSQL and 28 MB for MySQL. The
helper sharing optimization uses a batch size of 10. For a fair com-
parison with Epoxy, which uses PostgreSQL to coordinate atomic
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Figure 8: TPC-C peak throughput when PT=WH.

commit, we by default colocate coordinators in other baselines, if
any, on the same service node that runs PostgreSQL.

6.1.4 Workloads and Measurement. All data points are measured
by running each experiment 3 times and taking the average. Each
run lasts 160 seconds, with the first 30-second warm-up and the
last 10-second cool-down periods excluded from measurement.
Multi-Database TPC-C. TPC-C models an OLTP application
consisting of geo-distributed business regions, each with a ware-
house serving nearby customers. We partition TPC-C by warehouse
into different regional services; half use MySQL, and the other half
use PostgreSQL. This turns TPC-C’s two most frequent transac-
tions, new-order and payment, into multi-database transactions
constituting 88% of the workload. Our TPC-C implementation is
based on BenchBase, formerly OLTPBench [30]. For ScalarDB, we
use its open-source TPC-C implementation, which also derives
from BenchBase but replaces SQL with its customized APIs.
Microbenchmarks. Our microbenchmarks derive from the
following parameterized template. Each multi-database transaction
consists of S subtransactions, each performing R random reads fol-
lowed by W random updates to a N-row table. Each subtransaction
accesses a different table, so changing S does not affect the per-
subtransaction contention level. Each table has two integer columns,
one for the primary key and one for the value. Each update sets the
value to a random integer. Each subtransaction accesses a randomly
chosen database system with probability P to be PostgreSQL.

6.2 TPC-C Performance

One Warehouse per Partition. We first consider the case
where the number of partitions (PT) equals the number of ware-
houses (WH). Figure 8 shows the results. Local achieves the highest
peak throughput, as it does not incur any cross-subtransaction
coordination. Sonata and 2PC have similar throughput: Sonata
achieves 58.2% to 63.4% of Local’s peak throughput, while 2PC
achieves 62.5% to 66.7%. Compared with 2PC, Sonata incurs an av-
erage 7.1% reduction in throughput. Epoxy performs progressively
worse as the number of warehouses/partitions increases, peaking
at two warehouses with 51.0% of Local’s throughput and dropping
to 18.6% at 40 warehouses. This translates to a 14.0% to 241.6%
performance advantage of Sonata over Epoxy. Such degradation
is due to the increasing number of partitions and subtransactions
at secondary databases, where record updates are amplified as an
insert followed by an update and queries are taxed by additional
WHERE clauses for selecting the version visible to the transaction.
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Figure 9: TPC-C peak throughput when PT=2.

Furthermore, application-level concurrency control is performed
for each secondary subtransaction. For ScalarDB, the amount of
work for its application-level concurrency control is unaffected by
the number of subtransactions. Thus, it shows stable performance
but at a lower throughput than Sonata and 2PC, ranging from 12.0%
to 14.3% of Local. Compared with ScalarDB, Sonata achieves up
to 423.9% higher throughput. As a later latency breakdown will
show, ScalarDB’s overhead comes from expressing transaction logic
through KV interfaces and its application-level concurrency control.
Ticket performs progressively better as the number of partitions
increases, starting at a normalized throughput of 4.8% at two parti-
tions and reaching 36.4% at 40 partitions. This translates to a 74.1%
to 1114.3% performance advantage of Sonata over Ticket. With
more partitions, the contention on the per-partition ticket counters
is reduced, and the performance thus improves.

Fixed Number of Partitions. We next consider the case where
the number of partitions is fixed to two, the minimal number where
using multi-database transactions is meaningful. This setup per-
mits at most two subtransactions in a multi-database transaction.
Figure 9 shows the results. Compared with the previous case, the
performance of ScalarDB, Sonata, 2PC, and Local remains similar,
as their performance is mainly decided by the work performed
within the transaction, not the number of subtransactions or par-
titions. Meanwhile, Epoxy and Ticket show different performance
trends. For Epoxy, now with fixed partitions, the relative amount of
application-level concurrency control remains similar across differ-
ent warehouse numbers, leading to a stable normalized throughput
ranging from 46.2% to 52.5%. Similarly, there are always two shared
ticket counters for Ticket, imposing high contention regardless of
the warehouse number, resulting in a stable but low normalized
throughput ranging from 3.8% to 5.1%.

Throughput-Latency Curves. The throughput-latency graphs
for P50 and P99 latency using two one-warehouse-per-partition
configurations are shown in Figure 10. Sonata has latency similar to
2PC, and both are consistently higher than Local due to round trips
for 2PC messages. For example, at two partitions, when reaching
half of the peak throughput, Sonata’s P50 latency is 6.4% higher
than Local (11.6 ms vs. 10.9 ms), and its P99 latency is 4.0% higher
(27.3 ms vs. 26.3 ms). Meanwhile, as Epoxy consolidates atomic com-
mit with concurrency control, it avoids 2PC round trips, achieving
10.8 ms P50 latency at half of its peak throughput and two partitions.
Yet, there is a significant drop in Epoxy’s throughput after it has
peaked. This is due to its NO_WAIT [61] deadlock prevention policy,
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and with more concurrent transactions, transactions are more likely
to encounter lock conflicts and be aborted. At ten partitions, the la-
tency of Epoxy increases more quickly due to its increased amount
of subtransactions at secondary databases. ScalarDB shows a much
higher latency due to its costly application-level concurrency con-
trol: every record updated results in two disk writes during prepare
and commit, and every record read is re-read during validation.
Ticket’s throughput at two partitions has dropped since the first
data point (two concurrent clients) due to the limited number of
shared ticket counters. At ten partitions, its P99 latency bumps up
to 5 seconds (out of the y-axis range) due to distributed deadlocks
caused by conflicts on the shared ticket counters.

Scalability. We first examine how the number of concurrent
workers affects the throughput. As shown in Figure 11, all systems
except for Ticket at PT=2 show performance improvement as more
workers are added. Local, 2PC, and Sonata are able to sustain high
throughput for a larger range of workers after peaking. Across all
worker numbers, Sonata’s coordination overhead is consistently
small. Meanwhile, others’ throughput drops quickly after peaking.

Next, we examine the performance when more database nodes
are added. Each node is assgined a 10-warehouse partition, and
coordinator instances are scaled out as well when possible to avoid
bottlenecks. Figure 12 shows the results. Except for Epoxy, all show
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a near-linear increase in throughput as none has a global singleton
bottleneck in their designs. Sonata peaks at 4977 TPS with 10 nodes,
slightly lower than 2PC’s 5153 TPS, and is 4.65X of Sonata’s 2-node
peak. Epoxy’s 10-node peak, 1319 TPS, is only 1.46X of its 2-node
peak, as its singleton primary PostgreSQL bottlenecks the cluster.

Latency Breakdown. We now break down and analyze the
new-order and payment latency. For stable measurement, each new-
order includes one and only one remote item, and each payment
transaction always involves a remote customer. The chance of in-
valid new-order input, originally 1%, is now 0%. Figure 13 shows the
results. Compared with 2PC, Sonata does not lengthen any preexist-
ing phase and only adds a small shim layer overhead, constituting
2.2% and 2.6% of the total latency, respectively. ScalarDB’s longer
execution phase stems from the additional schema-checking queries
introduced by its KV abstraction layer and the cost of maintain-
ing application-level metadata like read and write sets. Its prepare
phase is also longer as its buffered write set is sent to the data-
base through multiple write statements, whose parsing, execution,
and persistence all happen in this phase. ScalarDB validates by re-
reading its read set, introducing multiple database queries. When
ScalarDB commits, it updates all written records again to set them
to a committed state, which takes similar time as its prepare phase.
Meanwhile, Epoxy’s latency distribution heavily depends on the
proportion of work done at the primary and secondary databases.
Thus, two situations where the home warehouse that corresponds
to most of work sits in the primary PostgreSQL (Epoxy-pg) and the
secondary MySQL (Epoxy-my), respectively, are evaluated. Shifting
more work to secondary databases increases the execution, prepare,
and commit phases due to its application-level concurrency control,
which is proportional to the amount of work: all writes are ampli-
fied during execution as described earlier, examined for write-write
conflicts during validation, and require application-level locks that
are held until commit; all reads are burdened with additional predi-
cates as described earlier. Still, when the primary database handles
most of the work, Epoxy-pg has similar latency as 2PC and Sonata
due to the absence of 2PC round trips.

6.3 Microbenchmark Performance

Impact of Contention. We first vary the table size N from
100 to 1M and set other parameters as follows: S=2, R=W=6, and
P=50%. Figure 14 shows the results. As the table size decreases,
the likelihood of conflicts increases, and all systems except Ticket



2 Ticket ScalarDB 3 Epoxy E3 Sonata T3 2PC A Local
2048

ERRL) 1/ N/ B— 1
o

S5 512 .
2L 256 =T T s
o = Lo N .\ N |
£ Gl dlllin

= e Ol OO ;\ ]

N=100  N=Tk  N=10k  N=100k
Table size

Figure 14: Peak throughput under different table sizes.

2 Ticket ScalarDB O Epoxy E3 Sonata O 2PC I Local

5 1024 7]
& 512 BN =1
£ wl AU A el e |

0.8 0.9 0.95

Skewness level

0.99

Figure 15: Peak throughput under skewed workloads.

3 Ticket ScalarDB 3 Epoxy E3 Sonata T3 2PC A Local

é_(/\ 1024 I -
"%Dg 256 I N 1
2= 64 H - \ B N N
= i I\ \
= 16 H mﬂlg

S=2 S=4 S=8

Number of subtransactions

Figure 16: Peak throughput under different transaction sizes.

experience a decrease in throughput. When the table size N is
100, conflicts are the main factor for transaction aborts, and thus,
Sonata only outperforms Epoxy by 19.2% and ScalarDB by 139.3%.
As the table size increases, aborts due to conflicts decrease, and the
performance difference becomes dominated by the coordination
overhead. At N=1M, Sonata outperforms Epoxy by 145.5% and
ScalarDB by 204.1%.

Next, we consider more contentious scenarios by making work-
loads write-only and introducing the skewness level parameter, K €
[0.5,1), such that a fraction 1-K of all rows are accessed by a fraction
K of all operations. We set N to 10k. Figure 15 shows the results.
As K increases from 0.8 to 0.99, hot rows in a table drops from
2k to 100, significantly increasing conflicts. For example, with 10
concurrent workers, the abort ratio of 2PL/Sonata/ScalarDB/Epoxy
grows from 7.4%/7.7%/26%/28% to 51%/52%/93%/75%. Still, across
all configurations, Sonata performs similarly to 2PC and always
outperforms Epoxy and ScalarDB, suggesting that Sonata is no
more suspectable to skewness than other baselines.

Impact of Transaction Size. We evaluate the impact of trans-
action sizes by varying the number of subtransactions S from 2 to
8 and set other parameters as follows: R=W=6, N=1M, and P=50%.
Figure 16 shows the results. As the number of subtransactions S
increases, the throughput of all systems decreases. This is expected
as the amount of work grows linearly with S. As with TPC-C, both
Sonata and 2PC achieve a stable relative performance to Local
across different S: Sonata achieves 51.2% to 53.9% of Local, while
2PC achieves 52.6% to 56.1%. These numbers are slightly smaller
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Figure 18: Commit/abort rates vs. concurrency level.

than those from TPC-C since less service computation is involved
in the microbenchmarks, making the coordination overhead more
prominent. Still, Sonata outperforms Epoxy by 145.5% (at S=2) to
194.0% (at S=8). ScalarDB performs slightly worse than Epoxy and
is outperformed by Sonata by 204.1% to 256.8%.

Single-Database Performance. We use single-subtransaction
(S=1) workloads to exercise either PostgreSQL (P=1) or MySQL
(P=0). We begin with different read-write ratios and fix the oper-
ation count to 12. Table size N is set to 1M. Figure 17 shows the
results. In general, the performance of all systems decreases as the
workload becomes more write-heavy. Sonata performs similarly
with 2PC in most cases with a up to 3% overhead in MySQL and
14% in PostgreSQL. 2PC’s read-only MySQL performance notice-
ably surpass Sonata due to a prepare-time optimization in MySQL,
which reduces disk writes by directly rolling back the subtransac-
tion if the redo log is empty. The dummy writes from the Sonata
shim disable this optimization, making Sonata 43.9% slower than
2PC. Sonata outperforms Epoxy except in read-only workloads by
up to 70.1% in MySQL and up to 47.5% in PostgreSQL. In read-only
workloads, Epoxy’s snapshot caching optimization effectively elim-
inates most application-level coordination and reduces transactions
to local transactions. Sonata outperforms ScalarDB by up to 203.1%
in MySQL and up to 281.7% in PostgreSQL.

Next, we compare Sonata with 2PC in details to analyze the shim
layer overhead in each database. Figure 18 shows the commit and
abort rates under different numbers of concurrent workers. With
N=1M and R=W=6, we observe a 4-11% commit rate reduction



with PostgreSQL and up to 5% with MySQL. For abort rates, due
to the large table size, both 2PC and Sonata have zero aborts in
MySQL, and Sonata adds only 1-2 TPS in PostgreSQL. We then
reduce the amount of work by setting R=W=1. The impact on the
commit rate slightly increases as shim operations now take a larger
proportion. For aborts, the relative increase in abort rates is larger
since CO-violating transactions, i.e., those with rw-dependencies
that prepare in a CO-violating order, are less likely to be aborted
by the databases due to the lower contention. However, also due
to the lower contention, the absolute abort rates for both 2PC and
Sonata are much lower (less than 1 TPS), making the impact of
increased abort rates negligible. We also reduce N to 1k for higher
contention. While the absolute increase in abort rates is much
larger (up to 33 TPS), Sonata’s relative impact becomes much lower,
as CO-violating transactions are more likely to participate in SSI
dangerous structures or S2PL deadlocks and thus aborted by the
underlying database, not the shim layer. In terms of latency, Sonata
shims generally add 1 ms to the total latency and, as in our previous
breakdown (Figure 13), do not affect the time taken by existing 2PC
phases. We skip latency details for brevity.

7 RELATED WORK

Global Serializability. Global serializability for multi-database
transactions has been studied since the early days [19, 66]. The
ticket method and refinements [15, 36] assume local serializability
from the underlying databases. They force subtransactions to ex-
plicitly conflict by reading and incrementing per-database shared
ticket counters. The transaction-site graph algorithm by Breitbart
and Silberschatz [20] and altruistic locking [9, 62] further require
strict local serializability [43]. Mehrotra et al. [51] proposed a seri-
alization point-based approach, requiring subtransactions at each
database to be serialized in the order of their local serialization point
events. The knowledge of such events is assumed to be provided
by the underlying databases. Raz [57-59] proposed the theory of
commit ordering (§2.3) and a family of scheduling algorithms that
test the local serialization graph to maintain the commit ordering
condition. Overall, these protocols are either too conservative or
pose requirements on databases systems that are hardly met in prac-
tice. In contrast, Sonata exploits common properties that hold for
existing popular database systems to achieve general applicability
and practical performance.

Application-Level Concurrency Control. Recent work ex-
plores shifting more concurrency control responsibilities to the
application layer to achieve global serializability or weaker isola-
tion guarantees. Epoxy [46] and Cherry Garcia [28, 29] are two
protocols that provide SI across multiple databases. Since they per-
form coordination at the application level, they only require the
underlying databases to provide linearizable [43] durable KV opera-
tions. They keep multiple data versions in the underlying databases
with additional protocol-specific metadata, which can make the un-
derlying system inaccessible without proper application wrappers.
ScalarDB [78] extends Cherry Garcia to provide global serializabil-
ity with two strategies: a pessimistic one that turns every read into
writes and an optimistic one that performs an additional validation
after the prepare phase, and the latter is the default. Therefore, it
incurs more overhead with similar limitations as Cherry Garcia. In
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contrast, by focusing on SSI and S2PL systems, Sonata’s application-
level prepare-time coordination is lightweight and does not require
maintaining additional data versions or metadata.

Relaxed Transaction Semantics. In distributed service-ori-
ented applications today, multi-database transaction models with
more relaxed semantics are often used. The Saga pattern [34] is a
popular approach that breaks a multi-database transaction into a
sequence of local transactions associated with compensating local
transactions. Atomicity is relaxed as the effect of local transactions
can be partly observed by others. The try-confirm/cancel pattern
(TCC)[53] moves the coordination responsibility to the business
level and requires business logic to be two-phased. The first phase
checks business conditions and reserves resources, and the second
either confirms or cancels the reservation, depending on whether
all participants have succeeded in the first phase. Therefore, any
multi-database transaction observed to be partially confirmed will
eventually be fully confirmed and never canceled. The XA specifi-
cation [77] defines interfaces for different databases to participate
in 2PC, coordinated by any compliant coordinator. XA transactions
are atomic and durable but without cross-subtransaction isolation.
It is adapted by Java Transaction API and .NET TransactionScope
to compose multi-database transactions in respective languages.

Layered Transaction Management. Distributed databases
often adopt a layered approach to implement transactions on top
of self-contained storage systems. Unlike multi-database solutions
that support heterogeneous database systems, these systems are
designed specifically with one storage system type. Percolator [54]
builds upon BigTable [23] to provide distributed transactions with
SI. It uses a client-coordinated MVCC protocol that stores locks
and other metadata in additional BigTable columns. Similar to Per-
colator, Omid [40, 64, 65] builds upon HBase to provide SI. Unlike
Percolator, Omid uses a centralized transaction status oracle server
for conflict detection and snapshot management. Megastore [14]
is another system that builds upon BigTable. It provides a semi-
relational data model missing in Percolator with a weaker isolation
guarantee. Citus [27] allows distributed transactions across multiple
PostgreSQL instances. It uses PostgreSQL’s native 2PC interface for
atomicity and durability and adds a distributed deadlock detector
that uses periodical polling to build wait-for graphs.

8 CONCLUSION

We have presented Sonata, an ACID multi-database transaction sys-
tem. Sonata works as application-level shim layers. Sonata leverages
the common properties of popular database systems to provides
global serializability without fully performing transaction concur-
rency control at the application level or requring changes to appli-
cations’ schemas, query statements, database drivers, or database
systems themselves. Sonata adds only 7.1% coordination overhead
on average, outperforming prior solutions by up to 1114.3%.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Founda-
tion of China under Grant Nos. 62422209, 62132014, and 62272304.
Zhaoguo Wang is the corresponding author.



REFERENCES

[10

(1]

[12

[13]
[14]

[16]

[17]

(18]

[19

™
A=A

[21]

[22

[23]

[24]

[25]

[26]

[n.d.]. AgensGraph. https://bitnine.net/agensgraph/.

[n.d.]. EDB. https://www.enterprisedb.com.

[n.d.]. Fujitsu Enterprise Postgres. https://www.postgresql.fastware.com.
[n.d.]. Neon. https://neon.tech.

[n.d.]. Tmax OpenSQL. https://www.global.tibero.com/product.

2023. Stack Overflow 2023 Developer Survey. https://survey.stackoverflow.co/
2023.

2024. Stack Overflow 2024 Developer Survey. https://survey.stackoverflow.co/
2024.

A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized Isolation Level Definitions.
In Proceedings of the 16th International Conference on Data Engineering (ICDE
’00). IEEE Computer Society, USA, 67.

Rafael Alonso, Hector Garcia-Molina, and Kenneth Salem. 1987. Concurrency
Control and Recovery for Global Procedures in Federated Database Systems. [EEE
Data Eng. Bull. 10, 3 (1987), 5-11. http://sites.computer.org/debull/87SEP-CD.pdf
Paul Andlinger and Matthias Gelbmann. 2018. PostgreSQL is the DBMS of the
Year 2017. https://db-engines.com/en/blog_post/76.

Paul Andlinger and Matthias Gelbmann. 2019. PostgreSQL is the DBMS of the
Year 2018. https://db-engines.com/en/blog_post/79.

Paul Andlinger and Matthias Gelbmann. 2021. PostgreSQL is the DBMS of the
Year 2020. https://db-engines.com/en/blog_post/85.

Apache. 2024. Apache Seata 2.1. https://seata.apache.org.

Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR
2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings. www.cidrdb.org,
223-234. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

RK. Batra, M. Rusinkiewicz, and D. Georgakopoulos. 1992. A decentralized
deadlock-free concurrency control method for multidatabase transactions. In
[1992] Proceedings of the 12th International Conference on Distributed Computing
Systems. 72-79. https://doi.org/10.1109/ICDCS.1992.235053

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. 1995. A critique of ANSI SQL isolation levels. SIGMOD Rec. 24, 2 (May
1995), 1-10. https://doi.org/10.1145/568271.223785

Josh Berkus. 2009. Elephant Roads: a tour of Postgres forks. https://www.
slideshare.net/slideshow/elephant-roads- a-tour- of-postgres-forks/5376286.
Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publishing
Co., Inc., USA.

Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. 1992. Overview
of Multidatabase Transaction Management. VLDB 7. 1, 2 (1992), 181-239. http:
//www.vldb.org/journal/VLDBJ1/P181.pdf

Yuri Breitbart and Avi Silberschatz. 1988. Multidatabase update issues. In Proceed-
ings of the 1988 ACM SIGMOD International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD °88). Association for Computing Machinery,
New York, NY, USA, 135-142. https://doi.org/10.1145/50202.50217

Michael J. Cahill, Uwe Réhm, and Alan D. Fekete. 2008. Serializable isola-
tion for snapshot databases. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data (Vancouver, Canada) (SIGMOD
’08). Association for Computing Machinery, New York, NY, USA, 729-738.
https://doi.org/10.1145/1376616.1376690

Michael J. Cahill, Uwe R6hm, and Alan D. Fekete. 2009. Serializable isolation
for snapshot databases. ACM Trans. Database Syst. 34, 4, Article 20 (dec 2009),
42 pages. https://doi.org/10.1145/1620585.1620587

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.
Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Com-
put. Syst. 26, 2, Article 4 (June 2008), 26 pages. https://doi.org/10.1145/1365815.
1365816

Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General Transactions with
Predictable, Low Tail Latency. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD °22). Association for
Computing Machinery, New York, NY, USA, 19-33. https://doi.org/10.1145/
3514221.3517879

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association,
USA, 251-264.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

3461

[27]

[29

[30

[33

(34]

[35

[36]

[38

[39

[40]

[42

[43

[44]

[45]

[46

[47

Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages.
https://doi.org/10.1145/2491245

Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and
Marco Slot. 2021. Citus: Distributed PostgreSQL for Data-Intensive Applications.
In Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2490-2502. https://doi.org/10.1145/3448016.3457551

Akon Dey, Alan Fekete, and Uwe R6hm. 2013. Scalable transactions across
heterogeneous NoSQL key-value data stores. Proc. VLDB Endow. 6, 12 (Aug.
2013), 1434-1439. https://doi.org/10.14778/2536274.2536331

Akon Dey, Alan Fekete, and Uwe Rohm. 2015. Scalable distributed transactions
across heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering. 125-136. https://doi.org/10.1109/ICDE.2015.7113278

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-
lational Databases. PVLDB 7, 4 (2013), 277-288. http://www.vldb.org/pvldb/
vol7/p277-difallah.pdf

Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving optimistic concur-
rency control through transaction batching and operation reordering. Proc. VLDB
Endow. 12, 2 (Oct. 2018), 169-182. https://doi.org/10.14778/3282495.3282502

K. P. Eswaran, J. N. Gray, R. A. Lorie, and L. L. Traiger. 1976. The notions of
consistency and predicate locks in a database system. Commun. ACM 19, 11
(Nov. 1976), 624-633. https://doi.org/10.1145/360363.360369

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. 2005. Making snapshot isolation serializable. ACM Trans. Database Syst.
30, 2 (jun 2005), 492-528. https://doi.org/10.1145/1071610.1071615

Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD °87). Association for Computing Machinery, New
York, NY, USA, 249-259. https://doi.org/10.1145/38713.38742

Matthias Gelbmann and Paul Andlinger. 2024. PostgreSQL is the DBMS of the
Year 2023. https://db-engines.com/en/blog_post/106.

D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. 1991. On serializability of
multidatabase transactions through forced local conflicts. In [1991] Proceedings.
Seventh International Conference on Data Engineering. 314-323. https://doi.org/
10.1109/ICDE.1991.131479

Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.
2013. Controlled lock violation. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 85-96.
https://doi.org/10.1145/2463676.2465325

Jim Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems,
An Advanced Course. Springer-Verlag, Berlin, Heidelberg, 393-481.

Jim Gray. 1981. The transaction concept: virtues and limitations (invited paper).
In Proceedings of the Seventh International Conference on Very Large Data Bases -
Volume 7 (Cannes, France) (VLDB ’81). VLDB Endowment, 144-154.

Daniel Gomez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam
Yabandeh. 2014. Omid: Lock-free transactional support for distributed data
stores. In 2014 IEEE 30th International Conference on Data Engineering. 676—-687.
https://doi.org/10.1109/ICDE.2014.6816691

Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented
database recovery. ACM Comput. Surv. 15, 4 (Dec. 1983), 287-317. https://doi.
org/10.1145/289.291
Major Hayden. 2024.
MySQLTuner-perl.
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463-492. https://doi.org/10.1145/78969.78972

Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.
Opportunities for optimism in contended main-memory multicore transactions.
Proc. VLDB Endow. 13, 5 (Jan. 2020), 629-642. https://doi.org/10.14778/3377369.
3377373

Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil on Meta’s
microservice architecture: Analyses of topology and request workflows. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,
Boston, MA, 419-432. https://wwwusenix.org/conference/atc23/presentation/
huye

Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei
Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions across Diverse Data
Stores. Proc. VLDB Endow. 16, 11 (July 2023), 2742-2754. https://doi.org/10.
14778/3611479.3611484

Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data management in microservices: state of the
practice, challenges, and research directions. Proc. VLDB Endow. 14, 13 (Sept.

MySQLTuner 2.6.0.  https://github.com/major/


https://bitnine.net/agensgraph/
https://www.enterprisedb.com
https://www.postgresql.fastware.com
https://neon.tech
https://www.global.tibero.com/product
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2024
https://survey.stackoverflow.co/2024
http://sites.computer.org/debull/87SEP-CD.pdf
https://db-engines.com/en/blog_post/76
https://db-engines.com/en/blog_post/79
https://db-engines.com/en/blog_post/85
https://seata.apache.org
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://doi.org/10.1109/ICDCS.1992.235053
https://doi.org/10.1145/568271.223785
https://www.slideshare.net/slideshow/elephant-roads-a-tour-of-postgres-forks/5376286
https://www.slideshare.net/slideshow/elephant-roads-a-tour-of-postgres-forks/5376286
http://www.vldb.org/journal/VLDBJ1/P181.pdf
http://www.vldb.org/journal/VLDBJ1/P181.pdf
https://doi.org/10.1145/50202.50217
https://doi.org/10.1145/1376616.1376690
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3448016.3457551
https://doi.org/10.14778/2536274.2536331
https://doi.org/10.1109/ICDE.2015.7113278
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/38713.38742
https://db-engines.com/en/blog_post/106
https://doi.org/10.1109/ICDE.1991.131479
https://doi.org/10.1109/ICDE.1991.131479
https://doi.org/10.1145/2463676.2465325
https://doi.org/10.1109/ICDE.2014.6816691
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl
https://doi.org/10.1145/78969.78972
https://doi.org/10.14778/3377369.3377373
https://doi.org/10.14778/3377369.3377373
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://doi.org/10.14778/3611479.3611484
https://doi.org/10.14778/3611479.3611484

[48]
[49]

[50]

[51]

[55]

[56]

[57]

[59]

[60]

[61

[62

[63]

2021), 3348-3361. https://doi.org/10.14778/3484224.3484232

Butler W. Lampson. 1979. Crash recovery in a distributed data storage system.
Technical Report. Xerox Palo Alto Research Center.

James Lewis and Martin Fowler. 2014. Microservices: a definition of this new
architectural term. https://martinfowler.com/articles/microservices.html.
Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice
Dependency and Performance: Alibaba Trace Analysis. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC "21). Association
for Computing Machinery, New York, NY, USA, 412-426. https://doi.org/10.
1145/3472883.3487003

Sharad Mehrotra, Rajeev Rastogi, Yuri Breitbart, Henry F. Korth, and Avi Sil-
berschatz. 1992. The concurrency control problem in multidatabases: char-
acteristics and solutions. In Proceedings of the 1992 ACM SIGMOD Interna-
tional Conference on Management of Data (San Diego, California, USA) (SIG-
MOD ’92). Association for Computing Machinery, New York, NY, USA, 288-297.
https://doi.org/10.1145/130283.130327

Sam Newman. 2021. Building Microservices, 2nd Edition. O’Reilly Media, Inc.
Guy Pardon. 2009. Try-Cancel/Confirm: Transactions for (Web) Ser-
vices. https://web.archive.org/web/20090106020843/http://www.atomikos.com/
Publications/TryCancelConfirm.

Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing us-
ing distributed transactions and notifications. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’'10). USENIX Association, USA, 251-264.

Dan R. K. Ports and Kevin Grittner. 2012. Serializable snapshot isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (aug 2012), 1850-1861. https://doi.org/10.
14778/2367502.2367523

Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended
OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD °20). Association for Computing Machinery, New York, NY, USA,
527-542. https://doi.org/10.1145/3318464.3389764

Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serial-
izability in a Heterogeneous Environment of Multiple Autonomous Resource
Mangers Using Atomic Commitment. In Proceedings of the 18th International
Conference on Very Large Data Bases (VLDB *92). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 292-312.

Y. Raz. 1993. Commitment ordering based distributed concurrency control for
bridging single and multi version resources. In Proceedings RIDE-IMS °93: Third
International Workshop on Research Issues in Data Engineering: Interoperability in
Multidatabase Systems. 189-198. https://doi.org/10.1109/RIDE.1993.281924
Yoav Raz. 1993. Extended commitment ordering, or guaranteeing global seri-
alizability by applying commitment order selectively to global transactions. In
Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (Washington, D.C., USA) (PODS °93). Association for
Computing Machinery, New York, NY, USA, 83-96. https://doi.org/10.1145/
153850.153858

Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil. 2011. Precisely Serializable
Snapshot Isolation (PSSI). In Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering (ICDE '11). IEEE Computer Society, USA, 482-493.
https://doi.org/10.1109/ICDE.2011.5767853

Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. 1978. System
level concurrency control for distributed database systems. ACM Trans. Database
Syst. 3, 2 (June 1978), 178-198. https://doi.org/10.1145/320251.320260

Kenneth Salem, Hector Garcia-Molina, and Rafael Alonso. 1989. Altruistic lock-
ing: A strategy for coping with long lived transactions. In High Performance
Transaction Systems, Dieter Gawlick, Mark Haynie, and Andreas Reuter (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 175-199.

Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, Hassan Wassel,
Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krishnamurthy, David E. Culler,
and Henry M. Levy. 2023. A Cloud-Scale Characterization of Remote Procedure

3462

[64

[65]

[70]

(71

[75]

[76]

[78

Calls. In Proceedings of the 29th Symposium on Operating Systems Principles
(Koblenz, Germany) (SOSP °23). Association for Computing Machinery, New
York, NY, USA, 498-514. https://doi.org/10.1145/3600006.3613156

Ohad Shacham, Yonatan Gottesman, Aran Bergman, Edward Bortnikov, Eshcar
Hillel, and Idit Keidar. 2018. Taking omid to the clouds: fast, scalable transactions
for real-time cloud analytics. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1795-1808.
https://doi.org/10.14778/3229863.3229868

Ohad Shacham, Francisco Perez-Sorrosal, Edward Bortnikov, Eshcar Hillel,
Idit Keidar, Ivan Kelly, Matthieu Morel, and Sameer Paranjpye. 2017. Omid,
reloaded: scalable and highly-available transaction processing. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (Santa clara, CA,
USA) (FAST’17). USENIX Association, USA, 167-180.

Amit P. Sheth and James A. Larson. 1990. Federated database systems for manag-
ing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.
22, 3 (Sept. 1990), 183-236. https://doi.org/10.1145/96602.96604

Michael gtonebraker. 2010. Why Enterprises Are Uninterested in NoSQL. BLOG-
CACM.

Michael Stonebraker and Andrew Pavlo. 2024. What Goes Around Comes
Around... And Around... SIGMOD Rec. 53, 2 (July 2024), 21-37. https://doi.org/
10.1145/3685980.3685984

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery,
New York, NY, USA, 1493-1509. https://doi.org/10.1145/3318464.3386134
Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,
Haibing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Ap-
plications: The Good, the Bad, and the Ugly. In Proceedings of the 2022 In-
ternational Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD °22). Association for Computing Machinery, New York, NY, USA, 4-18.
https://doi.org/10.1145/3514221.3526120

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,
Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 18-32. https://doi.org/10.1145/2517349.2522713

Oleksii Vasyliev. 2024. PgTune. https://pgtune.leopard.in.ua.

Jiachen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,
Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions
via Learned Concurrency Control. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 198-216.
https://www.usenix.org/conference/osdi21/presentation/wang-jiachen
Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2017. Effi-
ciently making (almost) any concurrency control mechanism serializable. The
VLDB Journal 26, 4 (Aug. 2017), 537-562. https://doi.org/10.1007/s00778-017-
0463-8

Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.
Scaling Multicore Databases via Constrained Parallel Execution. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco,
California, USA) (SIGMOD ’16). Association for Computing Machinery, New
York, NY, USA, 1643-1658. https://doi.org/10.1145/2882903.2882934

Zhaoguo Wang, Chuzhe Tang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,
Haibing Guan, and Haibo Chen. 2024. Ad Hoc Transactions through the Looking
Glass: An Empirical Study of Application-Level Transactions in Web Applications.
ACM Trans. Database Syst. 49, 1, Article 3 (Feb. 2024), 43 pages. https://doi.org/
10.1145/3638553

X/Open Company Limited. 1991. Distributed Transaction Processing: The XA
Specification.

Hiroyuki Yamada, Toshihiro Suzuki, Yuji Ito, and Jun Nemoto. 2023. ScalarDB:
Universal Transaction Manager for Polystores. Proc. VLDB Endow. 16, 12 (Aug.
2023), 3768-3780. https://doi.org/10.14778/3611540.3611563


https://doi.org/10.14778/3484224.3484232
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/130283.130327
https://web.archive.org/web/20090106020843/http://www.atomikos.com/Publications/TryCancelConfirm
https://web.archive.org/web/20090106020843/http://www.atomikos.com/Publications/TryCancelConfirm
https://doi.org/10.14778/2367502.2367523
https://doi.org/10.14778/2367502.2367523
https://doi.org/10.1145/3318464.3389764
https://doi.org/10.1109/RIDE.1993.281924
https://doi.org/10.1145/153850.153858
https://doi.org/10.1145/153850.153858
https://doi.org/10.1109/ICDE.2011.5767853
https://doi.org/10.1145/320251.320260
https://doi.org/10.1145/3600006.3613156
https://doi.org/10.14778/3229863.3229868
https://doi.org/10.1145/96602.96604
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3514221.3526120
https://doi.org/10.1145/2517349.2522713
https://pgtune.leopard.in.ua
https://www.usenix.org/conference/osdi21/presentation/wang-jiachen
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1145/3638553
https://doi.org/10.1145/3638553
https://doi.org/10.14778/3611540.3611563

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multi-Database Transactions
	2.2 Transaction Model and Notation
	2.3 Commitment Ordering

	3 Sonata Design
	3.1 Opportunities
	3.2 System Overview
	3.3 Sonata Workflow
	3.4 Commitment Ordering Shims
	3.5 Durability and Failure Recovery
	3.6 Discussion

	4 Correctness Analysis
	4.1 Global Serializability
	4.2 False Positives

	5 Optimizations
	6 Evaluation
	6.1 Evaluation Setup
	6.2 TPC-C Performance
	6.3 Microbenchmark Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

