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Abstract

Model autoscaling is the key mechanism to achieve server-
less model-as-a-service, but it faces a fundamental trade-off
between scaling speed and storage/memory usage to cache
parameters, and cannot meet frequent scaling requirements
across multiple hosts. The key problem is that data plane per-
formance is slow, and scaled instances remain stopped while
parameters are loading.

In this paper, we first show that the data plane can be
made fast with no or O(1) caching by loading parameters
through the compute network between GPUs because: (1) its
speed is comparable to host cache and is underutilized, and
(2) scaling multiple instances requires no or O(1) caching
with network-optimized multicast. Second, autoscaling can
be made live by breaking the scaling abstraction for inference
from a coarse-grained instance-level to a fine-grained layer-
level. This allows us to offload the layer computation from
the overloaded serving instances to the scaled ones without
waiting for the parameters to be fully loaded.

Under real-world workloads, our system BLITZSCALE
achieves up to 94 % lower tail latency reductions compared to
state-of-the-art autoscaling system (ServerlessLLM), and it re-
duces the GPU time used for serving by 49 % when compared
with serving systems that do not support autoscaling like Dist-
Serve and vLLM with the same service-level-agreement.

1 Introduction

Recent years have seen rapid growth in applications pow-
ered by deep learning models like large language models
(LLMs) [13, 53, 34, 54, 61]. Due to the huge computation
requirements, these models are typically served in model-
serving-as-a-service systems (MAAS) [63, 11, 23, 76, 20,
10, 29], which manage a cluster of accelerators (e.g., GPUs)
and provision an appropriate number of serving instances
containing GPUs to each model deployed.

An MAAS system has two design objectives: maximizing
goodput—the number of requests that meet the service level
objective (SLO), and minimizing instances provisioned to
each model to improve hardware utilization. Achieving both
is challenging due to the unpredictable short-term fluctua-
tions in a model’s instance demands, (5 x required within 2
seconds), because the request arrival rate bursts at seconds-
level [45, 80], where the memory usage of each request
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is also unpredictable due to the auto-regressive nature of
LLMs [45, 80, 29] (see also Figure 1 and §2.2).

Model autoscaling is a promising solution [76, 11, 29, 3].
With autoscaling, a MAAS system only provisions the av-
erage number of instances required over the long term for
each served model, which remains relatively stable [71]. This
improves utilization. Upon bursts, the system automatically
scales new instances, avoiding SLO violations due to request
queueing caused by insufficient instances provisioned.

Autoscaling speed is critical in minimizing SLO violations
because the queued requests are not served until the instances
are scaled. For instance, the inference time of a Llama3-8B is
80-900 ms on commodity GPU (A800), while users expect a
tight response time (< 1 second) for scenarios like chatbot [12,
81, 33]. Meeting such tight SLO requires less than 500 ms
scaling time, but achieving this is challenging especially for
LLMs with 10-400 GB parameters. The key reason is the
slow data plane of autoscaling—the process of loading the
model parameters to instances’ GPUs. While high bandwidth
SSDs are utilized in current work [29], the speed provided
by SSDs of GPU servers (2-10 Gbps per GPU [35, 9, 27])
is still far from ideal. For instance, loading Llama3-8 B to a
GPU takes 12.8 seconds with 10 Gbps SSD. Another factor
obstructing fast scaling is that existing scaling methods are
stop-the-world: the scaled instances cannot serve requests
until all parameters are loaded. This implies that autoscaling
is directly bottlenecked by the data plane.

To mitigate the above issues, state-of-the-art systems like
ServerlessLLM further adopt a multi-tiered caching system
by caching model parameters in the host (CPU) DRAM to
accelerate the data plane [36, 41]. Under cache hit, they can
leverage the fast CPU-GPU link (e.g., 256 Gbps PCle) to load
parameters. However, achieving a high hit rate is unfeasible:
ServerlessLLM reports a hit rate of 40—75 %, which is con-
firmed by us (see §3). The root cause is that a MAAS typically
hosts many models, thus achieving a 100 % cache hit requires
caching all these models on the DRAM of each host, clearly
impractical. Vendors typically host many models because
there are hundreds of popular open-source model families
designed for different purposes [28]. Meanwhile, each model
family has different scales for balancing the serving cost and
accuracy [4]. Finally, developers can upload their customized
fine-tuned models based on open-source models [10].

To achieve fast model scaling without relying on cache hit,
we make the following two key contributions:

1. Data plane made fast with O(1) or no caching with
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compute network multicast. First, a MAAS is backed by
fast GPU-GPU/CPU compute fabrics [50], which are 100—
400 Gbps RDMA and even 16 Tbps NVLink [35, 9, 27]—
much faster than SSD and comparable (or even faster than)
CPU-GPU PCle. The compute fabric is used for data transfer
during serving and we found it largely under-utilized, i.e., up
to 7.4 % of total bandwidth even in network-heavy workloads
like serving LLMs with prefill and decode disaggregation [55,
81, 38, 19, 75] (§3). Thus, we can borrow such fast links for
accelerating the data plane of autoscaling.

Second, network-based data plane requires no or minimal
caching to achieve fast scaling. Specifically, if a model is
already deployed on some instances, we can directly multicast
the parameters from deployed instances through the network,
eliminating the need for caching. Such multicast is extremely
efficient because a serial forwarding multicast [66] can load
bulk data (e.g., model parameters), regardless of the number
of receivers. Even if no instance is deployed, multicast can
be done with O(1) host caching by simply broadcasting the
parameters from the host with the cached model. This O(1)
caching per-model allows us to avoid all cache misses since
the aggregated host memory of all machines is sufficient to
cache all models served by a MAAS.

Although fast networking can significantly accelerate the
data plane with minimal caching, a stop-the-world loading
remains a bottleneck in cases when the networking is not fast
enough. For example, to achieve at most 40 % SLO violations
when serving a BurstGPT workload with Qwen2.5-72B, the
system needs to achieve a tight 500 ms stop time. Achieving
so requires 576 Gbps per-GPU! parameter transfer bandwidth,
far exceeding the available bandwidth of typical compute
network setups (e.g., 200 Gbps per-GPU) and even when
caching at the host (256 Gbps PCle). Thus, we argue that
an ideal parameter loading should be live: before the data
loading finishes, the scaled instance should be able to serve
requests.

2. Data plane made live with fine-grained scaling abstrac-
tion and cooperative execution. Model scaling cannot be
live using traditional on-demand data loading techniques com-
monly found in serverless computing [74, 69, 39] or inference
loading overlap in PipeSwitch [15] (§4), because an instance
can only emit results once all the parameters are loaded. This
stop is rooted in the coarse-grained scaling abstraction of
existing systems: they can only scale and serve at the instance
level. To realize live scaling, our key insight is that models
can be served in a fine-grained, layer-by-layer manner. With
this fine-grained layer-wise scaling, we can offload part of the
layer’s computation from overloaded instances to scaled in-
stances with cooperative execution, thus improving the overall
serving throughput even before the scaled instance has loaded
all the parameters.

Challenges and solutions. First, utilizing network-based

172 B model requires at least four GPUs per-instance for serving.

multicast is non-trivial in our setup. Though the mechanism
of multicast is simple, i.e., simply forwarding parameters
between instances with the network, the challenges lie in
generating the multicast plan, i.e., determining how the data
flows between instances. First, we need to quickly generate an
efficient plan online on diverse network topologies since our
sources and destinations are dynamically determined, but gen-
erating an optimal plan is NP-hard on heterogeneous networks
in serving clusters [18]. Second, we need to avoid network
interference between the scaling and serving, otherwise, we
observed a 1.5 x longer scale time and 50% degraded tail
TBT (§4). Current solutions [22, 19, 32] mainly target of-
fline scenarios like training, so they can tolerate long plan
generation time and don’t need to consider interference from
serving workloads. To address the issue, we propose a model-
aware multicast planner, which leverages the key features of
compute network and the static data flow in model serving to
quickly generate a near-optimal, interference-free multicast
plan for scaling (§5.1).

Second, it is challenging to schedule how requests are exe-
cuted between deployed and live scaling instances, i.e., which
instance executes which layers. The challenge lies in the fact
that the serving capability of the scaling instances is limited—
it can only execute layers with parameters loaded, and this
capability is dynamically changing. A naive best-effort scal-
ing that executes as many layers as possible cannot balance
the load because at the beginning of autoscaling, the new in-
stances can only execute few layers, with requests still queued
at the overloaded instances. A better solution is to adjust the
load holistically by considering future incoming layers, and
we realize this with a ZigZag pipeline scheduling and achieve
50% tail latency reduction under bursty workloads (§5.2).

Demonstration with BLITZSCALE. We built BLITZS-
CALE, an MAAS system with the fastest autoscaling speed
with O(1) caching. We adopted a global parameter pool to
cache the model parameters across all the machines, and inte-
grated the aforementioned interference-free multicast plan for
scaling and efficient ZigZag scheduling-based live schedul-
ing. To show the effectiveness of BLITZSCALE, we evalu-
ated BLITZSCALE by running real-world traces (i.e., Burst-
GPT [71], AzureCode and AzureConv [14]) across a variety
of recent models with different sizes and architectures, in-
cluding Llama3-8B, Mistral-24B, and Qwen2.5-72B. First,
BLITZSCALE has 47-75 % shorter time-to-first token, and has
up to 94 % shorter time-between-tokens than the state-of-the-
art work (ServerlessLLM [29]). Second, compared to serving
systems without autoscaling support, i.e., VLLM [44] and
DistServe [81], BLITZSCALE reduces the GPU used for serv-
ing a single model by 49 % with no SLO violations compared
to an over-provisioning setup that provisions the GPUs based
on the maximum request rate. BLITZSCALE is open-sourced
athttps://github.com/blitz-serving/blitz-
scale.
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Figure 1: The timeline of request incoming rate of a real-world AzureConv [14] trace (a), its computation (b) and memory requirements (c)
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2 Background: MAAS and Autoscaling

2.1 System setup: model-serving-as-a-service (MAAS)

MAAS system setup and the serving instance. BLITZS-
CALE targets a MAAS scenario [63, 11, 23, 76, 20, 10, 29]:
the cloud allows the users to deploy their model serving on its
managed hardware, and only charges users based on the num-
ber of requests processed within SLO [10, 20]. The model can
be popular open-source models like Qwen [4] or customized
models uploaded by the users. Thanks to the above pricing
strategy, the cloud can dynamically adjust hardware resources
to a specific model to maximize its hardware utilization. Fig-
ure 2 shows a typical deployment of a MAAS system. For
each user-deployed model, the system dynamically allocates
the required hardware resources (GPUs) to serve the inference
requests of the model. Note that due to the diversity of Al
applications, there would be hundreds or even thousands of
models served simultaneously by a MAAS system [21].

In this paper, we use instance to denote a set of GPUs
storing a complete copy of a model parameter for serving
this model. An instance can have a single GPU or multiple
GPUs when the parameter is large and sharded across them,
e.g., with tensor parallelism [47]. Because each instance has
a maximal serving throughput, the cloud can deploy multiply
instances of the same model by provisioning multiple sets of
GPUs, where the number of instances is dynamically scaled
based on the incoming request rate. BLITZSCALE supports
autoscaling with all existing model serving methods at the
instance level.

Serving within an instance: non-LLM & LLM. Each
serving instance processes requests in the following workflow:
it queries the model in a layer-by-layer computation paradigm
(see Figure 9 (a)) and gets the final results. For simple models
like vision models, the model is queried once with the input
data (image). On the other hand, for large language models
(LLMs) [65], the request queries the model multiple times:
the model is first queried with input text (prompt) to produce a
result (token). This first query is typically termed prefill. The
token is then used to generate subsequent tokens iteratively

until the model returns an end-of-sequence token. The auto-
regressive phase is termed decode.

We note two important features of LLMs. First, the perfor-
mance for prefill and decode is measured separately. Prefill
is evaluated with the time-to-first-token (TTFT) while de-
code is evaluated using time-between-tokens (TBT). Second,
the LLM query is stateful: the intermediate results—usually
termed as KVCache—are cached in GPU memory during the
auto-regressive phase of a request for acceleration.

Serving across instances: prefill and decode (PD) disag-
gregated LLM serving. Observing the different computing
paradigms of prefill and decode, recent works propose sepa-
rating the instances for prefill and decode (PD disaggregation)
when processing serving requests [55, 81, 38]. Specifically,
for each request, one instance processes the prefill phase
(prefill instance ) and another instance (decode instance) pro-
cesses the decode phase. This paradigm requires excessive
data movement between the two instances because the pre-
fill instance needs to transfer the KVCache to the decode
instance. BLITZSCALE works for both PD disaggregated and
non-disaggregated LLM serving.

2.2 Dynamic hardware demands when serving a model

Determining the hardware requirements, i.e., the right number
of instances for serving a model is challenging because the
hardware demands are unpredictable and fluctuating. First,
the incoming request rate for a serving workload fluctuates
over time and is hard to predict [29, 59, 80]. Figure 1 (a)
presents the number of requests sent to a single model service
over time from a real-world trace—BurstGPT [71]: the in-
coming inference requests increase 5 x within 2 seconds with
no predictable trend. Since the FLOPS of an instance is fixed,
the unpredictable rate causes the computation requirement—
FLOPS required to finish the pending requests within SLO—
unpredictable. Figure 1 (b) confirms this by measuring the
requirement of the prefill instances when serving the Burst-
GPT with Llama2-7B.

Second, serving modern models like LLM has non-trivial
and unpredictable memory requirements. As shown in Fig-
ure 1 (c), the KVCache usage of the decode instances is
multiple times larger than the memory capacity of a single
instance and fluctuates over time (3—12 x) when serving the
BurstGPT workload with Llama2-7B. The root cause is that
the KVCache of requests must be stationary in GPU memory
during the decode phase. The KVCache of requests are large,
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Figure 3: A characterization of SLO attainment for different inference cases (a)—(d) with varied duration of autoscaling stops on BurstGPT [71].
(e) and (f): an analysis of compute network usage in serving workloads. The evaluation setup is in §6.

e.g., 190-760 GB for Llama2-7B to serve BurstGPT, and the
stay time is unpredictable due to the auto-regressive nature
of LLMs. To avoid performance losses when out of memory,
a MAAS system must provision sufficient instances to hold
KVCache from ongoing requests, so the number of instances
required by a model also unpredictably fluctuates.

2.3 Model autoscaling for handling dynamic demands

Model autoscaling, which dynamically deploys” serving in-
stances on spare GPUs to scale up the serving capability, is
a promising solution to handle fluctuated and unpredictable
computation and memory demands [29, 76, 11]. The rationale
is that though a single model’s workload is unpredictable, the
aggregated workloads of all models served by a platform are
relatively stable [80]. Thus, when the load of a specific model
service increases, we are able to find spare GPUs from other
models to scale up the serving capability of this model.
Autoscaling an instance requires two basic steps: (1) ini-
tialize a proper execution context, e.g., create CUDA con-
texts (control plane) and (2) load the model parameters to the
GPUs’ memory (data plane). We focus on (2) because (1) can
be minimized with recent advances in GPU startup methods
like checkpoint and restore [40, 79] and our Rust/C++-based
serving platform (see also §6.3). For (2), the state-of-the-art
system—ServerlessLLM [29] optimizes the data plane with
SSD-optimized parameter loading. Unfortunately, it does not
account for the scaling speed required by models. Our mea-
surements in the next section show that SSD-based scaling
significantly lags behind applications’ requirements.

3 Characterizing Scaling Requirements and
Compute Network between Instances

Model autoscaling requires fast data plane. If the data
plane speed is not fast enough, during burst period, the re-
quests still violate the SLO due to increased queueing time.
Specifically, SLO defines the tolerable end-to-end latency
measured from the time a request is sent to the system to
the time the inference response is returned. Thus, the latency
includes the queueing delays waiting for the scaled instance
to be ready for inference.

To characterize how different scaling speeds affect SLO
attainments, we implemented a simulator on DistServe [81]

21t also stops a serving instance to scale down. Since scaling down is simpler,
we omit its details for brevity.

— #Scaled --- #Cache Miss |

#instances

o w o ©
T
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Figure 4: An analysis of host cache misses when running Server-

lessLLM [29] on BurstGPT [71].

160000

that provisions models to all GPUs and applies manual delays
based on the simulated speed for modeling different scaling
speeds. We set TTFT and TBT SLO based on inference speed
of different models following prior works [81]. Specifically,
we use 450 ms and 150 ms for Llama3-8B model, and 1250 ms
and 200 ms for Qwen2.5-72B model with tensor parallelism
degree of 4. §6 describes the detailed evaluation setup.
Figure 3 (a)—(d) shows the results: We can see that for
a 72 B model, maintaining SLO violations below 60 % re-
quires a minimum per-instance scaling speed of 220 Gbps
per-GPU?, which is only achievable when the model param-
eters are loaded from the host memory. The scaling time
requirement correlates directly with inference time—our eval-
uated workload (BurstGPT [71]) has an average TTFT of
771 ms (with queueing time). Thus, to achieve 1250 ms SLO
for all requests, the scale time must be below 500 ms, so a
576 Gbps per-GPU network speed is required (measured by
dividing the parameter size by the scale time). This far ex-
ceeds what vendor-provided per-GPU SSDs bandwidth can
deliver (2—10 Gbps per-GPU [35, 9, 27], detailed in §A.2).

Loading model parameters from host memory is not ef-
fective due to misses. While caching the parameters on the
host CPU memory can meet the scaling speed requirement
for some setups (e.g., 8 B, 24 B) with the fast host-GPU in-
terconnects (256 Gbps PCle 4.0), cache misses are common
in real-world traces, because the scarce host memory can-
not support the caching all models deployed on the MAAS.
Figure 4 presents the number of instances scaled and cache
misses encountered in the BurstGPT workload using Server-
lessLLM [29]. Following its setup, we set a 5-minute keep-
alive interval for caching models at the host. The miss rates
range from 20-46%, depending on the time, which aligns
with the numbers reported in ServerlessLLM’s paper (25—
60%). Interestingly, many misses occur when scaling mul-
tiple instances, because involving more hosts increases the

372 B model uses four GPUs per-instance.
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probability of scaling a model on a host without the cached pa-
rameters. Therefore, we still need accelerating scaling speed
when the model parameters are not cached at the host.

Opportunity: fast and underutilized compute network.
First, compute networks between GPUs (and CPUs) have
comparable or even faster speeds than host-to-GPU link. As
shown in Figure 5, the inter-GPU network (RDMA) operates
at 200 Gbps, which is close to the host-to-GPU PCle speed
(256 Gbps). With NVLink, the speed is much faster. More
importantly, these networks are underutilized during serving.
Figure 3 (e) and (f) measure the peak network usage of Dist-
Serve [81], a PD disaggregated serving system that heavily
utilizes the network due to KVCache transfers. To measure
peak usage, we provisioned all the GPUs for serving, and
evaluate a workload with the maximal request rate that our
clusters can serve. Even under peak load, more than 40% of
the network capacity is free, opening up the opportunity to
use the compute network for the scaling data plane.

4 System Overview of BLITZSCALE

BLITZSCALE scales models through the compute network to
accelerate scaling even under cache misses on the host. We
achieve this by first managing model parameters—scattered
across GPUs behind serving instances (for deployed models)
and CPUs (cached at the host)—through a global param-
eter manager. The manager maintains a mapping between
models and their sources. With the manager, we can quickly
read parameters from these sources with the fast RDMA or
NVLink. Besides, we also offload computation from over-
loaded instances to instances with partially loaded parameters
to achieve live scaling.

—> KVCache —» Model .
transfer transfer w/o interference
Incast traffic Outcast traffic Q
» e
g cru N (T, <
: BE [ A
2 ®
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[C} Network P x @
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inference Is better

(a) Goal: scale a (b) Naive scale
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Figure 7: (a) An illustration of scaling a prefill instance for LLM
PD disaggregated serving. (b) Naively scaling from a prefill instance
imposes network interference. (c) Interference can be avoided by
leveraging the bi-directional feature of modern DCN networking. (d)
An improved scale plan with the bi-directional in mind.

Network conflict analysis Serving performance

s32f Done (w/o copflict) : 1.0F 2

B | -

216 ! i1 805¢ ]

2 Done (w/ conflict)

© 8r ; . = wo/ conflict

® Start : ! 00k ]
250 500 750 1000 50 100 150

Time (ms) TBT (ms)
Figure 8: A characterization of network interference on (a) scaling

speed and (b) serving performance.

System architecture and workflow. Figure 6 shows our
system architecture. Like prior work [56, 29, 62], we have a
load monitor (®) tracking the serving load for each model
service, and deciding whether to scale and how many new
instances are required (§5.3). On each machine, we further
adopt off-the-shelf GPU kernels FlashInfer [1] to query the
model efficiently. The key differences are twofold. First, our
scale planner (®) will derive a scaling plan that guides how to
load parameters onto the scaled instances (§5.1) with compute
network efficiently. The planner consults the global parame-
ter manager (®) to identify the sources of model parameters.
In our example, the new instance can load the parameters
of model [ from the GPUO on host N (/V, 0), or from host
2’s CPU memory (2, _). Second, during scaling, our live ex-
ecution (exe.) scheduler (®) will redirect requests between
instances to fully utilize the scaled instances even before the
parameters are fully loaded (§5.2).

Challenges and approaches. Despite leveraging fast net-
working, making autoscaling fast and live needs to address
the following challenges.

C#1. Online interference-free scale plan generation. Gen-
erating the scale plan is similar to generating a multicast
plan [18, 22, 32, 16, 17], i.e., how to quickly distribute data
(parameters) from some sources to targets. There are two
additional requirements for autoscaling. First, the plan must
be generated online on dynamically changing sources and
targets, but optimal plan generation is NP-hard [18] on a
heterogeneous network. Second, the plan needs to eliminate
interference between loading and the serving workload. Fig-
ure 7 shows an example when a model is served via PD
disaggregation. In PD disaggregation serving workload KV-
Cache is migrated from prefill to decode instances (a), and
this migration overhead can be hidden [55]. However, sup-
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pose we want to scale a prefill instance: if we naively select
a prefill instance as the source (b), the scaling will compete
the network bandwidth with the serving workload, leading to
1.5 x longer scale time as well as 50% tail TBT increase due
to the amplified KVCache migration overhead (Figure 8 (b)).

To this end, we design a serving-guided greedy plan gen-
eration method based on three observations (§5.1). First, the
network heterogeneity mainly comes from NVLink, whose
speed is extremely fast, i.e., it can broadcast a Llama3 8B to 8
GPUs within 120 ms. Thus, we can abstract instances linked
with NVLink as a logical instance group to eliminate NVLink
from the network topology. Second, loading parameters from
the network is bandwidth-intensive, so we can greedily con-
struct serial forwarding chains [66] for multicast, which is
optimal in the common case. Finally, the network (RDMA)
between GPU servers is bi-directional [72, 52], meaning that
the network flows of incast and outcast don’t interfere (c).
Thus, we can leverage this feature to avoid interference by
removing flows in the same direction on the same network
link during plan generation. For example, we can load the
parameters from the decode instance to the prefill instance
(see Figure 7 (d)).

C#2. Realizing live autoscale.  Live autoscaling—
allowing the scaled instance to increase system throughput
before all parameters are fully loaded—is necessary because
SLO violations can still happen (Figure 3 (c)) even with
fast networking. It is challenging to achieve this in existing
systems. For example, PipeSwitch [15] and DeepPlan [42]
leverage the layer-by-layer execution nature of models to per-
form inference: As shown in Figure 9 (c), once the first layer
is loaded on inst.1, they redirect the overloaded requests to it
for execution. Meanwhile, inst.1 will load subsequent layers
concurrently. However, such overlapping is not live because,
until all the layers are loaded, inst.1 still cannot finish requests
to increase the system throughput.

To this end, we propose a novel cooperative execution
scheme for live autoscaling. The key observation is that
though the scaled instance alone cannot finish the requests
until all layers are loaded, it can alleviate the load of the over-
loaded instance with its loaded layers, thus improving the
serving throughput. Figure 9 (d) illustrates this. When inst.0
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Figure 10: An illustration of how BLITZS CALE models the network.

becomes overloaded and inst.1 is under scaling, after inst.1
has loaded the first layer, we redirect all requests from inst.0
to inst.1 for execution. Once inst.1 completes the first layer’s
execution, it forwards the activation back to inst.0 to process
the remaining layers, and the system throughput increases
with reduced queued latencies, as queued requests are pro-
cessed faster. To see why the throughput increases, consider
serving a 7-layer model. inst.0 alone will have a throughput
of 1/7. With our live scaling, after loading one layer on inst.1,
inst.0 only needs to execute 6 layers, so its throughput in-
creases to 1/6. The throughput continues to improve as more
layers are loaded, reaching the peak (doubled) after half of
the layers have been loaded—half of the scaling time. §5.2
describes our ZigZag scheduling for coordinating overloaded
and new instances during live autoscaling to achieve optimal
performance for live autoscaling.

5 Detailed Design and Implementation

5.1 Online network-based scale plan generation

When the planner is notified to scale the parameters onto n
new GPUs, it will get s sources from the parameter pool,
find ¢ spare GPUs as target and generate a plan on how to
send parameters from s sources to a subset of n GPUs in ¢
targets. There are three metrics to minimize for the generation:
(1) the scale time, (2) the plan generation time, and (3) the
interference with serving workloads.

Modeling the network between GPUs. Effectively generat-
ing a plan requires a model of the network between sources
and targets, which is non-trivial due to the complexity of the
network topology in serving clusters. Our model assumes a
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Input: Dy source GPUs; Dy target GPUs; n: number of GPUs to scale;
BW,.return the scale out network bandwidth of GPU i ;
L: return the leaf switch ID of GPU i;
Scale, : the scaleup domain ID of GPU i.

Output: Plan, a graph indicating how the parameters are loaded.

1 Dg. = Dgcprune().group_by(L;).sorted_by(sum([BW;] )).flatten()
2 Dy = Dyg.group_by(Scale;).sorted_by(sum( [BW;]))
» sort Dy according to the order of Leaf ID in Dy,
.groupby (L;).sortby(Dg-index(L;).min()).flatten()
3 m=0;Plan=9

4 While not Dgempty() and m < n:

» Gy targets group connected by the scale up network
Lyg: the leaf switch of these targets.

Gigpy Liggt = Dyge.pop_front()

If Dgcfilter(= Leg) .sum([BW;]) = Gegesum ([BW;])
» sources within the leaf have sufficient bandwidth for loading
Dimp = Dgetruncate(= Lyg); Dge ++ Dimp

Ggre = Dgctruncate(sum([BW;] ), 2 Gg.sum([BW;]))

Plan = Plan ++ (Ggo Ggr); M = m + |Geg

0 | Dy = Gegr++ Dyrc

a n

= 0 0N

11 return Plan

Notation:
++ » join 2 data collections, e.g., [x, y] ++ [z w] =[x, y, 2, W]
[Func]; » apply Func to all elements of a data collection, e.g.,
G.sum([BW;]) is the summation of bandwidth of all elements in G
Iter. index(value) » locations where a unique value first occurs in Iter
Iter.truncate (predicate)
» pop front until the first remaining element satisfies predicate

Itertruncate(flatMap, predicate)
» pop front and apply flatMap onto the popped elements
until the result satisfies predicate

Figure 11: The pseudocode of the plan generation algorithm.

simplified scale-up and scale-out network hybrid networking,
widely adopted for GPU clusters [25, 70, 50]. Figure 10 (a)
illustrates the modelling.

First, we model the GPUs connected via fast scale-up net-
working like NVLink as groups of GPUs. Such GPUs have
ultra-high interconnect bandwidth (1,600-3,600 Gbps) so scal-
ing within a group has negligible overhead. On the other hand,
GPUs connected via slower scale-out networking like RDMA
are more difficult to model due to a hierarchical structure.
To this end, we adopted a simple leaf-to-spine model that
covers widely deployed topologies including Clos and Rail-
optimized [70] with different subscription ratios: each GPU
(¢) has a BW,; bandwidth connected to a leaf switch (LeafID),
where GPUs within the same leaf switch have a full-mesh
connection, i.e., the bandwidth between GPUs (¢) and (5) is
min(BW;, BW;) with full bandwidth. Second, leaf switches
are connected to spine switches, with inter-leaf bandwidth
equal to or smaller than the intra-leaf bandwidth. For simplic-
ity, we don’t model the spine network and rely on upper-tier
protocols like Virtual Link Trunking (VLT [30]) and Equal-
Cost Multi-Path (ECMP [37]). to support efficient inter-leaf
networking.

Multicast-chain-based greedily plan generation. To
quickly generate the plan online, we use a three-step greedy

— Layer transfer —> KVCache transfer

A
S # Network SO# Q
= interference! ~
n g

@
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(a) Single chain w/ live scale (b) Multi-chain w/ live scale

Figure 12: An illustration of why multiple chains are better espe-
cially under live scaling.
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(a) Broadcast with a chain (b) The chain order affects scale effects

Figure 13: An illustration of (a) why chain is friendly to broadcast
with huge bandwidth requirement and (b) why we chooses a specific
chain order. | M| is the model size and B is the slowest network
bandwidth between nodes in a chain.

algorithm as shown in Algorithm 11. First, we prune the
sources to avoid any interference with serving workloads
(Line 1). Second, we group targets connected with scale-up
networking like NVLink as a group (Line 2) such that we can
leverage the NVLink broadcast to efficiently realize parallel
sharded parameter transfer, see Figure 14 and described be-
low. Finally, we form multiple serial broadcast chains (Line
3-10) to generate the plan.

Specifically, a serial broadcast chain is formed by a set of
source and target nodes, i.e., S — 11 — 1o — ... = Tp,.
Note that a node in a chain may have multiple GPUs. Such
a chain has a nice property that it is optimal in bandwidth-
intensive transfer like model scaling, because the overall trans-
mission time is irrespective of the instances scaled with such
a chain. As shown in Figure 13 (a), when T1 receives the
first layer, T1 immediately forwards it to T2. Meanwhile, .S
will continue to send the second layer to T1, so the time of
sending the first and second layer is overlapped.

While a serial chain is sufficient for efficient parameter
broadcasting for nodes that are connected with the same band-
width links, multiple chains are necessary in a leaf-spine
network where inter-leaf bandwidth may vary and in our
live scale setup. This is because (1) multi-chain avoids rel-
atively slow inter-leaf communications if each leaf switch
has sources and targets (Line 6-7), and (2) it enables more
interference-free live scaling especially in PD disaggregation
setting. Figure 12 illustrates the latter: suppose we want to
scale up two prefill instances in a live manner, the KVCache
will be transferred to the decode instances once prefill is done.
With a single chain, only 72 can join the live scale without
network interference, because at 11, the KVCache transfer
(®) interferes with the parameter forward traffic (@). With
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Figure 14: An illustration shareded parameter transfer with scale
up network.

two chains backed by two parameter sources (b), both 7'1 and
T2 can live scale without interference.

Note that the order of nodes in the chain is important: we
chose a decreasing order with respect to the aggregated link
speed between nodes (Line 2, 5). This is because sending to
nodes with higher bandwidth achieves a faster increase in
the serving throughput. As shown in Figure 13 (b): suppose
the source (S) sends parameters to 72 twice as fast as T'1.
A chain order of S — T2 — T'1 is better than S — T'1 —
T2 because the downtime of 72 is only half. Note that the
source can be a group of GPUs because GPUs typically have
dedicated network cards in our setup.

Optimization: parallel sharded parameter transfer from
multiple sources. For a broadcast chain where the source
and target contain GPUs with duplicated parameters, we fur-
ther leverage the scale-up network to parallelize a transfer
link. Figure 14 shows a concrete example. Suppose the source
and target nodes have four GPUs each. For such a transfer,
each source GPU only needs to forward 1/4 of the sharded
parameters to each target GPU, where the target GPUs can
use NVLink-based AllGather to get the full parameters. This
reduces the scaling time to 1/4 as the NVLink AllGather time
is negligible.

5.2 Efficient live autoscaling with ZigZag scheduling

Selecting instances for live scaling. After getting the chains
from Algorithm 11, we select instances to participate in live
autoscaling based on the following criteria: (1) the neces-
sity of live autoscaling, i.e., when a stop-the-world scaling
will cause SLO violation and (2) the presence of overloaded
instance that can cooperate. Both are readily available: (1)
we can profile the relationship between load speed and SLO
violation in Figure 3 for the judgement and (2) autoscaling
is typically triggered when the system is overloaded. Thus,
for each overloaded instance, we will identify an instance in
the chain that satisfies (1), typically the tail instances in the
chains as it has the slowest link.

Live autoscale protocol with paired instances. Suppose we
have selected a new instance (inst.1) to offload computations
from an overloaded instance (inst.0). To begin live autoscal-
ing, we use a three-step transition protocol: (1) Once inst.1
starts loading parameters, we redirect all queued and new
requests from inst.0 to it for execution. The redirection time
is negligible because the request payloads are much smaller
than the model. (2) After the first layer is loaded on inst.1,

Inst.0 i «i— Req6(l) SLO violation:time=32

! !!!E6i!EEEEi!EEEEi!HEEEiEEEEEi234567---

Scale Execute the 4t layer on Req 3
\ /\ IIIIE 1 SLO violation = 4 X normal latency (7)
‘ \ﬁ_l
Load2™ layer  Load 3" layer A 7-layer
(a) Best-effort A model
(b) ZigZag
Inst. 0 E lReq 6 (. no SLO violation: time = 22 I = =3 Reql
H Req 2
' -IIEEEEIIIEIIIEIEEE567"' e
: [ Req3
[ Req4
3 Req5
Load 2" layer Load 3rd Iayer Time |:> El Req 6

Figure 15: An illustration of the necessity of ZigZag scheduling.
Note that the execution starts when the first layer has been loaded to
instance 1 (inst.1). Our example assumes the time of loading a layer
can perform 6-layer computations.

it begins executing the first layer of all requests. Note that
during the loading of the first layer, inst.0 remains active by
processing its pending requests. Finally, when the model has
completed loading on inst.1 (3), requests will be re-distributed
evenly between both instances.

The scheduling problem. A key issue to address in the
above (3) is how to best utilize inst.1 to maximize the good-
put during live autoscaling. Specifically, we should decide a
pipeline configuration for each request batch, i.e., how many
layers to execute on inst.1 and inst.0, respectively. One naive
policy is best-effort: for each batch, we execute as many lay-
ers as possible on inst.1 (not exceeding half) and execute
the rest on inst.0. While it adapts configurations with model
loading, we found it is suboptimal because inst.1 has limited
serving capacity during initial loading, so most requests are
still queued at inst.0, causing SLO violations. Figure 15 (a)
shows a concrete example of a 7-layer model executed with
the best-effort scheduling. The load time of one layer can
do 6-layer computations, a common setup (e.g., Llama2-7B
model with a moderate batch size of 2000 prefill tokens under
200 Gbps RDMA network). Thus, before the second layer has
been loaded to inst.1, the current request batches (req 1-6)
can only use a (1, 6) pipeline configuration. However, request
6 will suffer from SLO violation due to waiting for requests
1-5 to be completed on inst.0, as their execution time has
reduced a little due to the imbalanced loads.

The ZigZag scheduling. To address this issue, our obser-
vation is that by delaying request scheduling on inst.0, inst.1
will have more layers coming, opening opportunities to bal-
ance the workload between instances. Figure 15 (b) shows
this: After requests 2-5 have been executed on inst.1, we
delay their execution on inst.0 and wait for the second layer
to come. This allows us to adopt a more aggressive pipeline
configuration (2, 5) for them. Note that the delay won’t waste
GPU because we can schedule pending requests (e.g., 6). Af-
ter the second layer has been loaded, inst.1 can come back
(thus, in a ZigZag way) to execute the second layer of re-
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quests 2-5. Thus, the second layer execution of requests 3—6
is overlapped with the execution of layers 3—6 for request 2.
Thanks to this overlap, the overall inference time of request 7
decreases from 32 to 22, now within the SLO.

The above ZigZag scheduling can be formulated as follows.
Assuming a first-come-first-serve (FCFS) scheduling policy,
the de facto for serving [44, 75, 77]. For ease of presentation,
we first assume non-LLM and then extend to LLM in §5.4.
The scheduling has two parts:

(1) Pipeline configuration. Given N request batches
with equal execution time, we first determine the pipeline
configuration (T;,S;) for them, where T; and S; are the
number of layers to be executed on the target and source
GPU for request ¢, respectively. The goal is to minimize the
average latency, which can be formulated with the following
Integer Linear Program (ILP):

N req
Latency,,, = ( Z ZSZ-)/N
req=11=1

To see why such a formula holds, consider the example in
Figure 15 (b). Each request’s latency is the time the source
instance finishes its part of the computation, which includes
its own execution time and the sum of its previous requests’
time (queueing time). We only need to consider previous
requests because they are executed in a FIFO order. In our
example, request 3’s latency is 17 (12 for requests 1 and 2’s
execution and 5 for its own). For non-LLM, the execution
time of each layer is the same if the batch size is the same.
Note that we omit the activation transfer latency since it is
negligible.
The problem has the following constraints:

min Latency,,
st. S;+T;=0L, Vi Pipelinelimit (C1),

i i—1
ZTJ < Z S;,Vi > 1 Pipeline dependency (C2),
j=1 j=1
i—1
Time; * T; < Y T; + (N —i+1) x (T; - 1),
j=1

Vi >1 Load limit (C3)

ey
C1 ensures that the pipeline should be fully executed. C2
states pipeline dependency: when the source instance exe-
cutes request i’s .S; layers, the target instance must finish the
execution of 7. The start execution time of request 7 on the
source is Z;fl S;. The finish time of 7 on the target instance
is Z;ﬁ_l T; + T;, which simplifies to >~ T;. Finally, C3 en-
sures that once the target instance request’s 7’s 7; layers, all
these layers must be loaded, where Time; is the time to load
one layer normalized to the execution time of one layer in
pipeline. The term (N — i + 1) x (T; — 1) indicates that the
load time can be overlapped with executing of the succeeding
requests of 4.

Input: Q: an atomic distributed priority queue that stores the requests to be
scheduled. The priority is defined as follows: for req i and req j, the
P(i) > P(j) if and only if i < j and i have loaded layers unexecuted.
The subscription (e.g., i) indicates the request’s arrival time.

At New Instance (target instance)

0 spawn(update_Q_when_layers_come) » Run in the background
1 while execute under live:

2 q = Q.get_front()

3 forward_one_layer(q)

At 01d Instance (source instance)

4 while execute under live:

» Pull the pending requests with

If q, activation = pull_the_earlist_request(Q):
forward_all(q, activation)

5
6

Figure 16: The pseudocode of the ILP-free ZigZag scheduling.

While solving this ILP is NP-hard, it remains manageable
(less than 40 ms to solve for Llama3-8B) because models
typically have only a few dozen layers. Additionally, we only
need to configure the pipeline for the batches of requests
executed during parameter loading, which is a dozen of so in
practice. Nevertheless, to further eliminate the solving time
for models with more layers (e.g., 80 layers for Qwen-72B),
we also derived an ILP-free method that we described below.

(2) Scheduling requests in an ILP-free ZigZag way. Specif-
ically, we found that by delaying sending the requests on the
source instance and letting the target instance execute the
requests once it is free, we can achieve ZigZag scheduling
without solving the ILP. Figure 16 shows the pseudocode of
how we schedule the requests on both instances. The new
instance maintains a priority queue (that can be pulled by the
source instance via RPC) for all requests, where the priority
is defined by (1) the FCFS order and (2) requests with next-
to-execute layer loaded coming first. Once the new instance
has executed one layer (Line 3), we keep the executed request
in the queue so it can be scheduled back once more layers
are loaded. The requests are scheduled on the source instance
only if it is not overloaded, i.e., has no pending requests (Line
5). Thus, if the source instance is busy, the request will still
be executed on the target instance.

5.3 Global parameter pool and scaling policy

Global parameter pool and local memory cache. Our
global parameter pool tracks the locations of the model pa-
rameters across deployed GPUs and host CPUs with local
memory cache. To ensure at least one copy of the model pa-
rameters is available in the memory of GPU or host at the
cluster scale, during system initialization, we distribute one
copy of the model’s parameters evenly to the CPU hosts and
track their locations at a centralized manager. When a model
is deployed to or reclaimed from a GPU, we further update the
locations in the manager, and reclaim/reload cached copies
on the host cache.

Scaling policy. Our paper focuses on the autoscaling mecha-
nism, which is orthogonal to the autoscaling policies, includ-
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ing collecting workload metrics with workload monitoring
and determining how many new instances to scale based
on these metrics. Our current implementation follows prior
works [62, 2] that first records the serving loads with tokens
per second and KVCache usage globally.

For scaling up, when the average monitored load surpasses
a pre-defined upper bound, we allocate sufficient instances
to meet that demand. The upper bound can be derived by
profiling the average serving load per-instance offline. We
leave a more detailed explanation in another paper. For scal-
ing down, we follow previous works’[56, 29] timeout-based
policy: when the average monitored load falls below a lower
bound in a time window, we shut down some instances and
revoke all GPUs assigned to them. Given BLITZSCALE’s
rapid autoscaling capabilities, we adopt an extremely short
sub-second level timeout.

5.4 Specializations and optimizations for LLM

While most techniques described above work for all models
following a layer-by-layer architecture, the unique character-
istics of LLMs especially for LLMs served with PD disaggre-
gation require several specializations and optimizations.

Retrofitted live pipeline scheduling formulation. Our for-
mulas and constraints described in §5.2 cannot be directly
applied to LLMs because the prefill and decode time of a layer
is approximately linear to the total batched token size [55, 75].
For prefill-only live scheduling, e.g., autoscaling a prefill in-
stance in PD disaggregation, we fix the formulation by adding
a regulation parameter for each request batch by profiling its
execution time with the counts, similar to a priori work [75].
A more tricky case involves handling decoding, e.g., when
scaling instances that combine prefill and decode, or scaling a
decode instance in PD disaggregation. The complexity arises
because decode batch size changes dynamically due to its
auto-regressive nature. Fortunately, our ILP-free scheduling
method can also work for decoding.

Supporting PD colocation. We seamlessly support PD colo-
cation since a PD-colocated instance is a normal model in-
stance. Meanwhile, our ILP-free ZigZag scheduling also ap-
plies to pipelined execution under PD colocation [5].

Live scaling decode instances in PD disaggregation. Live
scaling a decode instance in PD disaggregation without inter-
ference is impossible due to the incast bandwidth contention
of both parameter loading and KV Cache transfer. Thus, we
leverage the fact that the prefill and decode instances share
the same model parameters, so we can live scale a decode
instance by first mutating some prefill instances to decode
instances, while concurrently live scaling the prefill instances
to compensate for the prefill throughput.

Optimized scaling policy for PD disaggregation. Pre-
scaling instances can hide the cost of scaling, but a too-early
scaling wastes GPU resources. In PD disaggregation, we

Cluster A (m x g)
GPU A800 80 GB (4x8)

Cluster B (m x g)
A100 80 GB (2x8)

GPU-GPU (intra) 1.6 Tbps NVLink 256 Gbps PCle
GPU-GPU (inter) 100 Gbps RDMA 100 Gbps RDMA
Host-GPU 128 Gbps PCle 128 Gbps PCle
SSD-GPU 10 Gbps 10 Gbps

Table 1: Evaluation clusters. m is the number of hosts and g is the
number of GPUs per host.

found we can pre-scale decode instance at zero cost, because
the need for scaling decode instances can be evidenced by the
requirement for scaling prefill instances. Specifically, once we
found a significant requirement for scaling prefill instances,
we will simultaneously scale decode instances. This effec-
tively hides the scaling cost of decode instances, and is even
effective for other systems like ServerlessLLM [29], see §6.1.

6 Evaluation

System implementation. BLITZSCALE is a MAAS system
capable of serving both traditional models and LLMs with
24,000 lines of Rust and C++ code. It builds upon widely
applied LLM optimizations like PD disaggregation and con-
tinuous batching. We leverage existing highly-optimized serv-
ing system components (with no autoscaling support) wher-
ever possible. For instance, all our GPU kernels for LLM
come from FlashInfer [1]. We choose a native-language-based
framework implementations because we found it is challeng-
ing to implement fine-grained scheduling in Python. § A pro-
vides more implementation details.

Testbed. Our evaluations are conducted on two testbeds listed
in Table 1. Cluster A can serve larger models (e.g., 72 B) with
tensor parallelism [44] thanks to the NVLink while cluster B
is more suitable for serving single-GPU models.

Evaluated traces and models. Because the scaling require-
ments are closely related to the incoming request rates, we
chose three typical real-world traces: BurstGPT [71], Azure-
Code and AzureConv, both from Azure [55]. The detailed
trace shapes are shown in the first column in Figure 17. Since
the traces are collected from clusters with different serving ca-
pabilities, we follow the standard approach [46, 8, 36] to scale
the traces to fit our clusters. Specifically, we scale the trace
with temporal pattern preserved using TraceUpscaler [57],
and the scaled average request rate is half of the maximum
serving capacity of our cluster.

For models, we focus on evaluating LLMs because other
non-LLMs are much smaller and trivially scale efficiently
with BLITZSCALE. Specifically, we choose Llama3-8B,
Mistral-24B and Qwen2.5-72B, all are popular LLM mod-
els with high accuracy. Since BLITZSCALE is only sensitive
to the model size, we may omit the detailed model family
name and only uses their sizes in the following description
for simplicity. For small model (8B), it only needs one GPU
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Figure 17: End-to-end performance comparison between BLITZSCALE and ServerlessLLM on various workloads, models and clusters.

per instance while for 72 B models the minimal number of
GPUs used by one instance is 4.

time window (1s), and the final two columns present the cu-
mulative distribution function (CDF) of the TTFT and TBT
during the evaluation period, respectively. We focus on com-
paring with S-LLLM and AllCache in this section and leave
the comparison with DistServe in the next section, as it does
not support autoscaling.

Comparing targets. Without explicit mention, we compare
BLITZSCALE with the following baselines:

1. ServerlessLLM (S-LLM) [29] is the state-of-the-art
MAAS with a focus on accelerating autoscaling speed. It
utilizes host memory to cache recently loaded models
with a time-to-live eviction policy. Under cache misses,
it loads parameters from SSD with SSD bandwidth fully
utilized.

Overall performance. First, we can see that BLITZSCALE
has the lowest TTFT and TBT in all workloads thanks to the
fast autoscaling speed. Specifically, on BurstGPT, the TTFT is
75.5 % and 21.1 % shorter than S-LLM and AllCache, respec-
tively, and the TBT is 7.4 % and 5.1 % shorter, respectively.

- ServerlessLLM optimal (AllCache) is the autoscaling Nevertheless, the degrees of improvement are different across

speed optimal version of ServerlessLLM that always loads
the parameters from the host cache.

. DistServe [81] is the state-of-the-art LLM serving

system without autoscaling support. It leverages PD
disaggregation. We chose it because autoscaling is more
challenging in PD disaggregation due to the complexity

metrics due to the unique characteristics of the prefill and de-
code phases. Meanwhile, the behaviors of systems, especially
S-LLM, are different across workloads due to the different
request arrival patterns (see the first column). We elaborate
on the differences in the following.

TTFT vs. TBT. BLITZSCALE is more effective in reduc-

of multiple instances scaling (prefill and decode) and the
need to avoid scaling interference. We compare with other
common PD colocation systems like vVLLM [44] in §6.4.

ing the TTFT than TBT on all workloads. This is due to
two reasons. First, the decode instance can be pre-scaled
thanks to our optimized policy (§5.4), which we apply to all
baselines. Specifically, when the prefill throughput increases,
BLITZSCALE (and its baselines) will simultaneously scale the
decode instances, yet no more decode instances are needed
at the scale time. Thus, the scaling time is overlapped with
the prefill time, which hides some scaling overheads. Sec-
ond, decode scales less than prefill because as long as there
is sufficient memory on the decode instances, all systems
can handle decoding with a slightly increased TBT due to
no queueing. Since all models adopt modern LLM optimiza-
tion group query attention [6] with low memory footprint,
decoding instances are more sufficient than prefill instances.
Nevertheless, BLITZSCALE still achieves a 5.1-7.4 %, 88.3—

For a fair comparison, we adopted the same scaling policy for
both BLITZSCALE and variants of S-LLM.

6.1 Autoscaling performance under real-world traces

Due to space limitations, for each model, we choose one trace
on one of the clusters to evaluate the performance. Figure 17
presents the end-to-end performance when serving with a
prefill and decode disaggregation setup where the instances
for different phases are scaled independently. The first col-
umn shows the request rate of the trace, the second and third
columns show the mean TTFT and TBT, respectively, where
each point is the average latency measured during a small
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Figure 18: A comparison between GPU usage under AzureConv with Mistral 24B.

94.1 % and 0.7-1.8 % shorter TBT than S-LLM and AllCache
on three workloads, respectively.

Comparisons between different workloads results.
BLITZSCALE always outperforms AllCache thanks to fast
network-based autoscaling as well as live scaling, but S-LLM
has different behaviors compared to AllCache in these work-
loads. On BurstGPT, S-LLM first has a sharp TTFT spike
at the first burst (time 0:05), while it is close to AllCache
in future bursts, because future bursts can benefit from host
cache. In comparison, on AzureCode, S-LLM has spikes un-
der both bursts (time 0:05 and time 03:25), because the gap
between two bursts makes the host cache evicted due to a
time-to-live policy. Finally, on AzureConv, since the bursts
continuously arrive, S-LLM always hits the host cache, so the
performance—see the CDF graphs—is similar to AllCache.

6.2 Performance and resource usage

Comparison with non-autoscaling systems. We first com-
pare BLITZSCALE with DistServe. Since DistServe does not
support autoscaling, its performance is highly dependent on
the number of provisioned instances. Therefore, we evalu-
ate two setups: DistServe (full) uses all GPUs in our cluster
and represents an optimal performance at the cost of GPU
waste. On the other hand, DistServe (half) uses GPUs with
the average number of instances required to handle all the
workloads within the evaluation period. For simplicity, we
only present the results on AzureConv on 24B models, the
overall trends are similar. We have carefully calibrated Dist-
Serve’s performance, such that when autoscaling is disabled
in BLITZSCALE, DistServe has the same performance as
BLITZSCALE in all setups.

The first two columns of Figure 18 present the latency re-
sults. First, it can be observed that DistServe (full) has the
best performance, because the GPU is over-provisioned so it
doesn’t suffer from queueing or scaling overhead. Neverthe-
less, BLITZSCALE still achieves the same service level ob-
jective (SLO) as DistServe (full) while S-LLM incurs 18.7 %
SLO violations. We follow the traditional 5 x SLO [81] since
all our workloads (chat and code generation) are latency-
sensitive. Specifically, if a request’s end-to-end (TTFT or
TBT) latency is exceeds 5 x the average latency, it violates the
SLO. Finally, DistServe (half) has the poorest performance:
on average, BLITZSCALE has a 95.8 % and 1 % shorter TTFT
and TBT than DistServe (half). BLITZSCALE achieves this by
using the same GPU time for serving this model as DistServe

— S-LLM GPU Time [ S-LLM Cache Usage [ Bltiz Cache Usage

BurstGPT AzureCode AzureConv
T 100
WWM [ 50

L &

0 0
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Figure 19: A comparison of host cache usage on S-LLM and
BLITZSCALE under the evaluated workloads.
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(half), and this time is 50 % smaller than DistServe (full),
which we elaborate next.

GPU time used. The last two columns of Figure 18 show the
GPU time used by S-LLM and BLITZSCALE, respectively.
For S-LLM and BLITZSCALE, we collected the aggregated
GPU usage at each time point for both prefill and decode
instances, and the overall time is calculated by integrating the
area under the curve. For variants of DistServe, their GPU
time is constant across the evaluation period. We can see
that BLITZSCALE has 19.46 % lower GPU time than S-LLM
thanks to the fast autoscaling capability: with low scaling
speed, there would be more queued requests, so the system
would trigger more scaling operations that use more GPU
time. This is unnecessary with BLITZSCALE. Even with less
GPU time used, BLITZSCALE has a 48.1 % and 1.8 % shorter
TTFT and TBT than S-LLM, respectively.

Host cache usage. Compared to ServerlessLLM, BLITZS-
CALE also consumes less host memory for parameter caching.
Figure 19 reports the host memory usage for different sys-
tems. We omit AllCache and DistServe, as AllCache always
fully replicates parameters to all hosts while DistServe does
not need caching. We normalize the host cache usage as dif-
ferent workloads use different clusters. The results deliver
two messages. First, BLITZSCALE only needs minimal host
caching (less than one) to achieve fast autoscaling: this is as
expected by our design because we prefer to load parameters
from GPUs of instances that serve the model, and even when
no serving instance is available, we only need one host copy
due to the network-based multicast. Second, the memory us-
age of ServerlessLLLM is proportional to the number of hosts
involved in the serving, so a model can quickly “pollute” the
host cache. This is non-optimal for an MAAS system because
it can simultaneously serve many models while the host cache
is limited.
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Figure 21: A detailed look at how BLITZSCALE and AllCache
scale a 24 B model to 6 prefill instances on cluster A.

6.3 Detailed performance analysis

A detailed look at the live scale. Figure 21 shows a through-
put timeline when using BLITZSCALE and AllCache to scale
six 24 B prefill instances. BLITZSCALE utilizes two broadcast
chains (each involving 3 instances), while the end instances
involve a live autoscale. The start instances are the decode
instances. For AllCache, it directly loads the parameters from
the host memory of the scaled instances. We can see that
first, even with a few loaded layers (e.g., at time 500 ms),
BLITZSCALE can gradually emit tokens as a result of live
execution. Second, BLITZSCALE can scale faster even com-
pared with AllCache, thanks to our NVLink-based fused link
transmission protocol: it can finish scaling in 1,200 ms while
AllCache takes about 2,000 ms.

Ablation study. Figure 20 conducts an ablation study on the
effectiveness of our proposed techniques. We measured the
effectiveness by incrementally enabling different techniques
and reporting the results on the three workloads: “+Network”
leverages fast computing network instead of SSD for autoscal-
ing, “+Multicast (fast)” further applies our optimized param-
eter broadcast protocol described in §5.1, while “+ZigZag
(live)” enables live autoscaling of §5.2.

First, we can see that all techniques are effective in improv-
ing the end-to-end serving performance, but the degrees differ
across workloads. First, “+Network™ improves the scaling
performance in all workloads thanks to the higher bandwidth
for the autoscaling data plane. Second, “+Multicast (fast)” is
effective in AzureCode and AzureConv, but it is less effec-
tive in BurstGPT due to the limitations of our cluster (up to
8 instances can be scaled on 72 B model), so there are no
cases to simultaneously scale multiple instances, which is the
targeted case for this technique. Live autoscaling is mostly
effective in AzureCode because it is evaluated on a cluster
with slow networking (Cluster B). Finally, our techniques are
not such effective on decoding because decode instances are
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Figure 22: A profile of the network usage of BLITZSCALE (Blitz).
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Figure 23: A comparison of init time of BLITZSCALE and vLLM

sufficient in most cases, which we have discussed in §6.1.
One exception is AzureCode: in this workload, the prefill
throughput increases slower than others (see the first column
of Figure 17), so the decode instances are triggered later. As
a result, the slow scale of ServerlessLLM’s SSD cannot be
hidden, making a faster scaling more beneficial.

Network usage. Figure 22 shows the network usage of
BLITZSCALE and S-LLM: we can see that though BLITZS-
CALE leverages compute network for autoscaling and the
scale frequency is high (see the last column of Figure 18), the
additional network usage is negligible.

Control plane vs. data plane of model autoscaling. Fig-
ure 23 compares the control plane and data plane overhead
during model autoscaling with vLLM. We can see that with
proper optimizations, the control plane overhead is negligible.

6.4 Performance under LLM PD colocation

Finally, Figure 24 compares the performance of BLITZSCALE
and vLLM where the serving is conducted in PD coloca-
tion on BurstGPT workloads with Llama2-7B model. The
general trend is similar to PD disaggregation: BLITZSCALE
has comparable performance with over-provisioned vLLM,
while compared with an average provisioning, BLITZSCALE
has a 0.24 x shorter P99 TTFT. Interestingly, we found
BLITZSCALE has even shorter tail TTFT compared with
over-provisioned vVLLM, because our scheduling framework
is optimized for cluster serving.
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Figure 24: A comparison of BLITZSCALE and vLLM on the Burst-
GPT workload.

7 Related work

Optimizing model serving without autoscaling. Serving
models at scale is non-trivial. A significant body of research
focuses on how to efficiently utilize GPUs to accelerate
model serving [81, 75, 44, 45,77, 55, 31, 68], e.g., Orca [77]
proposes iterative-scheduling and selective batching. Al-
phaServe [45] employs pipeline parallelism to better handle
load spikes, but it cannot adjust pipeline instances dynami-
cally. These systems assume running on a fixed pool of GPUs,
and we have shown the necessity of dynamically adjusting
pool size and how to achieve so efficiently with BLITZSCALE.
BLITZSCALE complements these single-instance model serv-
ing systems with fast autoscaling mechanisms: we build upon
them for fast model serving on a single instance, and addi-
tionally provide ultra-fast scaling when the system needs to
change the number of serving instances.

Dynamic scaling serving instances. Dynamically scaling
serving instances is challenging, mainly because the size of
model weights is huge and still increasing, so loading them
to the accelerators (data plane) is time-consuming. Some
existing works accelerate the loading [15, 41, 46, 62]: For
example, both PipeSwitch [15] and DeepPlan [41] leverage
the layer-by-layer character of models to overlap the infer-
ence and parameter loading to hide the loading cost. They
only focus on host-to-device loading and such overlap is not
live especially when the models are large. SpotServe [46] and
Llumnix [62] realize live migration but migration cannot fully
unleash the computing capabilities of both instances. BLITZS-
CALE provides a new mechanism to scale serving instances
lively during parameter loading, resulting in throughput in-
crease even with unfinished loading, which we have shown
critical in reducing latencies under bursty workloads.

A concurrent work AScale [78] also focuses on using net-
work to accelerate model autoscaling. The key difference is
that AScale scatters the parameters scaling on multiple in-
stances to reduce the time for scaling at the cost of decreased
serving throughput, while BLITZSCALE seamlessly scales
full parameters on all instances with a similar speed, yet does
not sacrifice the throughput thanks to our multicast-chain-
based scaling. Moreover, during scaling BLITZSCALE has
a gradually increasing throughput thanks to our live scaling
while AScale is still a stop-the-world approach.

Accelerating coldstart in serverless computing. Accelerat-
ing model scaling builds upon coldstart acceleration in server-
less computing [51, 7, 60, 26, 64, 58, 67], which focuses on
starting general-purpose computing instances like containers.
We built upon these works, e.g., for accelerating container
startup time, yet designed efficient network-based live au-
toscale tailored for model scaling with the domain-specific
knowledge of model serving.

8 Conclusion and Future Work

Autoscaling is the key to achieving both high goodput and
hardware utilization in model as a service systems, but the
performance overhead introduced by current slow and stop-
the-world autoscaling significantly limits its effectiveness.
In this paper, we first show that the data plane of model au-
toscaling can be made fast with less than O(1) caching by
leveraging network-based model-aware multicast. We next
show that the data plane can be made live through model-
aware remote execution. Equipped with these two techniques,
our system BLITZSCALE has at most 94.1 % better perfor-
mance and 19.46 % better resource utilization compared to
state-of-the-art serving systems with and without autoscaling,
respectively. We believe our work demonstrates the poten-
tial and practicability of autoscaling-empowered model as a
service systems.

While fast and live autoscaling of BLITZSCALE takes
a key step toward modern elastic serving systems, several
challenges remain. First, during our investigations, we found
scaling policies—determining when and how to scale—may
also impact system efficiency. The policy depends heavily
on workload characteristics, which we leave as future work.
Second, BLITZSCALE currently focuses on instance-level
scaling, whereas modern models can scale by changing the
parallel configuration within an instance, e.g., scaling experts
in mixture-of-experts (MoE) models. While BLITZSCALE
in principle works for such a setup, we leave the detailed
exploration in the future work.
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Instance type Accelerators II;ch‘?/lGSPSIIJ) RE%‘EEISJD E\S\E/W(SIIJ'E Has NVLink Price
a2-ultragpu-8g [35] 8 x A100(80GB) 2.58Gbps  0.29 Gbps 12.5Gbps vV 40.44 USD/h
p4d.24xlarge[9] 8 x A100(40GB) 2.31Gbps - 100Gbps vV 45.039 USD/h
ml.hpcpni2.28xlarge[27] 8 x A100(80GB) 4 Gbps - 100Gbps X 48.23 USD/h
p4de.24xlarge[9] 8 x A100(80GB) 2.31Gbps - 100Gbps v 56.328 USD/h
a3-highgpu-8g[35] 8 x H100 6.09Gbps  0.97 Gbps 100Gbps v 88.25 USD/h
a3-megagpu-8g[35] 8 x H100 6.09Gbps  0.97 Gbps 200Gbps v Unavailable
pS.48xlarge [9] 8 x H100 9.8 Gbps - 400Gbps v Unavailable

Table 2: A survey of MAAS hardware configurations from GPU vendors.

A Appendix

A.1 Notable implementation details

Network library We implement a communication library that
abstracts both NVLink and RDMA to holistically transfer param-
eters, similar to DeepEP [24]. During our implementation, we
found establishing communication group between machines is slow
(e.g., 100 ms) when using off-the-shelf group communicators (e.g.,
NCCL [49]), which significantly limit the effectiveness of network-
based scaling. Fortunately, we found that our plan only requires
P2P communication between each pair of nodes. Therefore, we pre-
create a connection pool that supports full-mesh connections on
each. While the compute network (RDMA) has potential scalability
issue [43], it only occurs when transferring small payloads and can
be addressed using advanced RDMA transport like DCT [73].

Native serving engine with CUDA context pool. Before execution,
a CUDA context with loaded kernels (cuModule) must be created
on GPU. Creating such a CUDA context takes about 500 ms, and is

non-negligible in serving instance autoscaling. To mitigate such an
overhead, BLITZSCALE preserves a small CUDA context pool with
pre-loaded kernels and transfers parameters to GPU within one of
the existing CUDA contexts, similar to an existing work [40]. Fur-
thermore, BLITZSCALE is built using C++ and native CUDA APIs,
eliminating the overhead of initializing PyTorch (e.g. d1lopen).

Fault tolerance. When machine failures occur, we will autoscale
new instances using our scaling mechanism. One problem is that
cached parameters on the failed machine are lost, so we need to
redistribute these parameters to other machines to maintain our
global parameter pool invariant. For other components in the system
like scheduler or monitor failures, we follow the same procedure in
existing work for recovery [56, 29].

A.2 Hardware configurations for MAAS

Table 2 lists the hardware configurations backed by typical MAAS
systems.
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