
This paper is included in the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-47-2

Open access to the Proceedings of the 19th USENIX Symposium
on Operating Systems Design and Implementation is sponsored by

XSched: Preemptive Scheduling for Diverse XPUs
Weihang Shen, Mingcong Han, Jialong Liu, Rong Chen, and Haibo Chen,
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

https://www.usenix.org/conference/osdi25/presentation/shen-weihang

XSched: Preemptive Scheduling for Diverse XPUs

Weihang Shen, Mingcong Han, Jialong Liu, Rong Chen∗, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract
XPUs, such as GPUs, NPUs, ASICs, and FPGAs, lack flex-
ible scheduling capabilities, failing to meet rich application
requirements (e.g., priority and fairness) in multitasking envi-
ronments. This paper presents XSched, a scheduling frame-
work that enables preemptive scheduling on diverse XPUs
with flexible policies. XSched provides unified interfaces
for scheduling XPU tasks through a preemptible command
queue abstraction (XQueue). The key challenge in imple-
menting the abstraction is adapting to XPUs with diverse and
evolving hardware capabilities and software stacks. XSched
proposes a multi-level hardware model that enables mature,
advanced XPUs to achieve optimal scheduling performance
while maintaining compatibility with emerging, wimpy XPUs.
To demonstrate the generalizability of XSched, we adapted it
to ten XPUs of different types, brands, and generations across
seven software platforms and implemented two hardware-
agnostic scheduling policies. We further evaluated XSched
through three case studies of multitasking workloads on
XPUs. XSched effectively achieves various scheduling objec-
tives using its efficient and flexible preemption mechanisms.

1 Introduction
“Providing education for all without discrimination;

Teaching students in accordance with their aptitudes.”
— Confucius, The Analects

XPUs—referring to various accelerators, such as GPUs,
NPUs, ASICs, and FPGAs—are extensively deployed in
emerging systems, from cloud to edge, to offload intensive
computations from host CPUs [52, 56, 64, 138]. These sys-
tems often involve multiple concurrent XPU tasks [26, 53,
102, 110, 121, 130]. Sharing XPUs among these tasks is a
common practice to improve hardware efficiency and an in-
evitable choice for resource-constrained platforms. For ex-
ample, cloud providers share a single GPU among multiple
tenants to reduce costs [35, 131, 136], while edge platforms
run multiple AI models on a single NPU [53, 68, 97, 105].

Rich application scenarios pose diverse requirements for
XPU task scheduling. For instance, real-time systems (e.g.,
autonomous vehicles) need immediate responses for critical
XPU tasks [2, 51, 134], while cloud providers prioritize fair-
ness among tenants and maximum hardware utilization [126].
Although XPUs accelerate individual tasks effectively, they
∗Corresponding author (rongchen@sjtu.edu.cn) and project leader

often struggle to meet application requirements under mul-
titasking workloads due to inadequate scheduling support.
The hardware scheduler baked into XPUs adopts either non-
preemptive first-come, first-served (FCFS) scheduling (e.g.,
Intel NPUs [45], NVIDIA and AMD GPUs [75, 99]) or sim-
ple round-robin (RR) scheduling (e.g., multi-process GPU
tasks [3]). This may lead to unfairness and priority inver-
sions [60, 61, 100, 103, 113], which manifest as service-level
objective (SLO) violations in data centers or missed deadlines
in latency-critical autonomous systems. For example, in a
video conferencing application (see §8), the tail latency of a
real-time fake-background task increases by over 20× when
running alongside a speech-to-text task on an Intel NPU [45].

Previous studies have proposed several software-based pre-
emptive scheduling systems [16, 19, 39, 129] to bypass in-
adequate hardware schedulers, enabling the host CPU con-
trol over XPU task scheduling.1 However, current solutions
show a serious lack of generalizability when deployed across
diverse XPUs of different types, brands, and generations,
commonly found in modern cloud and edge computing plat-
forms [26, 45, 53, 85, 126]. Portability: Existing preemptive
scheduling systems [12, 19, 39, 129] are designed specifi-
cally for certain GPUs, making it challenging to port them
to other accelerators like NPUs, ASICs, and FPGAs, or even
to GPUs from different manufacturers and architectures [39].
To our knowledge, no software-based preemptive scheduling
solutions exist for NPUs and ASICs. Uniformity: The lack
of a unified abstraction for scheduling tasks on XPUs hin-
ders the development of hardware-agnostic policies tailored
to different application requirements. This also creates bar-
riers to scheduling tasks on heterogeneous hardware with
multiple XPUs, which is becoming increasingly popular in
AI PCs [45] and autonomous devices [85]. Evolvability: The
tight coupling between software and hardware implementa-
tions prevents them from evolving independently. This makes
it difficult for existing scheduling systems to quickly integrate
newly released or undocumented hardware features while
flexibly excluding obsolete or disabled ones.

The root cause of the challenges in implementing general
preemptive XPU scheduling is twofold. First, XPUs have
significant and evolving differences in hardware capabilities.
For example, while most systems rely on the general-purpose
programmability of GPUs for preemptive scheduling through

1This paper also considers preemption from the perspective of tasks, which
typically comprises hundreds or thousands of XPU commands, e.g., kernels.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 671

rongchen@sjtu.edu.cn

code transformation [12, 19, 39, 129], mainstream NPUs [82]
and ASICs [89, 90] are non-programmable. Additionally,
prior work [123] uses a specific ioctl to control timeslices
of NVIDIA Tegra embedded GPUs [86], which is not avail-
able in desktop or server GPUs. Second, the software stacks
of XPUs (e.g., user/kernel-mode drivers and firmware) are
notoriously complex and highly customized. This often leads
scheduling systems—both their mechanisms and policies—to
become tightly coupled with specific details of the XPU. For
example, TimeGraph [60] only works on Direct Rendering
Infrastructure (DRI) drivers, and REEF [39] is integrated with
the runtime and driver of AMD GPUs.

Key idea. We propose establishing a unified abstraction with
a multi-level hardware model for preemptive XPU scheduling,
which effectively conceals the differences and complexities
in hardware capabilities and software stacks, ensuring gener-
alizability. The abstraction provides unified interfaces for task
scheduling across diverse XPUs, enabling hardware-agnostic
policies and cooperation between XPUs. The model defines
support levels aligning with fundamental requirements of
preemptive scheduling, allowing developers to seamlessly im-
plement one or more levels based on the hardware capabilities
of each XPU and agilely evolve as capabilities change.

Our approach. We introduce XQueue, a preemptible com-
mand queue abstraction designed for XPU task scheduling.
XQueue is analogous to CPU thread abstraction, as illustrated
in Fig. 1. Each XQueue hosts an XPU task, which consists of a
sequence of commands—such as GPU kernels, memory-copy
operations, tensor operators, and other XPU-specific opera-
tions. An XPU functions as a worker, consuming commands
from multiple XQueues. Task preemption is accomplished by
switching between these XQueues. XQueue offers simple yet
powerful interfaces for preemptive scheduling, making it easy
to implement various hardware-agnostic policies, like fixed
priority [74] and bandwidth partition [1].

We propose a multi-level hardware model to implement the
XQueue abstraction on diverse XPUs. The model decouples
preemption mechanisms from XPU-specific details and cate-
gorizes them into three levels. Level 1 (Lv1) allows XPUs to
preempt (pending) commands that have been submitted but
not launched. Level 2 (Lv2) extends Lv1 by enabling XPUs to
preempt (in-flight) commands that have been launched but not
executed. Level 3 (Lv3) builds upon Lv2 by allowing XPUs
to preempt (running) commands that are being executed.

Based on our unified abstraction and multi-level hardware
model, we implement XSched, a preemptive XPU scheduling
framework. XSched is designed to be both efficient in schedul-
ing XPU tasks and transparent to applications. For efficiency,
XSched launches XPU commands asynchronously but pro-
gressively to pipeline command launch and execution for low
task latency, while keeping most of the commands under host
control for scheduling. For transparency, XSched provides a
shim layer that intercepts commands from applications using

Thread

P1 P2 P2P1

XQueue

CommandInstruction Process

CPU XPU

submitted

completedT1 T2 T3 T4 Q1 Q2 Q4Q3

GPU NPU ASIC FPGA ...

scheduling scheduling

Fig. 1: A unified abstraction for preemptive XPU scheduling.

APIs of the original platform and forwards them to XSched.
Moreover, we devise two new techniques for Lv2 preemptive
scheduling on NVIDIA GPUs [128] and Intel NPUs [45],
as well as one for Lv3 on NVIDIA GPUs released after the
Pascal architecture [79].

To showcase the generalizability of XSched, we adapted
it to different types, brands, and generations of XPUs across
seven software platforms: NVIDIA (Kepler, Volta, and Am-
pere) [128], AMD [127], and Intel [45] GPUs; Ascend [43],
Intel [45], and NVIDIA [82] NPUs; NVIDIA (PVA [90] and
OFA [89]) ASICs; and Xilinx [4] FPGAs. Thanks to the multi-
level hardware model, XSched makes it possible (even easy)
to enable preemptive scheduling on emerging, wimpy XPUs,
while fully leveraging the capabilities of mature, advanced
XPUs. XSched is the first software-based system to support
preemptive scheduling on these NPUs and ASICs. The Lv1
implementations require just 214–841 lines of C++ code and
can be shared across XPUs supported by the same software
platform. Additionally, we implemented Lv2 and Lv3 pre-
emption on five and three categories of XPUs, respectively,
using our new techniques with specific hardware capabilities.

We implemented two hardware-agnostic scheduling poli-
cies based on our unified abstraction and evaluated them on
ten distinct XPUs against their native hardware schedulers.
For the fixed priority policy [74], XSched reduces the tail
latency (99th percentile, P99) of high-priority tasks by up to
2.10×. For the bandwidth partition policy [1], XSched parti-
tions the XPU according to the throughput assigned for each
task, with an acceptable overhead (1.5% on average). XSched
also enables cooperative scheduling among XPUs, reducing
the P99 latency of foreground NPU tasks by up to 2.63×,
when running background tasks on both NPU and GPU.

We further evaluated XSched through three case studies.
In a multi-tenant cloud scenario hosting two containers on
a single GPU, XSched harvests 2.74× more GPU resources
than TGS [130] while maintaining production container per-
formance. In a video-conferencing application that runs two
tasks on a single Intel NPU, XSched reduces the P99 frame
latency by 9.26×. For multi-model inference serving, XSched
reduces the P99 inference latency in Triton [94], a production-
level system, by 30.0%, and achieves performance compara-
ble to Paella [75], a state-of-the-art hardware-specific solution.
Integrating XSched requires only a dozen lines of code.

672 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Background and Motivation
2.1 Characterizing XPU Tasks

The XPU functions as a peripheral device that is managed
by the host CPU. Despite the diversity of XPU architectures,
runtimes, and programming models, XPU tasks share a com-
mon execution pattern. Typically, an XPU task consists of
a sequence of commands, including GPU kernels, memory-
copy operations, tensor operators on NPUs and TPUs, color
space conversions on image-processing ASICs, and other
XPU-specific operations. These commands execute sequen-
tially based on data dependencies [22, 39, 75]. Additionally,
auxiliary commands, such as CUDA and OpenCL events, are
available to monitor command execution on XPUs. For each
XPU task, the host CPU launches all its commands and then
uses synchronization APIs to wait for their completion, since
commands run asynchronously with it. Take a DNN inference
task on a GPU as an example: the host CPU first initiates a
memory-copy command to load the input into GPU memory.
Then, it launches hundreds or thousands of GPU kernel com-
mands to perform the inference layer by layer, followed by
a memory-copy command to retrieve the results. These as-
sumptions about XPUs and their tasks apply to most modern
accelerators, including GPUs, NPUs, ASICs, and FPGAs.

2.2 Necessity of Preemptive Task Scheduling

XPUs are widely deployed across emerging systems—from
cloud to edge—to offload intensive computations from host
CPUs. Sharing XPU among multiple tasks enhances hardware
utilization in cloud platforms and is essential for resource-
constrained edge and mobile devices. For example, cloud
providers commonly use a single GPU to serve multiple ten-
ants or serverless function instances [26, 102, 130]. In au-
tonomous vehicles, various algorithms, including perception,
planning, and decision-making, are deployed on one TPU
or ASIC [110]. On smartphones, both foreground and back-
ground AI tasks, like real-time voice input and photo indexing,
run simultaneously on one NPU [53].

The demand for multi-task scheduling varies across differ-
ent application scenarios. For instance, industrial automation
applications like robotics and autonomous driving require
low and deterministic latency [39, 41, 68]. Datacenters must
ensure the service-level objective (SLO) [9, 36, 130, 139]
and fairness among tenants [17]. Meanwhile, mobile de-
vices like smartphones and AI PCs prioritize power effi-
ciency [11, 31, 112] and user responsiveness [53]. Task pre-
emption is a crucial mechanism to meet these diverse schedul-
ing requirements [19, 22, 39, 57, 73, 101, 139], as it can sig-
nificantly enhance system responsiveness and fairness while
providing flexibility in scheduling.

2.3 Solution 1: XPU Hardware Scheduling

Lack of preemption support. Since XPUs typically func-
tion as peripherals, the host CPU launches commands se-

quentially to XPUs through a first-in, first-out (FIFO) ring
buffer [39, 60]. This leads to tasks being naturally sched-
uled on a first-come, first-served (FCFS) basis. The non-
preemptive policy is deeply embedded in the hardware,
firmware, and drivers of various XPUs, including NVIDIA
and AMD GPUs [39, 75, 109, 129], TPUs [22, 77, 106],
Ascend and Intel NPUs [43, 45], and Jetson embedded
ASICs [85]. Consequently, urgent tasks can be blocked by less
critical ones, leading to priority inversions [28, 60, 129] and
unpredictable task latencies. For example, we observed on dif-
ferent XPUs that sharing an XPU with just a background task
can increase the tail latency of the foreground task by up to
2.19× (see §7.2). These issues are unacceptable in real-time
scenarios like autonomous driving [2, 51, 134] and network
packet processing [33, 59]. The non-preemptive policy also
causes unfairness among multiple tenants in cloud environ-
ments [35, 136]. While some modern GPUs incorporate a
simple time-sliced round-robin (RR) policy to serve tasks
from different processes, latency-sensitive tasks still suffer
from unpredictable performance degradation as the number
of concurrent tasks increases [123].

Hard to support flexible policy. Hardware scheduling is
restricted by its elementary, fixed policies. Due to real-time
constraints and limited on-chip resources [133], native hard-
ware schedulers cannot accommodate sophisticated policies.
They also lack adequate runtime feedback and task informa-
tion (e.g., priority and deadline), which are essential for im-
plementing workload-aware scheduling strategies like those
in SHEPHERD [139] and Paella [75]. Furthermore, since the
policy is baked into the hardware or firmware, it cannot adapt
agilely to changing workloads and scheduling requirements.

2.4 Solution 2: Host-managed XPU Scheduling
Scheduling XPU tasks on the host CPU is a preferred solution
as it offers enhanced flexibility and customizability. Users can
select from various scheduling policies tailored to application
requirements, akin to traditional CPU thread scheduling.

Design for specific XPUs. Prior work proposed several host-
managed scheduling approaches to bypass the inefficient XPU
hardware scheduler and take over scheduling on the host CPU.
However, these solutions lack generalizability due to their
reliance on specific hardware capabilities. For example, Eff-
iSha [19] and FLEP [129] enable preemption through GPU
kernel transformation, which requires general-purpose pro-
grammability. A recent work [123] uses a specific ioctl
interface to control timeslices of NVIDIA Tegra embedded
GPUs. REEF [39] and a prior work [66] depend on a micro-
controller function on AMD or ARM GPUs to reset compute
units. Moreover, these solutions are tightly coupled with XPU-
specific software stacks, further limiting their generalizability.
For example, REEF [39] is integrated with the AMD GPU
driver and compiler. TimeGraph [60] only works with drivers
built on the Direct Rendering Infrastructure (DRI).

XPU-specific solutions bring issues with portability, uni-

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 673

formity, and evolvability, especially for users and developers
of heterogeneous cloud and edge platforms that host different
types, brands, and generations of XPUs. First, these solutions
are difficult to port between different XPU types or across
vendors and architectures. Second, they lack a unified ab-
straction for task scheduling across different XPUs, which
impedes the development of hardware-agnostic policies and
cooperative scheduling on heterogeneous platforms like Intel
Core Ultra [45] and NVIDIA Jetson Orin [85]. Third, these
solutions struggle to evolve with hardware changes, whether
incorporating new features (e.g., interrupts on NVIDIA GPUs
since Pascal architecture [75]) or handling deprecated ones.

Lack of unified abstraction and hardware model. The
major challenge towards general solutions is the lack of uni-
fied abstraction and appropriate hardware models for diverse
XPUs. A class of traditional hardware, like CPUs and disks,
can be uniformly managed by the OS, regardless of their dif-
ferent architectures or manufacturers, as they share similar
hardware capabilities that a general hardware model can ade-
quately describe. For example, CPUs offer interrupts and priv-
ilege modes, while disks implement block device interfaces.
Based on these models, the OS provides unified abstractions,
like threads and files, to assist users in managing and utilizing
the same class of devices.

For XPU scheduling, the hardware model conceals the
complexity and heterogeneity of XPUs. Supporting new hard-
ware requires only implementing the hardware model inter-
faces. Meanwhile, a unified abstraction for XPU tasks en-
ables hardware-agnostic and cooperative scheduling policies
by decoupling policies from task preemption mechanisms
and providing a uniform view across different XPUs. The ab-
straction and hardware model keep the OS design clean and
flexible to evolve. However, XPUs currently lack such unified
abstraction and hardware model due to their significant and
evolving differences in hardware capabilities.

3 The XQueue Abstraction

Opportunity. Despite the significant and evolving differ-
ences in their hardware capabilities and software stacks,
XPU drivers in different software platforms generally provide
queue-like programming model and interfaces, which we col-
lectively refer to as hardware queue (hwQueue). Examples
of these include GPU streams in CUDA [93] and HIP [5], ZE
command queues in LevelZero [47], MTL command queues
in Metal [6], ACL runtime streams in Ascend [43], CL com-
mand queues in OpenCL [62], and VPI streams for vision
processing ASICs [91].

3.1 Preemptible Command Queue
We propose XQueue, a preemptible command queue abstrac-
tion for preemptive scheduling on diverse XPUs. XQueue is a
queue of XPU commands that are executed sequentially in the
order of submission. When an application process runs a task

Table 1: Interfaces of the XQueue abstraction.

XQueue Interface Description

submit(xq,cmd) Submit a command (cmd) to XQueue (xq)
wait(xq,cmd) Wait for a given cmd in xq to complete
suspend(xq) Suspend xq to pause task execution
resume(xq) Resume xq to continue task execution

(e.g., DNN inference) on the XPU, it instantiates the task into
a sequence of commands (e.g., GPU kernels, memory-copy
operations, and tensor operators) and submits them to the
XQueue in order. These commands execute asynchronously
and sequentially on the XPU. The process can wait for the
commands in an XQueue to complete. Note that a process can
have multiple XQueues and submit different tasks to them.

This abstraction is familiar to developers, since many XPUs
have already adopted it. There is no semantic gap between
XQueue and hwQueue in task execution, allowing XQueue to
be seamlessly integrated with existing applications. XQueue
differs from hwQueue in how it schedules submitted com-
mands of a task. hwQueue is non-preemptible [19, 75, 129],
meaning that once commands are submitted to the hwQueue,
there is no practical way to pause them. In contrast, com-
mands submitted to the XQueue can be preempted by the host
CPU. Specifically, the host can suspend an XQueue to pause
the running XPU task, yielding the XPU to other tasks. It
can also resume the XQueue to continue task execution. This
scheduling process is transparent to applications, which still
perceive normal execution behavior of the XPU.

The XQueue abstraction is analogous to CPU thread ab-
straction, as illustrated in Fig. 1. An XPU task is a sequence
of commands executed by an XQueue, while a CPU task is
a sequence of instructions executed by a CPU thread. Both
XPU tasks and CPU tasks are scheduled by suspending and re-
suming their corresponding XQueues and threads.2 Moreover,
multiple XQueues can run concurrently to achieve higher
hardware utilization and overall throughput if the XPU sup-
ports spatial multiplexing mechanisms like GPU streams,
which is akin to CPU hyper-threading. In summary, the
XQueue abstraction preserves the programming semantics
of the hwQueue, while providing familiar thread-like pre-
emptive scheduling capabilities, which facilitates application
compatibility and simplifies unified XPU task scheduling.

Interfaces. Table 1 lists the interfaces of XQueue. The
XQueue provides a preemptible command queue abstraction
for XPU task execution and preemptive scheduling. It of-
fers submit and wait interfaces that enable applications
to submit commands for asynchronous execution and wait
for their completion on XPUs. Additionally, the XQueue
provides suspend and resume interfaces, allowing the
scheduler to control whether its commands can be executed
on the XPU. These interfaces hide the implementation de-

2The hwQueue functions similarly to a kernel thread in CPU scheduling,
where the actual task scheduling occurs (Fig. 1 omits this detail for brevity).

674 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

fixed priority policy

void schedule(xq_status)

1 xqs = get_ready_xqueues(xq_status)

2 highest = find_highest_priority(xqs)

schedule ready XQueues with highest priority

3 for xq in xqs

4 if get_priority(xq) == highest then

5 resume(xq) # resume highest-priority XQueue

6 else

7 suspend(xq) # suspend others

bandwidth partition policy

void schedule(xq_status)

8 current = get_running_xqueue(xq_status)

schedule next XQueue if timeslice expires

9 if timeslice_is_expired(current) then

10 next = get_next_ready_xqueue(xq_status)

11 suspend(current) # suspend current XQueue

12 resume(next) # resume next XQueue

13 timeslice = get_ratio(next) × QUANTUM

call schedule() when timeout

14 add_timer(timeslice)

Fig. 2: Pseudocode of fixed-priority and bandwidth-partition
scheduling policy implementations based on XQueue interfaces.

tails of preemption mechanisms on diverse XPUs, enabling
hardware-agnostic scheduling policies.

3.2 Scheduling Policy

XQueue interfaces are flexible for implementing various pre-
emptive scheduling policies, such as fixed priority (FP) [74],
shortest remaining time first (SRTF) [114], earliest deadline
first (EDF) [74], and bandwidth partition (BP) [1]. Fig. 2
demonstrates the implementation of fixed priority and band-
width partition scheduling using XQueue. In the fixed priority
policy, each XQueue is assigned a priority that reflects the
urgency of its task. The scheduling policy is triggered when
XQueue status (xq_status) changes, such as when a new
command arrives (making the XQueue ready), or when all
commands complete (making the XQueue idle). The policy
then finds and resumes ready XQueues with the highest pri-
ority while suspending others. This allows urgent tasks to
preempt less critical ones. In the bandwidth partition pol-
icy, each XQueue is assigned a timeslice proportional to its
allocated bandwidth. When a timeslice expires, the current
XQueue is suspended, and the next one is resumed in a round-
robin order. A timer is set to trigger rescheduling when the
timeslice runs out. This policy ensures that tasks share the
XPU utilization according to their specified ratios.

4 Multi-level Hardware Model
XQueue provides a unified abstraction for preemptive XPU
scheduling. The hardware model plays a crucial role in im-
plementing XQueue on different XPUs by decoupling the
preemption mechanism from XPU-specific details. However,
embracing both portability and high preemption performance
presents a significant challenge. For instance, if the model

interrupt

XQueue

XPU

submitted

completed

preemption running

in-flight

pending

deactivate

block

level
1

level
2

level
3

scheduling

hwQueue

preempted run-to-complete

launch

execute

Command

Fig. 3: Comparison of three preemption levels for XPU scheduling.

defines a preemption capability specific to certain XPUs to
achieve optimal performance, it may not be portable to other
XPUs that cannot support this capability.

Inspired by transaction isolation levels [13], we introduce
a multi-level hardware model for preemptive scheduling on
diverse XPUs. We characterize three levels of task preemp-
tion from the perspective of command states, as illustrated
in Fig. 3. Each preemption level targets commands in one
of three states: pending (ready to be launched3), in-flight
(launched but not executed), or running (currently being exe-
cuted). For each level, we identify the necessary hardware ca-
pabilities and interfaces to implement task preemption. Higher
levels require more advanced capabilities for finer-grained
preemption, while lower levels need only basic capabilities,
making them applicable to a broader range of XPUs.

4.1 Level 1: Pending Command Preemption
Level 1 (Lv1) preemption targets commands in the pending
state before launch. Once a command is launched, it is en-
queued to the hardware queue (hwQueue), becoming in-flight
and escaping host control. Therefore, the host can preempt
pending commands by simply blocking their launch. Lv1 only
requires capabilities to launch and synchronize commands,
which all XPUs provide. The preemption latency is the total
execution time of all launched commands, as shown in Fig. 3.

4.2 Level 2: In-flight Command Preemption
Unlike Lv1, which passively waits for in-flight commands
to complete, Level 2 (Lv2) preemption can actively prevent
in-flight commands from executing. This greatly reduces the
preemption latency to just the execution time of the currently
running command, as shown in Fig. 3. The key capability is
to deactivate and reactivate the hwQueue. Once deactivated,
no new commands from this hwQueue will execute until reac-
tivation, enabling Lv2 preemption. This deactivation can be
implemented by stalling-based or flushing-based approaches.

Stalling-based deactivation. The hwQueue can be deac-
tivated by stalling command dequeuing, which prevents
new commands from being fetched for execution. This ap-
proach requires advanced XPUs with integrated microcon-

3Launch refers to enqueuing a command to a hwQueue, after which launched
commands escape host control—unlike the submit interface of XQueue.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 675

Table 2: Interfaces of the multi-level XPU hardware model.

Level Interface Description

Lv1
{ launch(hwq,cmd) Enqueue a given command (cmd) to a hwQueue (hwq) for executing it sequentially and asynchronously

sync(hwq,cmd) Wait for a given cmd in a hwq to complete

Lv2
{ deactivate(hwq) Deactivate a given hwq to prevent all its commands from being selected for execution

reactivate(hwq) Reactivate a given hwq to allow all its commands to be selected for execution

Lv3
{ interrupt(hwq) Interrupt the running command of a given hwq

restore(hwq) Restore the interrupted command of a given hwq

XPU drivers

XPreempt Lib

Application Process

XAL Lib

XShim Lib

XPreempt lib

Application process

XPU drivers

XAL lib

XShim lib

XQueue

Agent

suspend
/resume

su
b
m
it

launch

1

2

5

XScheduler
daemon

Policy

XQueue
Status

trigger

XCLI

hints6

4

sched
ops

events
3

XPU-specific Common Function Call IPC

Command

Fig. 4: Architecture and workflow of XSched.

trollers [30, 44, 46, 55, 72] that can selectively dequeue com-
mands based on their attributes. The host can either instruct
the microcontroller directly or modify command attributes to
control dequeuing, achieving deactivation and reactivation.

Flushing-based deactivation. Another approach is to flush
all in-flight commands in the hwQueue and relaunch them
upon reactivation. Prior work [19, 39, 129] proposes that
commands could be retrofitted to flush themselves, which
solely requires the commands to be programmable. This ap-
proach works on all programmable XPUs, e.g., GPUs and
many NPUs [43].

4.3 Level 3: Running Command Preemption
Lv2 preemption still requires waiting for the running com-
mand to complete, which leads to unpredictable preemp-
tion latency and may not meet strict real-time requirements
for applications like automation [2, 51, 134] and network-
ing [33, 59]. In contrast, Level 3 (Lv3) preemption targets
the running command, aiming to achieve ultra-low and sta-
ble preemption latency, as illustrated in Fig. 3. This requires
hardware capabilities that can interrupt and restore the run-
ning command. Once interrupted by the host, the running
command is instantly paused and preempted for the execution
of another command. The interrupted command is later re-
stored to continue its execution. These capabilities are already
present in modern GPUs [39, 44, 79].

4.4 Hardware Model Interfaces
The hardware model hides XPU hardware and driver differ-
ences through multi-level interfaces, as listed in Table 2. The

three levels form a hierarchical design. The higher level in-
troduces advanced preemption functionality and relies on the
implementation of all lower levels to function properly. Lv1
interfaces consist of native hwQueue operations: launch
for asynchronous command execution and sync for com-
mand synchronization. Lv2 interfaces include deactivate
and reactivate to control the execution of in-flight com-
mands in the hwQueue. Lv3 further introduces interrupt
to instantly pause the running command and restore to
resume the interrupted command.

5 The XSched Framework
5.1 Overview

We present XSched, a preemptive scheduling framework that
implements XQueue based on the multi-level hardware model
and supports diverse XPUs. As illustrated in Fig. 4, XSched
consists of four key components: XPU shim (XShim), XPU
task preemption (XPreempt), XPU adapter layer (XAL), and
scheduler. XShim, XPreempt, and XAL are three dynamically
linked libraries that are preloaded into the application process,
while the scheduler runs as a shared system service daemon.

XShim. Typically, applications call driver APIs to launch XPU
commands, with task scheduling handled entirely by the un-
derlying hardware. The XShim library changes this workflow
by intercepting XPU driver API calls and redirecting com-
mands to the XQueue (➀ in Fig. 4). The approach provides
transparency, allowing applications to run on XSched without
modifications. The XShim library can be reused across XPUs
that share the same driver. Note that the XShim library is op-
tional when porting XSched to a new XPU, since applications
can directly call XQueue interfaces instead.

XPreempt. The XPreempt library implements the interfaces of
XQueue abstraction listed in Table 1, including submit and
wait to support task execution, and suspend and resume
to schedule XQueues. Commands submitted to the XQueue
are buffered and launched to the XPU at a proper time (➁ in
Fig. 4) to achieve task preemption. The XPreempt library con-
tains an agent that watches the state of XQueue (e.g., ready or
idle) and generates scheduling events to notify the scheduler
(➂ in Fig. 4) via inter-process communication (IPC). The
agent is also responsible for applying the scheduling opera-
tions (e.g., suspend or resume an XQueue) received from the
scheduler (➄ in Fig. 4).

676 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 25

 50

 75

 100

G
V10

0

K40
m

M
I5

0

Arc
 iG

PU

N
PU

37
20

91
0b

N
VD

LA
PVA

O
FA

VU
9P

O
v
e
rh

e
a
d
 (

%
)

1
5
1
%

 0

 25

 50

 75

 100

M
ob

ile
N
et

R
es

N
et

C
FD

N
W

LU
D

Pat
hf

in
de

r

O
v
e

rh
e

a
d

 (
%

)

GTX 1060

RTX 2070

RTX 3080

Fig. 5: The performance overhead of synchronous execution (a) on
various XPUs (GPUs/NPUs: ResNet-152 [40], OFA: Stereo Dispar-
ity [88], PVA: Gaussian Filter [88], VU9P: Vector Addition [132],
and (b) using various deep learning (DL) [40, 42] and scientific
computing [18] workloads on three NVIDIA GPUs.

XAL. The XAL library implements the multi-level hardware
model interfaces (listed in Table 2) by calling XPU driver
APIs. Note that only Lv1 interfaces are mandatory for sup-
porting a new XPU, while Lv2 and Lv3 interfaces are optional
for better performance. Like XShim, the Lv1 implementation
can be reused across XPUs sharing the same driver.

XScheduler. The scheduler runs as a daemon process, coor-
dinating all XQueues from different processes. It monitors
global XQueue status through agent-reported events (➂ in
Fig. 4), and invokes the scheduling policy to make decisions
when status changes occur. The daemon performs these deci-
sions by sending scheduling operations to agents (➃ in Fig. 4).
The policy in XScheduler is modular and customizable to suit
various workloads. Users can change the policy and give
scheduling hints (e.g., priority or bandwidth) through XCLI,
a command-line tool (➅ in Fig. 4).

5.2 XPreempt Design

The XPreempt library implements the preemptible XQueue
abstraction using interfaces of our multi-level hardware model
provided by the XAL, as shown in Fig. 6. Since the model
conceals hardware details, it is challenging for XPreempt to
enforce task preemption efficiently, particularly when using
only Lv1 interfaces. This is because once commands are
launched, they move beyond host control, and the scheduler
can only passively wait for their completion.

Strawman: synchronous command execution. A straight-
forward solution [19, 61, 103, 111, 129] is to synchronize
the XPU and block the host CPU after launching each com-
mand, preventing excess commands from being enqueued
to the hwQueue. Consequently, the task is effectively pre-
empted by simply blocking the host thread, and the preemp-
tion completes right after the currently running command fin-
ishes. However, this approach is highly inefficient for modern
XPUs since it ignores their asynchronous nature. Synchro-
nization is costly due to the communication latency between
the CPU and the peripheral XPU, as well as driver overhead.
More importantly, modern XPUs utilize asynchronous exe-
cution to pipeline command launching and execution, hiding
the launching latency. Forcing synchronization creates fre-
quent pipeline stalls (bubbles) that severely reduce command

XQueue APIs

void submit(xq, cmd)

1 push_pending_cmd(xq, cmd)

void wait(xq, cmd)

2 if find_pending_cmd(xq, cmd) then

3 ... # wait to launch cmd

4 sync(xq.hwq, cmd) # sync for completion

void suspend(xq)

5 xq.mode = SUSPENDED # suspend XQueue

6 if LEVEL >= 2 then deactivate(xq.hwq)

7 if LEVEL == 3 then interrupt(xq.hwq)

void resume(xq)

8 xq.mode = RUNNING # resume XQueue

9 if LEVEL >= 2 then reactivate(xq.hwq)

10 if LEVEL == 3 then restore(xq.hwq)

progressive command launching

void worker_thread(xq)

11 while TRUE

12 if get_inflight_cnt(xq) >= THRESHOLD then

wait until half of launched cmds complete

13 mid = get_inflight_middle(xq)

14 sync(xq.hwq, mid) # sync for completion

15 pop_completed_cmds(xq)

16 cmd = pop_pending_cmd(xq)

17 while xq.mode == SUSPENDED

18 pause() # pause cmd launching

19 launch(xq.hwq, cmd) # launch cmd to hwqueue

20 push_inflight_cmd(cmd)

Fig. 6: Pseudocode of XQueue APIs and progressive command
launching implementation in XPreempt.

throughput. As shown in Fig. 5 (a), synchronous command
execution imposes substantial performance overhead on dif-
ferent XPUs, ranging from 8.2% to 151.3%. Furthermore,
this overhead grows larger with more advanced XPUs, as
pipeline stalls consume a greater proportion of time when
XPU command execution speed increases. Fig. 5 (b) shows
that the performance overhead increases by 3.04× on average
when upgrading from GTX 1060 to RTX 3080.

Our solution: progressive command launching. Inspired by
our prior work [39], XPreempt introduces a progressive com-
mand launching mechanism to balance preemption latency
and runtime overhead, as shown in Fig. 6. This approach
maintains a small number of in-flight commands, preventing
pipeline stalls while enabling fine-grained preemption. When
suspending the XQueue, the scheduler waits only for these
few in-flight commands to complete, rather than all submitted
commands (usually hundreds of commands).

Each XQueue contains a worker thread, a pending com-
mand buffer, an in-flight command log, and a corresponding
hwQueue. When a command is submitted to the XQueue, it
is first pushed into the pending command buffer (Line 1). The
worker thread then progressively launches it to the hwQueue
and records these in-flight commands in the log. Specifically,
the worker checks the count of in-flight commands against
a user-defined threshold (Line 12). If the count exceeds this

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 677

threshold, the worker invokes sync to wait for half of in-
flight commands to complete (Lines 13–15). This threshold
can be adjusted based on workloads to trade off preemption la-
tency and runtime overhead. When the XQueue is suspended,
the worker pauses to block new command launches (Lines
17–18). Once the XQueue is resumed, the worker continues
to launch pending commands (Lines 19–20).

Lv2 and Lv3 preemption. For XPUs supporting Lv2 inter-
faces, XPreempt additionally deactivates the hwQueue after
the worker is paused to accelerate task preemption when
suspending the XQueue. Also, the hwQueue is reactivated
when resuming. For XPUs supporting Lv3 interfaces, XPre-
empt further interrupts the currently running command in
the hwQueue to preempt the task instantly when suspend-
ing the XQueue, and restores the command when resuming.
The design of XPreempt is compatible with all three levels
and can fully leverage the hardware capabilities thanks to the
multi-level hardware model implemented in the XAL.

5.3 XScheduler Design

As depicted in Fig. 4, the XScheduler daemon is an event-
driven service that coordinates all XQueues from different
processes in the system, in cooperation with the XPreempt
agents. Each agent monitors the change events of XQueue
states, e.g., become ready when new commands are submitted
and idle when all commands are completed. These events are
sent to the XScheduler daemon to maintain global XQueue
status (each XQueue: ready or idle, XPU device ID, process
ID, etc.) and trigger the policy upon status changes. The
policy decides which XQueues to suspend or resume based
on current status. The decisions are sent back to the agents
and applied by calling suspend and resume interfaces
of these XQueues. Messages between XScheduler and the
agents are passed via shared-memory IPC, enabling XSched
to schedule XQueues across both processes and containers.
For cross-VM scheduling, message passing can alternatively
be implemented over network. This distributed XQueue de-
sign separates the control and data planes, minimizing com-
mand submission overhead and isolating errors within the
application process.

The policy in XSched is designed to be flexible and cus-
tomizable. XSched provides a send_hint API for applica-
tions and a command-line tool (XCLI) for users to provide
hints to the policy, which set policy-specific parameters (e.g.,
priority, bandwidth, and deadline) of an XQueue. This is sim-
ilar to how setpriority syscall and nice command set
the priority in Linux. In addition to several built-in policies
(e.g., fixed priority, bandwidth partition), users are free to cus-
tomize policies optimized for their application scenarios. The
policy should implement two basic interfaces: schedule
and recv_hint, which are called when XQueue status
changes and a new hint is given, respectively. As mentioned in
Fig. 2, schedule uses suspend and resume to schedule
XQueues, and add_timer to trigger itself after an interval.

6 Implementation on XPUs
We propose several new techniques to implement three pre-
emption levels (XAL) on different XPUs, spanning various
software platforms (CUDA, HIP, LevelZero, ACL, OpenCL,
etc.), accelerator types (GPU, NPU, ASIC, and FPGA), and
manufacturers (NVIDIA, AMD, Intel, Ascend, etc.).

6.1 Level 1 (Lv1) Preemption

Implementing Lv1 preemption is straightforward on XPUs
since their drivers natively support hwQueue to launch and
synchronize commands. Examples include CUstream in
CUDA [93] (for NVIDIA GPUs), hipStream in HIP [5]
(for AMD GPUs), ze_command_queue in LevelZero [47]
(for Intel GPUs and NPUs), aclrtStream in ACL [43] (for
Ascend NPUs), VPIStream in VPI [91] (for vision process-
ing ASICs), and cl_command_queue in OpenCL [62] (for
Xilinx FPGAs). The launch interface is implemented by
calling the appropriate driver API corresponding to the com-
mand type, e.g., cuLaunchKernel for launching kernels
on a CUstream and cuMemcpyAsync for memory copy
commands. These drivers also support events, e.g., CUevent
in CUDA and cl_event in OpenCL, which are fine-grained
synchronization points that can be recorded on the hwQueue.
The sync interface is implemented by synchronizing with
an extra event recorded after a given command. If the driver
does not support events, it can alternatively be implemented
by synchronizing with the hwQueue. Since Lv1 implementa-
tion relies only on basic driver APIs, it can be shared across
XPUs that use the same software platform. For example, the
OpenCL implementation supports GPUs, FPGAs and even
CPUs from various manufacturers.

6.2 Level 2 (Lv2) Preemption

XSched implemented hwQueue deactivation and reactivation
using a hardware-assisted stalling approach on Intel NPUs
and a software-based flushing approach on NVIDIA GPUs.

Stalling-based preemption. On-chip microcontrollers have
been widely integrated into XPUs to selectively dispatch
commands to execution units. Examples include Falcon mi-
crocontrollers in NVIDIA GPUs [10, 30, 55, 108], Command
Processors in AMD GPUs [39], Graphics microcontrollers
(GuCs) in Intel GPUs [44], LeonRT cores in Intel NPUs [46],
and Taishan cores in Ascend NPUs [72]. These XPUs can pre-
empt in-flight commands by instructing their microcontrollers
to stall command dequeuing for deactivation. Recently, Intel
released a new NPU firmware that supports these capabili-
ties [48]. We modified the driver [116] to expose them to the
host and implemented the Lv2 interfaces on Intel NPUs [45].

Flushing-based preemption. For XPUs without microcon-
troller support or exposed interfaces, we implement a software
approach for flushing-based deactivation on programmable
XPUs, demonstrating this on NVIDIA GPUs. XSched lever-
ages command programmability, instead of hardware micro-

678 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

GPU code injected at the beginning of kernel binary

void guardian(flag_ptr, hwq_id, cmd_id)

1 if *flag_ptr == DEACTIVATED then

2 push_aborted_cmd(hwq_id, cmd_id)

3 exit_thread() # abort kernel execution

host CPU code in XAL to implement Level 2 interfaces

void deactivate(hwq)

4 int *flag_ptr = get_deactivation_flag(hwq)

5 *flag_ptr = DEACTIVATED # set per-hwqueue flag

void reactivate(hwq)

6 int *flag_ptr = get_deactivation_flag(hwq)

7 *flag_ptr = NORMAL # clear per-hwqueue flag

relaunch aborted cmds

8 while cmd = pop_aborted_cmd(hwq)

9 launch(hwq, cmd)

Fig. 7: Pseudocode of flushing-based preemption implementation.

controllers, to flush all in-flight commands in the hwQueue.
As shown in Fig. 7, XSched prepends a guardian code snip-
pet to each GPU kernel (i.e., command) that checks a per-
hwQueue deactivation flag in GPU global memory. When this
flag is set, the guardian code records the command ID and
exits this command immediately. To deactivate the hwQueue,
the host sets the flag, prompting all in-flight kernels to abort
themselves. When reactivating, the host clears the flag and
relaunches the aborted kernels.

XSched injects the guardian code snippet into each GPU
kernel at runtime using dynamic binary instrumentation (DBI)
technique [118]. This guardian code is compiled to binary
using the NVIDIA compiler (NVCC) [83] and loaded into
GPU instruction memory at process startup. As shown in
Fig. 8, XSched rewrites the first instruction of each kernel
with a JMP instruction to a per-kernel helper snippet. This
snippet first loads the arguments of the guardian code from
GPU constant memory, where kernel arguments are stored,
and then calls the guardian code. After that, the snippet exe-
cutes the original replaced instruction and returns to the next
instruction in the kernel. Note that XSched leverages the hid-
den functions in the CUDA export table to allocate and access
GPU instruction and constant memory.

Prior work proposed similar kernel-flushing schemes [19,
39, 129]. However, these approaches require modifications to
kernel source code or PTX assembly, making them incompat-
ible with closed-source frameworks (e.g., TensorRT [87]) or
just-in-time compiled kernels (e.g., TensorFlow XLA [98]).
To our knowledge, XSched introduces the first flushing-based
deactivation at the binary level, allowing it to work seam-
lessly with all CUDA applications, including those built with
closed-source CUDA kernel libraries (e.g., cuBLAS [81],
cuDNN [84]) and inference frameworks like TensorRT.

6.3 Level 3 (Lv3) Preemption

Advanced modern XPUs, including NVIDIA GPUs released
after the Pascal architecture [79], as well as recent AMD,
Intel, and ARM GPUs [39, 44, 66], can interrupt running

original kernel

MOV R4, 0x1

MOV R5, 0x2

STG [R8], R4

...

modified kernel

JMP .L1

.L2

MOV R5, 0x2

STG [R8], R4

...

guardian code snippet

GUARDIAN:

... # check flag, record cmd

RET

helper snippet (per-kernel)

.L1:

LDC R4, c[..] # load flag

LDC R6, c[..] # load hwq_id

LDC R7, c[..] # load cmd_id

CALL GUARDIAN

MOV R4, 0x1 # replaced inst

JMP .L2

rewrite

Fig. 8: Binary instrumentation for flushing-based preemption.

commands. We implemented Lv3 preemption on NVIDIA
GPUs using two distinct approaches as illustrative examples.

TSG-based preemption. The interrupt mechanism on GPUs
is designed for scheduling processes, or timeslice groups
(TSGs) for NVIDIA GPUs [80, 123]. Each process is as-
signed a CUDA context corresponding to a TSG. When a
TSG’s timeslice expires, the GPU interrupts all running ker-
nels in this TSG and switches to the next TSG in a round-
robin manner. A previous study [123] found that TSGs of
NVIDIA Tegra embedded GPUs could be adjusted through
driver ioctl for task preemption. We implemented a sim-
ilar approach on desktop and server GPUs (e.g., GV100),
which dynamically adjusts TSG timeslices for Lv3 preemp-
tion. Specifically, the interrupt interface sets the times-
lice to zero for the TSG containing the hwQueue to be pre-
empted, and the restore interface resets the timeslice to its
original value. Since this interrupt affects the entire TSG, this
approach is only capable of inter-process scheduling. Note
that the TSG-based approach achieves both Lv2 and Lv3 pre-
emption by preempting both in-flight and running commands.

Queue-based preemption. We devise the first fine-grained
interrupts on NVIDIA GPUs to implement Lv3 preemption
at the hwQueue granularity. Although GPU interrupts are un-
documented [75, 111], by tracing CUDA application syscalls,
we discovered a specific ioctl that triggers GPU interrupts
by writing to a GPU control register—a feature originally
intended for kernel debugging. When the GPU is interrupted,
it immediately stalls all running kernels and invokes the trap
handler to save context and check trap reason. Using the
DBI-based guardian technique for flushing-based preemption,
XSched extends the trap handler to detect interrupts triggered
by XSched. When detected, the target kernel is aborted for
preemption, and the rest ones restore the context and con-
tinue execution. Unfortunately, NVIDIA GPUs do not expose
support for resuming an aborted kernel from its interruption
point. Inspired by prior work [39], XSched only preempts
idempotent kernels and restarts them from the beginning.4

4We currently identify idempotent kernels manually, similar to prior work [39,
66, 70, 101]. A recent work [38] enables validation of idempotent kernels
at launch time, and we plan to incorporate it to reduce manual efforts.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 679

7 Experimental Evaluation
7.1 Portability

The support for preemptive scheduling on diverse XPUs.
To demonstrate the portability of XSched, we adapted it to
seven XPU platforms, as listed in Table 3. Thanks to our
multi-level hardware model, only Lv1 implementation is nec-
essary for basic preemptive scheduling, requiring just 214–
841 lines of C++ code. Moreover, implementing Lv1 for
a new XPU is straightforward, as most of the code simply
unwraps and launches commands through the hwQueue pro-
vided by the drivers, sharing similar logic with just different
function names. For example, implementing a memory copy
command for the cuMemcpyAsync API in CUDA requires
only 12 lines of code, and over 70% of the APIs follow a
similar pattern. Additionally, the Lv1 implementation can be
shared across XPUs that use the same software platform. For
example, the implementation for OpenCL works seamlessly
with FPGAs and GPUs from various manufacturers, including
Xilinx, Intel, and Qualcomm [120]. For Lv2, we implemented
stalling-based preemption on Intel NPUs and flushing-based
preemption on NVIDIA Kepler, Volta, and Ampere GPUs.
For Lv3, we implemented TSG-based preemption on NVIDIA
GPUs released after the Pascal architecture and queue-based
preemption on NVIDIA Volta and Ampere GPUs.

For performance experiments, we selected ten distinct
XPUs: four GPUs (NV GV100 and K40m; AMD MI50;
and Intel Arc iGPU [45]), three NPUs (Intel NPU3720 [45];
Ascend 910b [43]; and NV DLA [82]), two ASICs (NV
PVA [90] and OFA [89]), and one FPGA (Xilinx VU9P [4]).

7.2 Uniformity

The support for flexible scheduling policy. Thanks to the
unified abstraction of XSched, we implemented two hardware-
agnostic and portable scheduling policies: fixed priority [74]
and bandwidth partition [1], which required only 104 and 200
lines of C++ code, respectively. We evaluated them across ten
distinct XPUs at their highest preemption level (see Table 3).

Workloads. In our experiments, we run two independent pro-
cesses that submit the same types of tasks to a single XPU,
with no shared data between them. We designate one pro-
cess as foreground and the other as background, which the
scheduling policy treats differently. For GPUs and NPUs,
both processes submit DL inference tasks of the ResNet-152
model [40]. For ASICs, they execute the Stereo Disparity al-
gorithm [88] on OFA, and the Gaussian Filter algorithm [88]
on PVA. For FPGA, they perform vector addition tasks [132].
Note that commands are variably-sized, e.g., ranging from 2
to 113µs for GV100, and 95 to 661µs for DLA.

Fixed priority policy. The foreground process issues tasks pe-
riodically at a fixed frequency (20% of its peak throughput),
and the background process issues tasks continuously at max-
imum frequency. XSched assigns a high priority to the fore-
ground process and a low priority to the background process.

Table 3: Description of XPUs and development effort (in lines
of C++ code) for porting XSched. indicates a level that can be
supported but has not yet been implemented, while indicates a
level that cannot be supported based on current hardware capabili-
ties. Note that flushing-based Lv2 implementation on NVIDIA GPUs
shares 513 LoCs for DBI, and TSG-based inter-process preemption
takes 90 LoCs to implement Lv3 along with Lv2.

Platform XPU XShim Lv1 Lv2 Lv3

CUDA

NV Kepler GPUs

318 511

99 (+513)
NV Volta GPUs 175 (+513) 301
NV Ampere GPUs 189 (+513) 308
NV GPUs w/ TSG / 90

HIP AMD GPUs 316 841

LevelZero
Intel GPUs

343 379
Intel NPUs 131

ACL Ascend NPUs 121 260

CUDLA NV DLA 96 247

VPI NV OFA, NV PVA 84 214

OpenCL
Xilinx FPGAs,
GPUs and CPUs

204 350

Fig. 9 (top) shows the latency CDF of foreground tasks. The
native hardware scheduler of all XPUs treats both processes
equally, which doubles the tail latencies (99th percentile, P99)
of foreground tasks compared to standalone execution (1.60×
to 2.19×). In contrast, XSched preempts background tasks
upon foreground task arrival. As a result, the P99 latencies of
foreground tasks are close to standalone performance (1.02×
to 1.30×) and are up to 2.11× lower than those experienced
with the native hardware scheduler.

Bandwidth partition policy. Both the foreground and back-
ground processes continuously issue tasks at their maximum
frequency. XSched allocates 75% of the XPU utilization to the
foreground process and 25% to the background process. This
simulates a scenario where an XPU is temporarily partitioned
between two users with different QoS requirements [35].
Fig. 9 (bottom) shows the throughput of both tasks, normal-
ized by the throughput of standalone execution. For all XPUs,
the native hardware scheduler shares the XPU equally be-
tween foreground and background tasks. XSched achieves
similar overall throughput to standalone execution with only
1.5% overhead on average, while guaranteeing the desired
throughput partition ratio between two processes. On MI50,
910b, and VU9P, the native hardware scheduler surpasses
both standalone execution and XSched in total throughput, as
a single process cannot fully utilize hardware resources.

The uniform policy for heterogeneous XPUs. The XQueue
interface facilitates seamless implementation of policies that
cooperatively schedule multiple XPUs.

Workloads. The experiments are conducted on an NVIDIA
Jetson Orin and an AI PC powered by Intel Core Ultra 9
185H. Initially, we run the same workload (i.e., two pro-

680 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 25

 50

 75

 100

 0 5 10 15

C
D

F

Latency (ms)
 0 20 40 60

Latency (ms)
 0 20 40 60

Latency (ms)
 0 30 60 90

Latency (ms)
 0 20 40

Latency (ms)
 0 2 4

Latency (ms)
 0 3 6

Latency (ms)
 0 20 40

Latency (ms)
 0 4 8 12

Latency (ms)
 0 10 20

Latency (ms)

Standalone

Native

XSched

XSched-T

0

.5

1

N
o
rm

.
T

h
ro

u
g
h
p
u
t

GV100/Lv3

1.00
.90 .95 .96

.45

.45

.71

.24

.70

.26

K40m/Lv2

1.00 .96 .98

.48

.48

.73

.25

MI50/Lv1

1.00
1.14

1.01

.57

.57

.73

.28

iGPU/Lv1

1.00 .96 .99

.48

.48

.74

.25

NPU3720/Lv2

1.00 1.02 1.00

.51

.51

.75

.25

910b/Lv1

1.00

1.20

1.00

.60

.60

.75

.25

DLA/Lv1

1.00 .99 .98

.49

.49

.68

.30

OFA/Lv1

1.00 1.06
.96

.53

.53

.73

.23

PVA/Lv1

1.00 1.05 1.01

.50

.55

.73

.28

VU9P/Lv1

Standalone

Native/Fg

Native/Bg

XSched/Fg

XSched/Bg

XSched-T/Fg

XSched-T/Bg

1.00

1.24

1.00

.62

.62

.76

.24

Fig. 9: The scheduling performance of XSched on different XPUs. (Top): The latency CDF of the foreground task using fixed priority policy,
(Bottom): The normalized throughput of foreground (Fg) and background (Bg) tasks using bandwidth partition policy. XSched-T refers to
TSG-based inter-process preemption (§6.3). The thresholds for in-flight commands are tuned for each device, ranging from 2 to 16.

 0

 25

 50

 75

 100

 0 3 6 9 12

C
D

F
 (

%
)

Latency (ms)

NVIDIA Jetson Orin

Standalone

Native

XSched NPU

XSched N+G

 0

 25

 50

 75

 100

 0 20 40 60 80

Latency (ms)

Intel Core Ultra

Fig. 10: The latency CDF when co-running foreground NPU tasks
with GPU and NPU background tasks on heterogeneous platforms.
‘XSched NPU’ means using XSched only for the NPU. ‘XSched
N+G’ means using XSched for both NPU and GPU cooperatively.

cesses running inference) as in Fig. 9 (top) for NPUs (i.e.,
NVIDIA DLA and Intel NPU3720). Subsequently, we run
memory bandwidth-consuming tasks in another low-priority
background process using the integrated GPU on the SoC.

Heterogeneous priority policy. Fig. 10 shows the CDF of the
foreground task latencies. Although GPU and NPU operate in-
dependently for the computing resources, they may compete
for the memory bandwidth and power supply on the SoC, lead-
ing to performance interference. Consequently, when schedul-
ing only NPU tasks (XSched NPU), the latency, while reduced
compared to the native hardware scheduler, remains signif-
icantly worse than the standalone case (1.67× and 1.55×
for P99). To address this, we implement a scheduling policy
that uniformly schedules NPU and GPU tasks, allowing a
high-priority XQueue to preempt other lower-priority ones,
regardless of their associated XPU. With this policy (XSched
N+G), the latency of foreground NPU tasks is close to stan-
dalone (1.18× and 1.09× for P99), achieving a reduction of
up to 2.63× compared to the native hardware scheduler.

7.3 Evolvability

The effect of advanced preemptive scheduling. The multi-
level hardware model enables XPUs with advanced schedul-
ing capabilities to further enhance the scheduling perfor-
mance. As shown in Fig. 9 (top), XSched generally performs
better on XPUs that support Lv2 and Lv3 interfaces (i.e.,
GV100, K40m, and NPU3720) compared to other XPUs that
only support Lv1 interfaces. Specifically, the P99 latency of

10
-2

10
-1

10
0

10
1

GV100
K40m

NPU3720
P

re
e

m
p

t.
 L

a
te

n
c
y
 (

m
s
) Lv 1

Lv 2

Lv 3

 0

 3

 6

 9

 0 0.5 1 1.5 2P
re

e
m

p
t.

 L
a

te
n

c
y
 (

m
s
)

Exec. Time (ms)

Level 1

Level 2

Level 3

 0

 10

 20

 30

 1 2 3 4 5 6 7 8 9 10R
u

n
ti
m

e
 O

v
e

rh
e

a
d

 (
%

)

Threshold

0.01 ms

0.1 ms

1 ms

Fig. 11: (a) The P99 preemption latency using different preemption
levels, (b) the P99 preemption latency of GV100 for commands with
different execution times, and (c) the runtime overhead of Lv1 on
GV100 with different thresholds and command execution times.

the foreground tasks on GV100, K40m and NPU3720 using
XSched is only degraded by 1.9%, 3.8% and 5.4% compared
to standalone execution. In contrast, the degradation is more
significant on other XPUs, ranging from 7.3% to 29.6%.

We further evaluated the preemption latency of GV100,
K40m, and NPU3720 with varying level configurations, as de-
picted in Fig. 11 (a). In this experiment, preempted tasks con-
tinually launch commands with an execution time of 0.5 ms
(referred to as T hereafter), while the in-flight command
threshold is set to 8. The P99 preemption latency with Lv1
support for all XPUs is approximately 8T due to the neces-
sity to wait for all commands in the hwQueue to complete.
This P99 latency is reduced to about 1T with Lv2, as only
one command needs to be waited on. When employing Lv3
for GV100, the P99 preemption latency is further reduced
to 32µs, becoming independent of T . Fig. 11 (b) illustrates
the P99 preemption latency of the GV100 with commands of
varying execution durations, reinforcing this observed trend.

The adaptability to the evolution of XPUs. The multi-level
hardware model also enables XSched to adapt to the evolving
hardware capabilities and software interfaces of XPUs.

Hardware evolution. As many emerging XPUs are still un-
der development, their hardware capabilities for preemption
and scheduling may be enhanced in the subsequent gener-
ations. For example, the NVIDIA K40m does not support
interrupt-based preemption [78, 79] for implementing Lv3 in-
terfaces, while GV100 does. XSched can easily adapt to such

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 681

 0

 2

 4

 6

R
u
n
ti
m

e

O
v
e
rh

e
a
d
 (

%
)

Level 1

0
.8

0
.7

0
.1

1
.4

0
.3

1
.7

1
.3

1
.3

3
.4

2
.9

Level 2

2
.9

4
.7

0
.5

Level 3

2
.9

 0

 10

 20

GV100 K40m MI50 iGPU NPU3720 910b DLA OFA PVA VU9P

C
P

U
O

v
e
rh

e
a
d
 (

%
)

XPUs

2
.8 3
.4

3
.6

2
.8

1
.1

1
8
.3

3
.0

1
.4

1
1
.9

3
.5

3
.1 4
.9

2
.13
.3

Fig. 12: (a) The runtime overhead, and (b) the increased single-
core CPU utilization of executing an XPU task with XSched.

new hardware capability by incrementally implementing the
higher levels of interfaces (e.g., Lv3 for GV100), while main-
taining compatibility with the earlier generations of XPUs that
only support lower levels of interfaces (e.g., Lv2 for K40m).
We believe that for future generations of XPUs, XSched can
continue to adapt to their evolved hardware capabilities.

Software evolution. The software interfaces of XPUs are also
evolving rapidly. For example, XSched implements Lv2 for
NPU3720 based on a new firmware released in July 2024 [48],
seven months after the release of the hardware product. Ad-
ditionally, the Lv3 implementation for GV100 relies on an
undocumented and potentially unstable driver interface. If
this interface is deprecated, XSched can selectively disable
the Lv3 interfaces without altering other parts of the system.

7.4 Scheduling Overhead
Compared to the native hardware scheduler, XSched incurs
additional overhead to support preemptive scheduling. We
evaluate this overhead using the same tasks as in Fig. 9.

Runtime overhead. Fig. 12 (a) shows the runtime overhead
of running an XPU task with XSched. The runtime overhead
is less than 3.4% on all XPUs for Lv1, primarily due to the
additional synchronizations required by the progressive com-
mand launching. For Lv2 on GV100 and K40m, the overhead
increases by 2.1% and 4.0%, respectively, compared to Lv1.
This is attributed to the execution of instrumented guardian
code, whose performance is dominated by the latency of
reading the flag. Therefore, XPUs with a high-performance
memory (e.g., HBM2 on GV100) may show a less perfor-
mance degradation compared to those with a low-performance
memory (e.g., GDDR5 on K40m). In contrast, the hardware-
assisted Lv2 on NPU3720 incurs no additional overhead.

Fig. 11 (c) further shows how in-flight command threshold
and command execution time affect the runtime overhead of
Lv1. Increasing the threshold can reduce runtime overhead as
it reduces pipeline stalls. When the threshold exceeds 10, the
overhead becomes negligible (less than 1%). The threshold
in experiments is tuned to the minimum value that achieves
overhead less than 3%. Moreover, shorter command execution
time incurs more overhead due to the increased proportion
of pipeline stalls, demonstrating the necessity of progressive
launching as XPUs become faster.

 0

 0.5

 1

N
o
rm

.
P

e
rf

.

NVIDIA GV100

Native
vCUDA

TGS
XSched

AMD MI50

XSched w/o prog

 0

 0.5

 1

Production Opportunistic

N
o
rm

.
P

e
rf

.

Production Opportunistic

Fig. 13: The scheduling performance of (Top) two containers run-
ning PyTorch training jobs, and (Bottom) financial algorithms as
production jobs and scientific computing as opportunistic jobs. The
performance is normalized by the standalone execution.

CPU overhead. XSched employs several worker threads to
manage queues and schedule XPUs, increasing CPU usage.
As shown in Fig. 12 (b), XSched raises single-core CPU
utilization by less than 5% in most cases, except for 910b
(18.3%) and PVA (11.9%) because their drivers employ a
spinning approach for synchronizing the hwQueue.

8 Case Studies
Next, we demonstrate the practical benefits of XSched
through three case studies under different scenarios.

Case 1: GPU harvesting on multi-tenant server. To demon-
strate the efficiency of XSched with its multi-level hardware
model, we study how it manages two types of jobs on a single
GPU: production jobs (Pjob) and opportunistic jobs (Ojob).
Pjobs have stringent performance requirements with mini-
mal degradation, while Ojobs should harvest remaining GPU
resources on a best-effort basis.

We compare XSched against the native hardware scheduler,
and two open-source GPU sharing systems, vCUDA [35, 115]
and TGS [130]. Since vCUDA only supports quota-based
configurations, we pre-profile the GPU utilization of Pjobs to
allocate sufficient quota. TGS is evaluated without modifica-
tions, as it natively accommodates such workloads. XSched
employs the fixed priority policy, assigning higher priority
to Pjobs. The evaluation includes two workloads: (1) two
containers running DL training jobs, the workload as in
TGS, and (2) a container running financial algorithms (Black-
Scholes [95]) as Pjob and a container running scientific com-
puting (CFD [18]) as Ojob. We measure the request latency
of financial algorithms and the throughput of other jobs.

Fig. 13 (left) shows the normalized performance of these
systems on an NVIDIA GV100 GPU. Due to the lack of
priority-based scheduling, vCUDA causes a 15.1% and a
80.0% performance degradation for Pjobs in DL training and
financial algorithms, respectively. TGS can be regarded as a
Lv1 implementation that carefully manages the number of
in-flight commands for Ojobs by estimating the kernel sub-
mission rate of Pjobs. However, it presents two limitations.
First, it misses the execution opportunities for Ojobs if the
estimated kernel submission rate is inaccurate. Consequently,

682 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

 0

 400

 800

 1200

 0 5 10 15 20 25 30 35F
ra

m
e
 L

a
te

n
c
y
 (

m
s
)

Time (s)

Native XSched

Fig. 14: The frame latency of LFBW (fake-background) when run-
ning along with whisper.cpp (speech-to-text) on an Intel NPU3720.

TGS can only harvest 7.3% of the GPU resources for Ojobs
during DL training while XSched can utilize 20.0%, repre-
senting a 2.74× improvement. Second, TGS is effective only
for Pjobs with specific patterns (e.g., DL training), and fails
to accommodate other job types (e.g., financial algorithms).
As a result, TGS exhibits a 70.0% performance degradation
for Pjobs of financial algorithms. XSched overcomes these
limitations by supporting Lv2 preemption, which mitigates
the impact of in-flight commands from Ojobs on Pjobs’ per-
formance, thereby ensuring the performance of Pjobs (1.0%
degradation) while improving the GPU utilization of Ojobs.

We further conducted the experiments on an AMD MI50
GPU, shown in Fig. 13 (right). Although XSched only im-
plements Lv1 interfaces on AMD GPUs, it achieves a 4.1%
and 0.4% performance degradation for Pjobs of DL training
and financial algorithms, respectively. We also evaluated the
performance of XSched without the progressive command
launching technique (i.e., using synchronous command ex-
ecution, denoted as XSched w/o prog), demonstrating its
effectiveness for XPUs with only Lv1 implementations.

Case 2: Video conferencing on AI PC. In this case, we
demonstrate the flexibility of XSched’s policy by scheduling
two applications simulating a video conferencing scenario:
fake-background (LFBW [29]) and speech-to-text (whis-
per.cpp [32]). LFBW blurs the background of a video stream
at a rate of 25 FPS. Whisper.cpp transcribes an audio stream
every 3 seconds. Both applications run an AI model on Intel
NPU3720 within an AI PC [45].

Fig. 14 shows the frame latency (i.e., the time between
consecutive frames) of LFBW when running alongside whis-
per.cpp. Without XSched, the frame latency of LFBW is un-
stable and the P99 frame latency spikes up to 880 ms (20.12×
higher than standalone), resulting in frequent frame drops
and a jittery experience. This instability is due to the native
hardware scheduler of the NPU3720 adopting a FCFS policy,
causing LFBW to wait for the completion of whisper.cpp
(0.8 s). To address this issue, we first attempted to use the
fixed priority policy of XSched to prioritize LFBW. However,
although the frame rate stabilized at 25 FPS, the latency of
whisper.cpp significantly increased and exceeded its period,
leading to the loss of transcribed text content. Therefore, we
further implemented a laxity-based policy [96], which aims to
maximize LFBW’s frame rate while ensuring that whisper.cpp
can complete within 3 s. Ultimately, the P99 frame latency of
LFBW is reduced to 95 ms, an improvement of 9.26× com-

 0

 25

 50

 75

 100

 0 4 8 12 16

C
D

F
 (

%
)

Latency (ms)

Standalone

Triton

T+Priority

T+XSched

 0

 50

 100

 150

 200

 0 300 600 900 1200

P
9
9
 L

a
te

n
c
y
 (

m
s
)

Throughput (reqs/s)

Native

Paella

XSched

Fig. 15: (a) The latency CDF of a high-priority Bert-large model
inference using Triton and XSched, and (b) the throughput-latency
curve of inference serving workloads using Paella and XSched.

pared to the native hardware scheduler, while ensuring that
whisper.cpp did not lose any content.

Case 3: Multi-model inference serving. XSched is easy to
be integrated into existing systems, thanks to the clean and
unified XQueue interface. We demonstrate this by integrating
XSched into two GPU-based inference serving systems to
achieve low-latency inference through preemptive scheduling.
The experiments are conducted on a single GV100.

Triton. We integrated XSched into a production-level infer-
ence serving system, Triton [94], with only 10 lines of code
changes, to enable scheduling using the fixed priority pol-
icy of XSched. Specifically, we modified Triton to submit
the scheduling hints to XSched when enqueueing inference
requests. Triton allows users to specify the priority of a
model. XSched retrofits this setting to assign the priority
of the XQueues. To illustrate the effectiveness of integrating
XSched, we used two clients to send inference requests for
two Bert-large models [25]. The high-priority client sends re-
quests with a frequency of 10 reqs/sec, while the low-priority
client sends requests continuously. Fig. 15 (a) shows the la-
tency CDF of the high-priority model. The vanilla Triton,
which employs the native hardware scheduler, and Triton
with priority settings (T+Priority) exhibit a 1.53× and 1.51×
higher P99 latency compared to standalone execution. By
integrating XSched (T+XSched), the P99 latency of the high-
priority model is only 1.07× higher than standalone, a reduc-
tion of 30.0% compared to vanilla Triton.

Paella. We next compare the performance of XSched with
Paella [75], a state-of-the-art inference serving system with
GPU-specific scheduling techniques. We integrated XSched
into the naive baseline (referred to as CUDA-MS in Paella’s
paper [75]) from the Paella artifact [76], which employs native
hardware scheduling. The integration requires only 15 lines
of code changes. We implemented a K-earliest deadline first
(K-EDF) policy, which executes the K tasks with the earliest
deadlines in parallel. K is set to 16 in this experiment. Fig. 15
(b) shows the throughput-latency curve. The workload used
is consistent with that described in Paella’s paper, where each
client sends requests based on a log-normal distribution with
a standard deviation of σ = 2.0. XSched achieves similar P99

latency as Paella at a lower throughput, and even outperforms
Paella by 1.3× at a high throughput (1,000 reqs/sec).

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 683

9 Discussion and Limitations
Command-based offloading. Most XPUs function as pe-
ripheral devices passively managed by the host CPU, which
issues commands to offload XPU tasks. Some XPUs, such
as DPUs [14] and certain FPGAs [49, 117], can proactively
execute tasks without host intervention. For these XPUs, host-
managed scheduling solutions [19, 39, 123, 129], including
XSched, are not applicable. One potential solution is to inte-
grate XSched into the control unit of these XPUs, such as the
ARM cores on DPUs [14].

Single-command tasks. Lv1 and Lv2 preemption mecha-
nisms are designed for tasks that contains multiple commands,
such as GPU kernels, memory-copy operations, and tensor op-
erators. For tasks containing only a single command, such as
CUDA graph or model inference on certain NPUs, developers
need to either implement Lv3 or divide the task into multi-
ple fine-grained commands through techniques like model
slicing [37, 105] to enable fast task preemption.

Sufficient XPU memory. XSched currently focuses solely on
computation scheduling and assumes sufficient XPU physical
memory to hold all task data. On-demand paging mecha-
nisms like CUDA Unified Memory [92], DeepUM [58], and
SUV [7] can handle memory oversubscription. XSched could
work together with these systems to support memory swap-
ping with task scheduling, and we leave it to future work.

Untrusted tenants. XSched relies on applications to sub-
mit commands via XQueue APIs or use XShim to intercept
those commands. However, a malicious tenant could bypass
XSched or submit excessive commands to monopolize the
XPU. Fortunately, XPU virtualization based on API remot-
ing [27, 107, 122] can prevent tenants from direct XPU access.
By integrating XSched into the hypervisor’s API remoting
server, all commands to the XPU can be properly managed.

10 Related Work
XPU hardware scheduling. Prior work proposed hardware-
based scheduling techniques for various XPUs, including
GPUs [73, 101, 124, 125, 135], TPUs [8, 137], NPUs [22,
24, 63, 67, 133], and FPGAs [57, 65, 69, 104]. Some are
aimed to enhance the scheduling mechanisms of XPUs, e.g.,
fast kernel preemption [22, 73, 101] or efficient spatial shar-
ing [124, 133]. XSched is orthogonal to these techniques, and
the multi-level hardware model allows XSched to integrate
these hardware enhancements. Some other work enhances the
scheduling policy of the hardware scheduler, e.g., deadline-
aware policy [135] or QoS-based policy [125]. These tech-
niques require hardware modifications, while XSched can
implement flexible software-defined policies.

Host-managed XPU scheduling. Prior work proposed var-
ious host-managed XPU scheduling techniques. Some aim
to improve hardware utilization through GPU spatial multi-
tasking [20, 21, 23, 50, 71, 119], while others focus on GPU

task preemption [15, 19, 39, 54, 66, 129, 140]. For example,
PTask [103], TimeGraph [60], Gdev [61], vCUDA [35, 115],
and TGS [130] schedule pending GPU commands (Lv1) by
restricting the command launching rate. EffiSha [19] and
FLEP [129] preempt unexecuted GPU kernel parts (Lv2) by
transforming the kernel source code to voluntarily abort inac-
tive GPU thread blocks. REEF [39] supports running kernel
preemption (Lv3) by modifying the AMD GPU driver to re-
set the whole task, yet is incompatible with closed-source
systems and non-GPU hardware. Unlike prior work that fo-
cused on specific hardware platforms, XSched is the first
general scheduling framework to support commodity GPUs,
NPUs, ASICs, and FPGAs. Moreover, XSched can seam-
lessly incorporate new task preemption techniques (see §6)
as implementations for their appropriate preemption levels.

Unified programming models and interface. Previous ef-
forts like OpenCL [62], SYCL [34], and LevelZero [47]
(oneAPI) also aimed to provide unified programming mod-
els and interfaces across different XPUs. However, hardware
differences have led to numerous vendor-specific extensions,
fragmenting their ecosystems. These platforms face a fun-
damental limitation—by defining only basic interfaces to
maintain compatibility with common hardware capabilities of
different XPUs, they restrict themselves to minimal function-
ality. In contrast, XSched introduces a multi-level hardware
model to harness different capabilities of diverse XPUs while
providing a unified abstraction.

11 Conclusion
Modern hardware accelerators (XPUs) are experiencing un-
precedented growth, with numerous types, brands, and gen-
erations deployed across cloud and edge computing plat-
forms. Their diverse hardware capabilities and complex soft-
ware stacks expose unique challenges in designing and im-
plementing preemptive scheduling with excellent generaliz-
ability. To tackle this, XSched proposes a unified XQueue
abstraction with three-level hardware models, enabling ma-
ture, advanced XPUs to achieve optimal performance while
maintaining compatibility with emerging, wimpy XPUs. We
have adapted XSched to various XPU platforms and de-
ployed it on a dozen XPUs to support preemptive scheduling
with flexible policies. Our experimental evaluation and case
studies demonstrate the efficacy and efficiency of XSched
and its novel techniques. XSched, with its diverse XPU
implementations, is open-source and publicly available at
https://github.com/XpuOS/xsched.

Acknowledgments
We sincerely thank our anonymous shepherd and reviewers
for their insightful comments and suggestions. This work was
supported in part by the National Natural Science Foundation
of China (No. 62432010, 62272291) and a research grant
from Huawei Technologies.

684 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/XpuOS/xsched

References
[1] L. Abeni and G. Buttazzo. 1998. Integrating multimedia

applications in hard real-time systems. In Proceedings of the
19th IEEE Real-Time Systems Symposium. 4–13. https:
//doi.org/10.1109/REAL.1998.739726

[2] Miguel Alcon, Hamid Tabani, Leonidas Kosmidis, Enrico
Mezzetti, Jaume Abella, and Francisco J. Cazorla. 2020. Tim-
ing of Autonomous Driving Software: Problem Analysis and
Prospects for Future Solutions. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Sym-
posium. 267–280.

[3] AMD. 2024. Micro Engine Scheduler Specification. https:
//gpuopen.com/download/documentation/
micro_engine_scheduler.pdf.

[4] AMD. 2025. AMD Virtex UltraScale+ FPGAs. https:
//www.amd.com/en/products/adaptive-
socs-and-fpgas/fpga/virtex-ultrascale-
plus.html.

[5] AMD. 2025. HIP documentation. https:
//rocm.docs.amd.com/projects/HIP/en/
latest/index.html.

[6] Apple. 2025. MTLCommandQueue. https:
//developer.apple.com/documentation/
metal/mtlcommandqueue.

[7] Pratheek B, Guilherme Cox, Jan Vesely, and Arkaprava
Basu. 2024. SUV: Static Analysis Guided Unified Virtual
Memory. In Proceedings of the 57th IEEE/ACM Interna-
tional Symposium on Microarchitecture. 293–308. https:
//doi.org/10.1109/MICRO61859.2024.00030

[8] Eun-Tae Baek, Dongup Kwon, and Jangwoo Kim. 2020. A
Multi-Neural Network Acceleration Architecture. In Proceed-
ings of the 47th ACM/IEEE Annual International Symposium
on Computer Architecture. 940–953.

[9] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020.
PipeSwitch: Fast Pipelined Context Switching for Deep
Learning Applications. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation. 499–514. https://www.usenix.org/
conference/osdi20/presentation/bai

[10] Joshua Bakita and James H. Anderson. 2023. Hardware
Compute Partitioning on NVIDIA GPUs. In Proceedings of
the 29th IEEE Real-Time and Embedded Technology and
Applications Symposium. 54–66.

[11] Rajkishore Barik, Naila Farooqui, Brian T. Lewis, Chunling
Hu, and Tatiana Shpeisman. 2016. A black-box approach to
energy-aware scheduling on integrated CPU-GPU systems. In
Proceedings of the 2016 IEEE/ACM International Symposium
on Code Generation and Optimization. 70–81.

[12] C. Basaran and K. Kang. 2012. Supporting Preemptive Task
Executions and Memory Copies in GPGPUs. In Proceedings
of the 24th Euromicro Conference on Real-Time Systems.
287–296.

[13] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Eliza-
beth O’Neil, and Patrick O’Neil. 1995. A critique of ANSI
SQL isolation levels. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data. New
York, NY, USA, 1–10. https://doi.org/10.1145/
223784.223785

[14] Idan Burstein. 2021. Nvidia Data Center Processing Unit
(DPU) Architecture. In Proceedings of the 2021 IEEE Hot
Chips Symposium. 1–20.

[15] Jon C. Calhoun and Hai Jiang. 2012. Preemption of a CUDA
Kernel Function. In Proceedings of the 13th ACIS Interna-
tional Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing. 247–
252.

[16] N. Capodieci, R. Cavicchioli, M. Bertogna, and Aingara Para-
makuru. 2018. Deadline-Based Scheduling for GPU with
Preemption Support. In Proceedings of the IEEE Real-Time
Systems Symposium. 119–130.

[17] Shubham Chaudhary, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, and Srinidhi Viswanatha. 2020. Bal-
ancing efficiency and fairness in heterogeneous GPU clusters
for deep learning. In Proceedings of the Fifteenth European
Conference on Computer Systems. New York, NY, USA,
Article 1, 16 pages. https://doi.org/10.1145/
3342195.3387555

[18] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Sang ha Lee, and Kevin Skadron. 2009.
Rodinia: A benchmark suite for heterogeneous computing. In
Proceedings of the IEEE International Symposium on Work-
load Characterization. 44–54.

[19] Guoyang Chen, Yue Zhao, Xipeng Shen, and Huiyang Zhou.
2017. EffiSha: A Software Framework for Enabling Efficient
Preemptive Scheduling of GPU. Proceedings of the 22nd
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming.

[20] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kan-
nan, Jason Mars, and Lingjia Tang. 2017. Prophet: Precise
QoS Prediction on Non-Preemptive Accelerators to Improve
Utilization in Warehouse-Scale Computers. In Proceedings
of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating
Systems.

[21] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang.
2016. Baymax: QoS Awareness and Increased Utilization for
Non-Preemptive Accelerators in Warehouse Scale Computers.
In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and
Operating Systems.

[22] Yujeong Choi and Minsoo Rhu. 2019. PREMA: A Predictive
Multi-Task Scheduling Algorithm For Preemptible Neural
Processing Units. In Proceedings of the 2020 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture. 220–233.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 685

https://doi.org/10.1109/REAL.1998.739726
https://doi.org/10.1109/REAL.1998.739726
https://gpuopen.com/download/documentation/micro_engine_scheduler.pdf
https://gpuopen.com/download/documentation/micro_engine_scheduler.pdf
https://gpuopen.com/download/documentation/micro_engine_scheduler.pdf
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://developer.apple.com/documentation/metal/mtlcommandqueue
https://developer.apple.com/documentation/metal/mtlcommandqueue
https://developer.apple.com/documentation/metal/mtlcommandqueue
https://doi.org/10.1109/MICRO61859.2024.00030
https://doi.org/10.1109/MICRO61859.2024.00030
https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/223784.223785
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555

[23] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng, Jingwen
Leng, Jieru Zhao, Zhuo Song, Tao Ma, Yong Yang, Chao Li,
and Minyi Guo. 2021. Enable simultaneous DNN services
based on deterministic operator overlap and precise latency
prediction. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and
Analysis.

[24] Anup Das. 2022. Real-Time Scheduling of Machine Learn-
ing Operations on Heterogeneous Neuromorphic SoC. In
Proceedings of the 20th ACM/IEEE International Conference
on Formal Methods and Models for System Design. 1–12.

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv:cs.CL/1810.04805 https://arxiv.org/abs/
1810.04805

[26] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2022. Serverless computing on hetero-
geneous computers. In Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems.

[27] José Duato, Antonio J. Peña, Federico Silla, Juan C. Fer-
nández, Rafael Mayo, and Enrique S. Quintana-Ortí. 2011.
Enabling CUDA acceleration within virtual machines us-
ing rCUDA. In Proceedings of the 18th International Con-
ference on High Performance Computing. 1–10. https:
//doi.org/10.1109/HiPC.2011.6152718

[28] Glenn A. Elliott and James H. Anderson. 2011. Real-World
Constraints of GPUs in Real-Time Systems. In Proceedings of
the 2011 IEEE 17th International Conference on Embedded
and Real-Time Computing Systems and Applications, Vol. 2.
48–54.

[29] Fufu Fang. 2025. Linux-Fake-Background-Webcam.
https://github.com/fangfufu/Linux-Fake-
Background-Webcam.

[30] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, and Shinpei
Kato. 2013. Exploring microcontrollers in GPUs. In Proceed-
ings of the 4th Asia-Pacific Workshop on Systems. New York,
NY, USA, Article 2, 6 pages. https://doi.org/10.
1145/2500727.2500742

[31] Xiang Gao. 2023. TAS: A Temperature-Aware Scheduling for
Heterogeneous Computing. IEEE Access 11 (2023), 54773–
54781.

[32] ggml. 2025. whisper.cpp. https://github.com/
ggml-org/whisper.cpp.

[33] Younghwan Go, Muhammad Asim Jamshed, Younggy-
oun Moon, Changho Hwang, and KyoungSoo Park. 2017.
APUNet: Revitalizing GPU as Packet Processing Accelera-
tor. In Proceedings of the Symposium on Networked Systems
Design and Implementation.

[34] Khronos Group. 2025. SYCL: C++ Programming for Hetero-
geneous Parallel Computing. https://www.khronos.
org/sycl/.

[35] Jing Gu, Shengbo Song, Ying Li, and Hanmei Luo. 2018. Ga-
iaGPU: Sharing GPUs in Container Clouds. In Proceedings
of the 2018 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Ubiquitous Computing & Commu-
nications, Big Data & Cloud Computing, Social Computing
& Networking, Sustainable Computing & Communications.
469–476.

[36] A. Gujarati, Reza Karimi, Safya Alzayat, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs
like Clockwork: Performance Predictability from the Bottom
Up. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation.

[37] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu
Park, and Woongki Baek. 2019. MOSAIC: Heterogeneity-
, Communication-, and Constraint-Aware Model Slicing
and Execution for Accurate and Efficient Inference. In Pro-
ceedings of the International Conference on Parallel Archi-
tectures and Compilation Techniques. 165–177. https:
//doi.org/10.1109/PACT.2019.00021

[38] Mingcong Han, Weihang Shen, Guanwen Peng, Rong
Chen, and Haibo Chen. 2024. Microsecond-scale Dy-
namic Validation of Idempotency for GPU Kernels.
arXiv:cs.OS/2410.23661 https://arxiv.org/abs/
2410.23661

[39] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. 2022. Microsecond-scale Preemption for Con-
current GPU-accelerated DNN Inferences. In Proceed-
ings of the 16th USENIX Symposium on Operating Sys-
tems Design and Implementation. Carlsbad, CA, 539–
558. https://www.usenix.org/conference/
osdi22/presentation/han

[40] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. 2016.
Deep Residual Learning for Image Recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition. 770–778.

[41] Sabir Hossain and Deok Jin Lee. 2019. Deep Learning-
Based Real-Time Multiple-Object Detection and Tracking
from Aerial Imagery via a Flying Robot with GPU-Based
Embedded Devices. Sensors 19 (2019).

[42] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. 2017. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applica-
tions. arXiv:cs.CV/1704.04861 https://arxiv.org/
abs/1704.04861

[43] Huawei. 2025. Huawei Atlas AI Platform. https://www.
hiascend.com/en/hardware/product.

[44] Intel. 2024. Enabling the GuC/HuC Firmware for
Linux on New Intel GPU Platforms. https://www.
intel.com/content/www/us/en/content-
details/609249/enabling-the-guc-huc-
firmware-for-linux-on-new-intel-gpu-
platforms.html.

686 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1109/HiPC.2011.6152718
https://doi.org/10.1109/HiPC.2011.6152718
https://github.com/fangfufu/Linux-Fake-Background-Webcam
https://github.com/fangfufu/Linux-Fake-Background-Webcam
https://doi.org/10.1145/2500727.2500742
https://doi.org/10.1145/2500727.2500742
https://github.com/ggml-org/whisper.cpp
https://github.com/ggml-org/whisper.cpp
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://doi.org/10.1109/PACT.2019.00021
https://doi.org/10.1109/PACT.2019.00021
https://arxiv.org/abs/2410.23661
https://arxiv.org/abs/2410.23661
https://www.usenix.org/conference/osdi22/presentation/han
https://www.usenix.org/conference/osdi22/presentation/han
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://www.hiascend.com/en/hardware/product
https://www.hiascend.com/en/hardware/product
https://www.intel.com/content/www/us/en/content-details/609249/enabling-the-guc-huc-firmware-for-linux-on-new-intel-gpu-platforms.html
https://www.intel.com/content/www/us/en/content-details/609249/enabling-the-guc-huc-firmware-for-linux-on-new-intel-gpu-platforms.html
https://www.intel.com/content/www/us/en/content-details/609249/enabling-the-guc-huc-firmware-for-linux-on-new-intel-gpu-platforms.html
https://www.intel.com/content/www/us/en/content-details/609249/enabling-the-guc-huc-firmware-for-linux-on-new-intel-gpu-platforms.html
https://www.intel.com/content/www/us/en/content-details/609249/enabling-the-guc-huc-firmware-for-linux-on-new-intel-gpu-platforms.html

[45] Intel. 2024. Intel Core Ultra Processors Family.
https://www.intel.com/content/www/us/
en/products/details/processors/core-
ultra.html.

[46] Intel. 2024. Intel Core Ultra Processors (PS Series) Datasheet.
https://www.intel.com/content/www/us/en/
content-details/819636/intel-core-ultra-
processors-ps-series-datasheet.html.

[47] Intel. 2024. Level Zero Specification documentation–
Core Programming Guide. https://oneapi-
src.github.io/level-zero-spec/level-
zero/latest/core/PROG.html.

[48] Intel. 2024. Linux NPU Driver v1.5.1. https:
//github.com/intel/linux-npu-driver/
releases/tag/v1.5.1.

[49] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. 2016. Consensus in a box: inexpensive coordination
in hardware. In Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation. USA,
425–438.

[50] Saksham Jain, Iljoo Baek, Shige Wang, and R. Rajkumar.
2019. Fractional GPUs: Software-Based Compute and Mem-
ory Bandwidth Reservation for GPUs. In Proceedings of the
IEEE Real-Time and Embedded Technology and Applications
Symposium. 29–41.

[51] Won-Seok Jang, Hansaem Jeong, Kyungtae Kang, Nikil D.
Dutt, and Jong-Chan Kim. 2020. R-TOD: Real-Time Object
Detector with Minimized End-to-End Delay for Autonomous
Driving. In Proceedings of the IEEE Real-Time Systems Sym-
posium (RTSS). 191–204.

[52] Jinwoo Jeon, Sungwook Jung, Eungchang Mason Lee,
Duckyu Choi, and Hyun Myung. 2021. Run Your Visual-
Inertial Odometry on NVIDIA Jetson: Benchmark Tests on a
Micro Aerial Vehicle. IEEE Robotics and Automation Letters
6 (2021), 5332–5339.

[53] Joo Seong Jeong, Jingyu Lee, Dong-Hyun Kim, Chang-Kyu
Jeon, Chang-Sung Jeong, Youngki Lee, and Byung-Gon Chun.
2022. Band: coordinated multi-DNN inference on heteroge-
neous mobile processors. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications
and Services.

[54] Zhuoran Ji and Cho-Li Wang. 2021. CTXBack: Enabling
Low Latency GPU Context Switching via Context Flashback.
In Proceedings of the 35th IEEE International Parallel and
Distributed Processing Symposium. 121–130. https://
doi.org/10.1109/IPDPS49936.2021.00021

[55] Joe Xie. 2016. NVIDIA RISC-V Story. https:
//riscv.org/wp-content/uploads/2016/07/
Tue1100_Nvidia_RISCV_Story_V2.pdf.

[56] Norman P. Jouppi, George Kurian, Sheng Li, Peter C. Ma,
Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay Subra-
manian, Andy Swing, Brian Towles, Cliff Young, Xiaoping
Zhou, Zongwei Zhou, and David A. Patterson. 2023. TPU
v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings. In Pro-
ceedings of the 50th Annual International Symposium on
Computer Architecture.

[57] Slavisa Jovanovic, Camel Tanougast, and Serge Weber. 2007.
A Hardware Preemptive Multitasking Mechanism Based on
Scan-path Register Structure for FPGA-based Reconfigurable
Systems. In Proceedings of the Second NASA/ESA Confer-
ence on Adaptive Hardware and Systems. 358–364.

[58] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. 2023. DeepUM:
Tensor Migration and Prefetching in Unified Memory. In
Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Op-
erating Systems. New York, NY, USA, 207–221. https:
//doi.org/10.1145/3575693.3575736

[59] Anuj Kalia, Dong Zhou, Michael Kaminsky, and David G.
Andersen. 2015. Raising the Bar for Using GPUs in Soft-
ware Packet Processing. In Proceedings of the Symposium on
Networked Systems Design and Implementation.

[60] Shinpei Kato, Karthik Lakshmanan, Ragunathan Raj Rajku-
mar, and Yutaka Ishikawa. 2011. TimeGraph: GPU Schedul-
ing for Real-Time Multi-Tasking Environments. In Proceed-
ings of the 2011 USENIX Annual Technical Conference.

[61] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and
Scott A. Brandt. 2012. Gdev: First-Class GPU Resource
Management in the Operating System. In Proceedings of the
2012 USENIX Annual Technical Conference.

[62] Khronos OpenCL Working Group. 2025. The OpenCL
Specification. https://registry.khronos.org/
OpenCL/specs/3.0-unified/html/OpenCL_
API.html.

[63] Alexandros Kouris, Stylianos I. Venieris, Stefanos Laskaridis,
and Nicholas Donald Lane. 2022. Fluid Batching: Exit-Aware
Preemptive Serving of Early-Exit Neural Networks on Edge
NPUs. arXiv:cs.LG/2209.13443 https://arxiv.org/
abs/2209.13443

[64] Bertalan Kovács, Anders D. Henriksen, Jonathan Dyssel Stets,
and Lazaros Nalpantidis. 2021. Object Detection on TPU Ac-
celerated Embedded Devices. In Proceedings of the 13th In-
ternational Conference of Computer Vision Systems, Markus
Vincze, Timothy Patten, Henrik I. Christensen, Lazaros Nal-
pantidis, and Ming Liu (Eds.), Vol. 12899. 82–92. https:
//doi.org/10.1007/978-3-030-87156-7_7

[65] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Ross-
bach, and Eric Schkufza. 2021. Compiler-driven FPGA virtu-
alization with SYNERGY. In Proceedings of the 26th ACM
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 687

https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html
https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html
https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html
https://www.intel.com/content/www/us/en/content-details/819636/intel-core-ultra-processors-ps-series-datasheet.html
https://www.intel.com/content/www/us/en/content-details/819636/intel-core-ultra-processors-ps-series-datasheet.html
https://www.intel.com/content/www/us/en/content-details/819636/intel-core-ultra-processors-ps-series-datasheet.html
https://oneapi-src.github.io/level-zero-spec/level-zero/latest/core/PROG.html
https://oneapi-src.github.io/level-zero-spec/level-zero/latest/core/PROG.html
https://oneapi-src.github.io/level-zero-spec/level-zero/latest/core/PROG.html
https://github.com/intel/linux-npu-driver/releases/tag/v1.5.1
https://github.com/intel/linux-npu-driver/releases/tag/v1.5.1
https://github.com/intel/linux-npu-driver/releases/tag/v1.5.1
https://doi.org/10.1109/IPDPS49936.2021.00021
https://doi.org/10.1109/IPDPS49936.2021.00021
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://doi.org/10.1145/3575693.3575736
https://doi.org/10.1145/3575693.3575736
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://arxiv.org/abs/2209.13443
https://arxiv.org/abs/2209.13443
https://doi.org/10.1007/978-3-030-87156-7_7
https://doi.org/10.1007/978-3-030-87156-7_7

[66] Hyeonsu Lee, Hyunjun Kim, Cheolgi Kim, Hwansoo Han,
and Euiseong Seo. 2021. Idempotence-Based Preemptive
GPU Kernel Scheduling for Embedded Systems. IEEE Trans.
Comput. 70, 3 (2021), 332–346. https://doi.org/10.
1109/TC.2020.2988251

[67] Jounghoo Lee, Jinwoo Choi, Jaeyeon Kim, Jinho Lee, and
Youngsok Kim. 2021. Dataflow Mirroring: Architectural
Support for Highly Efficient Fine-Grained Spatial Multitask-
ing on Systolic-Array NPUs. In Proceedings of the 58th
ACM/IEEE Design Automation Conference. 247–252.

[68] TIMOTHY B. LEE. 2019. Tesla’s autonomy event: Im-
pressive progress with an unrealistic timeline. https:
//arstechnica.com/cars/2019/04/teslas-
autonomy-event-impressive-progress-with-
an-unrealistic-timeline/.

[69] Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai, and Chia-Chun
Tsai. 2010. Hardware Context-Switch Methodology for Dy-
namically Partially Reconfigurable Systems. J. Inf. Sci. Eng.
26 (2010), 1289–1305.

[70] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran Mon-
fort, Pradip Bose, Quan Chen, Minyi Guo, and Vijay Janapa
Reddi. 2020. Asymmetric Resilience: Exploiting Task-Level
Idempotency for Transient Error Recovery in Accelerator-
Based Systems. In Proceedings of the 2020 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture. 44–57.

[71] Yun Liang, Huynh Phung Huynh, Kyle Rupnow, R. Goh,
and Deming Chen. 2015. Efficient GPU Spatial-Temporal
Multitasking. IEEE Transactions on Parallel and Distributed
Systems 26 (2015), 748–760.

[72] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. 2019.
DaVinci: A Scalable Architecture for Neural Network Com-
puting. In Proceedings of the 2019 IEEE Hot Chips Sympo-
sium. 1–44.

[73] Zhen Lin, L. Nyland, and Huiyang Zhou. 2016. Enabling Ef-
ficient Preemption for SIMT Architectures with Lightweight
Context Switching. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Stor-
age and Analysis. 898–908.

[74] C. L. Liu and James W. Layland. 1973. Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-Time En-
vironment. J. ACM 20, 1 (Jan. 1973), 46–61. https:
//doi.org/10.1145/321738.321743

[75] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu.
2023. Paella: Low-latency Model Serving with Software-
defined GPU Scheduling. In Proceedings of the 29th Sympo-
sium on Operating Systems Principles.

[76] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vincent Liu.
2024. The Artifact for Paella. https://github.com/
eniac/paella.

[77] Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George
Kurian, Sheng Li, James Laudon, Cliff Young, Norman P.

Jouppi, and David A. Patterson. 2020. Google’s Training
Chips Revealed: TPUv2 and TPUv3. In Proceedings of the
2020 IEEE Hot Chips Symposium. 1–70.

[78] NVIDIA. 2014. NVIDIA’s Next Generation CUDA
Compute Architecture: Kepler GK110/210 Whitepaper.
https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/tesla-product-
literature/NVIDIA-Kepler-GK110-GK210-
Architecture-Whitepaper.pdf.

[79] NVIDIA. 2016. Tuning CUDA Applications
for Pascal: Compute Preemption. https:
//docs.nvidia.com/cuda/pascal-tuning-
guide/index.html#compute-preemption

[80] NVIDIA. 2019. NVIDIA open-gpu-doc repository.
https://github.com/NVIDIA/open-gpu-
doc/blob/master/manuals/volta/gv100/
dev_ram.ref.txt.

[81] NVIDIA. 2024. cuBLAS. https://developer.
nvidia.com/cublas.

[82] NVIDIA. 2024. Deep Learning Accelerator (DLA).
https://developer.nvidia.com/deep-
learning-accelerator.

[83] NVIDIA. 2024. NVIDIA CUDA Compiler Driver
NVCC. https://docs.nvidia.com/cuda/cuda-
compiler-driver-nvcc/index.html.

[84] NVIDIA. 2024. NVIDIA cuDNN. https://developer.
nvidia.com/cudnn.

[85] NVIDIA. 2024. NVIDIA Jetson Orin. https:
//www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-orin/.

[86] NVIDIA. 2024. NVIDIA Jetson Xavier. https:
//www.nvidia.com/en-us/autonomous-
machines/embedded-systems/jetson-xavier-
series/.

[87] NVIDIA. 2024. NVIDIA TensorRT. https://
developer.nvidia.com/tensorrt.

[88] NVIDIA. 2024. Vision Programming Interface: Algorithms.
https://docs.nvidia.com/vpi/algorithms.
html.

[89] NVIDIA. 2024. VPI – Vision Programming Interface
Backends: OFA. https://docs.nvidia.com/vpi/
architecture.html#autotoc_md12

[90] NVIDIA. 2024. VPI – Vision Programming Interface
Backends: PVA. https://docs.nvidia.com/vpi/
architecture.html#autotoc_md10

[91] NVIDIA. 2024. VPI – Vision Programming Inter-
face: Streams. https://docs.nvidia.com/vpi/
architecture.html#arch_stream

688 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.1109/TC.2020.2988251
https://doi.org/10.1109/TC.2020.2988251
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://arstechnica.com/cars/2019/04/teslas-autonomy-event-impressive-progress-with-an-unrealistic-timeline/
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://github.com/eniac/paella
https://github.com/eniac/paella
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#compute-preemption
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#compute-preemption
https://docs.nvidia.com/cuda/pascal-tuning-guide/index.html#compute-preemption
https://github.com/NVIDIA/open-gpu-doc/blob/master/manuals/volta/gv100/dev_ram.ref.txt
https://github.com/NVIDIA/open-gpu-doc/blob/master/manuals/volta/gv100/dev_ram.ref.txt
https://github.com/NVIDIA/open-gpu-doc/blob/master/manuals/volta/gv100/dev_ram.ref.txt
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/deep-learning-accelerator
https://developer.nvidia.com/deep-learning-accelerator
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/vpi/algorithms.html
https://docs.nvidia.com/vpi/algorithms.html
https://docs.nvidia.com/vpi/architecture.html#autotoc_md12
https://docs.nvidia.com/vpi/architecture.html#autotoc_md12
https://docs.nvidia.com/vpi/architecture.html#autotoc_md10
https://docs.nvidia.com/vpi/architecture.html#autotoc_md10
https://docs.nvidia.com/vpi/architecture.html#arch_stream
https://docs.nvidia.com/vpi/architecture.html#arch_stream

[92] NVIDIA. 2025. CUDA C++ Programming Guide.
https://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf.

[93] NVIDIA. 2025. CUDA Toolkit. https://developer.
nvidia.com/cuda-toolkit.

[94] NVIDIA. 2025. Triton Inference Server: An Optimized Cloud
and Edge Inferencing Solution. https://github.com/
triton-inference-server.

[95] NVIDIA and Victor Podlozhnyuk. 2013. Black-Scholes op-
tion pricing. https://github.com/NVIDIA/cuda-
samples/blob/master/Samples/5_Domain_
Specific/BlackScholes/doc/BlackScholes.
pdf.

[96] Sung-Heun Oh and Seung-Min Yang. 1998. A Modified
Least-Laxity-First scheduling algorithm for real-time tasks.
In Proceedings Fifth International Conference on Real-Time
Computing Systems and Applications. 31–36. https://
doi.org/10.1109/RTCSA.1998.726348

[97] Young H. Oh, Seonghak Kim, Yunho Jin, Sam Son, Jonghyun
Bae, Jongsung Lee, Yeonhong Park, Dong Uk Kim, Tae Jun
Ham, and Jae W. Lee. 2021. Layerweaver: Maximizing Re-
source Utilization of Neural Processing Units via Layer-Wise
Scheduling. In Proceedings of the 2021 IEEE International
Symposium on High-Performance Computer Architecture.
584–597.

[98] OpenXLA. 2025. XLA: Optimizing Compiler for Machine
Learning. https://openxla.org/xla/tf2xla.

[99] Nathan Otterness and James H. Anderson. 2021. Ex-
ploring AMD GPU Scheduling Details by Experimenting
With “Worst Practices”. In Proceedings of the 29th Interna-
tional Conference on Real-Time Networks and Systems. New
York, NY, USA, 24–34. https://doi.org/10.1145/
3453417.3453432

[100] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. 2013.
Improving GPGPU concurrency with elastic kernels. In Pro-
ceedings of the 18th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems.

[101] J. Park, Yongjun Park, and S. Mahlke. 2015. Chimera: Col-
laborative Preemption for Multitasking on a Shared GPU.
In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and
Operating Systems.

[102] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Sri-
mat T. Chakradhar. 2011. Supporting GPU sharing in cloud
environments with a transparent runtime consolidation frame-
work. In Proceedings of the IEEE International Symposium
on High-Performance Parallel Distributed Computing.

[103] Christopher J. Rossbach, Jon C. Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. 2011. PTask: operating
system abstractions to manage GPUs as compute devices. In
Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles.

[104] Kyle Rupnow, Wenyin Fu, and Katherine Compton. 2009.
Block, Drop or Roll(back): Alternative Preemption Meth-
ods for RH Multi-Tasking. In Proceedings of the 17th IEEE
Symposium on Field Programmable Custom Computing Ma-
chines. 63–70.

[105] SeoWonik, ChaSanghoon, KimYeonjae, HuhJaehyuk, and
ParkJongse. 2021. SLO-Aware Inference Scheduler for Het-
erogeneous Processors in Edge Platforms. ACM Transactions
on Architecture and Code Optimization 18 (2021), 1–26.

[106] Amna Shahid and Malaika Mushtaq. 2020. A Survey Compar-
ing Specialized Hardware And Evolution In TPUs For Neural
Networks. In Proceedings of the 23rd IEEE International
Multitopic Conference. 1–6.

[107] Lin Shi, Hao Chen, and Jianhua Sun. 2009. vCUDA: GPU
accelerated high performance computing in virtual machines.
In Proceedings of the 2009 IEEE International Symposium
on Parallel and Distributed Processing. 1–11. https://
doi.org/10.1109/IPDPS.2009.5161020

[108] Roy Spliet and Robert D. Mullins. 2018. The case for limited-
preemptive scheduling in GPUs for real-time systems. In Pro-
ceedings of the Operating Systems Platforms for Embedded
Real-Time Applications.

[109] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion:
Interference-aware, Fine-grained GPU Sharing for ML Appli-
cations. In Proceedings of the Nineteenth European Confer-
ence on Computer Systems. New York, NY, USA, 1075–1092.
https://doi.org/10.1145/3627703.3629578

[110] Hsin-Hsuan Sung, Yuanchao Xu, Jiexiong Guan, Wei Niu,
Bin Ren, Yanzhi Wang, Shaoshan Liu, and Xipeng Shen.
2022. Brief Industry Paper: Enabling Level-4 Autonomous
Driving on a Single $1k Off-the-Shelf Card. In Proceedings
of the 28th IEEE Real-Time and Embedded Technology and
Applications Symposium. 297–300.

[111] Yusuke Suzuki, Hiroshi Yamada, Shinpei Kato, and Kenji
Kono. 2017. GLoop: an event-driven runtime for consol-
idating GPGPU applications. In Proceedings of the 2017
Symposium on Cloud Computing.

[112] Tianxiang Tan and Guohong Cao. 2024. Thermal-Aware
Scheduling for Deep Learning on Mobile Devices With NPU.
IEEE Transactions on Mobile Computing (2024).

[113] I. Tanasić, Isaac Gelado, Javier Cabezas, A. Ramírez, N.
Navarro, and M. Valero. 2014. Enabling preemptive mul-
tiprogramming on GPUs. In Proceedings of the ACM/IEEE
41st International Symposium on Computer Architecture. 193–
204.

[114] Andrew S. Tanenbaum. 2007. Modern Operating Systems
(3rd ed.). Prentice Hall Press, USA.

[115] TKEStack. 2022. GaiaGPU: vcuda-controller. https://
github.com/tkestack/vcuda-controller.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 689

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/triton-inference-server
https://github.com/triton-inference-server
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/5_Domain_Specific/BlackScholes/doc/BlackScholes.pdf
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/5_Domain_Specific/BlackScholes/doc/BlackScholes.pdf
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/5_Domain_Specific/BlackScholes/doc/BlackScholes.pdf
https://github.com/NVIDIA/cuda-samples/blob/master/Samples/5_Domain_Specific/BlackScholes/doc/BlackScholes.pdf
https://doi.org/10.1109/RTCSA.1998.726348
https://doi.org/10.1109/RTCSA.1998.726348
https://openxla.org/xla/tf2xla
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.1145/3453417.3453432
https://doi.org/10.1109/IPDPS.2009.5161020
https://doi.org/10.1109/IPDPS.2009.5161020
https://doi.org/10.1145/3627703.3629578
https://github.com/tkestack/vcuda-controller
https://github.com/tkestack/vcuda-controller

[116] Linus Torvalds and Intel. 2025. Linux kernel – ivpu
driver. https://github.com/torvalds/linux/
tree/master/drivers/accel/ivpu.

[117] A. Tsutsui, T. Miyazaki, K. Yamada, and N. Ohta. 1995.
Special purpose FPGA for high-speed digital telecommu-
nication systems. In Proceedings of the 1995 International
Conference on Computer Design: VLSI in Computers and
Processors. 486–491. https://doi.org/10.1109/
ICCD.1995.528912

[118] Oreste Villa, Mark Stephenson, David Nellans, and
Stephen W. Keckler. 2019. NVBit: A Dynamic Binary In-
strumentation Framework for NVIDIA GPUs. In Proceed-
ings of the 52nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture. Columbus OH USA, 372–383.
https://doi.org/10.1145/3352460.3358307

[119] Guibin Wang, Yisong Lin, and Wei Yi. 2010. Kernel Fu-
sion: An Effective Method for Better Power Efficiency on
Multithreaded GPU. In Proceedings of the IEEE/ACM Int’l
Conference on Green Computing and Communications &
Int’l Conference on Cyber, Physical and Social Computing.
344–350.

[120] Hongqiang Wang, Jay Yun, and Alex Bourd. 2018. OpenCL
Optimization and Best Practices for Qualcomm Adreno GPUs.
In Proceedings of the International Workshop on OpenCL.
New York, NY, USA, Article 16, 8 pages. https://doi.
org/10.1145/3204919.3204935

[121] Jiali Wang, Yankui Wang, Mingcong Han, and Rong Chen.
2025. Colocating ML Inference and Training with Fast GPU
Memory Handover. In Proceedings of the 2025 USENIX An-
nual Technical Conference.

[122] Tianxia Wang, Zhuofu Chen, Xingda Wei, Jinyu Gu, Rong
Chen, and Haibo Chen. 2024. Characterizing Network
Requirements for GPU API Remoting in AI Applications.
arXiv:cs.OS/2401.13354 https://arxiv.org/abs/
2401.13354

[123] Yidi Wang, Cong Liu, Daniel Wong, and Hyoseung
Kim. 2024. Unleashing the Power of Preemptive
Priority-based Scheduling for Real-Time GPU Tasks.
arXiv:cs.DC/2401.16529 https://arxiv.org/abs/
2401.16529

[124] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers,
Youtao Zhang, and Minyi Guo. 2016. Simultaneous Multi-
kernel GPU: Multi-tasking throughput processors via fine-
grained sharing. In Proceedings of the 2016 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture. 358–369. https://doi.org/10.1109/HPCA.
2016.7446078

[125] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers,
Youtao Zhang, and Minyi Guo. 2017. Quality of Service
Support for Fine-Grained Sharing on GPUs. In Proceedings
of the 44th Annual International Symposium on Computer
Architecture. New York, NY, USA, 269–281. https://
doi.org/10.1145/3079856.3080203

[126] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. 2022. MLaaS in the Wild: Workload
Analysis and Scheduling in Large-Scale Heterogeneous
GPU Clusters. In Proceedings of the 19th USENIX Sym-
posium on Networked Systems Design and Implementation.
Renton, WA, 945–960. https://www.usenix.org/
conference/nsdi22/presentation/weng

[127] Wikipedia. 2025. List of AMD graphics processing
units. https://en.wikipedia.org/wiki/List_
of_AMD_graphics_processing_units.

[128] Wikipedia. 2025. List of Nvidia graphics processing
units. https://en.wikipedia.org/wiki/List_
of_Nvidia_graphics_processing_units.

[129] Bo Wu, Xu Liu, Xiaobo Zhou, and C. Jiang. 2017. FLEP:
Enabling Flexible and Efficient Preemption on GPUs. Pro-
ceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Op-
erating Systems.

[130] Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin
Jin. 2023. Transparent GPU Sharing in Container Clouds for
Deep Learning Workloads. In Proceedings of the Symposium
on Networked Systems Design and Implementation.

[131] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang
Hou, Zhi Li, Yihui Feng, Wei Lin, and Yangqing Jia. 2020.
AntMan: Dynamic Scaling on GPU Clusters for Deep
Learning. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation. 533–
548. https://www.usenix.org/conference/
osdi20/presentation/xiao

[132] Xilinx. 2018. AWS F1 Xilinx Developer Labs. https:
//github.com/Xilinx/AWS-F1-Developer-
Labs/tree/master/helloworld_ocl.

[133] Yu Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. 2023. V10:
Hardware-Assisted NPU Multi-tenancy for Improved Re-
source Utilization and Fairness. In Proceedings of the 50th
Annual International Symposium on Computer Architecture.

[134] Ming Yang, Shige Wang, Joshua Bakita, Thanh Vu, F. Donel-
son Smith, James H. Anderson, and Jan-Michael Frahm.
2019. Re-Thinking CNN Frameworks for Time-Sensitive
Autonomous-Driving Applications: Addressing an Industrial
Challenge. In Proceedings of the IEEE Real-Time and Em-
bedded Technology and Applications Symposium. 305–317.

[135] T. Yeh, Matthew D. Sinclair, Bradford M. Beckmann, and
Timothy G. Rogers. 2021. Deadline-Aware Offloading for
High-Throughput Accelerators. In Proceedings of the IEEE
International Symposium on High-Performance Computer
Architecture. 479–492.

[136] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chi-Yuan Chou.
2020. KubeShare: A Framework to Manage GPUs as First-
Class and Shared Resources in Container Cloud. In Pro-
ceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing.

690 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/torvalds/linux/tree/master/drivers/accel/ivpu
https://github.com/torvalds/linux/tree/master/drivers/accel/ivpu
https://doi.org/10.1109/ICCD.1995.528912
https://doi.org/10.1109/ICCD.1995.528912
https://doi.org/10.1145/3352460.3358307
https://doi.org/10.1145/3204919.3204935
https://doi.org/10.1145/3204919.3204935
https://arxiv.org/abs/2401.13354
https://arxiv.org/abs/2401.13354
https://arxiv.org/abs/2401.16529
https://arxiv.org/abs/2401.16529
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1109/HPCA.2016.7446078
https://doi.org/10.1145/3079856.3080203
https://doi.org/10.1145/3079856.3080203
https://www.usenix.org/conference/nsdi22/presentation/weng
https://www.usenix.org/conference/nsdi22/presentation/weng
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://www.usenix.org/conference/osdi20/presentation/xiao
https://www.usenix.org/conference/osdi20/presentation/xiao
https://github.com/Xilinx/AWS-F1-Developer-Labs/tree/master/helloworld_ocl
https://github.com/Xilinx/AWS-F1-Developer-Labs/tree/master/helloworld_ocl
https://github.com/Xilinx/AWS-F1-Developer-Labs/tree/master/helloworld_ocl

[137] Jiaqi Yin, Zhiru Zhang, and Cunxi Yu. 2022. Exact Memory-
and Communication-aware Scheduling of DNNs on Pipelined
Edge TPUs. In Proceedings of the 7th IEEE/ACM Symposium
on Edge Computing. 203–215.

[138] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong
Han, Yuhang Jiang, Ding Tang, Zilong Wang, Kai Chen,
and Chuanxiong Guo. 2022. FAERY: An FPGA-
accelerated Embedding-based Retrieval System. In Pro-
ceedings of the 16th USENIX Symposium on Operating
Systems Design and Implementation. Carlsbad, CA, 841–

856. https://www.usenix.org/conference/
osdi22/presentation/zeng

[139] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion
Stoica. 2023. SHEPHERD: Serving DNNs in the Wild. In
Proceedings of the Symposium on Networked Systems Design
and Implementation.

[140] H. Zhou, G. Tong, and Cong Liu. 2015. GPES: a preemptive
execution system for GPGPU computing. In Proceedings
of the 21st IEEE Real-Time and Embedded Technology and
Applications Symposium. 87–97.

USENIX Association 19th USENIX Symposium on Operating Systems Design and Implementation 691

https://www.usenix.org/conference/osdi22/presentation/zeng
https://www.usenix.org/conference/osdi22/presentation/zeng

A Artifact Appendix
This artifact provides the source code of XSched, a detailed readme,
and scripts to reproduce the main experimental results from the OSDI
2025 paper—“XSched: Preemptive Scheduling for Diverse XPUs”
by W. Shen, M. Han, J. Liu, R. Chen, and H. Chen. XSched is a
scheduling framework that enables preemptive scheduling on diverse
XPUs through a general XQueue abstraction and multi-level hard-
ware model. We provide instructions to build the software package

and run experiments. Our artifact obtained the “Artifacts Available,”
“Artifacts Functional,” and “Results Reproduced” badges from the
Artifact Evaluation process of OSDI 2025. The DOI of our artifact
is https://doi.org/10.5281/zenodo.15308935.

Artifact repository. The project source code and comprehensive
instructions for building and running the main experiments on
different XPUs are available in this GitHub repository: https:
//github.com/XpuOS/xsched-artifacts.git

692 19th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://doi.org/10.5281/zenodo.15308935
https://github.com/XpuOS/xsched-artifacts.git
https://github.com/XpuOS/xsched-artifacts.git

	Introduction
	Background and Motivation
	Characterizing XPU Tasks
	Necessity of Preemptive Task Scheduling
	Solution 1: XPU Hardware Scheduling
	Solution 2: Host-managed XPU Scheduling

	The XQueue Abstraction
	Preemptible Command Queue
	Scheduling Policy

	Multi-level Hardware Model
	Level 1: Pending Command Preemption
	Level 2: In-flight Command Preemption
	Level 3: Running Command Preemption
	Hardware Model Interfaces

	The XSched Framework
	Overview
	XPreempt Design
	XScheduler Design

	Implementation on XPUs
	Level 1 (Lv1) Preemption
	Level 2 (Lv2) Preemption
	Level 3 (Lv3) Preemption

	Experimental Evaluation
	Portability
	Uniformity
	Evolvability
	Scheduling Overhead

	Case Studies
	Discussion and Limitations
	Related Work
	Conclusion
	Artifact Appendix

