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Abstract

Machine learning models are used in safety-critical edge
applications such as autonomous driving, industrial robots,
and satellites. However, GPU memory bit flips can signifi-
cantly reduce the model accuracy. Existing mitigations either
compromise accuracy or introduce substantial overhead.

Our insight is that not all hardware bits are created equal
and bit flips vary in their impact on model inference. Specifi-
cally, for the GPU memory, modern Al accelerators provide
bit-flip-free but small reliable memory. For the model infer-
ence, due to nonlinear activation functions in the model, some
bits are naturally robust against flips, while other vulnerable
bits can silently corrupt results. Thus, we prioritize the alloca-
tion of vulnerable bits’ computations in the reliable memory
to enhance the robustness of the model inference.

We propose SAVE, a software-implemented fault tolerance
system that protects model inference without modifying the
model and with minimal performance impact. SAVE operates
in four stages: Selection to identify vulnerable bits based on
the intrinsic characteristics of model inference, Allocation
to prioritize computations related to more vulnerable bits
in reliable memory, Verification to efficiently detect errors
through asynchronous CPU checks, and Edit to recover from
detected faults. Evaluation across computer vision, robotics,
and decision-making models shows that SAVE maintains
model accuracy even under 4K bit flips while incurring less
than 9% performance overhead.

1 Introduction

Machine learning models already play an important role in
safety-critical edge scenarios including autonomous driv-
ing [2, 54, 71], financial systems [6, 43], combat opera-
tions [10, 82], and military satellites [32]. The models on
local edge devices handle a large amount of data, e.g., 20TB
per day for one satellite [89] and 30TB per day for one au-
tonomous driving car [1]. These on-device edge GPUs are
more likely to have memory bits unintentionally flip due to un-
stable voltage in Unmanned Aerial Vehicles (UAVs), changing
temperatures in cars, or radiation in space. Protecting infer-

ence safety against memory bit flips on these edge devices
is crucial while challenging. For example, one satellite may
experience approximately 16 million bit flips daily [89], and
traditional Error Correction Code (ECC) [35, 68] proves in-
sufficient, as it provides only single bit errors correction [68]
while even a single escaped bit flip can cause complete accu-
racy loss and false decisions [29].

Current approaches to protect model inference against
bit flips on edge accelerators fall into two categories based
on whether they modify the model structure. The first cate-
gory modifies the model structure to enhance model robust-
ness, including specialized activation functions [89], compres-
sion [37,76], and quantization [40]. However, these methods
often compromise accuracy and lack generality across differ-
ent models. The second category preserves model structure
while implementing protection through redundancy, such as
Triple Modular Redundancy (TMR) [5, 13,57, 60, 79] and
ECC [35,68]. Although these approaches preserve accuracy
and generality, they either incur substantial overhead (2x for
TMR) or provide limited error correction capabilities (ECC).

In this paper, we focus on the second category and propose
an efficient software mitigation named SAVE against bit flips
in GPU memory, which improves the reliability of model
inference results without retraining the model or sacrificing
accuracy.

Our first insight is that not all hardware bits are created
equal. Modern edge-deployed Al accelerators like NVIDIA
Orin provide bit-flip-free safety islands [67], while hardware
manufacturers [25, 52] implement SRAM soft error detection
in e MMC [26] for L1 cache protection. SAVE leverages these
reliable memory regions for reliable model inference.

However, these reliable memory regions are limited (only
around 5-6MB in Orin [67]). Relying solely on them requires
frequent CPU-GPU memory swapping, which inevitably in-
creases performance overhead. Our evaluation shows it in-
troduces more than 1,000 x performance overhead for both
computer vision and robotics decision-making models.

Our second insight is that not all bit flips in software
are fatal or silent, which offers the chance to hybridly use
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reliable memory and normal memory for model inference
computation. During computation, the bits can be classified
into three categories: robust bits that don’t affect inference
results, ranging bits that can be verified through simple range
checks (e.g., the Sigmoid function’s sign bit must be zero as
outputs range from O to 1), and vulnerable bits that silently
corrupt the model. SAVE strategically allocates computations
involving vulnerable bits to reliable memory while computing
robust bits in normal memory, efficiently minimizing memory
swapping while maintaining result correctness.

Specifically, SAVE contains four stages to enhance the
reliability of model inference against GPU memory bit flips,
namely, Selection stage, Allocation stage, Verification stage,
and Edit stage.

Selection stage: robustness analysis and output range anal-
ysis. Machine learning models are programs that are easier to
analyze data and control flow compared to general software.
Thus, SAVE analyzes the model with data flow, control flow,
and mathematical properties to identify robust bits in each
value. For example, activation functions like ReLU [64] and
GELU [38] yield outputs close to zero for negative inputs,
meaning changes to the significand of its input will have lit-
tle impact. Additionally, SAVE assesses each layer’s output
range to find ranging bits. For example, for image classifi-
cation models, the image pixel value gives the range of the
input value. The known input range, together with the model
parameters, gives the output range of each layer. Some of
the exponent bits or sign bits can be verified by these ranges
without recomputation. SAVE sets all remaining bits as vul-
nerable bits. The findings are stored in a bit attribution cache
to accelerate further verification.

Allocation stage: robustness-aware GPU memory manage-
ment. Based on offline robustness analysis, SAVE prioritizes
allocating reliable memory to computations with more vul-
nerable bits. To optimize the use of limited reliable memory,
SAVE employs in-place computation techniques, including
overwriting input tensors with output results during matrix
multiplication. Model parameters are intentionally placed
in normal memory because they have copies stored in CPU
memory, allowing for bit flip detection through CPU-GPU
consistency checks during verification.

Verification stage: lightweight runtime verification. SAVE
implements distinct verification mechanisms to accelerate
the runtime verification. Values in reliable memory are con-
sidered correct and do not require verification. For values in
normal memory, SAVE verifies the correctness differently
according to their roles. For model parameters, it uses DMA
to copy them back to the CPU during runtime for double-
checking without impacting model inference. For other val-
ues, SAVE verifies the correctness of ranging bits using the
valid output range. To reduce the performance overhead, it
verifies vulnerability bits with integer computation using the
integer computation resources to avoid heavy floating-point
recomputation.

Table 1: Model degradation due to bit flips. (1): The models
with softmax. (?): ResNet, VGG. ): 8-bit quantization mod-
els. @: ASR: Attack Success Rate.

Flipped Accurac
Model BPiE)s Degradatiil)n
NaN [29] EfficientNet 3 82.00% — 0%
FIASM [46] | Softmax(D 1 97.4% — 62%
TBD [40] cv®@ 1 Up to 99% drop
BFA [73] | ResNet18®) 13 69.8% — 0.1%
DHB [37] | ResNet20®) 28 81.39% drop
TBT [74] | ResNet18®) 84 92% ASR®
TA-LBF [9] | ResNet18®) | 1507 100% ASR™
T-BFA [75] | ResNet18®) 27 100% ASR™
Our Res.Net
Experiments ViT 1 Up to 99% Drop
CogACT

Edit stage: eliminating bit flips. When an error is detected,
SAVE simply restarts the inference computation from the
faulting model layer.

To demonstrate the efficiency and effectiveness of bit flip
mitigation, we test SAVE across various computer vision,
robotics, and decision-making models. The results show that
SAVE incurs less than 9% performance overhead for end-to-
end latency in model inference and maintains the model’s
accuracy even in the case of 4K bit. To compare existing ap-
proaches, we propose a new metric, AccurateLatency, which
penalizes high latency and low accuracy in inference. SAVE
is 90% lower than state-of-the-art methods under Accurate-
Latency.

In summary, our contributions are as follows:

* An idea of arranging computation related to vulnerable
bits in reliable memory to improve the reliability of model
inference.

* A prototype system, SAVE, to mitigate GPU memory bit
flips by using robustness-aware GPU memory manage-
ment and lightweight runtime verification and recomputa-
tion.

* An intensive evaluation that demonstrates the efficiency
and effectiveness of SAVE.

2 Background
2.1 GPU Bit Flips on Edge Inference

Machine learning models greatly improve decision and recog-
nition accuracy. So, many on-device edge scenarios like au-
tonomous cars [2,54,71] and satellite image recognition [32]
use these models for local inference. To support these appli-
cations, GPUs are widely used for model inference due to
their high parallelism and efficiency. These GPUs are often
deployed in edge devices, such as drones and satellites, where
they can process data locally and make real-time decisions.
However, the GPU memory reliability in the edge device can
be easily compromised by physical factors such as unstable
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cell voltage, radiation, and temperature fluctuations. Such de-
creased reliability will result in unintended bit changes in
GPU memory, commonly referred to as bit flips. Bit flips are
a common occurrence across various edge-deployed GPU
devices [90]. For instance, the memory flip rate in UAVs op-
erating under low voltage conditions can reach 3.5% [86]. In
space devices, radiation exposure can cause flip rates as high
as 10%, with multiple cells potentially flipping simultane-
ously [89]. On some lower-end devices, an average of 3,900
bit flips may occur per day [80]. One satellite can experience
16 million bit flips per day due to cosmic rays [89].

These bit flips can significantly degrade model accuracy.
Research indicates that even a single bit flip can reduce model
accuracy by more than 60%, as demonstrated in Table 1. Such
accuracy degradation can have severe consequences for down-
stream applications. In financial systems, erroneous results
can silently affect stock trading volumes or target prices. In
aerospace applications, corrupted decisions or navigation cal-
culations can result in mission failures.

Better €—

5 h OOurs o °
o T .
o DrDNA  Reliable Hardware =~ TMR
& RedNet” @
g = ediNe Depends on reliable memory portion
Q35 o .
K] g i FT-ClipAct
§ = o Quantization Methods
e General/No Retrain

2 Specific Models/Require Retrain

S © No Protection P g

T

0.5 1.0 15 2.0 25 3.0 3.5
Normalized Latency

Figure 1: Comparison of different bit flip mitigation methods.

2.2 Existing Approaches

Existing approaches to safeguard inference safety on edge
devices against bit flips can be categorized into two types
based on whether they modify the Al model. A comparison
of these approaches is shown in Figure 1.

The first category involves modifying the model struc-
ture or its outputs to enhance model robustness. Some meth-
ods [33,47,53,89] employ hashing-based techniques to gen-
erate weight group signatures and verify parameters. Other
approaches propose using quantization [37,40,76] and spe-
cialized activation functions, such as FT-ClipAct [39], Red-
Net [89], and Ranger [16], to mitigate the impact of bit flips.
Additionally, Dr.DNA [61] leverages the distribution of acti-
vation results to detect and correct bit flips. However, these
methods often require retraining the models or result in re-
duced accuracy.

The second category preserves the original model structure
while implementing protection mechanisms through software
or hardware redundancy. For instance, ECC can detect and
correct limited bit errors. However, ECC is typically deployed
only in high-end devices [4,51] and is unavailable on many
off-the-shelf GPUs. Moreover, it incurs additional costs, in-

cluding a 10% to 20% increase in memory usage and a 2%
to 3% reduction in performance [20, 24]. Furthermore, in
extreme scenarios such as those involving cosmic ray im-
pacts [89], a large number of bits may flip simultaneously,
exceeding the error correction capacity of ECC and causing
it to fail. Triple Modular Redundancy (TMR) [60, 79] is a
general software solution to improve computational reliabil-
ity. However, it requires threefold computation, rendering it
prohibitively expensive for many scenarios [89].

2.3 Reliable Memory Exists on GPUs

We observe that “not all bits are created equal” on GPUs.
Specifically, certain portions of GPU memory exhibit higher
reliability, presenting opportunities for reliable computing.
This observation is supported by the following two facts.

First, NVIDIA Orin, a widely-used edge Al accelerator,
provides safety islands [67], which account for only 0.009%
of the total memory and are guaranteed to be free of bit
flips. Additionally, hardware manufacturers [25] offer soft
error detection features for SRAM in e. MMC [26], enabling
hardware-based protection for L1 cache. Second, similar to
bit flips observed in DRAM on CPUs [8,49, 50], a signifi-
cant portion of GPU memory bits may be prone to flipping,
while others remain stable and never flip (effectively func-
tioning as safety islands). The properties of these bits are
determined during manufacturing and are influenced by fac-
tors such as the chip fabrication process, memory cell voltage
stability, and resistance to environmental stress. Defective bits
prone to flipping can be identified through experiments using
rowhammer-like tools [84,96,97] or through environmental
testing [12, 19, 34,87, 89]. Bits that are not prone to flipping
can be treated as reliable memory and leveraged during infer-
ence.

2.4 Fault Model and Goal

Our work attempts to leverage the reliable memory on GPUs
to improve the robustness of model inference against GPU
memory bit flips under the following assumptions: 1) initial
model parameters and inputs on the CPU side do not expe-
rience bit flips, as they are protected by orthogonal reliable
methods on CPU-side memory; 2) registers, cache, and a
small portion of memory on the GPU are free from bit flips;
3) the GPU reliable memory can be detected by environmen-
tal testing like Rowhammer-like tools [11,14,22,51]; 4) the
remaining GPU memory may experience random bit flips,
including both single-bit and multi-bit flips; 5) the GPU ker-
nel binary could fit within the reliable memory because of its
small size after pruning [69].

It is important to note that the goal of SAVE is to enhance
the robustness of model inference under GPU bit flip con-
ditions, rather than strictly guarantee inference correctness
under all possible flip scenarios.
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3 Basic Idea and Insights
3.1 Basic Idea

A strawman solution is making all the computation conducted
within the reliable GPU memory. However, the size of reli-
able memory is typically too small (e.g., less than 10MB) to
accommodate GPU kernel computation with large matrices.
Thus, we need to partition the kernel computation so that
the input, model parameters, and output can fit into the small
reliable memory. This involves continuously transferring data
between the CPU and GPU reliable memory. According to
our tests on both one visual model [23] and one decision
model [15], this approach would result in a more than 1000 x
increase in model inference latency, which is unacceptable.

Our basic idea is also utilizing only the reliable GPU mem-
ory for improving the reliability of model inference. The key
difference from the strawman solution lies in that our sys-
tem (SAVE) hybridly uses reliable memory and unreliable
memory on the GPU.

We first find that it is feasible to pre-load all the model
parameters into unreliable memory, which can save more reli-
able memory for accommodating the kernel input and output.
This is because 1) there exists an intact copy of model pa-
rameters on the CPU side; 2) the parameters in the unreliable
memory can be copied back to the CPU side for verifying
consistency, by using the free CPU-GPU PCle path with the
dedicated memory copy engine during kernel execution with-
out hurting performance.

When executing the first layer’s kernel computation of the
model, SAVE copies the input matrix to reliable memory
and launches the kernel for computation. After the first layer
completes, it pulls the kernel’s parameters back to the CPU
and compares them with CPU-side parameters to verify that
no bit flips occurred in the unreliable memory during kernel
computation. This procedure is overlapped with the kernel
execution of the next layer. While there exists an extreme
edge case where a bit might flip before computation and
revert before CPU verification, this time window is negligibly
small, and we do not consider such extreme cases.

The output of the first layer’s kernel computation is also
placed in reliable memory, in-place overwriting the input to
serve as input for the next layer’s computation with another
copied version to serve as the last reliable output. This pro-
cess continues layer by layer until completion. During this
process, if the total memory required for input/output in any
layer’s kernel computation exceeds the size of reliable mem-
ory, SAVE still partitions the kernel’s input to ensure each
computation fits within reliable memory capacity, and swaps
intermediate results to CPU memory for temporary storage.

Besides model parameters, we also find that some parts of
the kernel input can also be placed on the unreliable mem-
ory without sacrificing the model inference accuracy, which
helps to minimize the needed partition of kernel computa-
tion. Next, we introduce our insights on how to select data for

computation in unreliable memory and vice versa.

3.2 Insights on Bit Robustness

When placing computation data in unreliable memory, we
need to detect the correctness of computation results, specifi-
cally to identify errors in computation results caused by bit
flips. While detection can be simply achieved through recom-
putation and result comparison, this would incur significant
performance overhead or require double the computing re-
sources.

We discovered that not all bit flips have equal impact on
model accuracy, which presents an opportunity to reduce the
fault detection overhead. Different from general-purpose com-
puting, the non-linearity of model computation makes some
bit flips have little impact on model accuracy. We conduct
an experiment with the ResNet-50 model, flipping each bit
in every kernel’s input values individually and measuring
the impact on model accuracy. The experiment results show
that there exist robust bits whose flips have no impact on
model accuracy; the remaining non-robust bits affect the ac-
curacy and can be further categorized into ranging bits and
vulnerable bits. The former ones may cause NaN and reduce
model accuracy to 0, while the latter causes gradual accuracy
degradation. Additionally, we found that some values consist
entirely of robust bits and ranging bits (type-1 values), while
others contain vulnerable bits (type-2 values).

For computations involving type-1 values, we compare re-
sults against pre-computed result thresholds; if ranging bits
flip, results will fall outside these thresholds, which eases
the fault detection. For type-2 values, recomputation is nec-
essary to verify result correctness. We designed an asyn-
chronous CPU-based verification method that doesn’t impact
GPU model inference, which is detailed in §4.4. For reliable
memory allocation, we prioritize matrices with more type-2
values to minimize recomputation needs.

‘ Vulnerable Bit ‘

significand \

‘Robust Bit‘ ‘Ranging Bit‘
‘S‘ Exponent ‘

Type-1 |o]o|o|o|o|o|o|e|e|e]e]o]e]e|e|e|e|e|e|e|e|e]e]e]e]e]e]e]e]e]0]e]
All bit flips have no effects on accuracy.

Type-1 |o]o]o|o|o|o|o|e|e|e]e]e]e]e|e|e]e|e|e|e|e|e]e]e]e]e]e]e]o]e]o]e]
These bit flips can be detected by range verification.
If 0.15<y<0.26, the first eight bit must be 0b00 1111 10.

0.15 0... |0.16 Q... 0.17 Q..
0.18 0... |0.19 Q... 0.20 Q..
0.21 0... |0.22 Q... 0.23 Q...
0.24 0... 0.25 1... 0.26 1...

Type-2 |o]e|e]e]e|e|e]e]e]ele]ele]e]e|e|o|e|e|ee]o|o|e[e]o]e ele]o]ele]
Vulnerable bit flips can only be detected by recomputation.

Figure 2: The classification of bits and its mapping.

Finding all the robust bits and ranging bits by testing all
the bits is impractical due to the large number of bits. At the
same time, the robustness of a single bit cannot be directly
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extended to multiple bits. Thus, we explore the mathematical
properties of the model to quickly find the robust bits and
ranging bits and find a method to extend the single bit robust-
ness to multiple bits. We found that the impact of bit flips on
results depends on how big perturbation a model calculation
can tolerate. If the change from the bit flip stays within this
range, accuracy is not affected. We choose 107> for pertur-
bation as it is a conservative estimation, ensuring common
models remain unaffected by perturbations [3,44,72]. Such
bit robustness comes from the mathematical properties of the
model computation, and thus, we design an offline analysis
method of bit identification (§4.2).

Ranging Bits. Current machine learning models rely on
nonlinear activation functions. These functions, in combina-
tion with the input data range, produce a small, valid output
range. This reduces the cost of numerical validation, as values
outside this range can be identified as errors without compu-
tation, as shown in Figure 3(a, b). It is important to note that
the input data range is also predefined. For example, pixel
values typically fall within the range of 0-255 or 0-1 (a model
program often maps pixel values to this smaller range). These
output range constraints can be mapped to the specific bits
of the number, reducing the number of bits that need to be
verified, as illustrated in Figure 3(c).

‘ Input: 0 <x <1 ‘ ‘ Input: x(-1) ‘ ‘Input;x(O.S)‘ ‘Input:x(O.S)‘

‘ Linear + SiLU ‘ ‘outofrangeH »(-10) ‘ ‘ (0.4) ‘

| 0.1405 < 1< 04926 | | out of range | | Range OK |

(a) Layer range (b) Example of range check for SiLU
0.1405 0 00 :> The legal output has the
0.25 1 00 same first 8 bits.

The first 8 bits can be verified by
0.4926 111 whether the value is in the interval.

(c) Ranging Bit Mapping

Figure 3: The ranging bits of the value and its fast verifica-
tion.

Robust Bits. Robust bits can be identified based on the
floating-point representation and the model structure. As
shown in Figure 4(a), the last few bits of the significand have
minimal impact on the results [27, 30, 63, 83], and can, there-
fore, be directly designated as robust bits. Additionally, the
model structure contributes to robust bits. For instance, the
negative input of a ReLLU function does not affect the out-
put as long as the input remains less than 0, as illustrated
in Figure 4(b). These bits are marked as robust bits based on
specific input conditions.

Flip one bit Flip one bit

-102 -10.234] | 90 | 23040
... 0100011010 || ... 0100011110 | 1 10010 0010000000 | 1 11010 0010000000

" Relu |

‘ Remaining/Layers ‘

‘ Same Loss / Accuracy ‘
(a) Robust Bit in Significand

(b) ReLU example

Figure 4: The flipped robust bits and their effects.

4 Design

4.1 Workflow Overview

SAVE is built on PyTorch, a widely used machine learning
inference framework. Figure 5 illustrates its entire workflow,
which consists of four key stages working together to achieve
reliable inference:

Selection Stage performs a one-time offline static analysis
to identify three types of bits: robust bits with minimal impact
on accuracy, ranging bits that can be verified through range
checks, and vulnerable bits identified conservatively as the
remaining bits. The analysis results guide runtime memory
allocation and verification.

Allocation Stage manages the placement of data between
reliable and unreliable memory. Based on the analysis of
the prior stage, it prioritizes placing computations with more
vulnerable bits (more type-2 values) in reliable memory while
assigning computations with more robust bits and ranging
bits (more type-1 values) to unreliable memory. An eviction
mechanism is also implemented to optimize the use of limited
reliable memory resources.

Verification Stage detects faults caused by bit flips. It em-
ploys asynchronous CPU-GPU verification along with output
range analysis results to minimize fault detection overhead.

Edit Stage addresses error recovery when faults are de-
tected. It ensures that the latency of model inference remains
unaffected in normal cases without bit flips. For cases where
faults occur, SAVE restarts the inference process from the
faulting model layer.

Allocation
Manage data placement

Model Bit Attribution

Selection
Get bit attributions Analyzed Model

Request

Figure 5: The overview of SAVE.

Verification
Detect bit flips

If wrong

J9he| XN
1234400 §|

Edit

Recover errors

4.2 Selection Stage

This stage performs static analysis to classify three types of
bits in each value: ranging bits that can be verified through
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range checks, robust bits with minimal impact on accuracy,
and vulnerable bits requiring strict protection. The analysis
comprises two phases: range analysis and bit attribution anal-
ysis.

Phase 1: Range Analysis. SAVE determines the valid range
for each value by propagating ranges through the model’s
computational graph layer by layer. Since the model structure
is a directed acyclic graph (DAG) with deterministic opera-
tors (purely computational), this analysis can be performed
statically. For simplicity, we assume each layer contains a
single operator corresponding to one kernel.

Figure 6 illustrates this process with a concrete example: 1)
SAVE initializes the input range as [0, 1] for the input layer.
2) This range is propagated to the next layer’s operator (Op),
which performs matrix multiplication. Since the weight ma-
trix is fixed (model parameters), SAVE knows the relationship
between input X and output Y of the Op. Based on the prop-
agated input range, SAVE determines that the output range
will be [-0.75, -0.1]. 3) The subsequent ReLLU operator, which
outputs zero for negative inputs, allows SAVE to determine
that its output range is exactly 0. 4) For the final Add operator,
one input is known to be 0 (from ReLLU) and the other is the
original input X ([0 to 1]), resulting in a final output range
of [0 to 1]. The code snippet of this example is shown in
Appendix B.

Phase 2: Bit Attribution Analysis. Using the ranges cal-
culated in Phase 1, SAVE identifies ranging bits and robust
bits.

Ranging Bits Identification. For each value, SAVE identifies
ranging bits as those that must have the same value for all
possible values within the computed range. These typically
include the sign bit (e.g., must be 1 for range [-0.75 to -0.1])
and exponent bits constrained by the range bounds.

Robust Bits Identification. SAVE identifies two types of
robust bits: 1) Value-based robust bits: For both upper and
lower bounds of each range, if flipping a bit in the significand
causes a numeric difference less than 1072, it is considered
robust. The common robust bits between both bounds become
the robust bits for that range. 2) Operator-induced robust
bits: Some operators, particularly activation functions, create
additional robust bits. For example, with ReLU and negative
inputs, only the sign bit needs verification since all outputs
will be zero regardless of the input’s exact value.

Fine-Grained Analysis Results. Some operators, such as
Op in the example above, exhibit points where the mono-
tonicity of the input-output relationship changes. Some other
operators may have extremely wide output ranges. In these
situations, SAVE partitions the output range into multiple in-
tervals and performs separate ranging and robust bit analyses
for each interval. This approach enables more precise bit at-
tribution during runtime based on actual values. To reuse the
analyzed bit attribution results efficiently, SAVE stores the
analyzed results in a bit attribution cache.

To manage cache pressure caused by storing bit properties
across numerous intervals, SAVE optimizes memory usage by
combining each linear operator with its subsequent nonlinear
operator into a single composite operator. The cache then
stores the ranging and robust bits for these combined operators
instead of for individual ones.

def NonResidualExample(x):
x = relu(Oop(x)) + x

return Xx
Ranging ‘ /L
Q (@Propagate | 2 Ve
X x (@) o] + out
| 2]
Otol i Oto |
®Input Constraint | 075001 0 (0+0to | +0) Otol
0 abc 1 Input | Output Ranging Value | Binary
! 0toa |-0.65to-0.75 |9 Bits -0.65 101111110 0...
v ctol |-0.7to-0.1 6 Bits -0.75 (101111110 1...
@Partition 9 Ranging Bits @Map to bits
Robust

075t0-1 —ReY

Any negative values give
same results.

Range | Binary(Significand)| Value

-0.65 | ..10011001100110 |-0.65
to
2075 |...10011100001110 |-0.65001

9 Robust Bits Robust by Math

31 Robust Bits Robust by Model

Figure 6: The process of range analysis in Selection stage.

4.3 Allocation Stage

While bit attributes can help reduce reliable memory usage
in theory, existing computing and memory management in-
terfaces do not support bit-level management. To address
this limitation, SAVE employs matrix partitioning to manage
memory allocation based on the proportion of vulnerable bits
in each computation block after partitioning.

Rellable Memory Only two blocks are stored in reliable memory in this case.
- FH B <l =0 ‘ Ba=H +E %D‘
S
3x3

S oxBox0|  [osHepx0)
Matrix 4 Matrle

Block matrix multiplication
‘ Robust Bit Count

More Less‘ [ Case | H Case 2 H Case 3 H Case 4 ]

Figure 7: Blocking matrices multiplication examples and par-
titioning. Both matrix A and B in the figure are non-parameter
matrices.

Specifically, when executing GPU kernels, SAVE partitions
the input matrices into four sub-matrices, with the partition-
ing strategy designed to create significant differences in the
proportion of vulnerable bits across blocks, as shown in Fig-
ure 7. During memory allocation, sub-matrices with higher
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proportions of vulnerable bits are prioritized for placement
in reliable memory, and sub-matrices with lower proportions
of vulnerable bits are preferentially allocated to unreliable
memory. The weight matrices of kernels (model parameters)
are always allocated in the unreliable memory. To implement
this, SAVE maintains two separate memory pools for reliable
and unreliable (normal) memory, and hooks into the memory
management interface in the framework.

The allocation strategy also carefully considers the out-
put memory placement for each sub-matrix computation. For
example, computation results containing more ranging bits
and robust bits are preferentially allocated to unreliable mem-
ory, as they can be efficiently verified through range checks.
This creates four distinct scenarios for each partitioned matrix,
depending on the input and output memory placements, as
illustrated in Figure 7:

* Case 1: Both input and output in reliable memory.

e Case 2: Input in reliable memory, output in unreliable
memory.

e Case 3: Input in unreliable memory, output in reliable
memory.

¢ Case 4: Both input and output in unreliable memory.

For the cases above, SAVE adheres to the rules of in-place
modification after the CPU has stored the values. Specifically,
SAVE transfers a copy of the output to the CPU.

For computations with output stored in reliable memory
(Cases 1 and 3), in-place modification significantly reduces
memory usage. However, since SAVE needs to maintain a
reliable result on the CPU, immediately performing in-place
modifications would erase the trace of reliable computations,
impacting subsequent verification. To address this, SAVE
retains a copy in reliable memory until the CPU has fully
received the result. For computations with output stored in
unreliable memory (Cases 2 and 4), SAVE transfers the output
to the CPU for verification. Once the CPU verifies the output,
it is deemed reliable, and the corresponding data in unreli-
able memory is in-place modified. For input values stored
in unreliable memory (Cases 3 and 4), SAVE verifies their
correctness by comparing the input with the recorded reliable
input.

4.4 Verification Stage

SAVE requires fault detection for computations involving
unreliable memory. A straightforward approach would be to
recompute each kernel and verify result consistency, as shown
in Figure 8(a). However, since both recomputation and ver-
ification would occur on the GPU, subsequent kernel com-
putations would be blocked until verification is completed,
significantly impacting model inference time.

Instead, SAVE introduces an efficient verification mecha-
nism that offloads most verification work to the CPU through
PCle and unified memory, minimizing the overhead on model
inference latency. This mechanism handles two distinct cases:

| One operator |
) |

GPU[ Compute Op | I Result Verification Op | I Next Compute

(a) Synchronous Verification

GPU[ (Reliable) Compute Op | I (Reliable) Compute Op2 I Next Compute

Gy Result,Weight | Result, Weight |__

Async Copy to CPU Copy to CPU
7777777777777777777777777777777777777777777777777 Weight | | Weight |

w

(b) Asynchronous Weight Verification

GPU[ Compute Opl I Compute Op2 I Next Compute

Gy Result,Weight | N
Async Copy to CPU

77777777777777777777777777777777777777777 Weight | Range |Mixed |
cr

(c) Asynchronous Weight, Range and Value (Mixed in figure) Verification

Figure 8: The overview of verification stage. The compu-
tation in red means the input is in unreliable memory. The
computation in blue means the input is in reliable memory.
The weight matrices are in unreliable memory.

Case 1: Kernel Input in Reliable Memory. When input
matrices are placed in reliable memory (some partitioned ma-
trices can fit in the reliable memory owing to the allocation
stage), only the model parameters (weights) stored in unreli-
able memory need verification. SAVE asynchronously copies
weights from GPU memory to CPU after each computation
and uses parallel CPU threads to compare against the original
CPU-side copy. As illustrated in Figure 8(b), weight transfers
occur through the GPU’s DMA engine without blocking ker-
nel execution, allowing weight verification to run concurrently
with the next kernel’s computation.

Case 2: Kernel Input in Unreliable Memory. When in-
put matrices reside in unreliable memory, SAVE performs
three types of verification: weight verification as described
above, range verification for ranging bits, and lightweight
recomputation for vulnerable bits.

Range Verification. To verify numerical ranges efficiently,
SAVE splits the work between GPU and CPU. Specifically,
SAVE implements a range verification kernel as shown in
Appendix C. It retrieves valid ranges for each value from the
selection stage cache and launches the kernel. The kernel
computes the differences between the value and its range
bounds, uses the signbit function to get the sign bits of these
differences, and performs OR on the sign bits to produce the
output (where a zero indicates the value falls within range).
After the kernel completes, the output matrix is transferred
to CPU memory, where multiple CPU cores verify that all
elements equal zero, confirming no ranging bit flips occurred.

This GPU-CPU split design is intentional because perform-
ing all verification on the CPU would introduce significant
latency that would impact end-to-end model inference time.
By dividing the work between GPU (numerical operations)
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and CPU (final verification), SAVE achieves better overall
performance. During the whole verification, the bandwidth
of PCle is not the bottleneck since not all values need to be
verified on the CPU. To further minimize overhead, the range
verification kernel is fused with its corresponding computa-
tion kernel.

Mixed Precision Recomputation Verification. Recompu-
tation is required to verify the calculated results involving
vulnerable bits. Directly recomputing multiplication or divi-
sion kernels on the CPU would be highly time-consuming.
To address this, SAVE aims to minimize the recomputation
burden, enabling it to be conducted asynchronously on the
CPU without introducing significant performance overhead.

Since ranging bits are verified by their ranges and robust
bits are ignored, the number of bits requiring verification is
reduced to less than half of the original count. This reduction
allows the verification process to shift from high-precision
computation (heavyweight) to low-precision computation
(lightweight). Figure 9 illustrates the conversion process.

Specifically, for multiplication or division of x and y, the
sign bit of the result can be obtained by XORing the sign bits
of x and y. The exponent bits of the result can be obtained by
adding or subtracting the exponent parts of x and y. Once the
new exponent bits are determined, SAVE re-estimates the ro-
bust bits and removes the robust bits for further low-precision
verification. The significand of the result can be computed by
converting the significand of x and y (excluding robust bits)
into 16-bit or 8-bit integers (low and mixed precision), then
performing multiplication or division. CPU SIMD instruc-
tions are leveraged to accelerate these low-precision integer
operations in parallel.

Appendix D presents the pseudocode for multiplication
recomputation running on CPU. Lines 7 and 11 extract the
significand of x and y. Since normalized floating-point num-
bers (1.significand) omit the leading 1 in their integer part,
lines 24-25 restore this implicit 1. Then, robust bits are re-
moved through shift operations before performing the final
multiplication.

Bit Mapping
0 00000000 00000000000000000000000 0 00000000 00000000000000000000000
e ‘

+ v
x = sign, x 2°P= x significand,, y = sign, x 2°Pv x significand,,

Sign Bit sign, XOR Signy When Sign bits are same, output 0 else |

Exp Bit €XPy 1 €XDy for multiply ©XPz — €XPy for division

Significant Bit Find robust bit under new exponent bits with <10
* Remove robust bits
* Using int to calculatesignificand,, x significand,,
significand,, < significand,,

Figure 9: The verification process of multiplication and divi-
sion.

The addition and subtraction kernels are very lightweight
on GPU (and are hard to efficiently implement on CPU)

thereby, their recomputation does not incur much overhead
on the overall model inference latency. So, SAVE verifies the
results by simply recomputing them.

5 [Evaluation

To show the effectiveness of SAVE, we evaluate it by answer-
ing the following questions:

* What is the overhead of SAVE for normal execution?
» How effective is SAVE in protecting against bit flips?
* What is the overhead of each part of SAVE?

5.1 Evaluation Setup

We evaluate the effectiveness of our method through the ap-
proach of simulated flipping. We use GPUs for desktop PCs
and embedded devices as the platform to evaluate the per-
formance of SAVE. We follow our fault model, wherein the
registers, cache, and a specific portion of memory (exactly
6MB) are assumed to be free from bit flips, and the CPU
is considered free from bit flips. Our bit flip setting aligns
with previous work [89], using real satellite flip characteris-
tics from RedNet [89] to build a physical flip bit trace to test
SAVE’s effectiveness.

Baseline. To demonstrate the effectiveness of SAVE, we
compare it against the unmodified original model (Original),
Triple Modular Redundancy (TMR), and state-of-the-art pro-
tection methods (Dr.DNA [61] and RedNet [89]). Since Red-
Net cannot be directly applied to models, we retrain the model
with RedNet, ensuring that the training configurations match
those of the original model. For Dr.DNA, which includes sev-
eral mitigation methods outlined in the original paper, we
adopt the fastest mitigation strategy to evaluate end-to-end
performance without errors. For TMR, we employ its mitiga-
tion strategy to measure recovery accuracy.

5.2 Metrics: AccurateLatency

In a fault-tolerant system, maintaining model correctness
is crucial. To evaluate model performance, we propose a
new metric, AccurateLatency, defined as: AccurateLatency =
Latency x (1 + ErrorRate).

This metric represents the average inference time under the
assumption that a second inference is always correct when
given an ErrorRate. If the error rate is 0%, the AccurateLa-
tency is equal to the original latency. Instead, if the error rate
is 100%, the AccurateLatency is equal to double the original
latency, meaning the first inference does not produce any cor-
rect results. It shows the optimal average correct inference
time. For a system with inference protection, an increase in
the ErrorRate suggests that some errors have slipped through
the system or that there has been an impact on the accuracy
rate compared to the original model.

5.3 End-to-end Performance

We first evaluate the overall performance impact of adding
SAVE and analyze the time overhead required for model in-
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Figure 10: The accurate latency of several models with SAVE. x: RedNet cannot apply to CogACT and RDT due to the
activation function changes. The models used in this evaluation are shown in Table 2.

Table 2: The models used in our evaluation. *: We evaluate
the validness of the model output by checking whether the
output action is reachable.

Model | Dataset
A ViT [23] ImageNet-1K [21]
B ViT [23] AID [93]
C ResNet-50 [36] ImageNet-1K [21]
D ResNet-50 [36] AID [93]
E MobileNetV2 [42] ImageNet-1K [21]
F MobileNetV2 [42] AID [93]
G Decision Transformer [15] ValidCheck*
H | Decision Transformer-M [15] ValidCheck*
I CogACT [55] ValidCheck*
J RDT [59] ValidCheck*

ference. Normalized latency is used to present performance
across different models and datasets.

As shown in Figure 10, SAVE introduces minimal overhead
compared to the original model execution while maintaining
high accuracy. On average, SAVE adds only 8% latency over-
head across various models and datasets, which is significantly
lower than that of TMR (3 x). This low overhead is achieved
through our efficient vulnerable bit identification and selec-
tive protection strategy. For vision models such as ViT, the
overhead is slightly higher (8—-10%) due to the increased num-
ber of matrix operations requiring protection. Compared to
other state-of-the-art methods, SAVE achieves better accuracy.
For Decision and Embodied Al models, RedNet’s accuracy
drops by more than half due to changes in activation functions,
leading to substantial performance degradation.

5.4 Accuracy under Bit Flips

We evaluate the fault tolerance capability of SAVE under
two bit flip patterns with varying bit flip probabilities. The
flip patterns are virtual consecutive address flips and physi-
cally contiguous region flips. The first pattern is more likely
to occur during memory access, while the second pattern is

g 0
-% [ No Protection
877 —-— One-Bit ECC
2 504 | —-— RedNet
8 !
> | —— SAVE
8 -751 |
3 i
Q
<<(.>_100_ I-_._._._._./.I oo ——- —_—— -
0 20 3960 3980 4000
Inject Errors
ViT with ImageNet-1K
R 4
S 0 P
© _o5 ! i
A [
(2] L
-504| =1
8 0 1
> 1 N
g 751 b
3 | L
-0 == T T T |
0 500 1000 1500 2000 2500 3000 3500 4000
Inject Errors
ResNet-50 with ImageNet-1K
o
£ o === -
8 _25 l
g I
o
504 |
& -50 i
>
8 -751 |
3 [
Q
2_100_ I'_._._I._.. ﬂ;:=:=:|=:=:=:|=:=:=:|=:=:=:|=:=:=:|
0 10 3950 3960 _ 3970 3980 3990 4000
Inject Errors

Decision Transformer with ValidCheck

Figure 11: The accuracy degradation under virtual consecu-
tive address flips.

typically caused by physical interference. We test the overall
inference accuracy and inference time after attacks with differ-
ent bit flip probabilities. The accuracy refers to the correctness
rate after flipping bits across 100 consecutive inferences at
the same position. Additionally, the correctness of Dr.DNA is
comparable to SAVE in our tests under the fastest mitigation
selecting strategy. We also examine single-bit error correction
using ECC, noting that when two-bit errors occur, ECC fails
to repair them. This results in program termination or infer-
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ence failure. We mark this situation as 0% accuracy. If ECC’s
correction capability is extended to n-bit errors, the accuracy
curve will shift to the right by n bits.

5.4.1 Virtual Consecutive Address Flips

We simulate virtual address consecutive memory flips by ran-
domly modifying the bits on the addresses, and we test the
accuracy after attacks involving selecting random flips among
all bits. As shown in Figure 11, SAVE maintains high accuracy
for up to 4096 consecutive bit flips for both ResNet-50 model
and Decision Transformer. In contrast, the original model’s
accuracy drops significantly to below 5% with just 3 consecu-
tive bit flips. Due to the activation function changes, RedNet’s
accuracy on Decision Transformer quickly drops below 10%
after 32 bit flips, while on ResNet-50 with ImageNet-1K,
RedNet’s truncation effect causes the accuracy to continu-
ously decline, dropping below 10% after 1600 bit flips. Due
to error value detection and repair mechanisms, both Dr.DNA
and SAVE maintain zero accuracy degradation. The results
demonstrate that SAVE’s selective protection strategy effec-
tively preserves model accuracy under bit flip attacks while
introducing minimal overhead.

5.4.2 Physically Contiguous Region Flips

When facing the physical interference, the bit flip impact is
not continuous in a row but continuous in the physical space.
This makes the impact of the model appear to be flipped at
intervals. For this, SAVE tests the physical flip pattern given
in RedNet with exactly the same proportion and simulation
setup.

As shown in Figure 12, The physically contiguous bit flips
cause changes in values at multiple-spaced positions, which
differs from virtual consecutive address flips, where 32 con-
secutive bits need to be flipped to affect a single value. The
results also show the same trend. RedNet, which employs
modified activation functions, experiences significantly faster
accuracy degradation under physically contiguous flips com-
pared to virtual consecutive flips, with the model becoming
almost completely ineffective after 1500 bit flips. For the De-
cision Transformer, due to the non-adjacency between flipped
bits and spatial bits, errors rapidly propagate throughout the
entire model, causing complete model failure with just 6 bit
flips. Both Dr.DNA and SAVE maintain accuracy fluctua-
tions within 1% across all models, which can be attributed to
normal performance variations.

5.5 Sensitivity Analysis

5.5.1 Performance of different reliable memory sizes

One important part of SAVE is the size of reliable memory. To
evaluate this, we test the performance overhead for different
models with various working sets under different sizes of reli-
able memory. The results are shown in Figure 13. When the
working set size is smaller than the reliable memory, reliabil-
ity is guaranteed with nearly zero overhead, and SAVE shows
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Figure 12: The accuracy degradation under physical contigu-
ous region flips.

almost no noticeable overhead. When the working set size
exceeds the reliable memory, extra computation is required
to ensure reliability in inference. By combining bit properties
with ranging properties, the verification cost is reduced by
71%. The reduced calculations come mainly from skipping
the validation of robust bits, and using the properties of the
range to assess the results.

5.5.2 Performance of different GPUs

Different GPUs produce different performance due to their
varying computing capability. We test the performance over-
head of SAVE on different GPUs by measuring their overhead
on latency. As shown in Figure 14, the additional overhead
generated by the model on all platforms is less than 9%. The
error rate of the model does not increase during our test.

5.6 Ablation Study

To show the detailed characteristics of each stage in SAVE,
we analyze the effect of each stage.

5.6.1 Selection Stage: Analysis Time.

Model analysis in SAVE is a one-time task. Identical models
do not require re-analysis. If a model is updated, re-analysis is
necessary. A full analysis is required if the model’s structure
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Figure 14: The performance overhead of different GPUs.

changes or all parameters are replaced. If only some parame-
ters change, only the affected parts need analysis. To evaluate
this, we test the time required for the same type of model
to analyze different data sizes. As shown in Figure 15, the
analysis time is under 10 seconds for all models when a full
model change occurs. As the size of the modified parame-
ters decreases, the analysis time in SAVE correspondingly
decreases.
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Figure 15: The analysis time of different models.

5.6.2 Selection Stage: Correctness Rate.

The key to the result reliability comes from the selection stage
of SAVE. If there are too many false negatives, SAVE will
fail to protect the model due to ignoring too many vulnerable
bits. If there are too many false positives, SAVE will incur
significant extra overhead due to protecting too many robust
bits. To show the correctness, we scan all 374,372,224 weight
bits in ResNet-18 model with ImageNet-1K dataset and count
the number of bits that are correctly identified as robust or non-
robust, as shown in Table 3. This robustness property refers to
single bit flip effects. Although the proportion of robust bits
exceeds 76.5%, they are widely distributed throughout the
entire region, which means it is infeasible to drop the 76.5%
robust bits.

Table 3: The correctness rate of bit analysis in the selection
stage.

| True Robust | False Robust
40,866,576 47,061,573

Predicted Non-Robust

10.9% 12.5%
] 286,444,075 0
Predicted Robust 76.5% 0.0%

The distribution of different bits is highly related to the
operator. For matrix multiplication of ViT, each number has
at least one ranging bit, with a total of 90% robust bits. For
the normalization operator, each number has at least three
vulnerable bits, with a total of only 55% robust bits. We show
the bit attribution distribution for some outputs after ResNet’s
activation function and for ViT’s output after normalization,
as shown in Figure 16.

5.6.3 Allocation Stage: Memory Movement Size.

SAVE reduces the number of bits to be protected by identi-
fying robust bits in the previous step, thereby reducing the
number of times data is transferred using reliable memory
and thus reducing memory transfer overhead. We conducted
an experiment with the ViT model and showed the amount of
reliable memory used under different configurations of SAVE.
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Figure 16: The distribution of different bits.
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Figure 17: The reliable memory consumption of SAVE.

After completing the selection stage offline, SAVE places
only 17% of the original inference memory into reliable mem-
ory, significantly reducing the memory footprint, as shown
in Figure 17. Moreover, since many values only have the sign
bit and the highest bit of the exponent being unreliable, SAVE
uses range check to fast verify the correctness, thus replacing
reliable memory calculation with judgment. This fast path
can further reduce the memory footprint by 95% compared to
the model’s single inference, as shown in Figure 17.

5.6.4 Verification Stage: Verification Efficiency.

SAVE uses asynchronous verification on the CPU to reduce
the overhead of verification. We first test the performance
of using the CPU for mixed precision verification, as shown
in Figure 18. Through fully utilizing the SIMD and dedicated
copy engine on GPU, the matrix multiplication of 1024 x 1024
only takes 38ms, which is 98.2% less overhead compared to
direct CPU floating-point multiplication. We also test the per-
formance of asynchronous verification, as shown in Figure 19.
We execute 100 times of verification and calculate the to-
tal time to reduce the fluctuation. The results show that the
asynchronous verification incurs 0.05% overhead of frontend
computation. Compared with synchronous verification, the
overhead is reduced by 22%.

Resource Overhead. SAVE uses asynchronous verification,
which requires additional CPU resources for verification. We
test the CPU overhead of SAVE and found that it incurs 20%
additional CPU resource overhead compared to the original
model. For the host memory, SAVE only incurs an additional
size exactly the same as the model parameter size.

5.6.5 Edit Stage: Recovery Time.

The recovery time is also important after an error occurs. We
inject a single bit flip to trigger NaN value to test the recovery

CPU FP32
CPU INT8
AVX FP32
AVXINT8

0.0 0.2 0.4 0.6 0.8 1.0
Time(s)

Figure 18: The mixed precision verification performance of
SAVE.

GPU Compute + No Verify
GPU Compute + GPU Sync
GPU Compute + GPU Async
CPU Async + GPU Compute

0 1 2 3 4 5
Time(s)

Figure 19: The asynchronous verification performance of
SAVE.
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Figure 20: The recovery time of different methods.

As shown in Figure 20, the recovery time of SAVE is higher
than that of RedNet since RedNet simply clips out-of-range
values, whereas SAVE must synchronize valid values and
perform partial recomputation in reliable memory. The major
difference in recovery time between SAVE and RedNet is
the overhead of recomputation. In the correct method system
comparison, the recovery time of SAVE is 24% less than
Dr.DNA and 46% less than TMR, which is due to SAVE’s
reduced computation, only recomputing the range where the
eITor occurs.

5.6.6 Support for lower precision models

When performing inference on the edge, fp16 or even 8-bit
integer quantization is often used. SAVE is not bound to the
model precision, so it can be directly applied to other preci-
sion models. In other precision models, the total number of
robust bits will decrease due to the reduction in the model’s
overall bit length, leading to increased overhead. To show
the performance of SAVE in lower precision models, we test
the ViT model with ImageNet-1K dataset. Since we cannot
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remove the quantization effects on the accuracy and neither
Dr.DNA nor RedNet can be applied to lower precision models,
we only show the latency of SAVE. As shown in Figure 21,
SAVE achieves 10% to 15% overhead compared to the origi-
nal model.

w
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fp32 fp16 int8
[ Original [ SAVE H TMR

Figure 21: The performance of SAVE in lower precision
models.

6 Discussion

We are currently focusing on small-scale edge models because
they are more safety-critical in scenarios like decision-making
on self-driving vehicles, drones, industrial robotic arms, or
satellites. In contrast, large language models supporting chat
systems or multi-modal generation systems may tolerate occa-
sional inference errors, as users can easily detect irrelevant re-
sponses or generated images with minor imperfections (which
may not even affect user experience). The design of SAVE is
flexible across different models and can withstand multiple bit
flips as long as the changes of these bits are smaller than the
model’s allowed perturbation. While SAVE could potentially
be applied to large language models, additional work would
be needed, such as protecting KV Cache, which we leave as
future work.

SAVE relies on a portion of reliable memory to enhance
model inference reliability, which can be much smaller than
the average memory usage during model inference. We be-
lieve this research has important implications for hardware-
software co-design supporting reliable model inference in
space and other extreme environments. To our knowledge,
there are currently no GPU computing cards that can fully
resist cosmic radiation. Our design demonstrates that through
the combination of hardware-implemented small reliable
memory and software-implemented fault tolerance, we can
effectively improve inference reliability against bit flips.

7 Related Work

Hardware based protection. Various hardware mechanisms
have been proposed to mitigate bit flip attacks efficiently.
Some work [49,70,78,81,95] increase DRAM refresh rate or
limit row access times within one refresh interval to protect
potential victim rows. ZebRAM [50], GuardION [85] and

CATT [11] protect sensitive data from vulnerable rows. DE-
ACT [31] prevents vulnerable rows from being accessed fur-
ther. Some work [77,91,92,100] leverage in-DRAM swapping
to shuffle the DRAM rows. AEP [98] uses masks on hardware
to protect the model. DNN-Defender [99] use gradients to de-
tect critical bit and swap the rows in DRAM. HARDeNN [48]
adds three-module redundancy for weights and activation lay-
ers. Compared to SAVE, these work requires complex hard-
ware implementation, focusing on bit flips by RowHammer
attack. They support for specific-structured models. SAVE
provides a general solution to all models without hardware
or model modification. Hardware-based ECC also serves as
a hardware bit flip mitigation method. RowHammer [22,49]
states ECC is useful to defend RowHammer attack despite of
the expensive cost. However, some work [14, 18] show that
carefully-designed ECC-aware RowHammer could bypass
these ECC mechanisms and the ECC can only correct one bit
and detect two bits typically [66] and GPUs [65]. SAVE can
tolerant multiple bit flips.

Software based protection. Some software-implemented
solutions have been proposed to reduce the impact of bit
flips on the entire model. Software Error Resilience [45] use
TMR for protecting silent data corruption. TBD [40] pro-
poses quantization to restrict the bound of DNN parameters.
Parameter binarization [37,76] construct binarized DNN to
flatten the bit flip’s impact to parameter’s neighbors. Some
work [17,56,62,94] enhance the ability of models to resist
adversarial attacks. Some work [7, 28, 41, 58, 88] use dif-
ferent encoding schemes to protect the model parameters.
Modelshield [33], Hashtag [47] and RADAR [53] introduce
hashing-based methods to generate weights group signature
and make verification for parameter. RedNet [89] gives the
first systematic study of bit flips in DNNs in space and pro-
poses a software-based solution to mitigate bit flips in DNNSs.
Compared to these work, SAVE keeps the model accuracy and
ensures the inference latency by introducing fast verification.

8 Conclusion

SAVE provides a software-based inference fault tolerance so-
lution, which preserves model structure to provide the largest
compatibility with existing models. It uses GPU memory man-
agement and lightweight runtime verification to mitigate bit
flips with acceptable overhead. The results show that SAVE
incurs less than 9% performance overhead for end-to-end
latency in model inference while maintaining accuracy.
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Appendix
A Artifact Appendix

This artifact provides the source code of SAVE, a detailed
readme, and scripts to reproduce the main experimental re-
sults of the USENIX ATC 2025 paper—“SAVE: Software-
Implemented Fault Tolerance for Model Inference against
GPU Memory Bit Flips” by Wenxin Zheng, Bin Xu, Jinyu
Gu, Haibo Chen. SAVE is a software-based solution that
enhances the reliability of GPU-based model inference. We
provide instructions to build the software package and run
experiments. Our artifact obtained the “Artifacts Available”,
“Artifacts Functional” and “Results Reproduced” badges from
the Artifact Evaluation process of USENIX ATC 2025.

Artifact repository. All project source code, along with com-
prehensive instructions for building and running the main
experiments on SAVE, is available in the following git reposi-
tory: https://github.com/peterzheng98/gpu-memory.

B Example Code Snippet for Figure 6

import struct
from typing import Callable, Tuple, List

class Interval:
def __init_ (self, lo:
self.lo, self.hi =

float,
min(lo,

hi: float):
hi), max(lo, hi)
# affine
def affine(self, w: float, b: float =
— ":
lo, hi = w * self.lo + b, w * self.hi + Db
return Interval (min(lo, hi), max(lo, hi)

0.0) -> "Interval

# RelU

def relu(self) -> "Interval":

return Interval (max(self.lo, 0.0), max(self.hi,
— 0.0))
# element-wise

def _ _add__ (self, other: -> "Interval":
return Interval (self.lo + other.lo, self.hi + other

— .hi)

"Interval")

def __repr_ (self) -> str:
return f"[{self.lo:.6g}, {self.hi:.6g}]"

def _float_to_bits(f: float) -> str:
return "".join(f"{b:08b}" for b in struct.pack(">f", f)
— )
def robust_bits(interval: Interval, dtype_bits: int = 32):
if interval.lo == interval.hi:
bits = _float_to_bits(interval.lo) [:dtype_bits]
return dtype_bits - 1, bits, bits
lo_bits, hi_bits = _float_to_bits(interval.lo),
<~ _float_to_bits(interval.hi)
robust = sum(bl == b2 for bl, b2 in zip(lo_bits,
— hi_bits))
return robust, lo_bits, hi_bits
# x in [0, 1]

x = Interval (0.0, 1.0)

op_out = x.affine(-0.65, -0.1)

relu_out = op_out.relu()

sum_out = relu_out + x # out = LU (Op (%)) ps

for name, iv in [("Op(x)", op_out), ("ReLU", relu_out), ("

<~ Final", sum_out)]:
n, lo_b, hi_b = robust_bits (iv)

C Example Code Snippet for range verification
of GPU kernel

__global__ void Ranging(const float *input,
const float *cache_low,
const float *cache_high,
int *output) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
output [idx] = signbit (input[idx] - cache_low[idx])
| signbit (cache_high[idx] - input[idx]);
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D Example Code Snippet for mixed precision
verification

float x, y;
uint32_t x_bits = *(uint32_t*)&x;
uint32_t y_bits = *(uint32_t*)s&y;
Extract the bit of x
uint32_t S_x = (x_bits >> 31) & 0x1;
uint32_t E_x = (x_bits >> 23) & 0xFF;
uint32_t F_x = x_bits & OxX7FFFFF;
Extr the bit of vy
uint32_t S_y = (y_bits >> 31) & 0x1;
uint32_t E_y = (y_bits >> 23) & O0xFF;
uint32_t F_y = y_bits & O0x7FFFFF;
If it i 20),
/ Tt is smaller than le-6, it is all robust bits.
if (E_x <= 108) return 0.0f;
if (E_y <= 108) return 0.0f;
// Compute the exponent of the result
int32_t E_r = (int32_t) (E_x) +
(int32_t) (E_y) - 127;
reater than 27 (-20)
x and E_y are r than 27 (-20)

smaller than 2" (-

/ Compute the s
uint32_t S_r = §
Reconstruct the full significand bits
(
(

uint8_t M x = ((1U << 23) | F_x) >> ROBUST_BIT_COUNT;
uint8_t My 10 << 23) | F_y) >> ROBUST_BIT_COUNT;

Multiply the significand
uintl6_t M_r =
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