
Sonata: Multi-Database Transactions Made Fast and Serializable
Chuzhe Tang

Institute of Parallel and

Distributed Systems,

Shanghai Jiao Tong

University

t.chuzhe@sjtu.edu.cn

Zhaoguo Wang

Institute of Parallel and

Distributed Systems,

Shanghai Jiao Tong

University

zhaoguowang@sjtu.edu.cn

Jinyang Li

New York University

jinyang@cs.nyu.edu

Haibo Chen

Institute of Parallel and

Distributed Systems,

Shanghai Jiao Tong

University

haibochen@sjtu.edu.cn

ABSTRACT
Today, the wide adoption of distributed service-oriented applica-

tions has rendered multi-database transactions increasingly impor-

tant. They protect cross-service workflows that access multiple

database systems from concurrency anomalies and failures. This

paper presents Sonata, a new multi-database transaction system

that provides high performance, global serializability, and seamless

integration with existing applications and database systems. Sonata

builds on the theory of commitment ordering to ensure global seri-

alizability and uses two-phase commit for atomicity and durability.

Instead of treating database systems as black box storage, Sonata

reuses existing database systems’ concurrency control yet refrains

from exposing or modifying their internals. It performs additional

non-blocking coordination only at prepare time via application-

level shim layers, allowing applications to incorporate Sonata with-

out changing their existing queries or database systems. Evaluation

using TPC-C shows that Sonata incurs 7.1% coordination overhead

on average and outperforms prior work by up to 1114.3%.

PVLDB Reference Format:
Chuzhe Tang, Zhaoguo Wang, Jinyang Li, and Haibo Chen. Sonata:

Multi-Database Transactions Made Fast and Serializable. PVLDB, 18(10):

3449 - 3462, 2025.

doi:10.14778/3748191.3748207

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://ipads.se.sjtu.edu.cn:1312/opensource/sonata.

1 INTRODUCTION
With recent embodiments likemicroservices and serverless architec-

tures, distributed service-oriented applications are become increas-

ingly popular [45, 47, 50, 63]. In such applications, functionalities

are partitioned into standalone, loosely coupled services. Rather

than relying on a centralized database, each service is equipped

with a dedicated database to manage its own data [47, 49, 52]. As a

result, complex workflows inevitably become distributed, touching

different services and creating multi-database transactions.

A multi-database transaction consists of subtransactions created

by different services, each reading and writing data at a distinct

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748207

Savings Service Checking Service

read(CBal): 50

read(CBal): 50
write(CBal, -50)

T1,c

T2,c

read(SBal): 50

read(SBal): 50
write(SBal, -50)

T1,s

T2,s

withdraw(100)
withdraw(100)

SBal+CBal=100>0

SBal+CBal=-100<0

Figure 1: A banking example where cross-service workflows
without global serializability violate business constraints.

database system. Figure 1 shows an example of a banking applica-

tion comprising two database-backed services, savings and checking,
which track users’ savings and checking accounts. This applica-

tion allows overdrafts as long as a user’s total balance at both

services is not negative. Therefore, to fulfill a withdrawal, one ser-

vice must read the other’s balance before proceeding, creating a

multi-database transaction with two subtransactions.

Without proper coordination, multi-database transactions can

lead to concurrency anomalies and violate business constraints. In

this example, the user initially has $50 each in his two accounts, and

there are two concurrent $100 withdrawal requests that interleave

differently at the two services. Although each service executes

its subtransactions as serializable local transactions (e.g., 𝑇1,𝑠 and

𝑇2,𝑠), the whole transactions (e.g., 𝑇1) are not globally serializable.

As a result, both services consider the total balance sufficient and

authorize the withdrawals, leaving a negative total balance.

For mitigation, multi-database transactions should be globally

serializable, e.g., only one withdrawal is allowed as if they were

handled sequentially [18]. Without global serializability, the re-

sponsibility of ensuring application correctness falls on developers,

e.g., by manually blending coordination logic for these database

operations into application code, which can be error-prone and

challenging [25, 26, 67–70, 76].

Earlier work has proposed multi-database transaction protocols

that ensure global serializability, provided each database system

ensures local serializability. However, they make conservative as-

sumptions that significantly limit their performance. For example,

the ticket method [15, 36] and altruistic locking [9, 62] disallow con-

current execution of subtransactions (e.g.,𝑇1,𝑠 and𝑇2,𝑠) at the same

database system. Furthermore, they globally order multi-database

transactions that access shared database systems, even when there

is no conflict, forcing their subtransactions at different databases to

3449

https://doi.org/10.14778/3748191.3748207
https://ipads.se.sjtu.edu.cn:1312/opensource/sonata
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748207
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3748191.3748207&domain=pdf&date_stamp=2025-09-04

execute in this order. Our evaluation shows that these restrictions

often lead to more than 20-fold performance degradation.

For better performance, recent work shifts more concurrency

control responsibilities to the application level, imposing restric-

tions on how applications interact with database systems and some-

times settling for weaker guarantees. Epoxy [46] and Cherry Gar-

cia [28, 29] provide snapshot isolation (SI) across databases. Instead

of running subtransactions as serializable local transactions, they

perform both intra- and inter-subtransaction coordination in their

application-level libraries, using the underlying database systems

for storage only. As a result, advanced database features like unique

and foreign key constraints and predicate-based updates cannot

be used. Furthermore, since they mix additional metadata and data

versions with application data, the underlying databases are no

longer directly accessible without the requisite application wrapper.

ScalarDB [78] extends Cherry Garcia to provide global serializabil-

ity by either treating all reads as writes or performing an additional

Silo [71]-style validation phase to avoid SI anomalies. Therefore,

similar restrictions still apply, and additional performance over-

head is incurred. In addition, although taking control of transaction

coordination unleashes protocol-level parallelism, it can incur great

overhead as existing database transaction mechanisms may still

be exercised, e.g., relational databases execute all operations in

transactions, including those not explicitly declared
1
.

This paper proposes Sonata, a high-performance, non-intrusive

ACID multi-database transaction system that ensures global se-

rializability. Compared with earlier solutions that assume local

serializability [9, 15, 36, 62], Sonata avoids the performance pitfalls

through careful reuse of the underlying databases’ concurrency

control mechanisms. Compared with recent application-level solu-

tions [28, 29, 46, 78], Sonata introduces much less application-level

coordination and does not impact application schemas and data,

making them directly accessible even without Sonata. For atomicity

and durability, Sonata uses two-phase commit (2PC)[18, 38, 48].

Sonata takes a gray-box approach to achieving global serializ-

ability. Specifically, we observe that most practical systems use one

of two concurrency control families: serializable snapshot isolation

(SSI)[21, 22] or strict two-phase locking (S2PL)[18, 32].
2
This allows

Sonata to coordinate basing common properties that hold across

popular database systems, such as the absence of dangerous struc-

tures [33]. Our coordination protocol builds on a condition derived

from the theory of commitment ordering [57–59]. It involves only

subtransaction prepare and commit events at individual database

systems, allowing Sonata to intervene locally only at prepare time

while leaving intact the rest of the subtransaction execution and

commit. As a result, Sonata can work as application-level shims that

require no modification to either the applications or databases. We

have proven the correctness of our shims, and our analysis shows

that they introduce no false positives, i.e., unnecessary aborts, given

that the underlying database systems accurately detect conflicts.

Sonata can accommodate other systems, even those providing only

1
In such cases, operations are executed as single-statement transactions.

2
SSI systems, mainly PostgreSQL and derivatives [1–5, 17], are fewer in number than

S2PL systems yet still widely used. PostgreSQL is the most popular database with a

nearly 50% adoption rate by Stack Overflow’s Developer Survey 2023 and 2024 [6, 7]

and named DBMS of the Year by DB-Engines in 2017, 2018, 2020, and 2023 [10–12, 35].

Client

Service A

DB A

Service B

DB B

Coordinator

1 2 3 4 8 10

5 6 7 9 10

begin prep-ok join prep-ok commit

exec & prep
local

exec & prep
local

commit
local

commit
local

Figure 2: An example workflow of a 2PC-based multi-
database transaction. The transaction is initiated at step 1 and

committed at step 9. During its lifetime, two subtransactions are

registered, executed, and prepared in steps 1–3 and 5–7, respec-

tively, and are finally committed at step 10. Steps 4 and 8 indicate

inter-service communication.

single-record atomicity, with generic fallback shims that perform

full application-level concurrency control as done in [28, 29, 46, 78].

We have implemented and evaluated Sonata using TPC-C and

microbenchmarks in a multi-database setting. Our experience con-

firms that adapting Sonata does not require changes to the appli-

cations’ query statements, the database drivers, or the database

systems themselves. Our evaluation results show that Sonata adds

only 7.1% coordination overhead on average to a 2PC-only baseline,

where no cross-subtransaction isolation is guaranteed.We have also

compared Sonata with the ticket method [15, 36], ScalarDB [78],

and Epoxy [46]. Due to the careful reuse of existing database con-

currency control mechanisms, Sonata outperforms them by 74.1%

to 1114.3%, 305.5% to 423.9%, and 14.0% to 241.6%, respectively.

To summarize, this paper makes the following contributions.

• A locally enforceable condition for multi-database global serial-

izability and a corresponding coordination framework.

• Two shim layer designs for SSI- and S2PL-based systems that

enforce this condition without modifying the database systems.

• Implementation and evaluation of Sonata that demonstrate its

low overhead and performance advantage over prior work.

2 BACKGROUND AND MOTIVATION
2.1 Multi-Database Transactions
Multi-database transactions lift the familiar transaction abstrac-

tion [18, 39] to coordinate data access across multiple database

systems. They are also called global transactions to emphasize the

distinction with local transactions. Figure 2 shows an example

workflow of a 2PC-based multi-database transaction. First, a client

request arrives at service A, which initiates themulti-database trans-

action and thus called the root service. 1 Service A first notifies the

2PC coordinator with a unique transaction ID of the start of this

multi-database transaction and the start of the first subtransaction.

2 Then, service A executes its subtransaction as a local transaction

and prepares it when the local processing is finished, e.g., via com-

mands like Prepare Transaction <id>. 3 Next, service A notifies

the coordinator of the completion of its subtransaction. 4 Service

B is then invoked to continue handling the client request with the

transaction ID propagated as RPC metadata, e.g., HTTP headers.

Like service A, service B 5 notifies the coordinator of the presence

3450

of its subtransaction, 6 initiates a local transaction and prepares it

when finished, and 7 notifies the coordinator of the completion.

8 When service A receives a response and has determined that

the processing is successful, 9 it signals the coordinator to commit.

The coordinator follows 2PC to produce a durable decision and

broadcasts it to all participating services. 10 Finally, each service

commits its subtransaction accordingly.

Ideally, multi-database transactions should enjoy the same ACID

properties [18, 39, 41] as single-database transactions. While ex-

isting database systems typically support 2PC via standards like

XA [77] for atomic commit and durability, global serializability is

still missing. Many serializable protocols exist for single-database

transactions [24, 31, 44, 56, 73–75]. However, it is challenging

to use them for multi-database transactions, as they typically re-

quire detailed knowledge about transaction execution that is not

exposed or even maintained by individual systems. Meanwhile,

existing global serializability protocols are either too conserva-

tive [9, 15, 20, 36, 51, 62] or rely on costly application-level concur-

rency control [78], leading to unsatisfactory performance (§6).

2.2 Transaction Model and Notation
To formally reason about multi-database transactions, we follow

and extend the model from [8]. Readers familiar with transaction

theories should find our additions straightforward, which are briefly

summarized below.We use𝑇𝑖 to denote amulti-database transaction

and use𝑇𝑖, 𝑗 to denote its subtransaction on database system 𝑗 . When

necessary, operations can be similarly subscripted to indicate where

they take place, e.g.,𝑤𝑖, 𝑗 . As Sonata uses 2PC, we use 𝑝𝑖, 𝑗 /𝑐𝑖, 𝑗 /𝑎𝑖, 𝑗
to denote the prepare/commit/abort events of subtransaction 𝑇𝑖, 𝑗 .

𝑑𝑖 denotes the 2PC decision event of 𝑇𝑖 that takes place at the

coordinator. A local history contains only the events that take

place at a single database system, while a global history contains

all events from all participating database systems, plus the 2PC

decision events. We use global and local serializability to refer to

the serializability of global and local histories, respectively, i.e., the

acyclicity of their corresponding direct serialization graphs. As

Figure 1 shows, local serializability at all participating databases

does not imply global serializability.

2.3 Commitment Ordering
Commitment ordering (CO)[57, 58] is a property of global histories.

A history 𝐻 satisfies CO if for any two transactions 𝑇𝑖 and 𝑇𝑗 in

𝐻 , 𝑇𝑖 → 𝑇𝑗 implies 𝑑𝑖 <𝐻 𝑑 𝑗 . CO implies global serializability, i.e.,

a global history that satisfies CO is also serializable [57, Theorem

3.1].
3
Therefore, ensuring that only CO-compliant histories are

produced is sufficient for guaranteeing global serializability in a

multi-database environment. Equivalently, a history 𝐻 satisfies CO

if for any two subtransactions𝑇𝑖,𝑘 and𝑇𝑗,𝑘 at the same database sys-

tem,𝑇𝑖,𝑘 → 𝑇𝑗,𝑘 implies 𝑑𝑖 <𝐻 𝑑 𝑗 [57, Theorem 5.2]. This definition

considers only dependencies among subtransactions on the same

database system, which provides an opportunity to enforce CO, and

thus global serializability, without communicating dependencies

between database systems.

3
The original formulation considers transitive transaction dependencies, while our

model does not. The theorem holds still with an almost identical proof.

Yet, simply combining existing databases with 2PC does not

guarantee CO. As the definitions suggest, enforcing these conditions

requires controlling the order of 2PC decisions of conflicting global

transactions. However, individual databases can only control local

transaction execution. It is the 2PC coordinator that controls the

decision order of global transactions, which is often simply the order

in which global transactions’ prepare messages are fully received.

Long-term locks used in existing systems could partially inter-

vene in the decision order but are insufficient to enforce CO. For

example, in an SSI system like PostgreSQL, writing to a data item

by one subtransaction does not prevent another subtransaction

from reading it. This is because SSI systems read from a snapshot

by default unless locking is explicitly requested via SQL clauses

like For Share. As a result, an rw-dependency is established be-

tween the two concurrent subtransactions, and both can proceed

to prepare without blocking each other, allowing a CO violation:

𝑟1 (𝑥0),𝑤2 (𝑥2), 𝑝2, 𝑑2, 𝑝1, 𝑑1, where𝑇1 → 𝑇2 but 𝑑2 precedes 𝑑1. CO

violations are also possible in S2PL systems like MySQL (§3.4.2).

Priorwork has proposed algorithms based on serialization graphs

to enforce CO [57–59]. They require database systems to explicitly

track the dependencies among active transactions and export a

centralized view to a commit scheduler. However, to the best of

our knowledge, no existing database fully tracks transaction depen-

dencies and either exposes them to the outside or allows pluggable

commit schedulers. Therefore, instead of implementing these se-

rialization graph-based algorithms within existing databases, we

propose to enforce CO from the outside with lightweight shims.

3 SONATA DESIGN
Sonata is a middleware system between service-oriented applica-

tions and database systems that provides full ACID guarantees,

notably global serializability, for multi-database transactions.

3.1 Opportunities
Sonata is enabled by two key insights. First, we derive a suffi-

cient condition for CO that permits local enforcement at individual

database systems without involving the 2PC coordinator. Specifi-

cally, this condition states that, for any two committed subtrans-

actions 𝑇𝑖,𝑘 and 𝑇𝑗,𝑘 at any database system 𝑘 , 𝑇𝑖,𝑘 → 𝑇𝑗,𝑘 implies

𝑐𝑖,𝑘 < 𝑝 𝑗,𝑘 .
4
The sufficiency is straightforward. By 2PC, a decision

event is ordered before all corresponding subtransaction commit

events and after all corresponding subtransaction prepare events.

Therefore, 𝑑𝑖 < 𝑐𝑖,𝑘 and 𝑝 𝑗,𝑘 < 𝑑 𝑗 , which implies 𝑑𝑖 < 𝑑 𝑗 , satisfying

the alternative CO definition shown in §2.3. With this condition, CO

of global histories, and thus global serializability, can be achieved

by merely controlling the order of prepare and commit events that

are local to each database system.

Second, we observe that existing database systems deployed in

practice typically use either SSI or S2PL for concurrency control.

While specific implementation details vary, important properties

hold for all systems. For example, while a multi-version storage

engine with various optimizations is used in MySQL, the classic

principle of two-phase well-formed transactions [32] is still the

4
This condition differs from the alternative CO definition in §2.3 as all events considered

here are local to each database system.

3451

Shim Shim Shim

2PC Coordinator

RPC

Client

Unmodified
reads & writes

App data
Sonata data

Service Service Service
RPC

Prepare-time
coordination

2PC
messages

Figure 3: Sonata architecture.

1 @GlobalTransactional
2 CHECKING::withdraw(user_id, amount):
3 s_bal := invokeRemoteService(SAVINGS.readBal, user_id)
4 invokeInLocalTxn(lambda:
5 c_bal := Select bal From Checking Where user_id = user_id
6 if c_bal + s_bal < amount:
7 raise InsufficientFundsException
8 Update Checking Set bal = c_bal-amountWhere user_id = user_id)
9 SAVINGS::readBal(user_id):
10 invokeInLocalTxn(lambda:
11 s_bal := Select bal From Savings Where user_id = user_id
12 return s_bal)

Figure 4: An example of cross-service withdrawal using
Sonata multi-database transaction API.

foundation of its local serializability guarantee. Similarly, the ab-

sence of dangerous structures [33] holds for all SSI systems despite

differences in the specific mechanisms used to detect and prevent

them [21, 22, 55]. Therefore, this observation enables us to take a

gray-box approach to global serializability that leverages common

properties of popular database systems.

3.2 System Overview
Architecture. Figure 3 shows the architecture of a Sonata

application. Any service can receive client requests, incorporate

other services through RPCs, and wrap the processing with multi-

database transactions. Sonata shims sits at the application level

and communicates a 2PC coordinator to initiate, participate in,

and complete multi-database transactions on behalf of the services.

Sonata shims intercept RPC messages to incorporate and propagate

transaction information, and they monitor local transactions to

impose prepare-time coordination. Sonata’s coordination requires

a single per-database table that is transparent to the application. As

a result, reads and writes are issued unmodified during execution,

and the original schemas and data remain intact as well.

Interface. A @GlobalTransactional annotation is provided for

marking functions and all service invocations nested within as

multi-database transactions. Figure 4 shows how the cross-service

withdrawal from the banking example in Figure 1 can be pro-

grammed. The annotated withdraw function first invokes the read-
Bal function in the SAVINGS service to read the savings balance

in a local transaction in SAVINGS’s database. Then, it executes a
local transaction in CHECKING’s database to read the checking

balance and updates it if the total balance is sufficient. Due to the

13 invokeInGlobalTxn(func):
14 gtid := genUuid()
15 setThreadLocal(GTID, gtid)
16 begin2pc(gtid)
17 res := invoke(func)
18 commit2pc(gtid)
19 unsetThreadLocal(GTID)
20 return res
21 invokeInLocalTxn(func):
22 gtid := getThreadLocal(GTID)
23 stid := genUuid()
24 if gtid is not NULL:
25 registerSubTxn(gtid, stid)
26 res := SHIM.invokeAsSubTxn(func, gtid, stid)
27 updateSubTxn(gtid, stid, PREPARED)
28 else:
29 res := SHIM.invokeAsSubTxn(func, NULL, stid)
30 return res
31 invokeRemoteService(target, request):
32 gtid := getThreadLocal(GTID)
33 if gtid is not NULL:
34 request.setHeader(GTID, gtid)
35 return target.invoke(request)
36 handleRemoteInvocation(request):
37 gtid := request.getHeader(GTID)
38 if gtid is not NULL:
39 setThreadLocal(GTID, gtid)
40 res := handle(request)
41 unsetThreadLocal(GTID)
42 else:
43 res := handle(request)
44 return res

Figure 5: Sonata procedures for initiating, propagating, and
completing multi-database transactions.

@GlobalTransactional annotation, these two local transactions are

treated as subtransactions of the same global transaction.

Assumptions. Sonata assumes that the underlying databases

support serializable local transactions, use SSI or S2PL for concur-

rency control, and implement 2PC participant procedures. S2PL

systems could employ early lock release, but only for read-only

transactions. Popular systems, including MySQL, PostgreSQL, and

SQL Server, typically meet these requirements.

3.3 Sonata Workflow
Sonata follows the same overall 2PC workflow as shown in §2.1.

@GlobalTransactional-annotated functions are intercepted and ex-

ecuted with the invokeInGlobalTxn procedure, as shown in Figure 5.

This procedure first generates a global transaction ID (line 14) and

sets it as a thread-local variable, GTID (line 15). Sonata assumes

that each service invocation is exclusively bound to a single thread

of execution but does not require any specific threading implemen-

tation. Therefore, GTID unambiguously indicates the presence of a

global transaction for the associated service invocation. The proce-

dure then notifies the 2PC coordinator to begin a global transaction

(line 16) and executes the function (line 17). Any local transaction

created during execution will be treated as a subtransaction of the

3452

global transaction. Upon completion, the procedure notifies the 2PC

coordinator to commit the global transaction (line 18) and clears the

current thread’s GTID (line 19). Commit or abort decisions will be

sent to corresponding shims to complete registered subtransactions.

Sonata intercepts local transactions and executes them using the

invokeInLocalTxn procedure. This procedure checks if the current

thread is already within a global transaction by inspecting the cur-

rent thread’s GTID (line 22) and generates a unique subtransaction

ID (line 23). If a global transaction is present, this subtransaction is

registered with the 2PC coordinator (line 25). A database system-

specific shim is then invoked to execute the function within a local

transaction and prepare it when finished (line 26). This shim en-

sures that the CO condition from §3.1 is maintained. Then, the 2PC

coordinator is notified that the subtransaction has been success-

fully prepared (line 27). If no global transaction is active, no global

transaction ID is given to the shim (line 29). Calling into the shim is

necessary as additional coordination might be necessary, e.g., when

the selective coordination optimization (§5) is disabled.

To propagate multi-database transactions across services, Sonata

intercepts service invocation and request handling with the invok-
eRemoteService and handleRemoteInvocation procedures. The first
procedure attaches the current thread’s GTID to the request header

before sending it to the target service (line 34). Sonata does not

require specific communication protocols or message formats as

long as GTID can be included, e.g., as a string field. Upon receiv-

ing the request, the target service retrieves GTID from the request

header (line 37) and sets it as a thread-local variable before han-

dling the request (line 39). This way, local transactions at remote

services can be consistently handled and participate in the same

global transaction. Like in invokeInGlobalTxn, the current thread’s
GTID is cleared after the request is handled (line 41).

3.4 Commitment Ordering Shims
3.4.1 SSI Shim Layer. SSI is a family of concurrency control proto-

cols that ensures local serializability. It restricts an SI protocol to

produce only serializable histories [21, 22, 55]
5
. In SI, read opera-

tions always return the latest committed versions from a snapshot

taken at the beginning of the local transaction [16], eliminating the

need for long-term read locks to block concurrent writes. SSI ex-

tends existing SI protocols with mechanisms to prevent dangerous

structures [33], i.e., consecutive rw-dependencies 𝑇1
rw−−→ 𝑇2

rw−−→ 𝑇3
among committed local transactions such that 𝑇1 and 𝑇2 are con-

current and 𝑇2 and 𝑇3 are concurrent. Regardless of the specific

detection and prevention mechanisms, an SSI system must guaran-

tee the absence of dangerous structures in the histories produced.

We observe that, in an SSI system, CO violations arise when local

transactions have rw-dependencies, while ww- and wr-dependen-

cies do not lead to CO violations. Consider two committed local

transactions 𝑇1 and 𝑇2. If 𝑇1
ww−−−→ 𝑇2, then 𝑇1 must commit before

𝑇2 starts; otherwise, they would have been concurrent, which is

disallowed in SI. If 𝑇1
wr−−→ 𝑇2, then 𝑇1 must commit before 𝑇2 starts

as well; otherwise, the version created by𝑇1 would not have been in

the snapshot of 𝑇2. In both cases, 𝑇1 is decided before 𝑇2, and CO is

5
Although named PSSI (Precisely SSI), the algorithm from [60] is essentially a graph-

based detection algorithm for dependency cycles, not dangerous structures. It is not

used in practice due to its overhead [55]. Thus, we do not consider it in this paper.

45 SSI::invokeAsSubTxn(func, gtid, stid)
46 Begin Transaction
47 res := invoke(func)
48 dummy_key := prepareHelper(gtid, stid)
49 Update Dummy Set value = rand() Where key = dummy_key
50 if gtid is not NULL:
51 Prepare Transaction gtid + stid
52 else: # directly commit if not part of a global transaction
53 Commit Transaction
54 Abort Prepared HELPERS[gtid + stid]
55 return res
56 SSI::subTxnCommit(gtid, stid)
57 Commit Prepared gtid + stid
58 Abort Prepared HELPERS[gtid + stid]
59 prepareHelper(gtid, stid)
60 dummy_key := uniqueRand()
61 Begin Transaction # not nested in the caller's transaction
62 Select * From Dummy Where key = dummy_key
63 hid := genUuid()
64 HELPERS[gtid + stid] := hid
65 Prepare Transaction hid
66 return dummy_key

Figure 6: SSI shim procedures.

maintained. However, if𝑇1
rw−−→ 𝑇2, due to the absence of long-term

read locks, CO violations might arise, as in the history shown in

§2.3: 𝑟1 (𝑥0),𝑤2 (𝑥2), 𝑝2, 𝑑2, 𝑝1, 𝑑1, where 𝑇1 is decided after 𝑇2.

Interestingly, rw-dependencies are the only ones that constitute

dangerous structures, presenting an opportunity for reusing exist-

ing SSI facilities by turning CO violations into dangerous structures.

At a high level, our shim introduces temporary rw-dependencies

(dashed below) towards ready-to-prepare local transactions (𝑇𝑖 /𝑇𝑗)

using additional helper transactions (𝑇 ′
𝑖
/𝑇 ′

𝑗
):

𝑇 ′
𝑖

𝑇 ′
𝑗

𝑇𝑖 𝑇𝑗

rw rw

rw

As a result, any pair of concurrent transactions that already has

an existing rw-dependency is promoted to a potential dangerous

structure, e.g., 𝑇 ′
𝑖

rw

‧‧‧➡ 𝑇𝑖
rw−−→ 𝑇𝑗 . In the case of a CO violation,

i.e., 𝑇𝑗 decides before 𝑇𝑖 , 𝑇𝑖 will be aborted by the underlying SSI

database’s dangerous structure prevention mechanism; otherwise,

the temporary rw-dependency, 𝑇 ′
𝑖

rw

‧‧‧➡ 𝑇𝑖 , will be removed and

𝑇𝑗 will be able to prepare and decide afterward.

Figure 6 shows the specific algorithm. The invokeAsSubTxn pro-

cedure starts a local transaction (line 46) and executes the given

function (line 47). Before preparing the transaction, another local

transaction is spawned by the prepareHelper procedure (line 61).
This helper transaction reads a random row from a two-column

table Dummy maintained by Sonata (line 62) and prepares itself

(line 65).
6
Helper transaction IDs are randomly generated (line 63)

and stored in a service-local in-memory map HELPERS indexed

by the global transaction ID and subtransaction ID (line 64). After

preparing the helper, the original subtransaction updates the same

6
Dummy key uniqueness is not required for correctness, but helps avoid false positives

and head-of-line blocking. Thus, unique keys are used in Sonata.

3453

row with a random value (line 49), establishing an rw-dependency

with the helper. If the global transaction ID is present, the origi-

nal subtransaction prepares itself (line 51). When committing or

aborting the subtransaction, Sonata aborts the associated helper

transaction (line 58). If the global transaction ID isNULL, indicating
that a single-database transaction should be used, the shim directly

commits the local transaction (line 53) and aborts the helper (line 54)

as if this transaction is prepared and decided immediately.

We now revisit the previous example and provide an intuitive

argument for the shim’s correctness. If 𝑇𝑗 prepares and decides

before 𝑇𝑖 , which violates CO, since the helper 𝑇 ′
𝑖
is prepared before

𝑇𝑖 , the database’s dangerous structure prevention mechanism will

not allow𝑇𝑖 to prepare. Otherwise, once all three local transactions

are prepared, though they have not yet strictly formed a dangerous

structure, it is up to the 2PC coordinator, not the database system,

to make the commit decision. Suppose the coordinator decides to

commit all three transactions. In that case, the database faces a

dillema: it must either proceed as decided and keep the dangerous

structure, thereby violating its local serializability guarantee, or

abort one of the prepared transactions, which would break the

2PC protocol. For the same reason, 𝑇𝑗 cannot prepare either if 𝑇𝑖
prepares earlier until the helper 𝑇 ′

𝑖
is aborted, which happens after

𝑇𝑖 is decided at the 2PC coordinator. After that point, preparing and

deciding 𝑇𝑗 will not cause CO violations.

3.4.2 S2PL Shim Layer. S2PL is a classic family of pessimistic con-

currency control protocols that ensure local serializability. It inher-

its the two-phase property from 2PL, meaning long-term read/write

locks are only acquired in the first phase and released in the sec-

ond [32]. Being strict means that all write locks are held until the

local transaction commits or aborts.

We observe that, in an S2PL system, CO violations can only

arise from rw-dependencies as well. Since write locks are held until

commit, similar to SSI systems, no ww- and wr-dependencies are

possible between two committed concurrent local transactions, and

thus, they cannot violate CO. However, a S2PL system does not

necessarily hold long-term read locks until commit. When releasing

them early, e.g., immediately after prepare [37], CO violations can

occur. For example, consider two local transactions 𝑇1 and 𝑇2 such

that 𝑇1
rw−−→ 𝑇2 and 𝑇1 has prepared but not committed yet. If 𝑇1’s

read lock is released immediately after it prepares, 𝑇2, which modi-

fies the data item that 𝑇1 has read, can prepare and commit before

𝑇1 commits, violating CO: 𝑟1 (𝑥0), 𝑝1,𝑤2 (𝑥2), 𝑝2, 𝑑2, 𝑑1. If the read
lock is held until commit instead, such violations are not possible.

Fortunately, many S2PL systems do not release read locks early

(e.g., SQL Server), and others only implement it for read-only local

transactions (e.g., MySQL and Db2).
7
Therefore, our S2PL shim

only needs to introduce a dummy write operation to read-only

local transactions to disable early lock release for the latter systems.

Figure 7 shows the full procedures. The dummy write is performed

on a randomly chosen row in a two-column table DUMMY that is

maintained by Sonata. A simple heuristic to determine whether a

local transaction is read-only is to check whether the local transac-

tion contains any statements other than Select. In some systems

like MySQL, seemingly read-write local transactions are treated as

7
We restrict our attention to the top 10 database systems from the DB-Engines Ranking.

67 S2PL::invokeAsSubTxn(func, gtid, stid)
68 Begin Transaction
69 res := invoke(func)
70 if gtid is not NULL:
71 if isReadOnly():
72 Update Dummy Set value = rand() Where key = uniqueRand()
73 Prepare Transaction gtid + stid
74 else: # directly commit if not part of a global transaction
75 Commit Transaction
76 return res
77 S2PL::subTxnCommit(gtid, stid)
78 Commit Prepared gtid + stid

Figure 7: S2PL shim procedures.

read-only ones internally if there is no change in concrete values,

rendering above heuristic insufficient. For such systems, dummy

writes are added to all local transactions for such systems. While

we are unaware of any S2PL systems for which dummy writes are

insufficient, for completeness, mitigations for such cases include

SQL clauses like For Update that upgrade read locks to write locks,
shim-layer read locks that take effect only after the owner local

transactions have prepared, and fallback shims as discussed in §3.6.

3.5 Durability and Failure Recovery
Sonata follows the standard 2PC protocol to persist and recover

both the participant and coordinator states [18, 38, 48]. Addition-

ally, after a participant has finished 2PC recovery, Sonata must

handle potentially dangling prepared helper transactions due to the

lost in-memory HELPERS map of the SSI shim. Specifically, after

restarting, the participant blocks all requests that would create new

subtransactions. It periodically polls the 2PC coordinator for any

decisions on subtransactions that the participant has previously

prepared. When the 2PC coordinator signals that no such subtrans-

actions exist, prepared transaction still pending at the participant

are the dangling helpers. The participant then queries the database

for such transactions and aborts them, e.g., using the XA Recover
command in MySQL or querying the pg_prepared_xacts table in
PostgreSQL. Finally, the participant resumes normal operation.

3.6 Discussion
Supporting Other Databases. Databases beyond SSI and S2PL

can be accommodated as well. If the database provides transac-

tions (not necessarily with local serializability), a fallback shim that

serializes them via sequential execution can trivially enforce CO.

When local transactions are unavailable, notably in NoSQL systems,

generic fallback shims that perform application-level CO-compliant

concurrency control, e.g., S2PL without early lock release, can be

used. Designing such shims is straightforward and should resemble

those from [28, 29, 46, 78], requiring only single-record atomicity.

We expect performance overhead to be similar to the gap between

Epoxy/ScalarDB and Sonata shown in §6. Nevertheless, this over-

head is restricted to generic shims only; SSI and S2PL systems in

the same cluster are unaffected.

Changes in Database Internals. Changes in database inter-

nals, although unlikely for stabilized mainstream systems, may

3454

affect Sonata’s effectiveness. For example, in principle, an SSI data-

base may conservatively abort any helper on a potential dangerous

structure, forcing the shim to abort the corresponding local trans-

action. While the correctness is intact (§4.1), unnecessary aborts

may appear and degrade performance. Yet, PostgreSQL’s safe retry

property [55] forbids this change, as it always tries to abort the

middle transaction, which would never be the helper, to break dan-

gerous structures. Similarly, examining the source code of MySQL,

we find its early lock release behavior also unlikely to change, e.g.,

extending to read-write transactions. MySQL checks if a finishing

transaction has an empty redo log and, if so, directly rolls back the

transaction to reduce disk IO, early releasing any read lock acquired

as a side effect. Therefore, extending to read-write transactions,

which always have non-empty redo logs, would require building

new mechanisms from scratch.

EnforcingCO insideDatabases Enforcing CO inside databases

when source code is available potentially reduces shim layer over-

head if tailored modifications based on our shim design are used,

instead of prior generic serialization graph-based algorithms [57–

59]. For example, PostgreSQL already maintains per-transaction

pointers for rw-dependencies. Therefore, our local condition can

be maintained by checking the prepare/commit state of the pointed

transactions at prepare time and aborting the to-be-prepared trans-

action when the pointed ones have already prepared or committed.

4 CORRECTNESS ANALYSIS
4.1 Global Serializability
In this section, we prove the correctness of Sonata, namely that it

ensures global serializability for multi-database transactions. As

discussed in §2.3, CO implies global serializability. Therefore, we

prove that Sonata produces CO-compliant histories only. Specifi-

cally, we show that each shim satisfies our local condition derived

in §3.1, which is a sufficient condition for CO, and we restate below.

Definition 1. A system is locally CO if, for any two subtransac-

tions 𝑇𝑖 and 𝑇𝑗 in its local history 𝐻 , 𝑇𝑖 → 𝑇𝑗 implies 𝑐𝑖 <𝐻 𝑝 𝑗 .

4.1.1 Correctness of SSI Shim.

Theorem 4.1. An SSI system with local transactions intercepted
by Sonata SSI shim is locally CO.

Before proving the theorem, we present two useful properties

adapted from [33]. They are originally proposed to describe SI histo-

ries. SSI histories are a subset of SI histories, as dangerous structure

detection mechanisms do not affect transaction scheduling during

execution. Therefore, these properties also hold for SSI histories.

Lemma 4.2 (Lemma 2.2 in [33]). In an SSI local history 𝐻 , if there
are two local transactions 𝑇𝑖 and 𝑇𝑗 such that 𝑇𝑖 → 𝑇𝑗 , then 𝑇𝑖 starts
before 𝑇𝑗 commits.

Lemma 4.3 (Lemma 2.3 in [33]). In an SSI local history 𝐻 , if there
are two local transactions 𝑇𝑖 and 𝑇𝑗 such that 𝑇𝑖 → 𝑇𝑗 and they are

concurrent, then 𝑇𝑖
rw−−→ 𝑇𝑗 .

Proof of Theorem 4.1. A local CO violation in a local history

𝐻 is defined as a local transaction dependency 𝑇𝑖 → 𝑇𝑗 where

𝑝 𝑗 <𝐻 𝑐𝑖 . We first show that, for any local CO violation in a vanilla

SSI system, such𝑇𝑖 and𝑇𝑗 must be concurrent, and the dependency

must be an rw-dependency. Assume, for contradiction, that 𝑇𝑖 and

𝑇𝑗 are not concurrent. There are two possibilities: (i) 𝑇𝑖 commits

before 𝑇𝑗 starts, or (ii) 𝑇𝑖 starts after 𝑇𝑗 commits. In case (i), 𝑇𝑖
would be decided before 𝑇𝑗 , which contradicts the premise that 𝑇𝑖
and 𝑇𝑗 constitute a local CO violation and thus 𝑝 𝑗 <𝐻 𝑐𝑖 . Case (ii)

contradicts Lemma 4.2. Therefore, 𝑇𝑖 and 𝑇𝑗 must be concurrent,

and, by Lemma 4.3, 𝑇𝑖
rw−−→ 𝑇𝑗 .

We next show that, with the algorithm in Figure 6, concurrent

local transactions𝑇𝑖 and𝑇𝑗 cannot both commit in local history𝐻 if

𝑝 𝑗 <𝐻 𝑐𝑖 and𝑇𝑖
rw−−→ 𝑇𝑗 . Assume, for contradiction, that such𝑇𝑖 and

𝑇𝑗 both commit, meaning they both prepare successfully along with

their helpers 𝑇 ′
𝑖
and 𝑇 ′

𝑗
. There are two possibilities: (i) 𝑝𝑖 <𝐻 𝑝 𝑗 or

(ii) 𝑝 𝑗 <𝐻 𝑝𝑖 . In case (i), since 𝑝 𝑗 <𝐻 𝑐𝑖 , when 𝑇𝑗 prepares, both

𝑇𝑖 and its helper 𝑇 ′
𝑖
are in a prepared state. Given that prepared

local transactions cannot be unilaterally aborted by the database

system, they are conservatively treated as committed by the dan-

gerous structure detection mechanism of SSI [55]. Consequently,

𝑇𝑗 cannot successfully prepare; otherwise, a dangerous structure

𝑇 ′
𝑖

rw−−→ 𝑇𝑖
rw−−→ 𝑇𝑗 is permissible, where the former dependency

is established by the dummy read and dummy write in 𝑇𝑖 and its

corresponding helper 𝑇 ′
𝑖
, respectively, according to the algorithm

in Figure 6. In case (ii), when 𝑇𝑖 prepares, 𝑇𝑗 is in either a prepared

or a committed state. Since 𝑇𝑖 ’s helper is prepared before 𝑇𝑖 , 𝑇𝑖 can-

not successfully prepare; otherwise, the same dangerous structure

as described above is permissible as well. In both cases, 𝑇𝑖 and 𝑇𝑗
cannot both commit. Therefore, local CO violation is impossible,

and by Definition 1, the system is locally CO. □

4.1.2 Correctness of S2PL Shim.

Theorem 4.4. An S2PL system with local transactions intercepted
by Sonata S2PL shim is locally CO.

Proof. Assume, for contradiction, that 𝑇𝑖 and 𝑇𝑗 constitute a

local CO violation in an S2PL system with the Sonata shim. Since

S2PL produces only well-formed local histories [32], 𝑇𝑖 must have

acquired the corresponding long-term locks to either read or write

a data item before𝑇𝑗 accesses the same item. In the case that a write

lock is acquired for the data item that establishes the dependency

in the CO violation, due to the strictness property of S2PL [18], this

lock is held and blocks 𝑇𝑗 until 𝑇𝑖 commits. Therefore, 𝑇𝑖 commits

before 𝑇𝑗 prepares, which contradicts the premise that 𝑇𝑖 and 𝑇𝑗
constitute a local CO violation. In the case of a read lock, due to

the algorithm in Figure 7 that disables early lock release, this lock

is also held until 𝑇𝑖 commits, and the same contradiction arises.

Therefore, local CO violation is impossible in an S2PL system with

the Sonata shim. By Definition 1, this system is locally CO. □

4.2 False Positives
False positives refer to local transactions aborted by Sonata shims

whose commit would not have caused local CO violations. Unlike

correctness, which can be proven based on common properties,

analyzing false positives requires concrete implementation context.

We use PostgreSQL andMySQL as representative systems and show

that false positives are only possible when these systems fail to

determine transaction conflicts accurately.

3455

We begin assuming databases accurately detect conflicts. In Post-

greSQL, serializable local transactions are aborted when (i) dead-

locks occur, (ii) SI anomalies occur, or (iii) dangerous structures are

detected. Helpers in the SSI shim are read-only and non-blocking.

Thus, they cannot cause deadlocks or SI anomalies, i.e., violation

of the first-committer-wins rule for concurrent writers [16]. We

now consider the last case. Let 𝑇1
rw−−→ 𝑇2

rw−−→ 𝑇3 be the depen-

dency chain of the dangerous structure that is caused by a helper

and triggers a PostgreSQL abort. Since helpers are read-only, only

𝑇1 can be the helper (of 𝑇2), as others sit on the writer ends of

rw-dependencies. PostgreSQL intervenes to break the dangerous

structure only after𝑇3 prepares [55]. Since𝑇3 has already prepared,

depending on when PostgreSQL detects the dangerous structure,

either 𝑇1 or 𝑇2 will be aborted by PostgreSQL and the other will

be aborted by our shim. If 𝑇2 was not aborted and able to commit,

since𝑇3 has already prepared, such a situation is always a local CO

violation by Definition 1. Thus, such aborts are not false positives.

MySQL aborts serializable local transactions when deadlocks oc-

cur. Suppose a deadlock is caused by the S2PL shim’s dummy write.

Then, there are at least two transactions 𝑇1 and 𝑇2 on the deadlock

wait-for cycle, where 𝑇1 waits for a lock held by 𝑇2 on the dummy

table, and𝑇2 waits for another lock held by some transaction. Since

𝑇2 has already acquired a lock on the dummy table, which is only

accessed by the S2PL shim’s prepare-time coordination, 𝑇2 must

have executed the last dummy write and all preceding operations.

As a result, 𝑇2 cannot be waiting for any additional locks, making

deadlocks caused by dummy writes impossible. Therefore, the S2PL

shim introduces no new aborts and thus no false positives.

Prior conclusions assume accurate conflict detection, which

might not always hold for PostgreSQL. PostgreSQL detects rw-

dependencies with tuple-level locks by default and will promote

them to coarser-grained ones when space is constrained [55], caus-

ing false positives. For example, for the dependency chain men-

tioned above, 𝑇2 might not be the subtransaction associated with

the helper, i.e., a different dummy key is used. In contrast, MySQL

does not promote lock granularity and always acquires row-level

locks for dummy writes, avoiding false positives.

5 OPTIMIZATIONS
Helper Sharing. The basic SSI shim creates a helper trans-

action for each subtransaction. Although this helper is read-only,

disk writes are still required for 2PC prepare states. This optimiza-

tion allows a batch of 𝑁 subtransactions to share a single helper

transaction, which now reads 𝑁 distinct random rows from the

Dummy table. The 𝑁 dummy keys and the helper ID are recorded

as global variables. Each time prepareHelper is invoked, it attempts

to return an unused dummy key and only spawns a new helper if

all keys are consumed. Similarly, subTxnCommit only aborts the

helper if all associated subtransactions have been completed. This

design effectively amortizes the helper prepare overhead. Since the

helper lifespan still covers all associated subtransactions from their

prepare to commit, the correctness of the algorithm is not affected.

Selective Coordination. Our basic algorithms add helpers and

dummy table operations to all local transactions, even those not par-

ticipating in global transactions. Fortunately, it has been shown that

the requirement for multi-database transactions to be decided in

their dependency order is only necessary when more than one sub-

transaction is involved at both ends of a dependency [59]. Therefore,

Sonata coordination can be skipped for single-database transactions

while still preserving global serializability.

6 EVALUATION
6.1 Evaluation Setup
6.1.1 Sonata Implementation. We have prototyped Sonata in Java

based on Apache Seata, an open-source distributed transaction mid-

dleware [13]. We introduced less than 600 lines of code of changes

to perform prepare-time coordination and maintain metadata like

the HELPERS map. Deadlock detection for multi-database trans-

actions is an orthogonal problem, and we use a simple 5-second

timeout to break all potential deadlocks.

6.1.2 Baselines. The Ticket method [36] is a classic globally seri-

alizable multi-database transaction protocol. It takes a black-box

approach, only requiring local serializability from local databases. It

coordinates subtransactions with ticket operations, i.e., reading and

incrementing a per-database shared integer counter. ScalarDB [78]

is a recent globally serializable multi-database transaction mid-

dleware using application-level concurrency control. It abstracts

local databases with a Bigtable [23]-like key–value (KV) model

and performs Silo [71]-style concurrency control. The open-source

implementation (version 3.14.0) is used for evaluation. Epoxy [46]

is a recent multi-database transaction protocol that provides SI also

with application-level concurrency control. A PostgreSQL server is

required as the primary database for global coordination. Additional

database servers are as simple multi-version storage and termed

secondary databases. We ported its open-source implementation,

including its two optimizations: (1) subtransactions at secondary

nodes are executed in local transactions with default isolation level,

and (2) snapshots are cached for read-only transactions. The 2PC
baseline runs the original Apache Seata middleware [13], providing

no cross-subtransaction isolation but only atomicity and durability.

The Local baseline discards both cross-subtransaction coordination

and 2PC. Subtransactions are executed as serializable local transac-

tions and commit independently. Thus, this baseline guarantees no

ACID property and serves as a performance upper bound.

6.1.3 Testbed and Configuration. By default, a three-node cluster

is used for evaluation: one benchmark client and two service nodes.

Each service node runs a workload server and an exclusive, colo-

cated database. Multi-database transactions are initiated from one

of the service nodes. Service nodes can be invoked multiple times to

simulate scenarios with more than two database systems, creating

multiple subtransactions in the same database system. Each node

is a Huawei Cloud ECS c7n.2xlarge.2 instance with 8 vCPUs, 16

GiB memory, and virtualized SSD storage, running Ubuntu 22.04.

One service node deploys MySQL 8.0.39, and one runs PostgreSQL

14.13. Both database systems have undergone basic tuning using

MySQLTuner [42] and PgTune [72].

Each database system maintains a 1M-row dummy table, which

takes around 56 MB for PostgreSQL and 28 MB for MySQL. The

helper sharing optimization uses a batch size of 10. For a fair com-

parison with Epoxy, which uses PostgreSQL to coordinate atomic

3456

 0
 500

 1000
 1500
 2000

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

 0
 0.2
 0.4
 0.6
 0.8

WH=2 WH=4 WH=10 WH=40

N
o

rm
al

iz
ed

T
h

ro
u

g
h

p
u

t

Number of warehouses

Figure 8: TPC-C peak throughput when PT=WH.

commit, we by default colocate coordinators in other baselines, if

any, on the same service node that runs PostgreSQL.

6.1.4 Workloads and Measurement. All data points are measured

by running each experiment 3 times and taking the average. Each

run lasts 160 seconds, with the first 30-second warm-up and the

last 10-second cool-down periods excluded from measurement.

Multi-Database TPC-C. TPC-C models an OLTP application

consisting of geo-distributed business regions, each with a ware-

house serving nearby customers. We partition TPC-C by warehouse

into different regional services; half use MySQL, and the other half

use PostgreSQL. This turns TPC-C’s two most frequent transac-

tions, new-order and payment, into multi-database transactions

constituting 88% of the workload. Our TPC-C implementation is

based on BenchBase, formerly OLTPBench [30]. For ScalarDB, we

use its open-source TPC-C implementation, which also derives

from BenchBase but replaces SQL with its customized APIs.

Microbenchmarks. Our microbenchmarks derive from the

following parameterized template. Each multi-database transaction

consists of 𝑆 subtransactions, each performing 𝑅 random reads fol-

lowed by𝑊 random updates to a 𝑁 -row table. Each subtransaction

accesses a different table, so changing 𝑆 does not affect the per-

subtransaction contention level. Each table has two integer columns,

one for the primary key and one for the value. Each update sets the

value to a random integer. Each subtransaction accesses a randomly

chosen database system with probability 𝑃 to be PostgreSQL.

6.2 TPC-C Performance
One Warehouse per Partition. We first consider the case

where the number of partitions (PT) equals the number of ware-

houses (WH). Figure 8 shows the results. Local achieves the highest
peak throughput, as it does not incur any cross-subtransaction

coordination. Sonata and 2PC have similar throughput: Sonata
achieves 58.2% to 63.4% of Local’s peak throughput, while 2PC
achieves 62.5% to 66.7%. Compared with 2PC, Sonata incurs an av-

erage 7.1% reduction in throughput. Epoxy performs progressively

worse as the number of warehouses/partitions increases, peaking

at two warehouses with 51.0% of Local’s throughput and dropping

to 18.6% at 40 warehouses. This translates to a 14.0% to 241.6%

performance advantage of Sonata over Epoxy. Such degradation

is due to the increasing number of partitions and subtransactions

at secondary databases, where record updates are amplified as an

insert followed by an update and queries are taxed by additional

Where clauses for selecting the version visible to the transaction.

 0
 500

 1000
 1500
 2000

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

 0
 0.2
 0.4
 0.6
 0.8

WH=2 WH=4 WH=10 WH=40

N
o

rm
al

iz
ed

T
h

ro
u

g
h

p
u

t

Number of warehouses

Figure 9: TPC-C peak throughput when PT=2.

Furthermore, application-level concurrency control is performed

for each secondary subtransaction. For ScalarDB, the amount of

work for its application-level concurrency control is unaffected by

the number of subtransactions. Thus, it shows stable performance

but at a lower throughput than Sonata and 2PC, ranging from 12.0%

to 14.3% of Local. Compared with ScalarDB, Sonata achieves up
to 423.9% higher throughput. As a later latency breakdown will

show, ScalarDB’s overhead comes from expressing transaction logic

through KV interfaces and its application-level concurrency control.

Ticket performs progressively better as the number of partitions

increases, starting at a normalized throughput of 4.8% at two parti-

tions and reaching 36.4% at 40 partitions. This translates to a 74.1%

to 1114.3% performance advantage of Sonata over Ticket. With

more partitions, the contention on the per-partition ticket counters

is reduced, and the performance thus improves.

Fixed Number of Partitions. We next consider the case where

the number of partitions is fixed to two, the minimal number where

using multi-database transactions is meaningful. This setup per-

mits at most two subtransactions in a multi-database transaction.

Figure 9 shows the results. Compared with the previous case, the

performance of ScalarDB, Sonata, 2PC, and Local remains similar,

as their performance is mainly decided by the work performed

within the transaction, not the number of subtransactions or par-

titions. Meanwhile, Epoxy and Ticket show different performance

trends. For Epoxy, now with fixed partitions, the relative amount of

application-level concurrency control remains similar across differ-

ent warehouse numbers, leading to a stable normalized throughput

ranging from 46.2% to 52.5%. Similarly, there are always two shared

ticket counters for Ticket, imposing high contention regardless of

the warehouse number, resulting in a stable but low normalized

throughput ranging from 3.8% to 5.1%.

Throughput-Latency Curves. The throughput-latency graphs
for P50 and P99 latency using two one-warehouse-per-partition

configurations are shown in Figure 10. Sonata has latency similar to

2PC, and both are consistently higher than Local due to round trips
for 2PC messages. For example, at two partitions, when reaching

half of the peak throughput, Sonata’s P50 latency is 6.4% higher

than Local (11.6 ms vs. 10.9 ms), and its P99 latency is 4.0% higher

(27.3 ms vs. 26.3 ms). Meanwhile, as Epoxy consolidates atomic com-

mit with concurrency control, it avoids 2PC round trips, achieving

10.8 ms P50 latency at half of its peak throughput and two partitions.

Yet, there is a significant drop in Epoxy’s throughput after it has
peaked. This is due to its NO_WAIT [61] deadlock prevention policy,

3457

 0
 10
 20
 30
 40
 50

 0 300 600 900

Throughput (TPS)

PT=WH=2, P50PT=WH=2, P50

Ticket ScalarDB Epoxy Sonata 2PC Local

L
at

en
cy

 (
m

s)

 0
 80

 160
 240
 320
 400

 0 300 600 900

PT=WH=2, P99PT=WH=2, P99

 0
 10
 20
 30
 40
 50

 0 400 800 1200 1600 2000

PT=WH=10, P50PT=WH=10, P50

L
at

en
cy

 (
m

s)

 0
 80

 160
 240
 320
 400

 0 400 800 1200 1600 2000

PT=WH=10, P99PT=WH=10, P99

Figure 10: TPC-C throughput vs. P50 and P99 latency.

 0
 200
 400
 600
 800

 0 20 40 60 80
Number of concurrent workers

PT=WH=2PT=WH=2

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

 0
 400
 800

 1200
 1600
 2000

 0 20 40 60 80

PT=WH=10PT=WH=10

Ticket ScalarDB Epoxy Sonata 2PC Local

Figure 11: TPC-C throughput vs. concurrent level.

 0

 2.5

 5

 7.5

 10

2 4 6 8 10

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(k

T
P

S
)

Cluster size

Figure 12: TPC-C peak throughput at different scales.

and with more concurrent transactions, transactions are more likely

to encounter lock conflicts and be aborted. At ten partitions, the la-

tency of Epoxy increases more quickly due to its increased amount

of subtransactions at secondary databases. ScalarDB shows a much

higher latency due to its costly application-level concurrency con-

trol: every record updated results in two disk writes during prepare

and commit, and every record read is re-read during validation.

Ticket’s throughput at two partitions has dropped since the first

data point (two concurrent clients) due to the limited number of

shared ticket counters. At ten partitions, its P99 latency bumps up

to 5 seconds (out of the y-axis range) due to distributed deadlocks

caused by conflicts on the shared ticket counters.

Scalability. We first examine how the number of concurrent

workers affects the throughput. As shown in Figure 11, all systems

except for Ticket at PT=2 show performance improvement as more

workers are added. Local, 2PC, and Sonata are able to sustain high

throughput for a larger range of workers after peaking. Across all

worker numbers, Sonata’s coordination overhead is consistently

small. Meanwhile, others’ throughput drops quickly after peaking.

Next, we examine the performance when more database nodes

are added. Each node is assgined a 10-warehouse partition, and

coordinator instances are scaled out as well when possible to avoid

bottlenecks. Figure 12 shows the results. Except for Epoxy, all show

Epoxy-my
Epoxy-pg
ScalarDB
Sonata

2PC (i) new-order(i) new-order

begin join exec shim prep validate commit

Epoxy-my
Epoxy-pg
ScalarDB
Sonata

2PC

0 5 10 15 20 25 30 35 40

(ii) payment(ii) payment

Latency (ms)

Figure 13: Latency breakdown of TPC-C’s new-order and
payment transactions. Sonata and 2PC have no validate phase;
Epoxy has no prepare phase; only Sonata has a shim segment.

a near-linear increase in throughput as none has a global singleton

bottleneck in their designs. Sonata peaks at 4977 TPS with 10 nodes,
slightly lower than 2PC’s 5153 TPS, and is 4.65× of Sonata’s 2-node
peak. Epoxy’s 10-node peak, 1319 TPS, is only 1.46× of its 2-node

peak, as its singleton primary PostgreSQL bottlenecks the cluster.

Latency Breakdown. We now break down and analyze the

new-order and payment latency. For stable measurement, each new-
order includes one and only one remote item, and each payment
transaction always involves a remote customer. The chance of in-

valid new-order input, originally 1%, is now 0%. Figure 13 shows the

results. Compared with 2PC, Sonata does not lengthen any preexist-
ing phase and only adds a small shim layer overhead, constituting

2.2% and 2.6% of the total latency, respectively. ScalarDB’s longer
execution phase stems from the additional schema-checking queries

introduced by its KV abstraction layer and the cost of maintain-

ing application-level metadata like read and write sets. Its prepare

phase is also longer as its buffered write set is sent to the data-

base through multiple write statements, whose parsing, execution,

and persistence all happen in this phase. ScalarDB validates by re-

reading its read set, introducing multiple database queries. When

ScalarDB commits, it updates all written records again to set them

to a committed state, which takes similar time as its prepare phase.

Meanwhile, Epoxy’s latency distribution heavily depends on the

proportion of work done at the primary and secondary databases.

Thus, two situations where the home warehouse that corresponds

to most of work sits in the primary PostgreSQL (Epoxy-pg) and the

secondary MySQL (Epoxy-my), respectively, are evaluated. Shifting
more work to secondary databases increases the execution, prepare,

and commit phases due to its application-level concurrency control,

which is proportional to the amount of work: all writes are ampli-

fied during execution as described earlier, examined for write-write

conflicts during validation, and require application-level locks that

are held until commit; all reads are burdened with additional predi-

cates as described earlier. Still, when the primary database handles

most of the work, Epoxy-pg has similar latency as 2PC and Sonata
due to the absence of 2PC round trips.

6.3 Microbenchmark Performance
Impact of Contention. We first vary the table size 𝑁 from

100 to 1M and set other parameters as follows: 𝑆=2, 𝑅=𝑊 =6, and

𝑃=50%. Figure 14 shows the results. As the table size decreases,

the likelihood of conflicts increases, and all systems except Ticket

3458

 32
 64

 128
 256
 512

 1024
 2048

N=100 N=1k N=10k N=100k N=1M

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

Table size

Figure 14: Peak throughput under different table sizes.

 32
 64

 128
 256
 512

 1024

0.8 0.9 0.95 0.99

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

Skewness level

Figure 15: Peak throughput under skewed workloads.

 16

 64

 256

 1024

S=2 S=4 S=6 S=8

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

Number of subtransactions

Figure 16: Peak throughput under different transaction sizes.

experience a decrease in throughput. When the table size 𝑁 is

100, conflicts are the main factor for transaction aborts, and thus,

Sonata only outperforms Epoxy by 19.2% and ScalarDB by 139.3%.

As the table size increases, aborts due to conflicts decrease, and the

performance difference becomes dominated by the coordination

overhead. At 𝑁=1M, Sonata outperforms Epoxy by 145.5% and

ScalarDB by 204.1%.

Next, we consider more contentious scenarios by making work-

loads write-only and introducing the skewness level parameter,𝐾 ∈
[0.5,1), such that a fraction 1-𝐾 of all rows are accessed by a fraction

𝐾 of all operations. We set 𝑁 to 10k. Figure 15 shows the results.

As 𝐾 increases from 0.8 to 0.99, hot rows in a table drops from

2k to 100, significantly increasing conflicts. For example, with 10

concurrent workers, the abort ratio of 2PL/Sonata/ScalarDB/Epoxy
grows from 7.4%/7.7%/26%/28% to 51%/52%/93%/75%. Still, across

all configurations, Sonata performs similarly to 2PC and always

outperforms Epoxy and ScalarDB, suggesting that Sonata is no

more suspectable to skewness than other baselines.

Impact of Transaction Size. We evaluate the impact of trans-

action sizes by varying the number of subtransactions 𝑆 from 2 to

8 and set other parameters as follows: 𝑅=𝑊 =6, 𝑁=1M, and 𝑃=50%.

Figure 16 shows the results. As the number of subtransactions 𝑆

increases, the throughput of all systems decreases. This is expected

as the amount of work grows linearly with 𝑆 . As with TPC-C, both

Sonata and 2PC achieve a stable relative performance to Local
across different 𝑆 : Sonata achieves 51.2% to 53.9% of Local, while
2PC achieves 52.6% to 56.1%. These numbers are slightly smaller

 0
 500

 1000
 1500
 2000 (i) MySQL(i) MySQL

Ticket ScalarDB Epoxy Sonata 2PC Local

T
h

ro
u

g
h

p
u

t
(T

P
S
)

 0
 500

 1000
 1500
 2000
 2500

R12W0 R8W4 R4W8 R0W12

(ii) PG(ii) PG

T
h

ro
u

g
h

p
u

t
(T

P
S
)

Read/write operations per subtransaction

Figure 17: Peak throughput under different read-write ratios.

 0
 500

 1000
 1500

 0 20 40 60 80 100
 0
 2
 4
 6

Number of concurrent workers

C
o

m
m

it
 r

a
te

 (
T

P
S
) A

b
o

rt ra
te (T

P
S
)

R=W=6, N=1M, P=1R=W=6, N=1M, P=1

2PC-commit Sonata-commit 2PC-abort Sonata-abort

 0
 400
 800

 1200

 0 20 40 60 80 100
 0
 2
 4
 6

R=W=6, N=1M, P=0R=W=6, N=1M, P=0

 0
 800

 1600
 2400

 0 20 40 60 80 100
 0
 0.2
 0.4
 0.6

R=W=1, N=1M, P=1R=W=1, N=1M, P=1

 0
 500

 1000
 1500

 0 20 40 60 80 100
 0
 0.2
 0.4
 0.6

R=W=1, N=1M, P=0R=W=1, N=1M, P=0

 0
 400
 800

 1200

 0 10 20 30 40 50
 0
 400
 800
 1200

R=W=6, N=1k, P=1R=W=6, N=1k, P=1

 0
 300
 600
 900

 0 10 20 30 40 50
 0
 50
 100
 150

R=W=6, N=1k, P=0R=W=6, N=1k, P=0

Figure 18: Commit/abort rates vs. concurrency level.

than those from TPC-C since less service computation is involved

in the microbenchmarks, making the coordination overhead more

prominent. Still, Sonata outperforms Epoxy by 145.5% (at 𝑆=2) to

194.0% (at 𝑆=8). ScalarDB performs slightly worse than Epoxy and

is outperformed by Sonata by 204.1% to 256.8%.

Single-Database Performance. We use single-subtransaction

(𝑆=1) workloads to exercise either PostgreSQL (𝑃=1) or MySQL

(𝑃=0). We begin with different read-write ratios and fix the oper-

ation count to 12. Table size 𝑁 is set to 1M. Figure 17 shows the

results. In general, the performance of all systems decreases as the

workload becomes more write-heavy. Sonata performs similarly

with 2PC in most cases with a up to 3% overhead in MySQL and

14% in PostgreSQL. 2PC’s read-only MySQL performance notice-

ably surpass Sonata due to a prepare-time optimization in MySQL,

which reduces disk writes by directly rolling back the subtransac-

tion if the redo log is empty. The dummy writes from the Sonata

shim disable this optimization, making Sonata 43.9% slower than

2PC. Sonata outperforms Epoxy except in read-only workloads by

up to 70.1% in MySQL and up to 47.5% in PostgreSQL. In read-only

workloads, Epoxy’s snapshot caching optimization effectively elim-

inates most application-level coordination and reduces transactions

to local transactions. Sonata outperforms ScalarDB by up to 203.1%

in MySQL and up to 281.7% in PostgreSQL.

Next, we compare Sonata with 2PC in details to analyze the shim

layer overhead in each database. Figure 18 shows the commit and

abort rates under different numbers of concurrent workers. With

𝑁=1M and 𝑅=𝑊 =6, we observe a 4–11% commit rate reduction

3459

with PostgreSQL and up to 5% with MySQL. For abort rates, due

to the large table size, both 2PC and Sonata have zero aborts in

MySQL, and Sonata adds only 1-2 TPS in PostgreSQL. We then

reduce the amount of work by setting 𝑅=𝑊 =1. The impact on the

commit rate slightly increases as shim operations now take a larger

proportion. For aborts, the relative increase in abort rates is larger

since CO-violating transactions, i.e., those with rw-dependencies

that prepare in a CO-violating order, are less likely to be aborted

by the databases due to the lower contention. However, also due

to the lower contention, the absolute abort rates for both 2PC and

Sonata are much lower (less than 1 TPS), making the impact of

increased abort rates negligible. We also reduce 𝑁 to 1k for higher

contention. While the absolute increase in abort rates is much

larger (up to 33 TPS), Sonata’s relative impact becomes much lower,

as CO-violating transactions are more likely to participate in SSI

dangerous structures or S2PL deadlocks and thus aborted by the

underlying database, not the shim layer. In terms of latency, Sonata

shims generally add 1 ms to the total latency and, as in our previous

breakdown (Figure 13), do not affect the time taken by existing 2PC

phases. We skip latency details for brevity.

7 RELATEDWORK
Global Serializability. Global serializability for multi-database

transactions has been studied since the early days [19, 66]. The

ticket method and refinements [15, 36] assume local serializability

from the underlying databases. They force subtransactions to ex-

plicitly conflict by reading and incrementing per-database shared

ticket counters. The transaction-site graph algorithm by Breitbart

and Silberschatz [20] and altruistic locking [9, 62] further require

strict local serializability [43]. Mehrotra et al. [51] proposed a seri-

alization point-based approach, requiring subtransactions at each

database to be serialized in the order of their local serialization point

events. The knowledge of such events is assumed to be provided

by the underlying databases. Raz [57–59] proposed the theory of

commit ordering (§2.3) and a family of scheduling algorithms that

test the local serialization graph to maintain the commit ordering

condition. Overall, these protocols are either too conservative or

pose requirements on databases systems that are hardly met in prac-

tice. In contrast, Sonata exploits common properties that hold for

existing popular database systems to achieve general applicability

and practical performance.

Application-Level Concurrency Control. Recent work ex-

plores shifting more concurrency control responsibilities to the

application layer to achieve global serializability or weaker isola-

tion guarantees. Epoxy [46] and Cherry Garcia [28, 29] are two

protocols that provide SI across multiple databases. Since they per-

form coordination at the application level, they only require the

underlying databases to provide linearizable [43] durable KV opera-

tions. They keep multiple data versions in the underlying databases

with additional protocol-specific metadata, which can make the un-

derlying system inaccessible without proper application wrappers.

ScalarDB [78] extends Cherry Garcia to provide global serializabil-

ity with two strategies: a pessimistic one that turns every read into

writes and an optimistic one that performs an additional validation

after the prepare phase, and the latter is the default. Therefore, it

incurs more overhead with similar limitations as Cherry Garcia. In

contrast, by focusing on SSI and S2PL systems, Sonata’s application-

level prepare-time coordination is lightweight and does not require

maintaining additional data versions or metadata.

Relaxed Transaction Semantics. In distributed service-ori-

ented applications today, multi-database transaction models with

more relaxed semantics are often used. The Saga pattern [34] is a

popular approach that breaks a multi-database transaction into a

sequence of local transactions associated with compensating local

transactions. Atomicity is relaxed as the effect of local transactions

can be partly observed by others. The try-confirm/cancel pattern

(TCC)[53] moves the coordination responsibility to the business

level and requires business logic to be two-phased. The first phase

checks business conditions and reserves resources, and the second

either confirms or cancels the reservation, depending on whether

all participants have succeeded in the first phase. Therefore, any

multi-database transaction observed to be partially confirmed will

eventually be fully confirmed and never canceled. The XA specifi-

cation [77] defines interfaces for different databases to participate

in 2PC, coordinated by any compliant coordinator. XA transactions

are atomic and durable but without cross-subtransaction isolation.

It is adapted by Java Transaction API and .NET TransactionScope

to compose multi-database transactions in respective languages.

Layered Transaction Management. Distributed databases

often adopt a layered approach to implement transactions on top

of self-contained storage systems. Unlike multi-database solutions

that support heterogeneous database systems, these systems are

designed specifically with one storage system type. Percolator [54]

builds upon BigTable [23] to provide distributed transactions with

SI. It uses a client-coordinated MVCC protocol that stores locks

and other metadata in additional BigTable columns. Similar to Per-

colator, Omid [40, 64, 65] builds upon HBase to provide SI. Unlike

Percolator, Omid uses a centralized transaction status oracle server

for conflict detection and snapshot management. Megastore [14]

is another system that builds upon BigTable. It provides a semi-

relational data model missing in Percolator with a weaker isolation

guarantee. Citus [27] allows distributed transactions across multiple

PostgreSQL instances. It uses PostgreSQL’s native 2PC interface for

atomicity and durability and adds a distributed deadlock detector

that uses periodical polling to build wait-for graphs.

8 CONCLUSION
We have presented Sonata, an ACID multi-database transaction sys-

tem. Sonata works as application-level shim layers. Sonata leverages

the common properties of popular database systems to provides

global serializability without fully performing transaction concur-

rency control at the application level or requring changes to appli-

cations’ schemas, query statements, database drivers, or database

systems themselves. Sonata adds only 7.1% coordination overhead

on average, outperforming prior solutions by up to 1114.3%.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Founda-

tion of China under Grant Nos. 62422209, 62132014, and 62272304.

Zhaoguo Wang is the corresponding author.

3460

REFERENCES
[1] [n.d.]. AgensGraph. https://bitnine.net/agensgraph/.

[2] [n.d.]. EDB. https://www.enterprisedb.com.

[3] [n.d.]. Fujitsu Enterprise Postgres. https://www.postgresql.fastware.com.

[4] [n.d.]. Neon. https://neon.tech.

[5] [n.d.]. Tmax OpenSQL. https://www.global.tibero.com/product.

[6] 2023. Stack Overflow 2023 Developer Survey. https://survey.stackoverflow.co/

2023.

[7] 2024. Stack Overflow 2024 Developer Survey. https://survey.stackoverflow.co/

2024.

[8] A. Adya, B. Liskov, and P. O’Neil. 2000. Generalized Isolation Level Definitions.

In Proceedings of the 16th International Conference on Data Engineering (ICDE
’00). IEEE Computer Society, USA, 67.

[9] Rafael Alonso, Hector Garcia-Molina, and Kenneth Salem. 1987. Concurrency

Control and Recovery for Global Procedures in Federated Database Systems. IEEE
Data Eng. Bull. 10, 3 (1987), 5–11. http://sites.computer.org/debull/87SEP-CD.pdf

[10] Paul Andlinger and Matthias Gelbmann. 2018. PostgreSQL is the DBMS of the

Year 2017. https://db-engines.com/en/blog_post/76.

[11] Paul Andlinger and Matthias Gelbmann. 2019. PostgreSQL is the DBMS of the

Year 2018. https://db-engines.com/en/blog_post/79.

[12] Paul Andlinger and Matthias Gelbmann. 2021. PostgreSQL is the DBMS of the

Year 2020. https://db-engines.com/en/blog_post/85.

[13] Apache. 2024. Apache Seata 2.1. https://seata.apache.org.

[14] Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James

Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.

2011. Megastore: Providing Scalable, Highly Available Storage for Interactive

Services. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR
2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings. www.cidrdb.org,

223–234. http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

[15] R.K. Batra, M. Rusinkiewicz, and D. Georgakopoulos. 1992. A decentralized

deadlock-free concurrency control method for multidatabase transactions. In

[1992] Proceedings of the 12th International Conference on Distributed Computing
Systems. 72–79. https://doi.org/10.1109/ICDCS.1992.235053

[16] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A critique of ANSI SQL isolation levels. SIGMOD Rec. 24, 2 (May

1995), 1–10. https://doi.org/10.1145/568271.223785

[17] Josh Berkus. 2009. Elephant Roads: a tour of Postgres forks. https://www.

slideshare.net/slideshow/elephant-roads-a-tour-of-postgres-forks/5376286.

[18] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Addison-Wesley Longman Publishing

Co., Inc., USA.

[19] Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. 1992. Overview

of Multidatabase Transaction Management. VLDB J. 1, 2 (1992), 181–239. http:

//www.vldb.org/journal/VLDBJ1/P181.pdf

[20] Yuri Breitbart and Avi Silberschatz. 1988. Multidatabase update issues. In Proceed-
ings of the 1988 ACM SIGMOD International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’88). Association for Computing Machinery,

New York, NY, USA, 135–142. https://doi.org/10.1145/50202.50217

[21] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isola-

tion for snapshot databases. In Proceedings of the 2008 ACM SIGMOD Inter-
national Conference on Management of Data (Vancouver, Canada) (SIGMOD
’08). Association for Computing Machinery, New York, NY, USA, 729–738.

https://doi.org/10.1145/1376616.1376690

[22] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable isolation

for snapshot databases. ACM Trans. Database Syst. 34, 4, Article 20 (dec 2009),
42 pages. https://doi.org/10.1145/1620585.1620587

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008.

Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Com-
put. Syst. 26, 2, Article 4 (June 2008), 26 pages. https://doi.org/10.1145/1365815.

1365816

[24] Youmin Chen, Xiangyao Yu, Paraschos Koutris, Andrea C. Arpaci-Dusseau,

Remzi H. Arpaci-Dusseau, and Jiwu Shu. 2022. Plor: General Transactions with

Predictable, Low Tail Latency. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for

Computing Machinery, New York, NY, USA, 19–33. https://doi.org/10.1145/

3514221.3517879

[25] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,

Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s globally-distributed

database. In Proceedings of the 10th USENIX Conference on Operating Systems De-
sign and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association,

USA, 251–264.

[26] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,

Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed

Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 22 pages.

https://doi.org/10.1145/2491245

[27] Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and

Marco Slot. 2021. Citus: Distributed PostgreSQL for Data-Intensive Applications.

In Proceedings of the 2021 International Conference onManagement of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,

NY, USA, 2490–2502. https://doi.org/10.1145/3448016.3457551

[28] Akon Dey, Alan Fekete, and Uwe Röhm. 2013. Scalable transactions across

heterogeneous NoSQL key-value data stores. Proc. VLDB Endow. 6, 12 (Aug.

2013), 1434–1439. https://doi.org/10.14778/2536274.2536331

[29] Akon Dey, Alan Fekete, and Uwe Röhm. 2015. Scalable distributed transactions

across heterogeneous stores. In 2015 IEEE 31st International Conference on Data
Engineering. 125–136. https://doi.org/10.1109/ICDE.2015.7113278

[30] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Re-

lational Databases. PVLDB 7, 4 (2013), 277–288. http://www.vldb.org/pvldb/

vol7/p277-difallah.pdf

[31] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving optimistic concur-

rency control through transaction batching and operation reordering. Proc. VLDB
Endow. 12, 2 (Oct. 2018), 169–182. https://doi.org/10.14778/3282495.3282502

[32] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The notions of

consistency and predicate locks in a database system. Commun. ACM 19, 11

(Nov. 1976), 624–633. https://doi.org/10.1145/360363.360369

[33] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis

Shasha. 2005. Making snapshot isolation serializable. ACM Trans. Database Syst.
30, 2 (jun 2005), 492–528. https://doi.org/10.1145/1071610.1071615

[34] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data (San Francisco,

California, USA) (SIGMOD ’87). Association for Computing Machinery, New

York, NY, USA, 249–259. https://doi.org/10.1145/38713.38742

[35] Matthias Gelbmann and Paul Andlinger. 2024. PostgreSQL is the DBMS of the

Year 2023. https://db-engines.com/en/blog_post/106.

[36] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. 1991. On serializability of

multidatabase transactions through forced local conflicts. In [1991] Proceedings.
Seventh International Conference on Data Engineering. 314–323. https://doi.org/

10.1109/ICDE.1991.131479

[37] Goetz Graefe, Mark Lillibridge, Harumi Kuno, Joseph Tucek, and Alistair Veitch.

2013. Controlled lock violation. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data (New York, New York, USA) (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 85–96.

https://doi.org/10.1145/2463676.2465325

[38] Jim Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems,
An Advanced Course. Springer-Verlag, Berlin, Heidelberg, 393–481.

[39] Jim Gray. 1981. The transaction concept: virtues and limitations (invited paper).

In Proceedings of the Seventh International Conference on Very Large Data Bases -
Volume 7 (Cannes, France) (VLDB ’81). VLDB Endowment, 144–154.

[40] Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, and Maysam

Yabandeh. 2014. Omid: Lock-free transactional support for distributed data

stores. In 2014 IEEE 30th International Conference on Data Engineering. 676–687.
https://doi.org/10.1109/ICDE.2014.6816691

[41] Theo Haerder and Andreas Reuter. 1983. Principles of transaction-oriented

database recovery. ACM Comput. Surv. 15, 4 (Dec. 1983), 287–317. https://doi.

org/10.1145/289.291

[42] Major Hayden. 2024. MySQLTuner 2.6.0. https://github.com/major/

MySQLTuner-perl.

[43] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness

condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492. https://doi.org/10.1145/78969.78972

[44] Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. 2020.

Opportunities for optimism in contended main-memory multicore transactions.

Proc. VLDB Endow. 13, 5 (Jan. 2020), 629–642. https://doi.org/10.14778/3377369.

3377373

[45] DarbyHuye, Yuri Shkuro, and Raja R. Sambasivan. 2023. Lifting the veil onMeta’s

microservice architecture: Analyses of topology and request workflows. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). USENIX Association,

Boston, MA, 419–432. https://www.usenix.org/conference/atc23/presentation/

huye

[46] Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei

Zaharia, and Xiangyao Yu. 2023. Epoxy: ACID Transactions across Diverse Data

Stores. Proc. VLDB Endow. 16, 11 (July 2023), 2742–2754. https://doi.org/10.

14778/3611479.3611484

[47] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and

Marcos Kalinowski. 2021. Data management in microservices: state of the

practice, challenges, and research directions. Proc. VLDB Endow. 14, 13 (Sept.

3461

https://bitnine.net/agensgraph/
https://www.enterprisedb.com
https://www.postgresql.fastware.com
https://neon.tech
https://www.global.tibero.com/product
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2024
https://survey.stackoverflow.co/2024
http://sites.computer.org/debull/87SEP-CD.pdf
https://db-engines.com/en/blog_post/76
https://db-engines.com/en/blog_post/79
https://db-engines.com/en/blog_post/85
https://seata.apache.org
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
https://doi.org/10.1109/ICDCS.1992.235053
https://doi.org/10.1145/568271.223785
https://www.slideshare.net/slideshow/elephant-roads-a-tour-of-postgres-forks/5376286
https://www.slideshare.net/slideshow/elephant-roads-a-tour-of-postgres-forks/5376286
http://www.vldb.org/journal/VLDBJ1/P181.pdf
http://www.vldb.org/journal/VLDBJ1/P181.pdf
https://doi.org/10.1145/50202.50217
https://doi.org/10.1145/1376616.1376690
https://doi.org/10.1145/1620585.1620587
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.1145/3514221.3517879
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3448016.3457551
https://doi.org/10.14778/2536274.2536331
https://doi.org/10.1109/ICDE.2015.7113278
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.1145/360363.360369
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/38713.38742
https://db-engines.com/en/blog_post/106
https://doi.org/10.1109/ICDE.1991.131479
https://doi.org/10.1109/ICDE.1991.131479
https://doi.org/10.1145/2463676.2465325
https://doi.org/10.1109/ICDE.2014.6816691
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://github.com/major/MySQLTuner-perl
https://github.com/major/MySQLTuner-perl
https://doi.org/10.1145/78969.78972
https://doi.org/10.14778/3377369.3377373
https://doi.org/10.14778/3377369.3377373
https://www.usenix.org/conference/atc23/presentation/huye
https://www.usenix.org/conference/atc23/presentation/huye
https://doi.org/10.14778/3611479.3611484
https://doi.org/10.14778/3611479.3611484

2021), 3348–3361. https://doi.org/10.14778/3484224.3484232

[48] Butler W. Lampson. 1979. Crash recovery in a distributed data storage system.

Technical Report. Xerox Palo Alto Research Center.

[49] James Lewis and Martin Fowler. 2014. Microservices: a definition of this new

architectural term. https://martinfowler.com/articles/microservices.html.

[50] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,

Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing Microservice

Dependency and Performance: Alibaba Trace Analysis. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association
for Computing Machinery, New York, NY, USA, 412–426. https://doi.org/10.

1145/3472883.3487003

[51] Sharad Mehrotra, Rajeev Rastogi, Yuri Breitbart, Henry F. Korth, and Avi Sil-

berschatz. 1992. The concurrency control problem in multidatabases: char-

acteristics and solutions. In Proceedings of the 1992 ACM SIGMOD Interna-
tional Conference on Management of Data (San Diego, California, USA) (SIG-
MOD ’92). Association for Computing Machinery, New York, NY, USA, 288–297.

https://doi.org/10.1145/130283.130327

[52] Sam Newman. 2021. Building Microservices, 2nd Edition. O’Reilly Media, Inc.

[53] Guy Pardon. 2009. Try-Cancel/Confirm: Transactions for (Web) Ser-

vices. https://web.archive.org/web/20090106020843/http://www.atomikos.com/

Publications/TryCancelConfirm.

[54] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing us-

ing distributed transactions and notifications. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,

Canada) (OSDI’10). USENIX Association, USA, 251–264.

[55] Dan R. K. Ports and Kevin Grittner. 2012. Serializable snapshot isolation in

PostgreSQL. Proc. VLDB Endow. 5, 12 (aug 2012), 1850–1861. https://doi.org/10.

14778/2367502.2367523

[56] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended

OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,

527–542. https://doi.org/10.1145/3318464.3389764

[57] Yoav Raz. 1992. The Principle of Commitment Ordering, or Guaranteeing Serial-

izability in a Heterogeneous Environment of Multiple Autonomous Resource

Mangers Using Atomic Commitment. In Proceedings of the 18th International
Conference on Very Large Data Bases (VLDB ’92). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 292–312.

[58] Y. Raz. 1993. Commitment ordering based distributed concurrency control for

bridging single and multi version resources. In Proceedings RIDE-IMS ’93: Third
International Workshop on Research Issues in Data Engineering: Interoperability in
Multidatabase Systems. 189–198. https://doi.org/10.1109/RIDE.1993.281924

[59] Yoav Raz. 1993. Extended commitment ordering, or guaranteeing global seri-

alizability by applying commitment order selectively to global transactions. In

Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (Washington, D.C., USA) (PODS ’93). Association for

Computing Machinery, New York, NY, USA, 83–96. https://doi.org/10.1145/

153850.153858

[60] Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil. 2011. Precisely Serializable

Snapshot Isolation (PSSI). In Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering (ICDE ’11). IEEE Computer Society, USA, 482–493.

https://doi.org/10.1109/ICDE.2011.5767853

[61] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis. 1978. System

level concurrency control for distributed database systems. ACM Trans. Database
Syst. 3, 2 (June 1978), 178–198. https://doi.org/10.1145/320251.320260

[62] Kenneth Salem, Hector Garcia-Molina, and Rafael Alonso. 1989. Altruistic lock-

ing: A strategy for coping with long lived transactions. In High Performance
Transaction Systems, Dieter Gawlick, Mark Haynie, and Andreas Reuter (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 175–199.

[63] Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, HassanWassel,

Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krishnamurthy, David E. Culler,

and Henry M. Levy. 2023. A Cloud-Scale Characterization of Remote Procedure

Calls. In Proceedings of the 29th Symposium on Operating Systems Principles
(Koblenz, Germany) (SOSP ’23). Association for Computing Machinery, New

York, NY, USA, 498–514. https://doi.org/10.1145/3600006.3613156

[64] Ohad Shacham, Yonatan Gottesman, Aran Bergman, Edward Bortnikov, Eshcar

Hillel, and Idit Keidar. 2018. Taking omid to the clouds: fast, scalable transactions

for real-time cloud analytics. Proc. VLDB Endow. 11, 12 (Aug. 2018), 1795–1808.
https://doi.org/10.14778/3229863.3229868

[65] Ohad Shacham, Francisco Perez-Sorrosal, Edward Bortnikov, Eshcar Hillel,

Idit Keidar, Ivan Kelly, Matthieu Morel, and Sameer Paranjpye. 2017. Omid,

reloaded: scalable and highly-available transaction processing. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies (Santa clara, CA,
USA) (FAST’17). USENIX Association, USA, 167–180.

[66] Amit P. Sheth and James A. Larson. 1990. Federated database systems for manag-

ing distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.
22, 3 (Sept. 1990), 183–236. https://doi.org/10.1145/96602.96604

[67] Michael Stonebraker. 2010. Why Enterprises Are Uninterested in NoSQL. BLOG-

CACM.

[68] Michael Stonebraker and Andrew Pavlo. 2024. What Goes Around Comes

Around... And Around... SIGMOD Rec. 53, 2 (July 2024), 21–37. https://doi.org/

10.1145/3685980.3685984

[69] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,

Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,

Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter

Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,

New York, NY, USA, 1493–1509. https://doi.org/10.1145/3318464.3386134

[70] Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,

Haibing Guan, and Haibo Chen. 2022. Ad Hoc Transactions in Web Ap-

plications: The Good, the Bad, and the Ugly. In Proceedings of the 2022 In-
ternational Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD ’22). Association for Computing Machinery, New York, NY, USA, 4–18.

https://doi.org/10.1145/3514221.3526120

[71] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton,

Pennsylvania) (SOSP ’13). Association for Computing Machinery, New York, NY,

USA, 18–32. https://doi.org/10.1145/2517349.2522713

[72] Oleksii Vasyliev. 2024. PgTune. https://pgtune.leopard.in.ua.

[73] Jiachen Wang, Ding Ding, Huan Wang, Conrad Christensen, Zhaoguo Wang,

Haibo Chen, and Jinyang Li. 2021. Polyjuice: High-Performance Transactions

via Learned Concurrency Control. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, 198–216.

https://www.usenix.org/conference/osdi21/presentation/wang-jiachen

[74] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2017. Effi-

ciently making (almost) any concurrency control mechanism serializable. The
VLDB Journal 26, 4 (Aug. 2017), 537–562. https://doi.org/10.1007/s00778-017-

0463-8

[75] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li. 2016.

Scaling Multicore Databases via Constrained Parallel Execution. In Proceedings
of the 2016 International Conference on Management of Data (San Francisco,

California, USA) (SIGMOD ’16). Association for Computing Machinery, New

York, NY, USA, 1643–1658. https://doi.org/10.1145/2882903.2882934

[76] Zhaoguo Wang, Chuzhe Tang, Xiaodong Zhang, Qianmian Yu, Binyu Zang,

Haibing Guan, and Haibo Chen. 2024. Ad Hoc Transactions through the Looking

Glass: An Empirical Study of Application-Level Transactions inWebApplications.

ACM Trans. Database Syst. 49, 1, Article 3 (Feb. 2024), 43 pages. https://doi.org/

10.1145/3638553

[77] X/Open Company Limited. 1991. Distributed Transaction Processing: The XA

Specification.

[78] Hiroyuki Yamada, Toshihiro Suzuki, Yuji Ito, and Jun Nemoto. 2023. ScalarDB:

Universal Transaction Manager for Polystores. Proc. VLDB Endow. 16, 12 (Aug.
2023), 3768–3780. https://doi.org/10.14778/3611540.3611563

3462

https://doi.org/10.14778/3484224.3484232
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1145/130283.130327
https://web.archive.org/web/20090106020843/http://www.atomikos.com/Publications/TryCancelConfirm
https://web.archive.org/web/20090106020843/http://www.atomikos.com/Publications/TryCancelConfirm
https://doi.org/10.14778/2367502.2367523
https://doi.org/10.14778/2367502.2367523
https://doi.org/10.1145/3318464.3389764
https://doi.org/10.1109/RIDE.1993.281924
https://doi.org/10.1145/153850.153858
https://doi.org/10.1145/153850.153858
https://doi.org/10.1109/ICDE.2011.5767853
https://doi.org/10.1145/320251.320260
https://doi.org/10.1145/3600006.3613156
https://doi.org/10.14778/3229863.3229868
https://doi.org/10.1145/96602.96604
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3685980.3685984
https://doi.org/10.1145/3318464.3386134
https://doi.org/10.1145/3514221.3526120
https://doi.org/10.1145/2517349.2522713
https://pgtune.leopard.in.ua
https://www.usenix.org/conference/osdi21/presentation/wang-jiachen
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1145/2882903.2882934
https://doi.org/10.1145/3638553
https://doi.org/10.1145/3638553
https://doi.org/10.14778/3611540.3611563

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Multi-Database Transactions
	2.2 Transaction Model and Notation
	2.3 Commitment Ordering

	3 Sonata Design
	3.1 Opportunities
	3.2 System Overview
	3.3 Sonata Workflow
	3.4 Commitment Ordering Shims
	3.5 Durability and Failure Recovery
	3.6 Discussion

	4 Correctness Analysis
	4.1 Global Serializability
	4.2 False Positives

	5 Optimizations
	6 Evaluation
	6.1 Evaluation Setup
	6.2 TPC-C Performance
	6.3 Microbenchmark Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

