
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

OS Rendering Service Made Parallel
with Out-of-Order Execution and In-Order Commit

Yuanpei Wu and Dong Du, Institute of Parallel and Distributed Systems,
Shanghai Jiao Tong University; Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education; Chao Xu, Fields Lab, Huawei Central
Software Institute; Yubin Xia and Yang Yu, Institute of Parallel and Distributed

Systems, Shanghai Jiao Tong University; Engineering Research Center for Domain-
specific Operating Systems, Ministry of Education; Ming Fu, Fields Lab, Huawei

Central Software Institute; Binyu Zang and Haibo Chen, Institute of Parallel and
Distributed Systems, Shanghai Jiao Tong University; Engineering Research Center for

Domain-specific Operating Systems, Ministry of Education

https://www.usenix.org/conference/osdi25/presentation/wu-yuanpei

OS Rendering Service Made Parallel
With Out-of-Order Execution and In-Order Commit

Yuanpei Wu1,2 Dong Du1,2 Chao Xu3 Yubin Xia1,2

Yang Yu1,2 Ming Fu3 Binyu Zang1,2 Haibo Chen1,2

1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education

3Fields Lab, Huawei Central Software Institute

Abstract
Rendering service is an indispensable OS service on smart-

device OSes like Android, iOS and OpenHarmony. However,
the recent shift towards highly scalable display scenarios,
such as foldable and multiple screens, has notably amplified
the rendering workload, leading to low frame rates that de-
grade user experience. Yet, rendering services predominantly
follow a sequential model, which is notoriously hard to par-
allelize due to the complex state dependency, drawing order
dependency, and interface dependency.

This paper observes that a significant portion of the ren-
dering procedure is potentially parallelizable through proper
state pre-untangling and drawing order post-preserving. To
this end, this paper introduces Spars, a scalable parallelized
OS rendering service inspired by the out-of-order execution
with in-order commit in computer architecture. Spars rev-
olutionizes the rendering procedure by initially generating
self-contained rendering tasks through in-order preparation,
executing such tasks in an out-of-order manner to maximize
multi-core parallelism, and subsequently committing the tasks
in-order to enforce drawing order dependencies. Evaluation
results on state-of-the-art single-screen, dual-fold, and tri-fold
smartphones (Mate 70, X5, XT) as well as one-chip-multiple-
screen configurations show an average frame rate improve-
ment of 1.76×–1.91×. Moreover, Spars is able to decrease
the device power consumption by 3.0% or increase the budget
of graphics primitives by 2.31× for more appealing visual
effects with the same stable frame rate.

1 Introduction

Rendering service is a crucial system service on smart-device
OSes like iOS [19], Android [6], and OpenHarmony [22],
enabling the display of exquisite graphical user interfaces
(GUIs). On average, people worldwide spend 6 hours and 40
minutes per day on screens [56], not accounting for emerging
graphical devices such as intelligent cockpits, head-up dis-
plays, smart homes, and wearable devices. Rendering service
represents one of the most demanding workloads in smart
OSes — our evaluations show that rendering-related tasks

(a) foldable
smartphones

(b) "one chip,
multiple screens"

Figure 1: Demands for rendering scalability in foldable
smartphones and one-chip-multiple-screen display setups.

typically occupy 65%–95% of total CPU and GPU running
time in commercial smartphones.

The workflow of state-of-the-art rendering services follows
a sequential model, encompassing management of a render
tree, translation of draw commands into GPU objects, and
GPU rasterization into pixels. First, the rendering service
maintains a render tree, where each render node stores draw
commands and parameters of graphics primitives, such as
the height and width of a rectangle. Meanwhile, each node
contains relative information with respect to its parent, such
as the relative position, and its child nodes are sorted based
on the drawing order from back to front. Subsequently, a 2D
drawing engine translates draw commands in the tree into
GPU objects like meshes, textures, and pipelines. When se-
quentially traversing the tree node by node, it tracks a stack
of relative information and enforces the correct drawing order.
Eventually, the GPU handles triangle rasterization, texture
sampling, pixel shading, etc., based on the GPU objects pro-
vided through standard GPU APIs like Vulkan [34].

Emerging demand for scalable rendering. While the se-
quential model continues to be effective for traditional de-
vices, the recent shift towards smart devices featuring fold-
able screens [11, 13, 16, 17, 25] and multiple screens [7, 46]
in smartphones and intelligent cockpits (Figure 1) has placed
increasing pressure on the OS rendering services. For ex-
ample, while the Huawei Mate 70 (single-screen), Mate X5
(dual-fold), and Mate XT (tri-fold) possess similar System-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 693

on-Chip (SoC), the latter two need to render 70% and 117%
more pixels in each frame due to the larger screen area. The
limitations of state-of-the-art sequential rendering services in
coping with such heightened demands compel smartphone
manufacturers to make compromises on other display param-
eters, such as pixel density reduction in Samsung and frame
rate decrease in Huawei (§3.1). Intelligent cockpits with one-
chip-multiple-screen display configurations face the same
dilemma of trade-offs.

Key observation: bottleneck due to core underutilization
in rendering services. We have identified a critical issue of
underutilization in the hardware capabilities of rendering ser-
vices. Despite the availability of multiple CPU cores, many
remain underutilized or idle, even when they could contribute
to handling the increased workloads. In real-world exper-
iments (§3.3), for example, the rendering service’s render
thread monopolizes 80% utilization of a single core, limiting
the frame rate. The remaining cores are only partially en-
gaged in application logic, leaving 9 out of 12 cores idle and
underutilized. This underutilization highlights the potential
to improve performance by better leveraging the multi-core
parallelism of modern SoCs, enabling rendering services to
scale more effectively to meet the growing demands.

Based on this key observation, we argue that the next-
generation rendering service should adopt a parallel archi-
tecture to address scalable rendering demands. Nevertheless,
designing a scalable and parallel rendering service presents
three significant challenges posed by dependencies.

Challenge-1 (C1): State dependency. Rendering tasks ex-
hibit state dependencies that hinder parallelization efforts.
Each node only contains the relative information with its par-
ent. This design ensures that modifying a single node triggers
updates across its entire subtree, while necessitating a sequen-
tial depth-first traversal to convert the relative information
into absolute values before executing each draw command.

Challenge-2 (C2): Drawing order dependency. Rendering
tasks involve critical drawing order dependencies that must
be maintained. When two graphics primitives overlap, the
background should always be rendered before the foreground
(i.e., overlapping relations). While the render tree organizes
the children of each node from back to front and preserves
the sequence through a depth-first traversal, the pre-defined
drawing order impedes parallelization efforts.

Challenge-3 (C3): Interface dependency. Refactoring for
parallelization would impact existing interface compatibility.
Traditional 2D rendering systems utilize a stateful interface,
such as Skia Canvas [27] or Drawing API [9], where new
commands may rely on past commands. Also, traditional
state-based rendering optimizations like command batching
should not be ignored under the new rendering paradigm.

To tackle these challenges, we introduce Spars, a scalable
and parallel OS rendering service, powered by a novel
drawing engine Spade2D. Our key insight in overcoming

the aforementioned challenges is that rendering tasks do not
need to be executed sequentially to satisfy the three depen-
dencies — our study reveals that a large portion (76%) of the
rendering procedure could be self-contained and potentially
parallelizable, as long as the states are properly untangled for
inputs and the drawing orders are carefully maintained for
outputs. This approach is closely analogous to out-of-order ex-
ecution in computer architecture [83], where instructions are
dispatched as soon as dependencies are resolved, while their
results are committed in-order to ensure program correctness.

Drawing inspiration from the concept, Spars employs a
three-stage rendering procedure: in-order preparation, out-
of-order execution, and in-order commit, to effectively utilize
multi-core SoCs without violating dependency constraints.
Specifically, Spars introduces the concept of self-contained
rendering tasks derived from the render tree, allowing each
task to be executed out-of-order and in parallel, thereby un-
tangling state dependencies (C1). We observed that the actual
execution of rendering does not impact the preparation of
required drawing states. A quick in-order dry run, without
rendering, suffices to decouple non-parallelizable states from
the parallelizable tasks. Next, to ensure correct drawing order
(C2), Spars explicitly manages overlapping relations of the
rendering tasks for a dedicated commit thread. A finished
rendering task can be committed to the GPU command only
if all the drawing order dependencies are respected. Finally,
Spars decouples the rendering procedure into two phases: a
stateful phase and a stateless phase. The former maintains a
consistent interface (C3) for custom-rendering applications
and state-based optimizations, while the underlying Spade2D
drawing engine, in contrast, employs a stateless interface for
parallelism and scalability.

We have implemented and tested Spars1 with 42 repre-
sentative smartphone scenarios on Mate 70, Mate X5, Mate
XT, and 12 one-chip-multiple-screen configurations. Compar-
ing the results with the state-of-the-art sequential rendering
models of OpenHarmony demonstrates an average frame rate
increase of 1.76×–1.91×. Through leveraging multi-core par-
allelization, Spars is able to reduce the whole-device power
consumption by 3.0% or allow a 2.31× budget for the total
number of rendering graphics primitives for more appealing
visual effects under the same frame rate. We anticipate that
the design of Spars will significantly influence the evolution
of next-generation OS rendering services.

2 OS Rendering Service Explained

The OS rendering service, as a system service, is responsible
for rendering all of the GUI elements specified and synchro-
nized from applications into every pixel (color value) of the
frame buffer. This section uses the state-of-the-art iOS [31]
and OpenHarmony [3] designs to illustrate the core rendering

1 https://github.com/SJTU-IPADS/Spars-artifacts

694 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/SJTU-IPADS/Spars-artifacts

Figure 2: OS core rendering procedure.

procedure, demonstrated in Figure 2.

2.1 Render Tree

The render tree in the OS rendering service unifies and man-
ages all of the drawing information on the screen(s). Different
types of the render nodes on the tree record screen parameters,
window parameters, and most importantly, parameters of the
draw commands. Each draw command encodes a 2D graphics
primitive, such as the height and width of a rectangle or the
radius of a circle. When an application needs to update its
content, it synchronizes a modified subtree or specific anima-
tion instructions of the render nodes with the OS rendering
service through inter-process communication. Compared to
the window-divided rendering approach used by Android [14]
or Wayland [58], where each application process renders its
own frame buffer locally for later system-wide composition,
a unified render tree enables richer inter-window animations
and visual effects. With finer-grained occlusion culling and
reduced frame buffer memory usage, iOS [31], visionOS [30],
OpenHarmony [3], etc., all adopt such strategy.
Implication-1: Current rendering services only maintain
relative information in render nodes. Each render node on
the tree only contains the relative information (R) with respect
to its parent, such as the relative transform matrix (encoding
translation, scaling, and rotation) and the relative clippings
(scissoring the drawing region). This design ensures that mod-
ifying R of any node sufficiently and efficiently updates the
entire subtree — for example, moving its position.
Implication-2: Drawing order should be strictly enforced
for correctness. Each render node has its children sorted
based on the drawing order, from back to front. Note that
node drawing is not always commutative due to possible
overlapping. Left subtree must be drawn before the right
subtree based on the pre-definition. Therefore, a depth-first
traversal of the render tree implicitly keeps the drawing order,
as the numerical example (from 1 to 7) shown in Figure 2.

2.2 2D Engine
The 2D drawing engine translates the parameters of the draw
commands (i.e., the mathematical expressions of 2D graph-
ics primitives) into GPU objects like meshes, textures, and
pipelines, which are later sent to GPU for actual rasterization.
Implication-3: The core rendering logic (translation from
commands to GPU objects) is a time-consuming CPU pro-
cedure. Modern 2D engines like Skia [29] or Impeller [18]
mostly use CPU tessellation to triangulate 2D primitives into
meshes for GPU to rasterize, combined with signed distance
field (SDF) [52, 70] and stencil then cover (StC) [61] algo-
rithms for anti-aliasing and rendering specific graphics primi-
tives. While SDF and StC help reduce some CPU load, the
end-to-end rendering procedure still involves CPU-intensive
tessellation, memory buffer filling, and other GPU object
preparations, with CPU time accounting for 82% of the total
frame rendering time in commercial OS rendering (§3.3). Be-
sides, glyphs (text) are still rasterized by the CPU into an atlas
using tools like FreeType [12] for functional completeness,
and then mapped by the GPU to specific positions.
Implication-4: Existing 2D engines expose stateful inter-
faces for rendering, which keep internal states so past
commands would affect future commands. When the ren-
dering service depth-first traverses the render tree, it issues
state-update commands to the underlying 2D engine using the
relative information R. At any node during the traversal, the
2D engine always keeps a stack of relative information along
the path — from the tree root to the current node — so that
a subsequent draw command can derive the absolute state of
the transform matrix and clippings.
Implication-5: Stateful interfaces enable 2D engines to
use state-based optimizations internally. One important
optimization is command batching. Rather than individually
doing the translation one command by another, 2D engines
first organize them into a chain structure, serving as an inter-
mediate representation (IR) for GPU object generation. Each
new command will be appended to the end of the chain, and
then try to coalesce with the previous command if they can
share the same GPU pipeline, i.e., using the same shaders
and pipeline configurations. If not, the iteration can go one
command backward as long as the current non-coalescible
command does not overlap with the new command, so the
drawing order is still correct if batching with previous com-
mands. The backward iteration typically has a constant maxi-
mum limit to prevent the linear complexity from degrading
into quadratic for building the entire chain.

2.3 GPU API
The GPU API, implemented by the GPU driver, provides stan-
dardized interfaces (i.e., abstractions of the GPU objects) that
enable 2D engines to leverage the GPU for efficient graphics
rasterization. It provides the capabilities of drawing triangles,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 695

sampling textures (images), shading graphics primitives with
various visual effects via programmable shaders, etc.
Implication-6: Modern GPU APIs are already stateless
and can support parallel tasks. The next-generation GPU
APIs such as Vulkan [34], Metal [20], and DirectX12 [8], on
which state-of-the-art rendering services and 2D engines are
built, are stateless within the GPU driver. In contrast with
traditional APIs like OpenGL [23] which maintain a single-
threaded state machine model within the GPU driver, they
delegate the management of GPU objects to the API users.
This provides a necessary condition for scalable and parallel
rendering in multi-core configurations.
Implication-7: Modern GPU APIs still have constraints
that must be considered in system design for compatibility.
Modern GPU APIs still have parallelization constraints, con-
sidering the need for compatibility with existing GPU hard-
ware. For instance, in Vulkan, command buffers should not
be arbitrarily small because of the limitations in CPU submis-
sion and GPU scheduling. Also, parallel-recorded secondary
command buffers cannot target at a different frame buffer (i.e.,
render pass) than the primary command buffer [59], which is
a common case in OS rendering services where some com-
ponents need to render into a separate layer. Our system is
designed with these parallelization constraints in mind.

3 The Need for Scalable Rendering

In recent years, the demand for visually captivating, smooth,
and immersive displays has been driving the evolution of
next-generation smart devices [66, 87, 93], particularly in the
form of foldable smartphones and multi-screen environments.
Achieving larger display area, higher pixel density, and higher
refresh rate at the same time has become both a user expecta-
tion and a technical challenge, pushing traditional fixed-thread
sequential rendering models into their limits. This section an-
alyzes the current and future display capabilities of flagship
commercial smart devices, identifies their performance bot-
tlenecks, and presents our observations.

3.1 Increased Rendering Loads in the Wild

Scenario-1: Foldable large screen. Foldable smartphones,
including dual- [13,16,25] and emerging tri-fold devices [17],
represent a significant advancement in screen design, and the
market size was valued at 27.79 billion USD in 2023 with ex-
pected annual growth of 13.5% [11]. These devices offer users
the ability and flexibility to view and interact with multiple
pages and more content simultaneously, enhancing both im-
mersion and productivity. However, the increased display area
— compared to traditional single-screen devices — results in
higher demands on frame rendering performance.

Figure 3 compares the screen specifications of contempo-
raneous flagship models. As foldable devices often use the

Figure 3: Display specifications of flagship smartphones.
Large screen area means trade-offs in other parameters.

same chipset as their single-screen counterparts, the larger
display area in reality requires trade-offs in other aspects.
For example, Samsung opts to reduce pixel density, keep-
ing the total number of pixels similar to that of traditional
smartphones with a sacrifice of definition. On the other hand,
Huawei reduces the frame rate of foldable smartphones to
90Hz in common use cases, sparing more time for each frame
to be rendered, even if today’s mainstream screen hardware
supports up to 120Hz, with a sacrifice of smoothness.
Scenario-2: One chip, multiple screens. In 2023, multi-
screen solutions were installed in about 3.6 million cars in
China, with 43 and 52 brands offering multi- or dual-screen
intelligent cockpits, respectively [7]. For example, AITO M9
(2024) [5] features five screens: a center screen (1× 15.6"), a
dashboard screen (1× 12.3"), a copilot screen (1× 16"), and
two backseat screens (2× 17.3"). In multi-display environ-
ments, a single chipset is often responsible for driving mul-
tiple screens simultaneously to achieve a consistent and syn-
chronous experience, with graphical elements able to freely
and seamlessly stream between different screens [46].

Challenges arise for the OS rendering service when prepar-
ing content for multiple displays at once, as the computa-
tional demands increase proportionally. As a result, current
state-of-the-art multi-screen environments can only operate
at 45Hz–60Hz frame rate [92] and trade display quality (e.g.,
number of graphics primitives) for stable performance. This
disparity between hardware display limit and software render-
ing capability underscores the need for a scalable and parallel
OS rendering service.

3.2 State-of-the-Art Efforts

State-of-the-art rendering services in commercial operating
systems adopt two classes of parallelization: inter-frame par-
allelism and multi-window parallelism, to tackle the CPU
performance bottleneck in 2D rendering.
Inter-frame parallelism. iOS [31], Android [14], and Open-
Harmony [3] all employ a multi-stage pipeline for inter-frame
parallelism, where each frame is sequentially rendered across

696 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 4: The threading model of different methods. Com-
pared to state-of-the-art efforts (inter-frame and multi-window
parallelism), our solution enables finer-grained parallelism.

a fixed set of threads, with consecutive frames in different
stages rendered in parallel, as shown in Figure 4(a). Inter-
frame parallelism does improve multi-core utilization, but it
has three limitations. First, the number of threads that can be
used are not scalable, as the number of stages (usually 2 or 3)
are tightly coupled with the rendering logic, statically divided
in advance. Second, the performance is bottlenecked by the
longest stage. Due to the static logic-coupled division, stage
imbalance is unavoidable. In OpenHarmony, we observed that
the running time of stage-1 is <50% shorter than the heavily-
loaded stage-2. Last, inter-frame parallelism may increase
rendering latency, as each frame needs to span two to three
Vertical Synchronization (VSync) periods [33] to finish.

Multi-window parallelism. In multi-window parallelism,
each window is rendered in different threads (or processes),
and later all the window frame buffers are composited into
a single display frame buffer, as shown in Figure 4(b). An-
droid [14] adopts this approach, and Skia Graphite [85] sup-
ports parallelization with render passes (i.e., tile or frame
buffers). Although multi-window parallelism is useful for
multiple windows, it also has three limitations. First, the work-
loads are highly imbalanced, as usually a single focused appli-
cation occupies the entire workloads, with status or navigation
bar at the corner seldom updating. Second, many scenarios
do not have the windowing abstraction, which is however
necessary for parallelism. For example, a chatting app on a
large foldable screen can display the contacts, chat history,
and posted photos simultaneously on different sections of the
same window (Figure 9(d)), while the rendering service does
not have any semantics. Last, multi-window parallelism intro-
duces more memory for window frame buffers and additional
workloads for window composition.

State-of-the-art system research. Existing system research
usually focuses on multi-GPU parallelism for 3D render-
ing on screen walls [53, 62, 71, 80] and graphics emula-
tors [51, 67, 68, 79], which is different from our smart de-
vice configurations and demands (i.e., OS 2D rendering). D-
VSync [87] exploits single-core CPU capabilities in smart-
phones to tackle workload fluctuations, handling sporadic

Table 1: Performance comparison of different system tech-
niques. Inter-frame and multi-window parallelism methods
have been adopted by commercial smartphone OSes includ-
ing Android, iOS, and OpenHarmony, but still cannot han-
dle workload fluctuation and constant heavy loads due to
the coarse-grained parallelism. D-VSync [87] is the state-of-
the-art deployed in HarmonyOS NEXT, but cannot handle
constant heavy loads due to its lack of parallelism support.

Applicable
Scenarios

Extra
Loads

Rendering
Latency

Workload
Fluctuation

Constant
Heavy Loads

Baseline 100% / / Frame Drops
Low

Frame Rate
Inter-frame
Parallelism 100% Minor

Serious
Influence Frame Drops

Medium
Frame Rate

Multi-win
Parallelism <5% Some

Some
Influence Frame Drops

Medium
Frame Rate

D-VSync 85% Minor
No

Influence
No

Frame Drop
Low

Frame Rate
Spars with
Spade2D 100% Minor

No
Influence

Leveraging
D-VSync

High
Frame Rate

frame drops via pre-rendering during animations. Nonethe-
less, D-VSync cannot scale to large multiple screens and mul-
tiple CPU cores. Table 1 summarizes the system techniques
for rendering performance.
State-of-the-art graphics research. Existing graphics re-
search proposes various rendering algorithms that attempt
to offload CPU-intensive 2D rendering onto GPUs and ac-
celerators [36]. Legacy systems such as Windows GDI [86]
and early versions of Cairo [75] and Skia [29] rely on pure
CPU-based scanline rasterization [88]. Nowadays, modern 2D
engines on smart devices primarily use tessellation and trian-
gulation with SDF algorithms [52, 70] for GPU rasterization.
A series of subsequent studies further explore stencil-buffer-
based [61, 63, 64, 82] and vector-texture-based [50, 74, 78]
algorithms. However, they increase the total load and power
consumption on mobile (tile-based [2]) GPUs due to costly
stencil operations and complex shader computation, limiting
their universal applicability in OS rendering.

3.3 The Breakdown of Rendering Workloads
We present two quantitative analyses of rendering workloads
based on our long-term industry experience with the OS ren-
dering service.
Observation-1: CPU dominates the rendering costs. The
end-to-end rendering process is CPU-intensive for 2D sce-
narios. Figure 5(a) illustrates the distribution of CPU and
GPU execution time for each frame in representative sce-
narios, such as desktop and application pages. On average,
sequential CPU processing accounts for 82% of the end-to-
end frame rendering time. In contrast to 3D games that require
the GPU to render millions of triangles per frame [72], 2D
scenes typically involve fewer than 1,000 triangles. The pri-
mary workload of the OS rendering service falls on the CPU,
responsible for preparing render tree states, tessellating and

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 697

Figure 5: Breakdowns of rendering workloads on Huawei
Mate X5, between (a) CPU and GPU, and (b) CPU cores.

triangulating mathematical abstractions of 2D primitives into
vertices, and generating GPU objects. As the CPU and GPU
run asynchronously, the CPU execution time fully covers the
GPU execution time, becoming the bottleneck.
Observation-2: Sequential rendering model limits the
hardware utilization. The current state-of-the-art rendering
procedure follows a fixed-thread sequential model, restricting
the multi-core utilization. Figure 5(b) highlights the imbal-
anced CPU per-core utilization in the Lifestyle scenario on
Mate X5 (Figure 9(c)) with OpenHarmony 5.0, struggling to
achieve the frame rate of 90Hz. While the rendering service’s
render thread monopolizes 80% utilization of a single core
with inter-frame parallelism and application logic partially
utilizing other cores, most CPU cores (cores 3∼11) remain
largely idle, making the single core the performance bottle-
neck. Modern chipsets typically feature 8 to 12 CPU cores,
with this trend set to continue [21]. Given the significance of
rendering services in smart-device operating systems, achiev-
ing scalability and parallelization across multiple cores is
crucial for optimal performance.

4 Scalable Rendering

4.1 Parallelism with Out-of-Order Execution

A multi-core parallel OS rendering service is the key to sup-
port scalable rendering. However, it faces three major chal-
lenges detailed in §1. First, state dependency prevents en-
capsulating tasks for parallel execution, as each node in the
render tree only contains the relative information in terms of
its parent. Second, drawing order dependency for graphics
primitives must be maintained for correctness, while individ-
ual tasks scheduled on the worker threads lose the pre-defined
order. Last, interface dependency (compatibility) should be
considered for existing applications and optimizations that
rely on stateful rendering, which contrasts with the stateless
nature of parallelization.
Revisiting parallelism in computer architecture. In pro-
cessors, parallelism can be achieved through out-of-order
execution and in-order commit [83]. Out-of-order execution
refers to a strategy where a processor executes instructions
in an order different from their original program sequence.
This technique allows the processor to bypass potential in-

struction dependencies and better utilize idle execution units,
thereby enhancing overall performance and efficiency. On the
other hand, in-order commit ensures that the results of these
out-of-order executed instructions are committed to memory
or storage in the original sequential order of the program,
preserving the correctness and consistency of the final output.
Insights on parallel rendering. We observed that the chal-
lenges of parallel rendering exhibit similarities to those en-
countered in out-of-order processors, for example, the depen-
dencies between draw commands and between instructions.
Drawing inspiration from practices in computer architecture,
our key insight is to methodically decouple the rendering
procedure into in-order task construction, out-of-order task
execution, and in-order dependency enforcement, enabling
(mostly) parallel processing without violating dependency
requirements. Specifically, the scalable and parallel rendering
procedure comprises three stages: (1) in-order preparation,
which involves constructing self-contained tasks based on
the render tree, allowing out-of-order execution while ensur-
ing the eventual enforcement of overlapping relations; (2)
out-of-order execution, where tasks are executed using a con-
figurable number of worker threads distributed across multiple
cores; (3) in-order commit, which collects the execution re-
sults from the worker threads and serializes the outputs in a
correct drawing order before submitting to the GPU for final
rasterization. Compared to the design in computer architec-
ture, a new stage, the in-order preparation, is introduced to
satisfy specific requirements in parallel rendering.

The three-stage design increases minor total workloads,
because it simply decouples the state management, drawing
order management, and state-based optimizations — proce-
dures originally existed and embedded in the state-of-the-art
sequential rendering — from the core rendering workload, so
the latter can be parallelized.

Building on the insight that scalability and parallelism can
be achieved through out-of-order execution and in-order com-
mit, this paper presents Spars, a novel scalable and parallel OS
rendering service, powered by the underlying novel drawing
engine Spade2D.

4.2 Design Overview
Figure 6 shows the overall rendering architecture of Spars.
Instead of directly performing a depth-first traversal of the
render tree to render each node sequentially, Spars divides
the rendering procedure into the aforementioned three stages.
These stages are supported by three types of threads in Spars:
the main thread, worker thread, and commit thread.
In-order preparation (main thread). During the preparation
stage, the render tree is still traversed once in a depth-first
manner by the main thread to prepare self-contained rendering
tasks (§5.1). The key difference is that no core rendering logic
(i.e., invoking the 2D engine to generate any GPU object) is
performed, making the in-order preparation a very fast dry

698 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 6: The parallel rendering architecture of Spars with Spade2D. The main thread prepares self-contained rendering
tasks for out-of-order execution in the worker threads and overlapping relations for in-order commit in the commit thread.

run. At the same time, overlapping relations (§5.2) between
the rendering tasks are recorded, which the commit thread
will later use (in the in-order commit stage) to preserve a cor-
rect drawing order. State-based batching optimization (§5.3)
can also be conducted here. Finally, the main thread puts
all the self-contained rendering tasks into a single-producer
multi-consumer (SPMC) task pool, and synchronizes the over-
lapping relations with the commit thread.
Out-of-order execution (worker thread). Worker threads
in Spars execute rendering tasks retrieved from the SPMC
pool. As every rendering task is self-contained without inter-
dependency in states, they can be scheduled onto any worker
thread with any order — enabling out-of-order and paral-
lel execution. For each task, the worker thread invokes the
Spade2D drawing engine to translate mathematical expres-
sions of 2D graphics primitives into GPU objects like meshes,
textures, pipelines, etc. Spade2D provides a stateless interface
(§5.3), allowing each task to be executed independently on
multiple cores without interference from one another (§5.4).
Finally, the generated GPU objects are packed and put into
a multi-producer single-consumer (MPSC) resource pool for
the commit thread to perform in-order commit.

The number of worker threads is configurable at runtime,
based on the chipset’s multi-core configuration and the current
execution environment. At least one worker thread is required.
It is recommended to reserve several cores for the commit
thread, application threads, and other system threads to avoid
unnecessary scheduling overhead. In practice, 3 to 5 worker
threads are typically sufficient (§6).
In-order commit (commit thread). The commit thread is
responsible for gathering the generated GPU objects from
the MPSC pool and committing them into the GPU com-
mand, based on the overlapping relations prepared by the
main thread. This procedure is straightforward, with the com-
mit thread simply binding the handles of the generated GPU
objects into the GPU command by reference. Notably, the
commit thread does not need to wait for all worker threads
to complete their tasks. Instead, upon receiving a completed
task with its associated GPU objects, the commit thread as-
sesses the feasibility of committing it into the GPU command
— whether all drawing-order-dependent tasks have already

been committed (§5.2). If this condition is not met, the com-
mit thread waits until all the dependent tasks complete and
commit, ensuring a correct drawing order.

The waiting does not impact the end-to-end frame render-
ing time, as the main thread submits rendering tasks to the
SPMC task pool in a naïve topological drawing order de-
rived from a depth-first traversal. Although tasks are executed
out-of-order with differing execution time, the completion
order retrieved from the MPSC pool is mostly retained from
the SPMC pool, and the chance of dependency waiting (i.e.,
waiting for the background primitive to complete first) in the
commit thread is minor. Except for the last several rendering
tasks, the execution time of the commit thread is fully covered
by the worker threads, as illustrated in Figure 4(c). Finally,
the GPU command will be submitted to the GPU driver for
GPU rasterization, producing a color for each pixel.

5 Detailed Design

This section introduces detailed key techniques behind the
design of Spars with Spade2D.

5.1 Self-Contained Tasks
For rendering to be scalable and parallel, Spars divides the en-
tire rendering workloads into individual self-contained render-
ing tasks that can be executed on multiple worker threads in
an out-of-order manner. This requires that self-contained tasks
encapsulate all the essential drawing states for the Spade2D
drawing engine to generate the corresponding GPU objects.
A complete drawing state encompasses a transform matrix
encoding the drawing position, scaling, and rotation, clippings
encoding the valid drawing region, parameters encoding spe-
cific graphics primitives, as well as coloring and styles.
Challenge. However, as discussed earlier, rendering services
face the challenges of state dependencies. In the existing ren-
der tree, each node does not contain the complete drawing
state; instead, it only holds information relative to its parent.
The benefit of the relative-state design is its efficiency in up-
dating screen content, as modifying the root node of a subtree
is sufficient to alter a group of nodes. In the render tree shown

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 699

in Figure 6, Ri j denotes the relative information of node i
with respect to node j. For example, when an animation or
a drag operation needs to move the card represented by the
subtree rooted at node 2 , it can just modify the transform
matrix of R21, which automatically moves node 3 and 4
with unchanged R32 and R42, supposed that node 1 is a larger
container inside which node 2 is able to move. The pres-
ence of state dependencies mandates that modern rendering
services process render nodes (or tasks) sequentially in ac-
cordance with depth-first order to access the correct states,
thereby impeding parallelization efforts.
Constructing self-contained tasks with a dry run. We ob-
served that the actual execution of rendering tasks does not
affect the construction of the complete drawing state required
for them. Based on this observation, we introduce a dry-run
method to generate the absolute information for each node.
During the preparation stage, Spars traverses the render tree in
a depth-first order (without invoking the 2D engine to do any
actual rendering), calculates the complete states, and records
the absolute information Ai — relative to the screen coordi-
nates or the absolute zero — for node i that includes at least
one draw command. By following this approach, Spars en-
capsulates the original draw commands in the render tree into
a collection of self-contained rendering tasks devoid of state
dependencies, as shown in Figure 6. When the screen updates
in a frame, invalid Ai values are recalculated during the depth-
first traversal in the main-thread preparation. For example, in
a scenario where R21 undergoes updates (i.e., invalidation)
due to drag operations, Spars dynamically adjusts the subtree
containing nodes A2, A3, and A4 during the dry-run traversal,
before encapsulating tasks for these nodes. Notably, recorded
A6 and A7 will not be affected, because their paths to the root
have no relative information change.
Computation costs. The computation incurs minor additional
workload overhead compared to the state-of-the-art rendering
services. The conversion from relative to absolute information
is originally integrated in the sequential rendering procedure
through stateful interfaces provided by 2D engines. Spars
simply decouples the fast, non-parallelizable preparation logic
from the core parallelizable rendering logic. Additionally,
unchanged absolute information is reusable across frames,
making the preparation efficient and fast.
Resource costs. Storing absolute information incurs minor
memory overhead. Spars observes the sparsity of draw com-
mands relative to the total number of render nodes. Many
internal nodes in the render tree are layouts rather than actual
components, containing no draw commands. For example,
node 1 and 5 in Figure 6 only contain the relative informa-
tion R, which does not require bookkeeping of any absolute
information for drawing. In the desktop scenario on Mate XT,
approximately 200 out of 800 nodes (25%) have draw com-
mands, and each piece of absolute information, consisting of
the transform matrix and clippings, occupies at most 10KB.
Additional 2MB of memory usage is permissible.

5.2 Overlapping Relations

Rather than using the implicit drawing order pre-definition
in the render tree, Spars explicitly manages the overlapping
relations for in-order commit, which can enable out-of-order
execution while not violating drawing order dependencies.
Challenge. Graphics rendering follows a partial order defined
by the render tree, where tasks (i.e., graphics primitives) at
the back must be drawn before tasks at the front when they
overlap. For example, the dark blue background in Figure 6
must be drawn before the light blue and red components,
while the order among node 3 , 6 , and 7 does not affect
the correctness of drawing. Traditional sequential rendering
applies a depth-first traversal when processing each node,
as the children of every node are pre-defined to be in back-
to-front order (i.e., z-order). However, the out-of-order task
execution in Spars does not provide such a guarantee.
Overlapping relations. To tackle this challenge, Spars en-
trusts the main-thread preparation to explicitly construct over-
lapping relations of the self-contained rendering tasks for the
commit-thread in-order commit. While it is possible to build
a complete directed acyclic graph (DAG) for the partial or-
der, Spars finds itself costly and unnecessary to do so — the
commit thread just needs to follow one correct topological
order, and the commit stage barely becomes a bottleneck as
discussed in §4.2. Therefore, during the depth-first traversal
in preparation, Spars just chains the generated self-contained
tasks for a naïve drawing order and manages their axis-aligned
bounding boxes (AABBs) [48]. An AABB is defined as the x-
and y-axes aligned rectangular bounding box of each task’s
drawing region. It is one of the most efficient methods in com-
puter graphics for determining whether two graphics primi-
tives overlap — if two primitives overlap, their AABBs must
also overlap. The chain with AABBs is later synchronized
from the main thread to the commit thread.
In-order commit with overlapping relations. During the
commit stage, the commit thread checks whether it is possible
to commit the received completed task (i.e., its generated
GPU objects) into the GPU command, based on the task
chain and AABBs. If the task received is the current head
of the chain when all the tasks before it have already been
committed, then it is correct to commit the task next. This is
the most common case, as the tasks (with possible varying
execution time) are dispatched from the main thread to the
worker threads using the same chain order. If the task is not
the current head, then the commit thread checks the AABBs
of all the unfinished tasks before it in the chain. When no
AABB overlaps with the current completed task, then it is
also correct to commit the task next into the GPU command.
For example, in Figure 6, the Lines Task can be committed as
long as the Rects Task has been committed. Otherwise, the
commit thread must block to wait for a valid background task
to commit first. The AABB checking only performs a preset
maximum times (3 to 5 times) for each completed task. The

700 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 ▶Stateful APIs◀
2 /* state-update commands */
3 void Canvas::translate(float x, float y);
4 void Canvas::rotate(float degrees);
5 void Canvas::clip(Shape &shape);
6 void Canvas::save();
7 void Canvas::restore();
8 /* draw commands */
9 void Canvas::drawRect(Rect &rect);

10 void Canvas::drawCircle(Circle &circle);

11 ▶Stateless APIs◀
12 /* self-contained tasks */
13 struct RectsTask {
14 int primitiveCount;
15 Rect *rects; // a batch of rects
16 State *states; // the corresponding

complete and absolute states↪→
17 };
18 GpuObjects Spade2D::draw(RectsTask &task);
19 GpuObjects Spade2D::draw(CirclesTask &task);

Figure 7: Stateful and Stateless APIs in Spars.

mechanism ensures that one or two heavy tasks do not block
the commits of subsequent tasks, so the commit procedure can
almost be covered by the execution time of the heavily-loaded
worker threads. Although there is no complete construction
of a DAG, the commits follow a logical partial order, based
on the overlapping relations of the chain and the AABBs.
Costs. The construction of the overlapping relations incurs
minor extra workload, as traditional 2D engines use a similar
chain structure for command batching (§2.2). In Spars, the
same chain is reused for both the state-based batching (§5.3)
and the overlapping relations. Moreover, pointer maintenance
and AABB checks are lightweight operations.

5.3 Stateful and Stateless APIs
Existing rendering services and 2D engines utilize stateful
APIs, hindering parallel rendering. Although it is possible to
define new APIs capable to support parallel rendering with-
out state dependencies, they are not compatible with custom-
rendering apps and are not intuitive to use. Therefore, we
decouple APIs into two parts: stateful and stateless APIs. The
stateful APIs (provided by Spars) ensure compatibility with
existing interfaces and support state-based batching optimiza-
tions, while the stateless APIs (provided by Spade2D) can
enable parallel and out-of-order task execution. The vertical
dashed lines in Figure 6 show the division.
Definitions. Spars defines stateful as a paradigm in which
each executed command leaves corresponding states in the
system, impacting the completeness and correctness of subse-
quent commands, as shown in Figure 7. This includes state
dependencies, drawing order, and command reordering or co-
alescing. In contrast, a stateless interface implies that each
rendering task is independent and self-contained, leaving no
residual state that affects the correctness of subsequent draws.
Interface compatibility. The decoupling ensures interface
compatibility with traditional 2D drawing engines for custom-
rendering applications who might directly invoke them for
drawing, such as games, Flutter apps [10], and web apps [90].
Although the underlying Spade2D is stateless, the stateful
APIs serve as an adapter to untangle the intricacies and encap-
sulate self-contained tasks for it. Therefore, these third-party
apps can enjoy the same traditional stateful interface such as
the Drawing API [9] or Skia Canvas [27] for compatibility,
ensuring practicality and applicability of our system.

Traditional state-based optimizations like command batch-
ing are also supported based on the decoupling. Draw com-

Figure 8: The architecture of Spade2D drawing engine.

mands that can share the same GPU pipeline prefer to be
grouped together instead of processed individually, thus pro-
ducing a single set of GPU objects and reducing the number of
draw calls. This also saves CPU execution time for less GPU
object management (§5.4) and fewer rendering tasks. The
main-thread preparation does the same re-ordering and coa-
lescing algorithm discussed in §2.2, when depth-first travers-
ing the render tree and leveraging the same chain structure
and AABBs for overlapping relations. For example, the two
rectangle draw commands (shown in pink) in Figure 6 are
batched together to form a single Rects Task for Spade2D
GPU object generation. Since pointer operations and AABB
checks suffice, the non-scalable stateful APIs decoupled from
the parallelizable core rendering logic is lightweight and fast.

5.4 Spade2D Drawing Engine
Spade2D is responsible for the stateless rendering (i.e., task
out-of-order execution) in the worker threads. Similar to tra-
ditional drawing engines like Skia [29], Impeller [18], Di-
rect2D [60], etc., Spade2D converts mathematical expressions
of 2D graphics primitives into GPU objects for frame buffer
rasterization. However, Spade2D differentiates itself in terms
of input and output formats as well as GPU resource manage-
ment. Figure 8 illustrates the architecture of Spade2D.
Input and output formats. Rather than accepting both state-
update commands and draw commands, Spade2D employs
stateless inputs: self-contained rendering tasks that can be
executed out-of-order and in parallel across multiple CPU
cores. Spade2D relies on external mechanisms to maintain
state and drawing order dependencies. Furthermore, instead
of handling a single primitive (e.g., a rectangle) per draw
command, each rendering task in Spars may contain a batch
of primitives (e.g., a vector of rectangles) that can share the
same rendering algorithm and produce a single set of GPU
objects. For outputs, Spade2D depends on the Spars commit
thread for the in-order commit before submitting to the GPU,

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 701

for correct overlapping relations.
GPU resource management. GPU resources in Spade2D
are managed by thread-safe managers that prevent resource
double creation caused by parallel rendering. Similar to other
2D engines, Spade2D tracks GPU resources needed for vari-
ous rendering algorithms, including buffers, images, pipelines,
shaders, descriptors, etc. These resources are shared among
rendering tasks and reused across frames if possible, each
of which has a manager using size-class-based pools, hash
tables, circular queues tied to the frame buffer rotation, etc.
Thread safety. In Spade2D, operations on these data struc-
tures need to be thread-safe. However, note that modern state-
less GPU APIs, such as Vulkan [34], Metal [20], and Di-
rectX12 [8], allow the parallelization of actual resource usage
and creation within each rendering task. Time-consuming op-
erations like vertex and index buffer filling, image decoding
and creation, and GPU pipeline creation can all be executed
without locks. Also, Spade2D uses shared locks [4] for re-
source reading, ensuring no contention when multiple render-
ing tasks refer to the same created GPU object (e.g., pipeline
or image). Thus, the cost of synchronization is minimized and
unnoticeable, as insertions and deletions for GPU resource
handles in most data structures can finish in constant time.
Preventing resource double creation. Double creation might
happen in parallel rendering when two rendering tasks refer to
the same unprepared GPU resource simultaneously on differ-
ent cores, and both attempt to prepare it, for example, drawing
the same new image or using the same new GPU pipeline. To
prevent double creation of GPU resources, Spade2D main-
tains preparing GPU resources in the resource managers, in
addition to the prepared (created) and unprepared (free) GPU
resources. The first task that needs a specific resource will
atomically mark it as preparing in the corresponding manager
before actually creating it. When the second task needs the
same preparing resource, it will block and yield to another
rendering task until being notified by the prepared condi-
tion variable. This mechanism avoids unnecessary double
creation with no impact on performance, as blocking occurs
only in rare cases when two similar non-batched tasks have
contention, and after all other self-contained tasks can be
scheduled to run.

6 Evaluation

6.1 Implementation and Setup

Implementation. We have implemented the scalable and par-
allel OS rendering service Spars with the stateless drawing en-
gine Spade2D in C++ with the Vulkan GPU backend [34], the
most common modern graphics API in smart devices. We de-
ploy Spars as a custom-rendering service that directly utilizes
GPU resources and bypasses the vanilla rendering service
in Android and OpenHarmony for performance evaluation.

Figure 9: Representative scenarios rendered by Spars.

Figure 10: Execution time proportion of a frame in Spars.

We run Spars with Spade2D on state-of-the-art commercial
smartphones, Mate 70 (single-screen) [15], Mate X5 (dual-
fold) [16], and Mate XT (tri-fold) [17], as well as multi-screen
configurations using the Kirin 9010 chipset [54].
Methodology. To analyze Spars performance under real sce-
narios, we export the render trees in OpenHarmony rendering
services (in commercial smartphones) and reconstruct them
in Spars. Figure 9 shows representative scenarios rendered
by Spars with Spade2D. Spars is sound enough to render
common graphics primitives, such as rectangles, rounded rect-
angles, circles, lines, images, glyphs (text), etc., with different
coloring and styles. As Spars still lacks some features com-
pared with vanilla rendering services, to better analyze the
benefits and costs of our parallel design, we build Sequen-
tial, a sequential version of Spars with the standard rendering
procedure discussed in §2. In addition to Commercial, the
commercial rendering service in OpenHarmony 5.0, we also
report the data of Sequential as another baseline for a more
fair comparison with Spars.

In the following sections, we evaluate the parallelizable
proportion (§6.2), frame rate improvement (§6.3), multi-core
utilization (§6.4), power consumption reduction (§6.5), scala-
bility (§6.6), and costs (§6.7) of Spars.

6.2 Theoretical Speedup Analysis

Spars enhances performance for rendering content that fea-
tures a large number of rendering tasks, including diverse
images, text, graphics primitives, and visual effects. The po-
tential performance gains of Spars are determined by the
parallelizable proportion of the end-to-end rendering work-
loads. As described by Amdahl’s Law [39], the maximum
achievable speedup is limited by the inverse of the fraction of
the workload that must be executed sequentially [81].

Figure 10 illustrates the proportion of the execution time
for different stages of a frame in Spars, averaged across all
42 scenarios (§6.3). The parallelizable out-of-order task exe-

702 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0.0

5.0

10.0

15.0

20.0

25.0

Desktop-M70

Desktop-X5

Desktop-XT

Settings-M70

Settings-X5

Settings-XT

Chatting-M70

Chatting-X5

Chatting-XT

Lifestyle-M70

Lifestyle-X5

Lifestyle-XT

Services-M70

Services-X5

Services-XT

Shopping-M70

Shopping-X5

Shopping-XT

Movies-M70

Movies-X5

Movies-XT

60Hz frame rate

120Hz

Commercial
Sequential

Spars-3
Spars-5

fr
a

m
e

 r
e

n
d

e
ri
n

g
 t

im
e

 (
m

s
)

0.0

5.0

10.0

15.0

20.0

25.0

Music-M70

Music-X5

Music-XT

Social-M70

Social-X5

Social-XT

Investment-M70

Investment-X5

Investment-XT

MultiW
inLfCh-M70

MultiW
inLfCh-X5

MultiW
inLfCh-XT

MultiW
inMuSc-M70

MultiW
inMuSc-X5

MultiW
inMuSc-XT

PicInPicLfCh-M70

PicInPicLfCh-X5

PicInPicLfCh-XT

PicInPicMuSc-M70

PicInPicMuSc-X5

PicInPicMuSc-XT

60Hz frame rate

120Hz

Commercial
Sequential

Spars-3
Spars-5

fr
a

m
e

 r
e

n
d

e
ri
n

g
 t

im
e

 (
m

s
)

Figure 11: Frame rendering time on Mate 70, X5, XT with Commercial, Sequential, and Spars of 3 or 5 worker threads.
All loads are pinned to medium cores with the same clock rate. Relative to Sequential, Spars-5 improves the frame rate by 1.76×.

cution and the in-order commit altogether account for 76% of
the total workload. The commit thread is mostly idle and waits
for the rendering tasks to complete. The non-parallelizable in-
order preparation and the GPU driver command submission
collectively occupy the remaining 24%.

With 3 worker threads, Amdahl’s Law yields a theoret-
ical maximum speedup of 2.14×, and with 5 workers, the
speedup increases to 2.65×. In practice, however, scheduling
and synchronization overhead during task dispatch, result col-
lection, and resource management is unavoidable, influencing
the overall performance.

6.3 Frame Rate Improvement
We evaluate the frame rate improvement of Spars on the latest
Mate 70 (single-screen), Mate X5 (dual-fold), Mate XT (tri-
fold), and Kirin 9010 chipset for multi-screen configurations.
They all feature a heterogeneous CPU architecture with 4 little
cores, 6 medium cores (3 physical cores with simultaneous
multithreading [84]), and 2 big cores (1 physical core).
Common smartphone scenarios. We test Spars across alto-
gether 42 representative smartphone use cases. Figure 9 shows
some examples. These scenarios, drawn from our years of
experience with OS rendering service deployment, provide
a comprehensive snapshot of everyday smartphone usage —
such as desktop operations, chatting, shopping, browsing ser-
vices or movies — all of which involve rendering a variety
of graphics primitives. We export and adapt the page layouts
(i.e., render trees) from real-world apps and fill in dummy
data for Spars to render. Each scenario is tested against two
baselines, Commercial2 and Sequential, and with Spars con-
figured to use 3 and 5 worker threads (denoted Spars-3 and
Spars-5), all pinned to medium cores running at the same
clock rate (approximately 0.7GHz) as the baselines.

2 Commercial data for Mate XT is not reported.

Figure 11 demonstrates the frame rate improvement. On
average, Spars-3 reduces the CPU frame rendering time of
Sequential by 27.3%, and Spars-5 reduces it by 43.2%. Con-
sequently, the average frame rate could be increased by 1.38×
and 1.76×, respectively. Spars-5, the standard configuration
of Spars on these devices, achieves stable 120Hz frame rate
across all 42 tested scenarios, whereas 27 (64%) sequential
rendering baselines struggle to maintain the smooth experi-
ence, especially on large foldable screens. In heavily-loaded
multi-window and picture-in-picture scenarios, Spars-5 is
able to increase the frame rate by at most 2.07× with higher
parallelizable proportion and better load balancing.

Worker thread configurations. Spars allows the number of
worker threads to be configured both statically — based on
the smart-device’s SoC — and dynamically at runtime. On
current SoCs with 6 medium cores, we use 5 worker threads as
the standard setup, reserving one core for the commit thread.
Dynamically adjusting the number of worker threads would
require estimating or predicting the total workload, which
is challenging due to the inherently dynamic nature of ren-
dering [87] — for instance, whether certain GPU objects are
already cached. In practice, we observed no performance re-
gressions when increasing the number of worker threads, as
long as the total remains below the number of available cores.

Core and clock rate configurations. A straightforward and
traditional way for Sequential to boost the frame rate is to
use a bigger CPU core or apply a higher clock frequency.
However, this results in significantly more power consump-
tion, often leading to unsustainable thermal output within
minutes. As chip advancements slow with the decline of
Moore’s Law [73], Spars takes a different strategy by lever-
aging CPU multi-core parallelism to enhance the frame rate,
offering long-term scalability across diverse (and possibly
weak) smart-device hardware platforms.

To show the general benefits of Spars, we apply different

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 703

0.0

5.0

10.0

15.0

20.0

25.0

M70 Little 0.86G

X5 Little 0.86G

XT Little 0.86G

M70 Little 1.40G

X5 Little 1.43G

XT Little 1.40G

M70 Mid 0.68G

X5 Mid 0.69G

XT Mid 0.68G

M70 Mid 1.62G

X5 Mid 1.57G

XT Mid 1.62G

60Hz frame rate

120

Commercial
Sequential

Spars-3
Spars-5

fr
a
m

e
 r

e
n
d
e
ri
n
g
 t
im

e
 (

m
s
)

Figure 12: Frame rendering time with different configura-
tions of cores and clock rates.

0.0

8.0

16.0

24.0

32.0

40.0

6×D
esktop

5×D
esktop

4×D
esktop

2×D
esktop +

2×C
hatting

2×D
esktop +

2×Lifestyle

3×D
esktop

D
esktop +

2×C
hatting

D
esktop +

2×Lifestyle

2×D
esktop

D
esktop +

C
hatting

D
esktop +

Lifestyle

C
hatting +

Lifestyle

30 Hz frame rate

60

120

Sequential
Spars-3
Spars-5

fr
a
m

e
 r

e
n
d
e
ri
n
g
 t
im

e
 (

m
s
)

Figure 13: Frame rendering time with multiple screens.

configurations of CPU cores and clock rates on our smart-
phones. Specifically, we test Commercial3, Sequential, and
Spars on little cores and medium cores with both low and high
clock rates. For a fair comparison with Sequential, we only
report the frame rate improvement of Spars on homogeneous
core configurations.

Figure 12 shows the average frame rendering time of all
the scenarios under different configurations. For Spars-3 on
little cores, it is reduced by 39.5% and 36.7% for low and
high clock rates, respectively. Consequently, the frame rate
is increased by 1.65× and 1.58×. For medium cores, Spars-
3 brings 1.38× and 1.56× gains. Little cores have slightly
more performance improvement, due to the lower synchro-
nization overhead relative to the execution time. For Spars-5
on medium cores with low and high clock rates, the frame
rate improvement is 1.76× and 1.89×.
One chip, multiple screens. We further run Spars to drive
two to six 2K-resolution virtual screens on the Kirin 9010
chipset (2024), as shown in Figure 13. On average, Spars-3
boosts the frame rate by 1.34×, and Spars-5, the standard
configuration, delivers 1.91×. Rendering more screens tends
to have better performance gains. For six or five desktops,
Spars-5 provides 2.16× and 1.94× gains, respectively, while
for two desktops, it is just 1.62×. Heavier workloads yield a
higher parallelizable proportion (more rendering tasks) in the
end-to-end rendering procedure.

6.4 Multi-Core Utilization
The scalable and parallel rendering service optimizes the uti-
lization of multi-core hardware in smart devices and ensures

3 For reasonable frame rate, Commercial rendering service is never sched-
uled on little cores with low clock rate.

Figure 14: Multi-core CPU utilization of Spars.

a more balanced workload across cores, preventing any single
core from becoming the frame rate bottleneck.

Figure 14 demonstrates the system CPU utilization when
Spars renders the Lifestyle scenario on Mate X5. The frame
rate is locked at 90Hz, and the clock rate is kept the same
for a fair comparison. As opposed to Figure 5(b) where the
most loaded core reaches 80% utilization and bottlenecks the
frame rate, Spars-3 and Spars-5 only lead to 62% and 45%
utilization for the most loaded core. With a heterogeneous
configuration of 5 medium cores and 3 little cores, the heavi-
est utilization further decreases to 37%, reducing the frame
rendering time and potentially boosting the frame rate.
Influence on other workloads. Spars has minor influence
on other system or application workloads, as it simply redis-
tributes the entire rendering workload across multiple cores
without increasing its total — additional logic for task encap-
sulation, dispatch, and collection is within 2%. As shown in
Figure 14, all CPU cores still have a considerable amount of
idle time available to process other tasks (although this idle
time has been rebalanced). Other workloads are still sched-
uled and executed by the system scheduler according to their
original priority.

6.5 Power Consumption Reduction

With balanced multi-core utilization, the power consumption
of Spars is reduced in comparison to Sequential when running
at the same configured frame rate.

The state-of-the-art QoS-guided scheduling and govern-
ing [43] puts the (parallelized) rendering workloads at little
cores with lower clock rates if it predicts that the current frame
can finish rendering within its VSync period (i.e., before its
display deadline). Also, commercial DVFS (Dynamic Volt-
age and Frequency Scaling) can only adjust the frequency of
an entire cluster (e.g., all medium cores) based on the QoS
predictions. In Sequential, rendering on a single core often
forces DVFS to raise the cluster voltage and frequency to meet
the frame deadlines. In contrast, Spars spreads the workload
across multiple cores, allowing DVFS to maintain the same
stable frame rate at a lower overall voltage and frequency, and
thus reducing the power consumption.

We measure the Mate XT whole-device instantaneous
power consumption through battery counters [26] for 5 min-

704 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 15: (a) Power consumption of Sequential and Spars
under the same frame rate. (b) Scalability of Spars, allow-
ing more graphics primitives under the same time budget.

utes after a one-minute warmup, with all other apps closed.
Averages are taken for all the common smartphone scenarios.
Figure 15(a) demonstrates the results. Spars-3 reduces the
device power consumption by 2.7%, and Spars-5 reduces it
by 3.0% under the same frame rate with Sequential.

6.6 Rendering Scalability

Parallelization allows the OS rendering service to render more
graphics primitives under the same time budget (i.e., frame
rate), achieving scalability of rendering. Spars gives applica-
tion developers and GUI designers a larger design space for
richer page content and more appealing visual effects, espe-
cially on large foldable screens, important for the commercial
success of smart devices.

We measure the CPU frame rendering time with respect to
the number of random graphics primitives (including rounded
rectangles, circles, decoded images, text, etc.) that Spars and
Sequential render under the same core configuration and clock
rate. Note that this is the lower bound for the number of graph-
ics primitives, as randomness forbids most draw command
batching opportunities.

As illustrated in Figure 15(b), for 120Hz frame rate (8.33ms
time constraint), Spars-3 is able to render 1.62× graphics
primitives, and Spars-5 is able to render 2.31× primitives
compared to the Sequential baseline, unleashing more possi-
bilities for the GUI design.

6.7 Costs and Discussions

We discuss the costs of a scalable and parallel rendering ser-
vice in terms of memory consumption and deployment efforts.
Memory consumption. The primary memory cost arises
from the thread creation, with each thread consuming ap-
proximately 8MB of memory in the operating system. The
additional memory required for the absolute information, self-
contained tasks, and overlapping relations does not exceed
10MB. Therefore, for Spars-5, the extra memory usage does
not exceed 50MB, which is permissible for modern smart
devices with ≥8GB of memory.
Deployment efforts. Spars is a complete refactoring of the

OS rendering service and the 2D drawing engine. A tradi-
tional rendering service consists of approximately 200,000
lines of code (LoC) in C++ [24], and a traditional drawing
engine contains around 400,000 LoC [28]. To implement a
functionally complete scalable and parallel rendering service
and drawing engine, we anticipate that modifications required
for the refactoring will exceed one third of the source code.

7 Related Work

We present other related work optimizing the rendering ser-
vices in smart devices in addition to §3.2.
Parallel rendering. Arnau et al. [40] propose parallel frame
rendering where consecutive frames can render in parallel
to trade responsiveness for energy on mobile GPUs. Skia
Graphite backend [85] supports parallel command recording
based on tiles (i.e., render passes) in web pages. Other 2D
engines [18, 35, 37] enable parallelization for specific tasks,
such as image decoding. In comparison, Spars can achieve
finer-grained parallel rendering necessary for trending fold-
able and multi-screen devices. Besides, the job systems of
game engines [32] support parallelization for physics simu-
lation, AI computation, and rendering preparation in AAA
games, while Spars is specifically tailored and optimized for
operating system 2D rendering.
Scheduling for rendering and displaying. D-VSync [87]
decouples rendering and displaying to utilize saved com-
putation in short frames for long frames during workload
fluctuation. However, D-VSync cannot handle scalable and
parallel rendering for emerging devices. LTPO [1, 42] sup-
ports variable screen refresh rates to save power. Presto [91]
reduces touch latency by relaxing synchrony. DSA [45] pro-
vides apps a unified view for multiple screens. Other sys-
tems [44,47,69,76,77,94] implement CPU-GPU power man-
agement strategy, e.g., dynamic frequency, to save energy.
However, they cannot meet the frame-rate performance de-
mands of foldable and multi-screen devices.
Prediction-based optimizations. Another method to handle
the increasing rendering loads is to predict frames in advance.
Huang et al. [57], Yan et al. [89], and Baeza-Yates et al. [41]
predict the next app to be opened for faster launches. Agrawal
et al. [38] reduce activity transition time by pre-inflating UI
layouts. PES [49] anticipates DOM events of web apps for
better scheduling. Outatime [65] predicts navigation inputs to
mask network latency in cloud gaming, while Hou et al. [55]
predict head and body motion in VR using LSTM. Although
these optimizations function in specific cases, the final effects
highly depend on the prediction algorithms and outcomes.

8 Conclusion

This paper presents Spars with Spade2D, a next-generation
scalable and parallel OS rendering service and drawing en-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 705

gine designed for smart devices. The primary innovation lies
in its ability to untangle state dependency, drawing order de-
pendency, and interface dependency, allowing out-of-order
execution with in-order commit of self-contained rendering
tasks. Evaluations demonstrate that Spars substantially en-
hances frame rates on emerging foldable smartphones and
multi-screen configurations, efficiently leveraging multiple
CPU cores while reducing power consumption and scaling
the number of graphics primitives. We anticipate that the de-
sign of Spars will play a pivotal role in shaping the future
development of OS rendering services.

Acknowledgments

We sincerely thank our shepherd and the anonymous OSDI’25
reviewers for their insightful suggestions. This work was sup-
ported in part by National Natural Science Foundation of
China (No. 62132014, 62432010, 62472279, 62302300), and
Startup Fund for Young Faculty at SJTU (SFYF at SJTU).
Corresponding authors: Dong Du (dd_nirvana@sjtu.edu.cn)
and Haibo Chen (haibochen@sjtu.edu.cn).

References

[1] ipad pro, in 10.5-inch and 12.9-inch models, introduces
the world’s most advanced display and breakthrough
performance, 06 2017. https://www.apple.com/ne
wsroom/2017/06/ipad-pro-10-5-and-12-9-inc
h-models-introduces-worlds-most-advanced-d
isplay-breakthrough-performance/.

[2] Tile-based gpus, 08 2021. https://developer.arm.
com/documentation/102662/0100/Tile-based-G
PUs.

[3] Graphics subsystem | openharmony docs, 2022.
https://gitee.com/openharmony/docs/blob/ma
ster/en/readme/graphics.md.

[4] std::shared_mutex - cppreference.com, 06 2023.
https://en.cppreference.com/w/cpp/thread/s
hared_mutex.

[5] Aito m9 smart suv, 2024. https://aito.auto/mode
l/m9/.

[6] Android open source project, 2024. https://source
.android.com/.

[7] China passenger car cockpit multi/dual display research
report, 2023-2024, 04 2024. http://www.research
inchina.com/Htmls/Report/2024/74971.html.

[8] Directx 12 technology | nvidia, 12 2024.
https://www.nvidia.com/en-us/geforce/te
chnologies/dx12/.

[9] Drawing api documentation—harmonyos next, 11 2024.
https://developer.huawei.com/consumer/en/d

oc/harmonyos-references-V5/_drawing-V5.

[10] Flutter - build for any screen, 2024. https://flutte
r.dev/.

[11] Foldable smartphone market size and share report
2024-2030, 2024. https://www.grandviewresea
rch.com/industry-analysis/foldable-smartph
one-market-report.

[12] The freetype project, 12 2024. https://freetype.o
rg/.

[13] Galaxy z fold6 | unfold the future | samsung us, 12
2024. https://www.samsung.com/us/smartphon
es/galaxy-z-fold6/1/.

[14] Graphics - android documentation, 08 2024. https:
//source.android.com/docs/core/graphics.

[15] Huawei mate 70, 2024. https://consumer.huawei.
com/cn/phones/mate70/.

[16] Huawei mate x5, 2024. https://consumer.huawei.
com/cn/phones/mate-x5/.

[17] Huawei mate xt | ultimate design, 2024.
https://consumer.huawei.com/cn/phones/ma
te-xt-ultimate-design/.

[18] Impeller is a rendering runtime for flutter, 12
2024. https://github.com/flutter/engine/bl
ob/main/impeller/README.md.

[19] ios 18, 2024. https://www.apple.com/ios/io
s-18/.

[20] Metal: Accelerate graphics and much more, 12 2024.
https://developer.apple.com/metal/.

[21] Multi-core processor market trends, growth report to
2024-2033, 10 2024. https://www.thebusinessr
esearchcompany.com/report/multi-core-proce
ssor-global-market-report.

[22] Openatom openharmony, 2024. https://www.open
harmony.cn/mainPlay.

[23] Opengl: The industry’s foundation for high performance
graphics, 12 2024. https://www.opengl.org/.

[24] Openharmony graphic_graphic_2d, 12 2024. https:
//gitee.com/openharmony/graphic_graphic_2d.

[25] Oppo find n3 | oppo global, 2024. https://www.oppo
.com/en/smartphones/series-find-n/find-n3/.

706 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://developer.arm.com/documentation/102662/0100/Tile-based-GPUs
https://developer.arm.com/documentation/102662/0100/Tile-based-GPUs
https://developer.arm.com/documentation/102662/0100/Tile-based-GPUs
https://gitee.com/openharmony/docs/blob/master/en/readme/graphics.md
https://gitee.com/openharmony/docs/blob/master/en/readme/graphics.md
https://gitee.com/openharmony/docs/blob/master/en/readme/graphics.md
https://en.cppreference.com/w/cpp/thread/shared_mutex
https://en.cppreference.com/w/cpp/thread/shared_mutex
https://en.cppreference.com/w/cpp/thread/shared_mutex
https://aito.auto/model/m9/
https://aito.auto/model/m9/
https://source.android.com/
https://source.android.com/
http://www.researchinchina.com/Htmls/Report/2024/74971.html
http://www.researchinchina.com/Htmls/Report/2024/74971.html
https://www.nvidia.com/en-us/geforce/technologies/dx12/
https://www.nvidia.com/en-us/geforce/technologies/dx12/
https://www.nvidia.com/en-us/geforce/technologies/dx12/
https://developer.huawei.com/consumer/en/doc/harmonyos-references-V5/_drawing-V5
https://developer.huawei.com/consumer/en/doc/harmonyos-references-V5/_drawing-V5
https://flutter.dev/
https://flutter.dev/
https://www.grandviewresearch.com/industry-analysis/foldable-smartphone-market-report
https://www.grandviewresearch.com/industry-analysis/foldable-smartphone-market-report
https://www.grandviewresearch.com/industry-analysis/foldable-smartphone-market-report
https://freetype.org/
https://freetype.org/
https://www.samsung.com/us/smartphones/galaxy-z-fold6/1/
https://www.samsung.com/us/smartphones/galaxy-z-fold6/1/
https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/graphics
https://consumer.huawei.com/cn/phones/mate70/
https://consumer.huawei.com/cn/phones/mate70/
https://consumer.huawei.com/cn/phones/mate-x5/
https://consumer.huawei.com/cn/phones/mate-x5/
https://consumer.huawei.com/cn/phones/mate-xt-ultimate-design/
https://consumer.huawei.com/cn/phones/mate-xt-ultimate-design/
https://consumer.huawei.com/cn/phones/mate-xt-ultimate-design/
https://github.com/flutter/engine/blob/main/impeller/README.md
https://github.com/flutter/engine/blob/main/impeller/README.md
https://www.apple.com/ios/ios-18/
https://www.apple.com/ios/ios-18/
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://www.thebusinessresearchcompany.com/report/multi-core-processor-global-market-report
https://www.thebusinessresearchcompany.com/report/multi-core-processor-global-market-report
https://www.thebusinessresearchcompany.com/report/multi-core-processor-global-market-report
https://www.openharmony.cn/mainPlay
https://www.openharmony.cn/mainPlay
https://www.opengl.org/
https://gitee.com/openharmony/graphic_graphic_2d
https://gitee.com/openharmony/graphic_graphic_2d
https://www.oppo.com/en/smartphones/series-find-n/find-n3/
https://www.oppo.com/en/smartphones/series-find-n/find-n3/

[26] Power data sources - perfetto tracing docs, 2024.
https://perfetto.dev/docs/data-sources/bat
tery-counters.

[27] Skcanvas overview, 2024. https://skia.org/doc
s/user/api/skcanvas_overview/.

[28] Skia is a complete 2d graphic library for drawing text,
geometries, and images., 2024. https://github.c
om/google/skia.

[29] Skia: The 2d graphics library, 12 2024. https://sk
ia.org/.

[30] Understanding the visionos render pipeline | apple
developer documentation, 2024. https://develope
r.apple.com/documentation/visionos/underst
anding-the-visionos-render-pipeline.

[31] Understanding user interface responsiveness, 2024.
https://developer.apple.com/documentation/
xcode/understanding-user-interface-respons
iveness/.

[32] Unity - manual: Job system overview, 11 2024.
https://docs.unity3d.com/6000.0/Documentat
ion/Manual/job-system-overview.html.

[33] Vsync - android documentation, 08 2024.
https://source.android.com/docs/core/gra
phics/implement-vsync.

[34] Vulkan | cross platform 3d graphics, 2024. https:
//www.vulkan.org/.

[35] Getting started with qt | qt 6.9, 2025. https://doc.
qt.io/qt-6/gettingstarted.html.

[36] Openvg - the standard for vector graphics acceleration,
2025. https://www.khronos.org/openvg/.

[37] Tencent/tgfx: A lightweight 2d graphics library for
rendering texts, geometries, and images with high-
performance apis that work across various platforms.,
04 2025. https://github.com/Tencent/tgfx.

[38] Sumeen Agrawal, Manith Shetty, Sripurna Mutalik, and
Anuradha Kanukotla. Method to improve ui render-
ing using predictive sequence modelling. In 2022
26th International Conference on Pattern Recognition
(ICPR), pages 5031–5037, 2022. https://doi.org/
10.1109/ICPR56361.2022.9956234.

[39] Gene M. Amdahl. Validity of the single processor ap-
proach to achieving large scale computing capabilities,
reprinted from the afips conference proceedings, vol. 30
(atlantic city, n.j., apr. 18–20), afips press, reston, va.,
1967, pp. 483–485, when dr. amdahl was at international
business machines corporation, sunnyvale, california.

IEEE Solid-State Circuits Society Newsletter, 12(3):19–
20, 2007. https://doi.org/10.1109/N-SSC.2007.
4785615.

[40] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Poly-
chronis Xekalakis. Parallel frame rendering: Trading
responsiveness for energy on a mobile gpu. In Proceed-
ings of the 22nd International Conference on Parallel
Architectures and Compilation Techniques, pages 83–
92, 2013. https://doi.org/10.1109/PACT.2013.
6618806.

[41] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and
Beverly Harrison. Predicting the next app that you are
going to use. In Proceedings of the Eighth ACM In-
ternational Conference on Web Search and Data Min-
ing, WSDM ’15, page 285–294, New York, NY, USA,
2015. Association for Computing Machinery. https:
//doi.org/10.1145/2684822.2685302.

[42] Ting-Kuo Chang, Chin-Wei Lin, and Shihchang Chang.
39-3: Invited paper: Ltpo tft technology for amoleds†.
SID Symposium Digest of Technical Papers, 50(1):545–
548, 2019. https://doi.org/10.1002/sdtp
.12978.

[43] Haibo Chen, Xie Miao, Ning Jia, Nan Wang, Yu Li,
Nian Liu, Yutao Liu, Fei Wang, Qiang Huang, Kun Li,
Hongyang Yang, Hui Wang, Jie Yin, Yu Peng, and Feng-
wei Xu. Microkernel goes general: Performance and
compatibility in the HongMeng production microker-
nel. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), pages 465–
485, Santa Clara, CA, July 2024. USENIX Associa-
tion. https://www.usenix.org/conference/osdi
24/presentation/chen-haibo.

[44] Wei-Ming Chen, Sheng-Wei Cheng, Pi-Cheng Hsiu,
and Tei-Wei Kuo. A user-centric cpu-gpu governing
framework for 3d games on mobile devices. In 2015
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 224–231, 2015. https:
//doi.org/10.1109/ICCAD.2015.7372574.

[45] Zizhan Chen, Siqi Shang, Qihong Wu, Jin Xue, Zhaoyan
Shen, and Zili Shao. An old friend is better than two new
ones: dual-screen android. In Proceedings of the 23rd
ACM SIGPLAN/SIGBED International Conference on
Languages, Compilers, and Tools for Embedded Systems,
LCTES 2022, page 86–98, New York, NY, USA, 2022.
Association for Computing Machinery. https://doi.
org/10.1145/3519941.3535071.

[46] Jin Choi, Seohwan Yoo, Hayeon Park, and Chang-Gun
Lee. Performance analysis of an embedded chipset on

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 707

https://perfetto.dev/docs/data-sources/battery-counters
https://perfetto.dev/docs/data-sources/battery-counters
https://perfetto.dev/docs/data-sources/battery-counters
https://skia.org/docs/user/api/skcanvas_overview/
https://skia.org/docs/user/api/skcanvas_overview/
https://github.com/google/skia
https://github.com/google/skia
https://skia.org/
https://skia.org/
https://developer.apple.com/documentation/visionos/understanding-the-visionos-render-pipeline
https://developer.apple.com/documentation/visionos/understanding-the-visionos-render-pipeline
https://developer.apple.com/documentation/visionos/understanding-the-visionos-render-pipeline
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://docs.unity3d.com/6000.0/Documentation/Manual/job-system-overview.html
https://docs.unity3d.com/6000.0/Documentation/Manual/job-system-overview.html
https://docs.unity3d.com/6000.0/Documentation/Manual/job-system-overview.html
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://www.vulkan.org/
https://www.vulkan.org/
https://doc.qt.io/qt-6/gettingstarted.html
https://doc.qt.io/qt-6/gettingstarted.html
https://www.khronos.org/openvg/
https://github.com/Tencent/tgfx
https://doi.org/10.1109/ICPR56361.2022.9956234
https://doi.org/10.1109/ICPR56361.2022.9956234
https://doi.org/10.1109/N-SSC.2007.4785615
https://doi.org/10.1109/N-SSC.2007.4785615
https://doi.org/10.1109/PACT.2013.6618806
https://doi.org/10.1109/PACT.2013.6618806
https://doi.org/10.1145/2684822.2685302
https://doi.org/10.1145/2684822.2685302
https://doi.org/10.1002/sdtp.12978
https://doi.org/10.1002/sdtp.12978
https://www.usenix.org/conference/osdi24/presentation/chen-haibo
https://www.usenix.org/conference/osdi24/presentation/chen-haibo
https://doi.org/10.1109/ICCAD.2015.7372574
https://doi.org/10.1109/ICCAD.2015.7372574
https://doi.org/10.1145/3519941.3535071
https://doi.org/10.1145/3519941.3535071

a multi-screen based automotive applications environ-
ment. In 2022 5th International Conference on Infor-
mation and Computer Technologies (ICICT), pages 39–
42, 2022. https://doi.org/10.1109/ICICT55905.
2022.00015.

[47] Yonghun Choi, Seonghoon Park, and Hojung Cha.
Graphics-aware power governing for mobile devices.
In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,
MobiSys ’19, page 469–481, New York, NY, USA, 2019.
Association for Computing Machinery. https://doi.
org/10.1145/3307334.3326075.

[48] Christer Ericson. Axis-aligned bounding boxes (aabbs).
In Real-Time Collision Detection, chapter 4.2, page
77–87. CRC Press, Inc., Boca Raton, FL, USA, 2004.
https://doi.org/10.1201/b14581.

[49] Yu Feng and Yuhao Zhu. Pes: Proactive event schedul-
ing for responsive and energy-efficient mobile web com-
puting. In Proceedings of the 46th International Sympo-
sium on Computer Architecture, ISCA ’19, page 66–78,
New York, NY, USA, 2019. Association for Computing
Machinery. https://doi.org/10.1145/3307650.
3322248.

[50] Francisco Ganacim, Rodolfo S. Lima, Luiz Henrique
de Figueiredo, and Diego Nehab. Massively-parallel
vector graphics. ACM Trans. Graph., 33(6), Novem-
ber 2014. https://doi.org/10.1145/2661229.
2661274.

[51] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao
Liu, Feng Qian, Liangyi Gong, and Tianyin Xu. Trinity:
High-Performance mobile emulation through graphics
projection. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
285–301, Carlsbad, CA, July 2022. USENIX Associa-
tion. https://www.usenix.org/conference/osdi
22/presentation/gao.

[52] Chris Green. Improved alpha-tested magnification for
vector textures and special effects. In ACM SIGGRAPH
2007 Courses, SIGGRAPH ’07, page 9–18, New York,
NY, USA, 2007. Association for Computing Machinery.
https://doi.org/10.1145/1281500.1281665.

[53] Yicheng Gu, Yun Wang, Yunfan Sun, Yuxin Xiang,
Xuyan Hu, Zhengwei Qi, and Haibing Guan. gVulkan:
Scalable GPU pooling for Pixel-Grained rendering
in ray tracing. In 2024 USENIX Annual Tech-
nical Conference (USENIX ATC 24), pages 1151–
1165, Santa Clara, CA, July 2024. USENIX Associ-
ation. https://www.usenix.org/conference/at
c24/presentation/gu-yicheng.

[54] Klaus Hinum. Hisilicon kirin 9010 processor -
benchmarks and specs, 07 2024. https://www.note
bookcheck.net/HiSilicon-Kirin-9010-Process
or-Benchmarks-and-Specs.855471.0.html.

[55] Xueshi Hou and Sujit Dey. Motion prediction and pre-
rendering at the edge to enable ultra-low latency mo-
bile 6dof experiences. IEEE Open Journal of the Com-
munications Society, 1:1674–1690, 01 2020. https:
//doi.org/10.1109/OJCOMS.2020.3032608.

[56] Josh Howarth. Alarming average screen time statistics
(2024), 6 2024. https://explodingtopics.com/
blog/screen-time-stats.

[57] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling
Chen. Predicting mobile application usage using con-
textual information. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12,
page 1059–1065, New York, NY, USA, 2012. Associ-
ation for Computing Machinery. https://doi.org/
10.1145/2370216.2370442.

[58] Kristian Høgsberg. Wayland, 2024. https://waylan
d.freedesktop.org/.

[59] Arseny Kapoulkine. Writing an efficient vulkan ren-
derer, 02 2020. https://zeux.io/2020/02/27/wr
iting-an-efficient-vulkan-renderer/.

[60] Kenny Kerr. Introducing direct2d, 2009. https:
//learn.microsoft.com/en-us/archive/msdn-m
agazine/2009/june/introducing-direct2d.

[61] Mark J. Kilgard and Jeff Bolz. Gpu-accelerated path
rendering. ACM Trans. Graph., 31(6), November 2012.
https://doi.org/10.1145/2366145.2366191.

[62] Youngsok Kim, Jae-Eon Jo, Hanhwi Jang, Minsoo Rhu,
Hanjun Kim, and Jangwoo Kim. Gpupd: a fast and scal-
able multi-gpu architecture using cooperative projection
and distribution. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-50 ’17, page 574–586, New York, NY,
USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3123939.3123968.

[63] Yoshiyuki Kokojima, Kaoru Sugita, Takahiro Saito, and
Takashi Takemoto. Resolution independent rendering
of deformable vector objects using graphics hardware.
In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06,
page 118–es, New York, NY, USA, 2006. Association
for Computing Machinery. https://doi.org/10.
1145/1179849.1179997.

[64] Harish Kumar and Anmol Sud. Rendering 2D Vector
Graphics on Mobile GPU Devices. In Jirí Bittner and
Manuela Waldner, editors, Eurographics 2021 - Posters.

708 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.1109/ICICT55905.2022.00015
https://doi.org/10.1109/ICICT55905.2022.00015
https://doi.org/10.1145/3307334.3326075
https://doi.org/10.1145/3307334.3326075
https://doi.org/10.1201/b14581
https://doi.org/10.1201/b14581
https://doi.org/10.1145/3307650.3322248
https://doi.org/10.1145/3307650.3322248
https://doi.org/10.1145/2661229.2661274
https://doi.org/10.1145/2661229.2661274
https://www.usenix.org/conference/osdi22/presentation/gao
https://www.usenix.org/conference/osdi22/presentation/gao
https://doi.org/10.1145/1281500.1281665
https://www.usenix.org/conference/atc24/presentation/gu-yicheng
https://www.usenix.org/conference/atc24/presentation/gu-yicheng
https://www.notebookcheck.net/HiSilicon-Kirin-9010-Processor-Benchmarks-and-Specs.855471.0.html
https://www.notebookcheck.net/HiSilicon-Kirin-9010-Processor-Benchmarks-and-Specs.855471.0.html
https://www.notebookcheck.net/HiSilicon-Kirin-9010-Processor-Benchmarks-and-Specs.855471.0.html
https://doi.org/10.1109/OJCOMS.2020.3032608
https://doi.org/10.1109/OJCOMS.2020.3032608
https://explodingtopics.com/blog/screen-time-stats
https://explodingtopics.com/blog/screen-time-stats
https://doi.org/10.1145/2370216.2370442
https://doi.org/10.1145/2370216.2370442
https://wayland.freedesktop.org/
https://wayland.freedesktop.org/
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://zeux.io/2020/02/27/writing-an-efficient-vulkan-renderer/
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/june/introducing-direct2d
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/june/introducing-direct2d
https://learn.microsoft.com/en-us/archive/msdn-magazine/2009/june/introducing-direct2d
https://doi.org/10.1145/2366145.2366191
https://doi.org/10.1145/3123939.3123968
https://doi.org/10.1145/3123939.3123968
https://doi.org/10.1145/1179849.1179997
https://doi.org/10.1145/1179849.1179997

The Eurographics Association, 2021. https://doi.
org/10.2312/egp.20211025.

[65] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using speculation to en-
able low-latency continuous interaction for mobile cloud
gaming. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, page 151–165, New York, NY,
USA, 2015. Association for Computing Machinery.
https://doi.org/10.1145/2742647.2742656.

[66] Yang Li, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Feng
Qian, Jing Yang, Hao Lin, Yunhao Liu, Bo Xiao, Xi-
aokang Qin, and Tianyin Xu. Dissecting and stream-
lining the interactive loop of mobile cloud gaming.
In 22nd USENIX Symposium on Networked Systems
Design and Implementation (NSDI 25), pages 595–
611, Philadelphia, PA, April 2025. USENIX Associa-
tion. https://www.usenix.org/conference/nsdi
25/presentation/li-yang.

[67] Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li,
Liangyi Gong, Di Gao, Yunhao Liu, Feng Qian, Zhao
Zhang, Ping Yang, and Tianyin Xu. Virtual device farms
for mobile app testing at scale: A pursuit for fidelity, ef-
ficiency, and accessibility. In Proceedings of the 29th
Annual International Conference on Mobile Computing
and Networking, ACM MobiCom ’23, New York, NY,
USA, 2023. Association for Computing Machinery.
https://doi.org/10.1145/3570361.3613259.

[68] Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li,
Liangyi Gong, Di Gao, Yunhao Liu, Feng Qian, Zhao
Zhang, Ping Yang, and Tianyin Xu. Take the blue
pill: Pursuing mobile app testing fidelity, efficiency,
and accessibility with virtual device farms. GetMo-
bile: Mobile Comp. and Comm., 28(1):5–9, May 2024.
https://doi.org/10.1145/3665112.3665114.

[69] Daniel Lo, Taejoon Song, and G. Edward Suh.
Prediction-guided performance-energy trade-off for in-
teractive applications. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 508–520, 2015. https://doi.org/10.
1145/2830772.2830776.

[70] Charles Loop and Jim Blinn. Resolution independent
curve rendering using programmable graphics hardware.
ACM Trans. Graph., 24(3):1000–1009, July 2005. ht
tps://doi.org/10.1145/1073204.1073303.

[71] Bingzheng Ma, Ziqiang Zhang, Yusen Li, Wentong Cai,
Gang Wang, and Xiaoguang Liu. Spider: An effective,
efficient and robust load scheduler for real-time split
frame rendering. In 2022 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages
672–682, 2022. https://doi.org/10.1109/IPDP
S53621.2022.00071.

[72] Daan Meysman. Keeping your games ’optimized’: Part
1 - triangles, 03 2020. https://www.artstation.c
om/blogs/daanmeysman/7goy/keeping-your-gam
es-optimized-part-1-triangles.

[73] Gordon E. Moore. Cramming more components onto
integrated circuits. Electronics, 38(8):114–117, 1965.

[74] Diego Nehab and Hugues Hoppe. Random-access ren-
dering of general vector graphics. ACM Trans. Graph.,
27(5), December 2008. https://doi.org/10.1145/
1409060.1409088.

[75] Keith Packard and Carl Worth. A realistic 2d draw-
ing system. A rejected SIGGRAPH 2003 submission,
2003. https://keithp.com/~keithp/talks/cair
o2003.pdf.

[76] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash,
and Tulika Mitra. Power-performance modelling of
mobile gaming workloads on heterogeneous mpsocs.
In Proceedings of the 52nd Annual Design Automation
Conference, DAC ’15, New York, NY, USA, 2015. As-
sociation for Computing Machinery. https://doi.
org/10.1145/2744769.2744894.

[77] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mi-
tra. Integrated cpu-gpu power management for 3d mo-
bile games. In Proceedings of the 51st Annual Design
Automation Conference, DAC ’14, page 1–6, New York,
NY, USA, 2014. Association for Computing Machinery.
https://doi.org/10.1145/2593069.2593151.

[78] Zheng Qin, Michael D. McCool, and Craig S. Kaplan.
Real-time texture-mapped vector glyphs. In Proceed-
ings of the 2006 Symposium on Interactive 3D Graphics
and Games, I3D ’06, page 125–132, New York, NY,
USA, 2006. Association for Computing Machinery.
https://doi.org/10.1145/1111411.1111433.

[79] Jiaxing Qiu, Zijie Zhou, Yang Li, Zhenhua Li, Feng
Qian, Hao Lin, Di Gao, Haitao Su, Xin Miao, Yunhao
Liu, and Tianyin Xu. vsoc: Efficient virtual system-on-
chip on heterogeneous hardware. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems
Principles, SOSP ’24, page 558–573, New York, NY,
USA, 2024. Association for Computing Machinery.
https://doi.org/10.1145/3694715.3695946.

[80] Xiaowei Ren and Mieszko Lis. Chopin: Scalable graph-
ics rendering in multi-gpu systems via parallel image
composition. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 709

https://doi.org/10.2312/egp.20211025
https://doi.org/10.2312/egp.20211025
https://doi.org/10.1145/2742647.2742656
https://doi.org/10.1145/2742647.2742656
https://www.usenix.org/conference/nsdi25/presentation/li-yang
https://www.usenix.org/conference/nsdi25/presentation/li-yang
https://doi.org/10.1145/3570361.3613259
https://doi.org/10.1145/3570361.3613259
https://doi.org/10.1145/3665112.3665114
https://doi.org/10.1145/3665112.3665114
https://doi.org/10.1145/2830772.2830776
https://doi.org/10.1145/2830772.2830776
https://doi.org/10.1145/1073204.1073303
https://doi.org/10.1145/1073204.1073303
https://doi.org/10.1109/IPDPS53621.2022.00071
https://doi.org/10.1109/IPDPS53621.2022.00071
https://www.artstation.com/blogs/daanmeysman/7goy/keeping-your-games-optimized-part-1-triangles
https://www.artstation.com/blogs/daanmeysman/7goy/keeping-your-games-optimized-part-1-triangles
https://www.artstation.com/blogs/daanmeysman/7goy/keeping-your-games-optimized-part-1-triangles
https://doi.org/10.1145/1409060.1409088
https://doi.org/10.1145/1409060.1409088
https://keithp.com/~keithp/talks/cairo2003.pdf
https://keithp.com/~keithp/talks/cairo2003.pdf
https://doi.org/10.1145/2744769.2744894
https://doi.org/10.1145/2744769.2744894
https://doi.org/10.1145/2593069.2593151
https://doi.org/10.1145/1111411.1111433
https://doi.org/10.1145/1111411.1111433
https://doi.org/10.1145/3694715.3695946
https://doi.org/10.1145/3694715.3695946

pages 709–722, 2021. https://doi.org/10.1109/
HPCA51647.2021.00065.

[81] David P. Rodgers. Improvements in multiprocessor sys-
tem design. In Proceedings of the 12th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’85,
page 225–231, Washington, DC, USA, 1985. IEEE Com-
puter Society Press. https://doi.org/10.1145/
327070.327215.

[82] A.J. Rueda, J. Ruiz de Miras, and F.R. Feito. Gpu-based
rendering of curved polygons using simplicial coverings.
Computers & Graphics, 32(5):581–588, 2008. https:
//doi.org/10.1016/j.cag.2008.07.005.

[83] R. M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. IBM Journal of Research and
Development, 11(1):25–33, 1967. https://doi.or
g/10.1147/rd.111.0025.

[84] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy.
Simultaneous multithreading: maximizing on-chip par-
allelism. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’95,
page 392–403, New York, NY, USA, 1995. Associa-
tion for Computing Machinery. https://doi.org/
10.1145/223982.224449.

[85] Jim Van Verth. Suggested/status of gpu backends, 11
2024. https://groups.google.com/g/skia-dis
cuss/c/Pd92csb5o4o/m/QlPj80PqAQAJ?utm_medi
um=email&utm_source=footer.

[86] Steven White, Saisang Cai, Jason Howell, Kent
Sharkey, David Coulter, Drew Batchelor, and Michael
Satran. Windows gdi - win32 apps, 01 2023.
https://learn.microsoft.com/en-us/windows/
win32/gdi/windows-gdi.

[87] Yuanpei Wu, Dong Du, Chao Xu, Yubin Xia, Ming Fu,
Binyu Zang, and Haibo Chen. D-vsync: Decoupled
rendering and displaying for smartphone graphics. In
Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 1, ASPLOS ’25, page
326–341, New York, NY, USA, 2025. Association for
Computing Machinery. https://doi.org/10.1145/
3669940.3707235.

[88] Chris Wylie, Gordon Romney, David Evans, and Alan
Erdahl. Half-tone perspective drawings by computer.
In Proceedings of the November 14-16, 1967, Fall Joint
Computer Conference, AFIPS ’67 (Fall), page 49–58,
New York, NY, USA, 1967. Association for Computing
Machinery. https://doi.org/10.1145/1465611.
1465619.

[89] Tingxin Yan, David Chu, Deepak Ganesan, Aman
Kansal, and Jie Liu. Fast app launching for mobile
devices using predictive user context. In Proceedings of
the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, page 113–126,
New York, NY, USA, 2012. Association for Computing
Machinery. https://doi.org/10.1145/2307636.
2307648.

[90] Kinza Yasar. What is web application (web
apps) and its benefits, 11 2024. https:
//www.techtarget.com/searchsoftwarequali
ty/definition/Web-application-Web-app.

[91] Min Hong Yun, Songtao He, and Lin Zhong. Reduc-
ing latency by eliminating synchrony. In Proceed-
ings of the 26th International Conference on World
Wide Web, WWW ’17, page 331–340, Republic and
Canton of Geneva, CHE, 2017. International World
Wide Web Conferences Steering Committee. https:
//doi.org/10.1145/3038912.3052557.

[92] Daniel Zhang. How to test whether a car’s infotainment
system is smooth? 11 car infotainment systems’ smooth-
ness comparison, featuring dongchedi’s self-developed
visual algorithm!, 11 2023. https://www.dongched
i.com/video/7299753097704768015.

[93] Jianwei Zheng, Zhenhua Li, Feng Qian, Wei Liu, Hao
Lin, Yunhao Liu, Tianyin Xu, Nan Zhang, Ju Wang,
and Cang Zhang. Rethinking process management for
interactive mobile systems. In Proceedings of the 30th
Annual International Conference on Mobile Computing
and Networking, ACM MobiCom ’24, page 215–229,
New York, NY, USA, 2024. Association for Computing
Machinery. https://doi.org/10.1145/3636534.
3649357.

[94] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi.
Event-based scheduling for energy-efficient qos (eqos)
in mobile web applications. In 2015 IEEE 21st In-
ternational Symposium on High Performance Com-
puter Architecture (HPCA), pages 137–149, 2015.
https://doi.org/10.1109/HPCA.2015.7056028.

710 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.1109/HPCA51647.2021.00065
https://doi.org/10.1109/HPCA51647.2021.00065
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1016/j.cag.2008.07.005
https://doi.org/10.1016/j.cag.2008.07.005
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/223982.224449
https://doi.org/10.1145/223982.224449
https://groups.google.com/g/skia-discuss/c/Pd92csb5o4o/m/QlPj80PqAQAJ?utm_medium=email&utm_source=footer
https://groups.google.com/g/skia-discuss/c/Pd92csb5o4o/m/QlPj80PqAQAJ?utm_medium=email&utm_source=footer
https://groups.google.com/g/skia-discuss/c/Pd92csb5o4o/m/QlPj80PqAQAJ?utm_medium=email&utm_source=footer
https://learn.microsoft.com/en-us/windows/win32/gdi/windows-gdi
https://learn.microsoft.com/en-us/windows/win32/gdi/windows-gdi
https://learn.microsoft.com/en-us/windows/win32/gdi/windows-gdi
https://doi.org/10.1145/3669940.3707235
https://doi.org/10.1145/3669940.3707235
https://doi.org/10.1145/1465611.1465619
https://doi.org/10.1145/1465611.1465619
https://doi.org/10.1145/2307636.2307648
https://doi.org/10.1145/2307636.2307648
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-app
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-app
https://www.techtarget.com/searchsoftwarequality/definition/Web-application-Web-app
https://doi.org/10.1145/3038912.3052557
https://doi.org/10.1145/3038912.3052557
https://www.dongchedi.com/video/7299753097704768015
https://www.dongchedi.com/video/7299753097704768015
https://doi.org/10.1145/3636534.3649357
https://doi.org/10.1145/3636534.3649357
https://doi.org/10.1109/HPCA.2015.7056028
https://doi.org/10.1109/HPCA.2015.7056028

	Introduction
	OS Rendering Service Explained
	Render Tree
	2D Engine
	GPU API

	The Need for Scalable Rendering
	Increased Rendering Loads in the Wild
	State-of-the-Art Efforts
	The Breakdown of Rendering Workloads

	Scalable Rendering
	Parallelism with Out-of-Order Execution
	Design Overview

	Detailed Design
	Self-Contained Tasks
	Overlapping Relations
	Stateful and Stateless APIs
	Spade2D Drawing Engine

	Evaluation
	Implementation and Setup
	Theoretical Speedup Analysis
	Frame Rate Improvement
	Multi-Core Utilization
	Power Consumption Reduction
	Rendering Scalability
	Costs and Discussions

	Related Work
	Conclusion

