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Abstract
This paper presents SIRIUS, an efficient colocation system
that enables spatial sharing of GPU resources between ma-
chine learning (ML) inference and training tasks. To meet
strict latency SLOs, SIRIUS prioritizes inference tasks, allow-
ing them to utilize all GPU resources without restriction and
interference. Meanwhile, it concurrently runs training tasks on
leftover resources to improve throughput and GPU utilization.
SIRIUS is novel in three ways. First, it leverages the character-
istics of gradient computation in a batch to adjust the memory
consumption of training tasks in a few milliseconds. Second,
it explicitly manages memory reclamation for training, ensur-
ing a thorough and safe memory handover process. Third, it
employs an SLO-aware memory reallocation strategy to mit-
igate memory initialization overhead and prevent thrashing
when facing frequently fluctuating workloads. Our evaluation
shows that SIRIUS outperforms existing state-of-the-art colo-
cation approaches, improving inference SLO compliance by
an average of 57.0% (up to 97.0%) and training throughput
by 2.2× (up to 13.7×).

1 Introduction
Serving machine learning (ML) inference and training work-
loads has become one of the most critical workloads in
cloud data centers. High-performance GPUs serve as the
predominant accelerators in ML-as-a-Service (MLaaS) plat-
forms, catering to the growing computational demands for
ML tasks [7, 8, 42, 47, 87]. However, these costly GPUs
are often inefficiently utilized when serving inference with
dynamic and bursty workloads. Inference serving is latency-
sensitive and must adhere to strict Service-Level Objec-
tives (SLOs) for latency (e.g., 100 ms [34]). To meet these
SLOs even during sharp bursts—which can surge to 50×
the average [56]—MLaaS platforms typically allocate ded-
icated, over-provisioned GPU resources for inference serv-
ing [33, 93]. This strategy, however, results in severe GPU
underutilization (e.g., below 15% [44]) for ML inference
workloads [32, 37, 49, 87].

Colocating heterogeneous workloads, such as latency-
sensitive online services and throughput-intensive batch jobs,
is a common practice to enhance resource utilization [60, 80].
Industrial products, such as Google Kubernetes Engine [14]
and Tencent Cloud qGPU [15], demonstrate this by colocat-
ing high-priority inference tasks with low-priority training
tasks to improve GPU utilization, serving as a selling point for
MLaaS platforms. Furthermore, colocating ML inference and

training workloads has also been explored in recent research
work [16, 62, 63, 75, 97]. One approach, known as temporal
sharing, enables inference and training tasks to share GPU
resources in different time slices. For example, Lyra [53] colo-
cates inference and training workloads within the same GPU
cluster by dynamically allocating varying numbers of GPU
servers for each task. Similarly, PipeSwitch [16] alternates
between inference and training execution on a single GPU.

However, both inference and training tasks are memory-
intensive, consuming substantial GPU memory to store mod-
els and intermediate states [12, 21, 28, 57, 91, 92]. Conse-
quently, temporal sharing inevitably incurs significant over-
head due to time-consuming context switching between these
tasks. Unlike CPUs, GPUs require memory switching be-
cause of their limited capacity (typically tens of GBs). For
inference tasks, reinitializing contexts and reloading models
into GPU memory can cause significant latency overhead—
up to a few seconds [16, 26, 91]—likely violating inference
SLOs. For training tasks, preempting execution without sav-
ing context for fast switching can result in starvation or even
failure. More importantly, temporal sharing cannot improve
GPU utilization during inference serving.

Concurrently running ML inference and training tasks on
the same GPU, known as spatial sharing, is an attractive al-
ternative with the potential to fully utilize GPUs and avoid
context switching. Modern GPUs allow dynamic partitioning
of GPU compute units (i.e., Streaming Multiprocessors, SMs)
between multiple tasks (e.g., ML training and inference) by
setting SM masks within 1 millisecond [17]. Furthermore,
recent studies have demonstrated the feasibility of prevent-
ing interference between inference and training tasks when
sharing GPU computing resources [17, 36, 72, 75, 89].

Spatially sharing GPU memory between inference and
training tasks remains challenging. Statically partitioning
GPU memory for these memory-intensive tasks inevitably
compromises performance for both, even with carefully tuned
proportions. This approach is particularly ineffective for dy-
namic workloads—a hallmark of inference serving. An al-
ternative is dynamic swapping, which transfers data between
GPU and host memory as needed. This can be done either
proactively through CPU offloading [16, 48, 51, 91] or pas-
sively via memory oversubscription mechanism (i.e., Unified
Memory, UM [29, 39]). However, data transfer between GPU
and host memory can significantly degrade performance due
to limited PCIe bandwidth. For example, UM-based coloca-
tion suffers 93% degradation in inference SLOs, compared to
running inference tasks alone, even under low workloads.
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Our approach. We observe that the actual memory require-
ments of inference tasks fluctuate with the dynamic infer-
ence workloads. Without compromising inference SLOs
and training throughput, the inherent elasticity of training
tasks [58, 61, 66] provides an opportunity for dynamic
GPU memory sharing between inference and training tasks—
reconfiguring training tasks at runtime to meet the varying
memory requirements of inference tasks.

This paper presents SIRIUS, an efficient colocation system
that enables spatial sharing of GPU resources between ML
inference and training tasks. SIRIUS treats inference tasks
as first-class citizens to utilize all GPU resources without
restriction and interference, satisfying strict latency SLOs.
Meanwhile, it concurrently runs training tasks on leftover
resources as much as possible to improve throughput and
GPU utilization.

Key challenges. The handover of GPU memory from a train-
ing task to an inference task involves three steps: (1) waiting
for the current training batch to complete, (2) transferring the
released memory from the training task to the inference task,
and (3) initializing the memory for the inference task. This
process usually takes several hundred milliseconds (typically
250 ms, see §3), which hardly meets the inference SLOs (e.g.,
100 ms). Therefore, we introduce a millisecond-scale realloca-
tion mechanism for dynamic GPU memory sharing between
inference and training tasks, built on three key techniques:

Instant memory adjustment (§4.1). We discover that the ex-
ecution of a training batch can be divided into two distinct
phases: gradient computation (GC) and model updating (MU).
GC dominates the training execution time (over 95%) but
does not change the training states. In contrast, MU requires
atomic execution but commonly takes less than 10 ms. There-
fore, SIRIUS can adjust the memory consumption of training
tasks in just a few milliseconds (5 ms on average) by either
instantly discarding the executing batch during GC phases or
briefly waiting for MU phases to complete.

Safe memory handover (§4.2). To reduce memory handover
time, SIRIUS directly transfers GPU memory released by
training tasks to inference tasks, bypassing the memory cache
in training frameworks and costly processes in the GPU run-
time (e.g., 34 ms). However, this approach may result in data
pollution due to synchronization issues between allocation
and computation. To remedy this, SIRIUS explicitly manages
memory reclamation, ensuring a thorough and safe memory
handover process.

SLO-aware memory reallocation (§4.3). To guarantee infer-
ence SLOs under fluctuating workloads, SIRIUS reallocates
memory between inference and training tasks in an SLO-
aware manner. SIRIUS reserves GPU memory for inference
tasks to tolerate memory re-initialization overhead caused
by memory thrashing. Moreover, SIRIUS reallocates memory
in a coarse-grained way to minimize disruptions to training
tasks (e.g., 1.4% overhead caused by reallocation).

We implemented SIRIUS as a new inference engine with
a plugin for training frameworks [55], aiming to colocate in-
ference and training tasks on GPUs while ensuring inference
SLOs and improving training throughput. We evaluate SIR-
IUS with four generated and two real-world traces [71, 85],
comparing it with different GPU memory sharing approaches.
Our experimental results show that SIRIUS outperforms these
approaches by an average of 57.0% (up to 97.0%) improve-
ment in inference SLO compliance and 2.2× (up to 13.7×)
speedup in training throughput. Furthermore, SIRIUS can
achieve up to 98% of inference SLO compliance of running
inference tasks alone, even under a high-intensity workload.

2 Background and Motivation
Inference and training are two major tasks in machine learn-
ing services. To clarify the problem of colocating inference
and training in MLaaS platforms, we begin by analyzing the
unique characteristics and demands of both workloads.

2.1 ML Inference
Underutilized GPU computing resources. To ensure strict
latency SLOs of inference services (i.e., on the order of
milliseconds [34, 73]), GPU servers are typically over-
provisioned. However, due to the dynamic and fluctuating
nature of inference workloads, GPU resources are often un-
derutilized when there are insufficient inference requests to
saturate all GPU computing units [23, 94, 95]. Figure 1(a)
shows that GPU utilization can often remain low during serv-
ing with the MAF trace.1 This underutilization presents a
necessity to colocate inference services with training tasks to
effectively saturate GPU resources.

Inefficient GPU memory consumption. To maintain low
inference latency, GPU memory is typically dedicated to stor-
ing inference models. The growing number of deployed mod-
els (e.g., more than one million models in HuggingFace model
hub [10]) incurs considerable pressure on GPU memory re-
sources. Additionally, the recent emergence of Large Lan-
guage Models (LLMs) further intensifies this memory pres-
sure due to their KV caches for requests [51, 67, 76]. However,
we observe that the dedicated GPU memory (11.9 GB) often
surpasses the actual memory requirements (4.4 GB on aver-
age), as shown in Figure 1(a). This overconsumption of GPU
memory prevents the opportunity to share GPU resources
with training tasks, despite the fact that computing resources
may remain underutilized.

Dynamic memory requirements. Memory requirements of
inference workloads fluctuate over time (e.g., from 1.8 GB
to 10.3 GB). This is presented by the changes in the number
of requested models, or the volume of generated KV caches.
Statically allocating memory that is less than the peak require-
ment, e.g., based on the average memory consumption, can
1Similar to prior work [34, 48, 56], we simulate inference model requests
using serverless functions. As the original trace is collected from serverless
functions, we set the maximum requests per second as 150 reqs/s.
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Figure 1: (a) The GPU utilization and memory consumption dur-
ing serving 64 different models with MAF [71] trace. Total stands
for the memory consumption of all deployed inference models, and
Required stands for the actual memory consumption required to
serve inference requests. (b) The model loading (Load) and infer-
ence execution (Exec) time of six different models on NVIDIA V100.

severely violate SLOs. Because inference tasks must queue
up to use GPU memory when their requirements exceed the
allocation. For example, when the allocated GPU memory
fails to store all requested models, inference tasks must swap
models between GPU memory and host memory, which in-
troduces slow model loading (aka. cold start) in the critical
path of inference services. Figure 1(b) shows that loading
DistilGPT2 [70] (26.6 ms) takes 5.3× longer than its execu-
tion (5.0 ms).

2.2 ML Training
To avoid wasted GPU resources of inference serving un-
der low load, colocating inference services with computing-
intensive training tasks can ideally saturate GPU resources,
which has gained significant attention in recent years [16,
75, 88, 89, 92, 97]. However, due to the large memory con-
sumption of inference services, there is often not enough
memory reserved for training tasks, making the colocation
inefficient or even infeasible. Fortunately, we observe that the
unique characteristics of training tasks bring an opportunity
to efficiently share GPU resources with inference tasks.

Memory consumption breakdown. An ML training task it-
eratively computes gradients (i.e., forward and backward)
and applies them to update the model parameters. Figure 2
shows memory consumption during the training of Swin-
Transformer (Swin-T) [59] and Qwen2-0.5B models [13].2

The memory consumption of a training task can be catego-
rized into two types: (1) the static training states, which in-
cludes model parameters and optimizer states that store train-
ing progress, representing the minimum memory required for
training; and (2) the intermediate results, which are consumed
during the computation of gradients.

Elastic memory consumption. It can be found that the mem-
ory consumption of training is primarily dominated by the
intermediate results (91% for Swin-T with batch size of 80).
Furthermore, by reducing the batch size during training execu-
tion, the memory consumption of intermediate results can be
2The constant memory consumed by the CUDA context is excluded.
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Figure 2: The memory consumption (GB) and throughput (sam-
ples processed per second) for training Swin-Transformer [59] on
NVIDIA V100 and Qwen2-0.5 [13] on NVIDIA A100 with different
batch sizes.

effectively controlled (proportional to the batch size), finally
adjusting the training memory consumption. This makes it
possible to align the memory consumption of training tasks
with the varying memory requirements of inference services
by configuring the batch size. To guarantee training conver-
gence, the hyper-parameters of training tasks (i.e., the ef-
fective batch size3) must remain unchanged. Fortunately, a
widely-adopted technique—gradient accumulation—enables
gradients to be accumulated over multiple smaller batches,
maintaining a constant effective batch size for model parame-
ter updating [31, 78].

However, the memory caching mechanism of ML frame-
works (e.g., PyTorch [65]), which reduces the memory allo-
cation overhead to improve training performance, leads to the
unchanged memory occupation of training tasks even when
the batch size is reduced. This causes the unused memory of
training tasks invisible to inference tasks.

Memory demand for high throughput. As shown in Fig-
ure 2, having more memory resources enables training tasks
to use larger batch sizes, which enhances training throughput
by fully utilizing the GPU. However, colocating inference and
training tasks can restrict the available memory for training,
ultimately impacting training performance.

2.3 Colocation of ML Inference and Training
We review and discuss various approaches to colocating in-
ference and training tasks, as illustrated in Figure 3, which
contains two inference models (Mx) and one training task.

Task switching (temporal sharing). This approach enables
inference and training tasks to temporally share GPU re-
sources by switching GPU memory between tasks [16]. There-
fore, an ML task can utilize the entire GPU memory and avoid
memory contention, achieving the optimal performance dur-
ing execution. However, this approach comes with significant
context switching overhead. In Figure 3(a), to handle the first
two inference requests (R1 and R2), GPU memory must be

3The effective batch size, also known as the global batch size in distributed
training, represents the total number of samples used to compute gradients
before updating model parameters.
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Figure 3: An example of GPU memory consumption when using
different approaches to colocate two inference models (Mx) and one
training task. The illustrated time slice contains 3 inference requests
(Rx) of two models. RSPx marks the completion time of requests.

switched from the training task to the inference tasks, leading
to cold starts for inference models (M1 and M2). To guar-
antee inference SLOs, the training task may be preempted
to facilitate fast switching. However, this can result in star-
vation, where training batches are rarely completed due to
the frequent context switching when inference requests arrive
continuously. Such frequent switching also causes additional
cold starts for inference tasks (e.g., M1 needs to be reloaded to
serve R3). Moreover, during inference serving, unused GPU
resources may be wasted.

Static GPU memory partition. This approach statically par-
titions GPU memory for inference and training tasks to spa-
tially share the GPU. Each task is restricted to using the
memory allocated to it. This alleviates the interference be-
tween inference and training tasks due to memory contention,
and avoids the overhead of task switching. However, the avail-
able memory for inference and training tasks is limited and
fixed. In Figure 3(b), to serve the requests R1 and R2, the
inference task must swap models between GPU memory and
host memory, increasing the inference latency due to cold
starts. Furthermore, training throughput is constrained by
the limited memory. On the other hand, such static memory
allocation can mismatch with the memory requirements of
inference workloads, leading to memory waste under low
load or inference SLO violations under high load.

Dynamic GPU memory swapping. This approach provides
unlimited memory resources for inference and training tasks
by swapping between GPU memory and host memory. There-
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Figure 4: The architecture of SIRIUS. Modules in boxes with
dashed borders are the key components of SIRIUS for ML infer-
ence (blue) and training (red), other modules (gray) can be reused
from existing ML frameworks. The interfaces for memory handover
are labeled as REQUIRE(M) and RELEASE(M), where M represents
the memory size.

fore, it not only meets the memory requirements of inference
and training tasks but also ensures the optimal GPU utilization.
However, executing ML tasks on both GPU memory and host
memory significantly degrades performance. For example, as
shown in Figure 3(c), the data traffic over PCIe (60× slower
than GPU memory on NVIDIA A100) caused by memory
swapping of Unified Memory (UM) significantly decelerates
both tasks.

3 Overview of SIRIUS

Our approach: dynamic memory sharing via training
elasticity. SIRIUS enables inference and training tasks to spa-
tially share a GPU by exploiting the elasticity of training tasks.
As shown in Figure 3(d), SIRIUS dynamically adjusts training
memory consumption by reconfiguring the batch size to ac-
commodate fluctuating inference tasks. As a result, inference
tasks can fully utilize all GPU memory during high work-
loads, ensuring latency SLO. Meanwhile, training tasks can
still utilize the remaining GPU memory, executing alongside
inference tasks. This approach improves training throughput
without compromising inference performance.

For example, to serve the requests R1 and R2 in Figure 3(d),
the memory consumption of the training task will be swiftly
adjusted by reducing the batch size. This allows inference
tasks to utilize the released memory to store the model M1

and M2 to complete serving. Once all inference requests are
finished, the training task can utilize all GPU memory to
enhance the throughput by increasing the batch size.

System Overview. SIRIUS is designed as a comprehensive
system for existing ML software stacks, which colocates in-
ference and training tasks on multiple GPUs. On each GPU,
the inference service process cooperates with the training task
process to dynamically share GPU memory. As shown in
Figure 4, SIRIUS consists of an inference engine and a plugin
to the training framework. SIRIUS introduces the memory
handover interface—REQUIRE(M)/RELEASE(M)—to enable
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dynamic GPU memory sharing between ML inference and
training tasks. When inference tasks require more memory,
the inference engine calls REQUIRE(M) to meet the require-
ment by adjusting the training memory. Conversely, when
less memory is required, the inference engine notifies the
training task to utilize idle memory resources by calling RE-
LEASE(M).

Inference Engine. The inference engine uses a standard ML-
as-a-Service (MLaaS) interface, the same as existing infer-
ence servers (e.g., NVIDIA Triton [12]). To handle dynamic
workloads effectively, the inference model manager monitors
the memory requirements of online inference services. Mem-
ory resources consumed by unrequested models (i.e., idle
models) and unused LLM KV caches will be reclaimed for
training tasks. Furthermore, the fluctuating memory require-
ments of inference tasks lead to memory thrashing between
inference and training tasks. This incurs cold start delays for
inference tasks and frequent interruptions for training tasks.
Therefore, SIRIUS introduces an SLO-aware memory reallo-
cator to mitigate memory thrashing.

Extensions on Training Engine. The training plugin extends
the popular training frameworks (i.e., PyTorch) to dynami-
cally adjust the training task, while minimizing the training de-
velopment effort. The main component of training extension
is the batch adjustment, which provides a mechanism to ad-
just training memory consumption by reconfiguring the batch
size. When receiving REQUIRE(M) from the inference engine,
it swiftly and safely reconfigures the training tasks (i.e., de-
creasing the batch size) to hand over the memory to inference
tasks. When receiving RELEASE(M), it will increase the batch
size at the beginning of the next iteration to improve training
throughput. To let training tasks utilize multiple GPUs effi-
ciently, the effective batch is distributed across all GPUs with
the consideration of load balancing.

Key challenge: fast GPU memory handover between
training and inference tasks. When additional inference
models are requested, memory must be reallocated from train-
ing to inference tasks timely to ensure SLO compliance. As
shown in Figure 5, the memory handover process—consisting
of adjusting training memory ( 1 , see §4.1), transferring mem-
ory to inference ( 2 , see §4.2), and initializing inference mem-
ory ( 3 , see §4.3)—takes approximately 250 ms. This delay
significantly reduces inference SLO compliance.

Table 1: Execution time (in milliseconds) breakdown of one train-
ing batch for different models on NVIDIA V100.

Phase ResNet-152 Swin-T-b BERT-b GPT2

Gradient Compute 323.7 344.2 241.5 188.7
Model Update 9.6 9.0 10.0 9.8

4 Fast GPU Memory Handover
In this section, we elaborate on the design of SIRIUS for
reallocating GPU memory from ML training to inference.

4.1 Instant Memory Adjustment
To adjust training memory consumption through batch size
reconfiguration, inference tasks must wait for the currently
running batch to complete. Since training batches take hun-
dreds of milliseconds while inference runs in just millisec-
onds, this waiting period is unacceptable for latency-sensitive
inference tasks.

Based on the characteristics of model training, we pro-
pose an approach to instantly adjust memory consumption
by discarding the currently running batch. We found that the
execution of a training batch can be divided into two phases:
gradient computation (i.e., forward and backward) and model
parameter updating. During the gradient computation phase,
the model parameters typically remain unchanged. However,
the model updating phase must be executed atomically to
prevent inconsistent training states. Therefore, discarding the
running batch to achieve instant memory adjustment is safe
as long as it is not in the model updating phase.

As shown in Table 1, gradient computation takes signif-
icantly longer than model parameter updating, dominating
the training time (e.g., 97% for ResNet-152). This is because
model updating involves only a few lightweight addition op-
erations. During memory adjustments, most of the time, the
training task is engaged in gradient computation. If an ad-
justment arises during model updating, waiting for this short
phase to complete is acceptable.

We first introduce the execution process of a training batch
before discussing how to discard the executing training batch.
The execution of the training task involves both the host CPU
and the GPU accelerator. The host CPU is responsible for the
control plane, and the computation-intensive operators in the
training computational graph are dispatched to the GPU. The
GPU is responsible for the computation plane, where those
operators are executed as asynchronous GPU kernels.

However, asynchronous execution makes it challenging to
discard the training batch instantly. Since the CPU operator
dispatching is much faster than GPU computation, numer-
ous uncompleted kernels are executing on the GPU when the
training task is notified of the memory adjustment. Therefore,
simply synchronizing the GPU to halt model training incurs
a lengthy wait for these in-flight kernels to complete. Ulti-
mately, this delay causes inference tasks at risk of violating
SLOs due to waiting for memory adjustments.
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To harness the training asynchronous execution, SIR-
IUS employs the software GPU kernel management tech-
nique [36, 72, 75]. As shown in Figure 6(a), instead of di-
rectly launching training operators to GPU hardware, SIRIUS
adds these operators to a software queue maintained by the
host CPU. The operators in the software queue are gradually
launched to the GPU for execution. Consequently, only a few
in-flight operators are executing on the GPU, whereas most
are in the software queue.

Furthermore, SIRIUS leverages the host CPU as the ora-
cle to determine the training stages (i.e., GC or MU), as it
manages the training control plane. However, the GPU can
lag behind the host CPU and not fully complete gradient
computation when the host CPU enters the model updating
phase. Therefore, SIRIUS inserts a synchronization between
the host CPU and GPU before model updating, ensuring their
consistency in the training phase.

Figure 6(b) shows the process of discarding the training
batch. When the memory adjustment occurs during the gra-
dient computation, SIRIUS disables operator dispatching by
refusing the operators to be added to the software queue ( 1 ).
SIRIUS then waits for a few executing GPU kernels to com-
plete ( 2 ). As training kernels are generally short, it only
takes a short time. After this, SIRIUS discards the operators
in the software queue to fully discard the training batch in the
computation plane ( 3 ).

Next, SIRIUS must ensure the training control plane is
aware of the adjustment to release the training memory. To
achieve this, SIRIUS lets the host CPU actively check for
adjustments at each training operator. Because the operator
dispatching on the host CPU is very fast, checking for ad-
justments will not become a bottleneck for the training task.
Furthermore, as operators are the basic units of the computa-
tional graph, they are fine-grained enough to notify the host
CPU of the adjustment in a timely manner.

Once the training memory is released, the memory adjust-
ment will be replied ( 4 ). Before recovering the training task,
SIRIUS reconfigures the training task by reducing the batch
size. SIRIUS then re-enables the operator dispatching and
resets the control plane to the next iteration to recover the
training task, where data samples of the discarded batch will
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Figure 7: The memory adjustment with data parallel training.

be reprocessed.
To fully release the memory resources occupied by the

discarded training batch, SIRIUS must traverse the training
computational graph to release the corresponding intermedi-
ate results. This is necessary because discarding the training
batch disrupts the normal training execution, causing the train-
ing task to fail to release these intermediate results during the
backward stage.

Support for multi-GPU training. Data parallelism (DP) is
a widely used technique to improve training throughput by
distributing data samples across multiple GPUs [55]. Un-
like single-GPU training, multi-GPU training with DP in-
volves gradient synchronization (i.e., AllReduce4) across
all GPUs in the backward stage, as shown in Figure 7. The
training task must wait for gradient synchronization to com-
plete before updating model parameters. When gradient ac-
cumulation is incorporated, the gradients are accumulated
locally without initiating communication until the effective
batch size is reached.

SIRIUS extends its memory adjustment approach from a
single GPU to multiple GPUs, supporting training tasks with
data parallelism. When memory adjustment is needed, the
training task on every GPU receives notifications to initiate
the process. Similar to single-GPU training, if a training task
is computing gradients, the current batch will be discarded.

However, the execution speed of training varies slightly
across different GPUs, leading to inconsistencies in the num-
ber of AllReduce NCCL kernels launched at any given
timestamp. As shown at the bottom of Figure 7, one more
AllReduce NCCL kernel is launched on GPU1 when SIR-
IUS starts to discard the training batch. This presents an NCCL
deadlock because the NCCL kernel on GPU1 cannot receive
the required data from GPU2, which will not launch the cor-
responding AllReduce NCCL kernel after the discarding
process starts. This ultimately causes the SIRIUS to fail at
waiting for the completion of in-flight GPU kernels to finish
discarding the training batch.

To address this issue, SIRIUS must abort the in-flight NCCL
kernels. Simply aborting NCCL kernels by terminating NCCL
connections between GPUs (i.e., calling ncclCommAbort)

4AllReduce is one of the collective communication primitives provided by
NCCL [11]. When the training task initiates AllReduce, NCCL submits
a GPU kernel to complete the communication.
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hurts training throughput. It typically takes hundreds of mil-
liseconds to re-establish NCCL connections to recover the
training task.

Contrarily, SIRIUS leverages the NCCL communication
mechanism to abort NCCL while retaining NCCL connec-
tions. NCCL maintains a counter between GPUs to ensure the
order and correctness of collective data transmission. More-
over, to support the basic functionality of collective commu-
nication—connection termination, an abort flag is designed
to let NCCL kernels exit despite ignoring the correctness of
data transmission.

Therefore, SIRIUS sets the abort flag to abort NCCL ker-
nels to fulfill training memory adjustment. To avoid NCCL
deadlock or data pollution caused by incorrect NCCL states,
SIRIUS resets the NCCL counter on all GPUs before starting
the next training iterations, after which the training task will
be recovered similarly to the single GPU case.

Batch distributing. The memory requirements for inference
tasks can vary across different GPUs, which causes data par-
allel training to suffer from memory resource imbalances,
resulting in a degradation in training throughput due to the
straggling GPU. Therefore, SIRIUS must ensure the effective
batch processing time is similar across all GPUs. SIRIUS
achieves this by dynamically distributing the batch across
GPUs to balance the effective batch processing time. SIR-
IUS uses training batch size to model the training through-
put for each GPU through online profiling. SIRIUS redis-
tributes the batch to maintain a balanced training time when
the memory adjustment occurs, assigning more samples to
faster GPUs. Furthermore, to prevent communication dead-
lock during training, SIRIUS ensures that all GPUs progress
the training tasks (i.e., the training batch size of each GPU is
non-zero), or none of GPUs progress the training task. The
latter happens when all adjustable memory is allocated for
inference tasks.

4.2 Safe Memory Handover

To transfer the released memory from the training task to
the inference task, the simplest method is to return the mem-
ory cached by the training task to the GPU, then allocate
memory from the GPU for the inference task. However, GPU
memory allocation (i.e., cudaMalloc) is notoriously inef-
ficient [16, 35, 83, 96], which incurs significant overhead to
inference latency (see §3). Therefore, SIRIUS maintains a
shared memory pool between inference and training tasks to
bypass the memory caching mechanism of training frame-
works and the inefficient GPU memory management, mini-
mizing the overhead of memory handover. Furthermore, to
protect data privacy, the memory transferred from the training
task is filled with zeros before being allocated to the inference
task, and vice versa. Due to high GPU memory bandwidth,
the impact of zero-filling on memory handover latency is neg-
ligible. Nevertheless, the shared memory resources must be
carefully managed to avoid data pollution.

Training

Inference

FreeMem.

alloc

alloc

free
infer/train mem. access infer 

mem.
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mem.

free 
mem.

memory
adjusting
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mem. pool mem. pool mem. pool

data 
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allocfree

unadjustable training states

Figure 8: The illustration of data pollution and memory handover
between inference and training tasks.

Data pollution. In the conventional training, the memory al-
location and computation are asynchronous. Typically, the
training tasks first allocate memory and then launch compu-
tational operators. Rather than waiting for the operators to
complete, the memory is promptly released to training inter-
nal memory cache after launching. This design reduces GPU
synchronization overhead and potentially lowers memory con-
sumption by reusing memory across training operators (e.g.,
the second training memory allocation at the top of Figure 8).

However, when inference and training tasks allocate mem-
ory from the shared memory pool, such behavior can lead
to data pollution between two tasks. As shown in Figure 8,
once the training task releases its memory to the memory pool
in the second free operation, this memory immediately ap-
pears to be available for the inference task. Then the inference
task allocates this memory to serve inference requests. At the
same time, however, the training task is still accessing this
memory, leading to data pollution. This issue does not occur
in solo training execution because no concurrent computation
streams using the same memory area.

The root cause of data pollution is that the memory released
by the training task is prematurely seen by the inference task,
making the inference task mistakenly treat the memory being
accessed by the training task as free memory. To address this
issue, instead of aggressively polling for the real availability
of training released memory, which incurs synchronization
overhead to the training task. As shown at the bottom of
Figure 8, SIRIUS maintains the memory ownership and only
explicitly reclaims the training released memory for inference
tasks when the memory adjustment occurs. Because there is
no in-flight training operator after training memory adjust-
ment (see §4.1), the safety of memory handover is guaranteed.
If the memory adjustment does not occur, the memory re-
leased by the training task still belongs to the training task
and is not visible to inference tasks.

4.3 SLO-aware Reallocation

When serving multiple inference models under fluctuating
workloads, an idle model may soon be requested again. If such
a model’s memory is reclaimed for the training task, it can
lead to memory allocation thrashing. On the one hand, this
incurs frequent model loading to initialize memory for infer-
ence tasks, degrading the quality of inference services. On the
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Algorithm 1: SLO-aware Memory Reallocation

Input: The maximum liveness time of idle models, Tidle;
The watermark of memory reallocation,W .

Mrsv: The volume of reserved memory for inference tasks.

1 Function InferRelease(model)
2 if the model has been requested in the last Tidle then
3 return;

4 Mrsv += model_sz
5 ifMrsv < 2×W then
6 reserve the model
7 else

/* reallocate memory to training task */

8 release_sz =Mrsv −W
9 release the coldest models

10 Mrsv =W

11 Function InferRequire(model)
12 ifMrsv ≥ model_sz then

/* use the reserved memory */

13 Mrsv −= model_sz
14 else if training task does not reach the adjustment limit then

/* reallocate memory to inference task */

15 adjust_sz = (model_sz −Mrsv) +W
16 AdjustTrainingTask(adjust_sz)
17 Mrsv =W
18 else
19 fallback to model swapping

other hand, the training task will be frequently interrupted by
inference tasks to fulfill memory adjustment, hurting training
throughput. To address these issues, we present an SLO-aware
reallocation approach, as shown in Algorithm 1.

To reclaim memory resources from inference tasks (i.e.,
InferRelease), SIRIUS maintains a maximum liveness
time (Tidle) of idle models. An idle model will be reclaimed if
it has not been requested for Tidle time. Furthermore, SIRIUS
reallocates memory in a coarse-grained way to minimize the
disruptions to training tasks. SIRIUS maintains a watermark
(W) to control the minimum granularity of memory reallo-
cation. Instead of directly releasing the memory resources of
idle models to the training task, SIRIUS reserves these models
until the volume of reserved memory (Mrsv) reaches the re-
leasing threshold—2W (L5). Therefore, when these models
are requested again, SIRIUS can quickly complete the serving.
When the releasing threshold is reached, SIRIUS releases the
coldest model in the reserved memory until the volume of
reserved memory is reduced toW (L8-L10).

When inference tasks require more memory to serve re-
quested models (i.e., InferRequire), SIRIUS first uses the
inference reserved memory (L12). If this reserved memory
is exhausted, SIRIUS reallocates memory resources between
inference and training tasks (L15-L17). Besides meeting
the current memory requirements of inference tasks, SIRIUS

0W 1W 2W 3W · · ·

0C 1C 2C 3C · · ·

λ λ λ λ

µ µ µ µ

αλ λ λ λ

1
L

1
L

1
L

(1− α)λ1
Tidle

Figure 9: The M/G/1 model for inference SLO compliance. xW

and xC represent the state where there are x queueing inference
requests without cold start and with cold start, respectively. λ is the
arrival rate of inference requests. µ is the execution rate of inference
tasks. α is the cold start ratio of state 0C . L is the re-initialization
time of the released model.

adjustsW more memory resources to reduce the impact of
the memory adjustment on training throughput. However, sup-
pose the training task has reached the adjustment limit (e.g.,
the batch size has already been adjusted to zero). In that case,
SIRIUS will serve inference requests by swapping models
between GPU memory and host memory (L19). Finally, to
mitigate model loading overhead, SIRIUS employs a pipelined
execution scheme [16, 26] to overlap the inference execution
with model loading.

To effectively mitigate cold start overhead for inference
tasks and not hurt training throughput due to insufficient avail-
able memory, SIRIUS needs to be configured with the rational
values of Tidle and W (see §6.4). Therefore, we leverage
queueing theory to model the inference SLO compliance,
finally determining SIRIUS’s configuration.

To simplify modeling, we assume inference models are
homogeneous (i.e., inference execution time and loading time
are the same across models) and independent of each other.
Consequently, the system can be modeled as a single-server
queueing system, specifically M/G/1 [38]. In this model, in-
ference requests follow a Poisson process with arrival rate λ,
and the processing time of inference tasks follows a general
distribution, accounting for potential re-initialization.

Figure 9 shows the M/G/1 model for inference SLO compli-
ance. The expiration of the liveness time Tidle is represented
by the transition from state 0W to state 0C with rate 1

Tidle
.

The watermark W is modeled by the cold start ratio α of
state 0C , which can be approximated as 1 − W∑

model_sz , as-
suming the reserved memory follows a uniform distribution.
Consequently, when the inference request arrives at state 0C ,
the probability of transitioning to state 1W and state 1C is
1− α and α, respectively. Finally, the re-initialization of the
released model triggers the transition from state xW to state
xC . The re-initialization time L includes the model loading
overhead, and potential training adjustment time due to the
coarse-grained reallocation, which can be approximated as
the training adjustment time multiplied by α.

For every system state s, the inference response time is the
sum of the waiting time for queueing inference requests and
the processing time of the current inference request,
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Xs ∼

{∑x
i=0 exp(u) s = xW∑x
i=0 exp(u) + exp( 1

L ) s = xC
(1)

where Xs is the inference response time, following the hypo-
exponential distribution. Finally, the inference SLO compli-
ance—the percentage of inference requests that are served
within the SLO—can be calculated by conditioning on states
of the system,

PSLO =
∑

s πsP (Xs ≤ SLO) (2)

where πs is the probability of state s, which can be calculated
using the matrix method [38]. Therefore, given the inference
SLO and compliance requirements, we can leverage the above
model to search for a suitable configuration of Tidle andW .

5 Implementation
For inference tasks, we built the inference server from scratch
with approximately 6,000 lines of C++ code. The inference
engine employs TVM [20, 98] as the backend for DNN mod-
els and vLLM [50] for LLMs. For training tasks, SIRIUS
extends PyTorch with a Python library that contains around
5,000 lines of both Python and C++ code. The GPU memory
and computing resource management is implemented as a
common component of inference and training tasks, compris-
ing roughly 6,000 lines of C++ code.

Memory management. SIRIUS uses GPU Virtual Mem-
ory Management (VMM) [1] to maintain a shared memory
pool for both inference and training tasks, offering more
flexibility than the native GPU memory management (i.e.,
cudaMalloc/cudaFree). SIRIUS establishes a contigu-
ous memory area constituted by all available memory pages
to form this shared memory pool. For inference tasks, SIR-
IUS allocates memory by directly dividing the memory area
to avoid costly VMM calls. To prevent the memory frag-
mentation caused by the interleaving memory allocation of
inference and training, SIRIUS allocates memory for the train-
ing task by mapping free, potentially non-contiguous memory
pages in the memory pool to form a separate contiguous
memory area.

When inference tasks request the memory adjustment, SIR-
IUS unmaps the unused memory pages from the training task
to transfer memory resources to inference tasks, leading to
the unmapping overhead in the adjustment critical path. To
address this, SIRIUS merely updates the ownership of mem-
ory pages, postponing the actual unmapping until the next
training memory allocation.

Dynamic GPU SM sharing. SIRIUS leverages the GPU hard-
ware mechanism, specifically the SM mask [17], to allocate
GPU computing resources between inference and training
tasks. This mechanism enables dynamic specification of the
Streaming Multiprocessors (SMs) used by GPU kernels, over-
coming the limitation of static SM allocation of MPS [4].

Table 2: Inference trace description.

Workload LIGHT HEAVY BURST SKEWED

Request Rate LOGNL LOGNH LOGNL+H LOGNL+H

Model Dist. Uniform Uniform Uniform Zipfian

SIRIUS offline profiles the number of SMs that each infer-
ence model needs without degrading inference performance.
To minimize the inference SLO violation during colocation,
SIRIUS enables inference tasks to utilize all SMs. To re-
duce computation interference between inference and training
tasks, SIRIUS limits the number of SMs allocated for the train-
ing task by subtracting the SMs required by inference tasks
from the total number of SMs. When SIRIUS is about to ex-
ecute inference for a request, SIRIUS decreases the number
of SMs allocated to the training task by the amount needed
for inference tasks. Upon completion of the inference task,
SIRIUS restores these SMs to the training task.

6 Evaluation
Testbed. The experiments are conducted on a GPU server
with two Intel Xeon Gold 6138 CPUs (total of 80 cores),
503 GB of DRAM, and four NVIDIA Tesla V100 GPUs
with 16 GB of memory. The GPUs are fully connected by
NVLinks. The GPU and CPU are connected by PCIe 3.0×16.
The software environment of the server is configured with
Ubuntu 20.04, Python v3.10, CUDA v11.6, PyTorch v2.1.2,
TVM v0.14.

Comparing targets. We compare SIRIUS with the follow-
ing memory resource sharing approaches in inference and
training colocation. TaskSwitch represents systems like
PipeSwitch [16], where GPU is temporally shared by infer-
ence and training tasks. We do not directly compare with
vanilla PipeSwitch because it lacks support for multi-GPU
training. Moreover, PipeSwitch terminates the entire training
task when switching to inference tasks, degrading training
performance significantly. Instead, we implement TaskSwitch
based on SIRIUS and support switching from the training task
to inference tasks by preempting the training batch. Static
Partition refers to the approach of statically partitioning GPU
memory for inference and training tasks. For this approach,
we use NVIDIA Triton [12] for serving inference tasks and
PyTorch [65] for running training tasks. We compare SIRIUS
against two configurations of static partition: SP-50 (50%
GPU memory for inference tasks and 50% for training tasks)
and SP-75 (75% GPU memory for inference tasks and 25%
for training tasks). UM+MPS represents the dynamic mem-
ory swapping approach, which extends GPU memory with
the host memory using CUDA Unified Memory [39] and con-
currently runs tasks using NVIDIA MPS [4]. We also use
NVIDIA Triton and PyTorch to serve inference and training
tasks for this approach, respectively.

Workloads. Table 2 shows four generated inference traces
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Table 3: ML model description.

Inference Model Model Size Exec. Time

DNN

ResNet-152 [40] 319 MB 9.4 ms
DenseNet-169 [43] 84 MB 12.6 ms
EfficientNetV2-s [77] 86 MB 5.3 ms
EfficientViT-b2 [19] 109 MB 3.7 ms
DistilBERT [70] 254 MB 8.0 ms
DistilGPT2 [70] 317 MB 5.0 ms

LLM Llama2-13B [79] 26 GB
170.2 ms (TTFT)

20.7 ms (TBT)

Training Model Batch Size Exec. Time

DNN Swin-T [59] 72 318 ms (1 batch)
LLM Qwen2-0.5B [13] 72 346 ms (1 batch)

used for DNN model serving: LIGHT (L), HEAVY (H),
BURST (B), and SKEWED (S). In these traces, the inference
serving timeline is sliced into 20-second intervals. During
each interval, inference requests arrive following a Poisson
distribution [68, 69]. LIGHT represents a low-intensity work-
load where the request rate of each interval is sampled from
a LogNormal distribution [64] with µ=1 and σ=1 (LOGNL),
yielding an average request rate of 3.4 requests per second
(reqs/s). HEAVY represents a high-intensity workload where
the request rate of each interval is sampled from a LogNor-
mal distribution with µ=4.5 and σ=0.3 (LOGNH ), yielding
an average request rate of 98.2 reqs/s. BURST represents a
bursty inference workload by combining LIGHT and HEAVY
workloads [90], with 30% of request rates sampled from
LOGNH and 70% from LOGNL. The average request rate is
29.9 reqs/s. LIGHT, HEAVY and BURST workloads distribute
inference requests uniformly on all models, and SKEWED
assigns requests to various models following a Zipfian distri-
bution (α=1.05). Furthermore, we use a real-world trace from
Microsoft Azure Functions (MAF) [71] to simulate a realis-
tic arrival distribution in cloud data centers. We compressed
the MAF workload by scaling one minute to 5 seconds. All
workloads run for a total of 300 seconds.

For inference tasks, we use six widely-deployed DNN mod-
els, as shown in Table 3. All models are compiled using TVM
before deployment. To simulate different customized variants
of standard models, we duplicate these models up to 56 in-
stances in a round-robin manner. For the training task, we
use Swin-Transformer (Swin-T) [59]. To evaluate the perfor-
mance of SIRIUS with LLMs, we employ Llama2-13B for
inference tasks and Qwen2-0.5B for the training task using
the BurstGPT [85] trace (see §6.6 for details).

Metrics. For inference, we measure the P99 latency and SLO
compliance of all requests. The inference SLO is set as four
times of inference model standalone execution time (see Ta-
ble 3). For training, we measure the value of training through-
put (i.e., samples per second).
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Figure 10: The comparison of inference P99 latency, SLO compli-
ance, and training throughput for different approaches with various
workloads on one GPU.

6.1 Overall Performance on A Single GPU

We compare the overall performance of SIRIUS with its com-
petitors using various workloads (see Figure 10). To configure
SIRIUS with the above SLO requirement, we use the queue-
ing model with averaged inference model attributes to find
values of Tidle andW that achieve an averaged SLO compli-
ance of 90% across all workloads. The result configuration is
Tidle = 5 seconds andW = 1 GB. Overall, SIRIUS improves
the inference SLO compliance by an average of 57.0% (up to
97.0%) and improves the training throughput by an average
of 2.2× (up to 13.7×) compared with all competitors.

First, compared with TaskSwitch, SIRIUS improves the P99
latency and SLO compliance by averagely 12.6× and 72.6%
respectively. The low inference serving quality of TaskSwitch
is mainly caused by the cold starts due to the context switch.
For example, the inference task suffers a 38% higher cold
start ratio than SIRIUS under BURST workload. For training
throughput, SIRIUS outperforms TaskSwitch by averagely
4.6×. Due to preempting the training task, TaskSwitch de-
grades training throughput by 13.7× under MAF workload
compared with SIRIUS, despite the GPU is not fully utilized
by inference tasks. Contrarily, only 1.4% of computation time
is wasted due to the discarded batch in SIRIUS.

Second, compared with SP-50, SIRIUS improves the P99
latency and SLO compliance by averagely 261.9× and 54.6%
respectively. Although SP-50 has higher training throughput,
it fails to meet the memory requirements of inference tasks,
resulting in only 25% SLO compliance under HEAVY work-
load. Compared with SP-75, SIRIUS improves the P99 latency
and SLO compliance by averagely 64.3× and 8.2% respec-
tively. We found that inference model cold start overhead of
Triton can be as high as 2 seconds, leading to high inference
latency of SP-75 even with LIGHT workload. SP-75 allocates
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Figure 12: The comparison of inference P99 latency, SLO compli-
ance, and training throughput with LIGHT workload on four GPUs.

more memory for inference tasks, leading to 3.0× training
throughput degradation with LIGHT workload.

Third, compared with UM+MPS, SIRIUS improves the P99
latency and SLO compliance by 3.1k× and 92.6%, respec-
tively. The poor performance of UM+MPS is mainly caused
by memory swapping, presenting significant pressure on the
PCIe bus. Even under LIGHT workload, UM+MPS can only
achieve 7% SLO compliance. The memory swapping also
causes 2.2× degradation of training throughput.

Furthermore, we compare SIRIUS with the ideal case, i.e.,
Infer-Only, which is based on SIRIUS but solely executes
inference tasks on GPU. The evaluation result shows that SIR-
IUS achieves averagely 95.3% (up to 98%) of inference SLO
compliance of Infer-Only. The decrease in SLO compliance
is mainly caused by additional cold start overhead (e.g., 9.1%
cold start ratio under BURST workload).

Additionally, Figure 11 shows the CDF of inference latency
with BURST workload, illustrating that SIRIUS improves over-
all inference latency. For more relaxed SLO targets, such as
10× of the standalone execution time, SIRIUS also improves
SLO compliance by 48.8% on average compared with all
competitors.

Finally, we evaluate the impact of dynamic batch size on
training convergence. To evaluate the impact of randomness,
we train Swin-T with and without dynamic batch size on
CIFAR-100 [9] dataset for five times. We compare the number
of epochs required to achieve the same accuracy of 75%. The
evaluation result shows that the averaged number of epochs
are 210.6 and 206.2 (the standard deviation are 1.5 and 3.7)
for each case respectively. This confirms that SIRIUS can
ensure training convergence.

6.2 Performance on Multiple GPUs

We next evaluate the performance of SIRIUS with four GPUs.
To evaluate the inference and training colocation on multiple
GPUs, we scale the request rate and the number of inference
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Figure 13: The comparison of adjustment time for different ap-
proaches with MAF workload on one and four GPUs.

models of the LIGHT workload by the number of GPUs. As
shown in Figure 12, compared with all competitors, SIRIUS
improves the inference P99 latency and SLO compliance by
averagely 558.4× and 43.0% respectively, and improves the
training throughput by averagely 6.1×. The reason for the
performance improvement of SIRIUS is similar to the single
GPU case. Furthermore, SIRIUS achieves 89.0% of inference
SLO compliance of Infer-Only.

6.3 Adjustment Breakdown

We next compare the memory handover performance of SIR-
IUS with the naive memory handover, which adjusts memory
at the end of training batches. Figure 13 shows the break-
down of memory handover, which is evaluated over a mixture
of 32 ResNet-152 with MAF workloads on both single and
four GPUs. First, for training adjustment, the naive memory
handover can take over 250 ms because it must wait for the
completion of the training batch. Due to the synchronization
across multiple GPUs, the naive adjustment has to wait for the
effective batch to complete on all GPUs, resulting in latency
exceeding 1 second. In contrast, SIRIUS can adjust training
memory in less than 5 ms (121× faster than the naive on av-
erage) for both single and multiple GPUs, with P99 latencies
of 11.4 ms and 10.5 ms respectively. Moreover, thanks to the
coarse-grained reallocation, the average memory adjustment
intervals are 10.3 seconds and 3.6 seconds for single and
multiple GPUs, respectively. Second, by bypassing inefficient
GPU runtime, SIRIUS accelerates memory allocation to aver-
agely 0.8 ms (including zero-filling overhead), 89.2× faster
than the naive. Third, thanks to the SLO-aware reallocation
and pipeline loading, SIRIUS reduces the waiting time for
model loading by 3.7× than the naive. Finally, compared
with the naive adjustment, SIRIUS improves memory reallo-
cation by 148× and inference SLO compliance by 38% on
average.

6.4 Ablation Study

We next evaluate the configuration of SIRIUS that affects the
memory adjustment.
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Figure 14: The effect of maximum model liveness time and reallo-
cation watermark on inference and training performance.

Maximum liveness time (Tidle). This configuration deter-
mines when idle inference models should be released. We
evaluate the cold start ratio and P99 latency for inference
tasks, as well as the wasted computation time spent on dis-
carded batches and throughput for training tasks, using differ-
ent Tidle. In this experiment, we use the MAF workload and
set the reallocation watermark to zero (i.e., no memory reser-
vation for inference tasks). As shown at the top of Figure 14,
with the increase of Tidle, both the cold start ratio and P99
inference latency decrease. For training throughput, it first
increases due to fewer wasted computing resources from dis-
carded batches. However, for larger Tidle, training throughput
slightly decreases due to reduced memory resources. This sug-
gests a sweet spot for aggressive levels of dynamic memory
sharing.

Memory reallocation watermark (W). The watermark im-
pacts inference model loading and the frequency of adjust-
ments. We evaluate the model loading time and P99 latency
for inference tasks, as well as the wasted computation time
and throughput for training tasks, using different memory
reallocation watermarks. In this experiment, we use the MAF
workload and set Tidle to 500 ms. As shown at the bottom
of Figure 14, the finding is consistent with that of inference
model liveness time. A larger watermark leads to a reduction
in model loading time, P99 inference latency, and wasted
training computation. However, training throughput may de-
crease if the watermark is too large.

6.5 Case Study

Memory imbalance. We evaluate the training throughput
and GPU memory utilization of SIRIUS with an unbalanced
workload on multiple GPUs. To construct the unbalanced
workload, we colocate inference and training tasks on two
GPUs, where one GPU serves LIGHT inference workload
and the other serves HEAVY workload. To demonstrate the
issue of memory imbalance, we set the adjustment limit of
training batch size to one. Figure 15 shows memory utilization
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Figure 15: The training throughput and GPU memory utilization
of SIRIUS with an unbalanced workload.
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Figure 16: The inference latency and training throughput of SIR-
IUS with varying the number of requested ResNet-152 models.

(excluding the CUDA context) without and with the batch
distributing (BD) of SIRIUS. It can be found that without
batch distributing, the training task must use the same batch
size for both GPUs, resulting in memory underutilization
on GPU0 and suboptimal training throughput. In contrast,
batch distributing allows the training task to use different
configurations to fully utilize GPU memory and achieves
8.7× higher throughput.

Memory pressure. We next evaluate the performance of SIR-
IUS under memory pressure. We start with 4 ResNet-152
and gradually add 4 ResNet-152 every minute. There are 50
requests per second evenly distributed across these models.
Figure 16 shows the evaluation result, where the inference
latency and training throughput are averaged over 5 seconds.
Before reaching the adjustment limit, inference tasks can get
memory from the training task and maintain low latency while
training throughput decreases. However, once all training ad-
justable memory is reallocated for inference tasks, SIRIUS
adopts model swapping to serve more models, resulting in
increasing inference latency.

6.6 LLM Inference
We further investigate the performance of SIRIUS with Large
Language Models (LLMs). The memory consumption of
LLMs fluctuates due to their KV caches, which typically
dominate their memory requirements [41, 76]. Therefore, we
dynamically allocate GPU memory for the LLM’s KV cache
and the training task to enable memory sharing. The LLM is
pinned in GPU memory to minimize inference SLO violations.
In our experiments, we use BurstGPT [85] trace and scale the
maximum request rate to 10 req/s. We use Llama2-13B as the
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Figure 17: The comparison of SLO compliance of TTFT (Time To
First Token) and TBT (Time Between Tokens) of LLM serving, and
training throughput.

inference model and colocate it with training Qwen2-0.5B.
We compare SIRIUS with SP-50, SP-75, and Infer-Only. All
systems use vLLM [50] to serve inference requests. For SP-50
and SP-75, we set the KV cache size as 50% and 75% of that
of Infer-Only, which configures the KV cache to utilize the
GPU memory fully. For LLM inference, we evaluate the SLO
compliance of TTFT (Time To First Token) and TBT (Time
Between Tokens). Similarly, we set the SLO to be four times
the average latency of an inference request standalone exe-
cution (see Table 3). Figure 17 shows the evaluation result
on an NVIDIA A100 GPU with 80 GB memory. Compared
with SP-50, SIRIUS improves the SLO compliance of TTFT
and TBT by 40% and 7% respectively. Compared with SP-75,
SIRIUS improves training throughput by 1.5×. This perfor-
mance improvement stems from the same reason discussed in
the previous evaluation—dynamic GPU memory sharing. Fi-
nally, in comparison to Infer-Only, SIRIUS achieves 89% and
91% of its SLO compliance for TTFT and TBT, respectively.

7 Discussion
Modern inference and training systems are scaled out across
multiple GPUs and nodes to enhance their performance. To
support memory handover for multi-GPU and multi-node
inference tasks, Sirius could allow the inference engine on
each GPU to notify the training task of the memory adjust-
ment. The inference task will be processed once the memory
adjustment is complete on all GPUs.

For multi-GPU and multi-node training tasks, the memory
adjustment can still be completed immediately. However, such
training tasks, which typically incorporate data parallelism,
pipeline parallelism, and tensor parallelism [18, 74], must
be reconfigured and resumed after the memory adjustment.
Currently, SIRIUS has explored the elasticity of training tasks
with data parallelism to adjust memory consumption, enabling
fast GPU memory handover. To support model parallelism
(i.e., pipeline parallelism and tensor parallelism), SIRIUS can
reshard pipeline stages [30, 45, 81] and reshape tensors [86],
respectively. We leave this to future work.

8 Related Work
Improving GPU cluster utilization. To address the under-
utilization of GPU clusters [27, 87], prior work [33, 69, 93]
auto-scales GPU resources based on dynamic workloads. Dif-

ferently, SIRIUS focuses on colocating ML tasks to improve
GPU utilization. While Lyra [53] schedules inference and
training tasks within the same GPU cluster, SIRIUS colocates
two types of tasks on the same GPU in a fine-grained manner.
Observing the dynamic resource utilization of training tasks,
AntMan [89] co-designs the GPU cluster scheduler and the
ML framework to colocate training tasks, which reconciles
the GPU memory resources between training tasks by unify-
ing GPU and host memory. Compared with AntMan, SIRIUS
instantly adjusts the memory consumption of training tasks
to meet inference SLOs.

Elastic training and dynamic batch. To utilize dynamic
GPU resources, elastic training has gained increasing atten-
tion recently [2, 3, 6, 46, 54, 61, 66, 82, 84]. Different from
these approaches, which mainly focus on improving utiliza-
tion and accelerating training tasks, SIRIUS exploits the elas-
ticity of training tasks to colocate with latency-sensitive infer-
ence tasks under dynamic inference workloads.

GPU sharing for machine learning. Fully utilizing GPU be-
comes increasingly challenging for more powerful GPUs [87,
88, 92, 97]. NVIDIA GPU offers several techniques to
enable GPU sharing, including MPS [4] and MIG [5].
MIG is a hardware mechanism for static partitioning, divid-
ing the GPU into multiple isolated instances. While prior
work [22, 24, 25, 36, 52, 72, 75] has primarily focused on
computational resource sharing, SIRIUS targets GPU memory
sharing. Different from PipeSwitch [16] and Zico [57], SIR-
IUS dynamically allocates GPU memory between ML tasks
to achieve efficient colocation.

9 Conclusion
In this paper, we present SIRIUS, a colocation system that
leverages training elasticity to dynamically share GPU mem-
ory between ML inference and training tasks. SIRIUS pri-
oritizes inference tasks to meet strict latency SLOs, allow-
ing them access GPU memory without interference. Mean-
while, it concurrently runs training tasks on remaining re-
sources to maximize throughput and GPU utilization. The
key innovation behind SIRIUS is a millisecond-scale GPU
memory handover mechanism between training and infer-
ence tasks. Our experiments demonstrate the efficacy and
efficiency of SIRIUS in colocating inference and training
tasks. SIRIUS is open-source and publicly available at https:
//github.com/SiriusInfTra/Sirius.
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A Artifact Appendix
This artifact provides the source code of SIRIUS, a detailed readme,
and scripts to reproduce the main experimental results from the ATC
2025 paper—“Colocating ML Inference and Training with Fast GPU
Memory Handover” by J. Wang, Y. Wang, M. Han, and R. Chen.
SIRIUS is a colocation system that leverages training elasticity to
dynamically share GPU memory between ML inference and train-
ing tasks. We provide instructions to build the software package

and run experiments. Our artifact obtained the “Artifacts Available,”
“Artifacts Functional,” and “Results Reproduced” badges from the
Artifact Evaluation process of ATC 2025. The DOI of our artifact is
https://doi.org/10.5281/zenodo.15581800.

Artifact repository. All project source code, along with com-
prehensive instructions for building and running the main exper-
iments on SIRIUS, is available in the following git repository:
https://github.com/SiriusInfTra/Sirius.git.
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