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ABSTRACT

In-memory key/value store (KV-store) is a key building

block for many systems like databases and large web-

sites. Two key requirements for such systems are effi-

ciency and availability, which demand a KV-store to con-

tinuously handle millions of requests per second. A com-

mon approach to availability is using replication such as

primary-backup (PBR), which, however, requires M +1
times memory to tolerate M failures. This renders scarce

memory unable to handle useful user jobs.

This paper makes the first case of building highly

available in-memory KV-store by integrating erasure

coding to achieve memory efficiency, while not notably

degrading performance. A main challenge is that an in-

memory KV-store has much scattered metadata. A sin-

gle KV put may cause excessive coding operations and

parity updates due to numerous small updates to meta-

data. Our approach, namely Cocytus, addresses this chal-

lenge by using a hybrid scheme that leverages PBR for

small-sized and scattered data (e.g., metadata and key),

while only applying erasure coding to relatively large

data (e.g., value). To mitigate well-known issues like

lengthy recovery of erasure coding, Cocytus uses an on-

line recovery scheme by leveraging the replicated meta-

data information to continuously serving KV requests.

We have applied Cocytus to Memcached. Evaluation us-

ing YCSB with different KV configurations shows that

Cocytus incurs low overhead for latency and throughput,

can tolerate node failures with fast online recovery, yet

saves 33% to 46% memory compared to PBR when tol-

erating two failures.

1 INTRODUCTION

The increasing demand of large-scale Web applications

has stimulated the paradigm of placing large datasets

within memory to satisfy millions of operations per

second with sub-millisecond latency. This new com-

puting model, namely in-memory computing, has been

emerging recently. For example, large-scale in-memory

key/value systems like Memcached [13] and Redis [47]

have been widely used in Facebook [24], Twitter [38]
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and LinkedIn. There have also been considerable in-

terests of applying in-memory databases (IMDBs) to

performance-hungry scenarios (e.g., SAP HANA [12],

Oracle TimesTen [18] and Microsoft Hekaton [9]).

Even if many systems have a persistent backing store

to preserve data durability after a crash, it is still impor-

tant to retain data in memory for instantaneously taking

over the job of a failed node, as rebuilding terabytes of

data into memory is time-consuming. For example, it

was reported that recovering around 120 GB data from

disk to memory for an in-memory database in Facebook

took 2.5-3 hours [14]. Traditional ways of providing

high availability are through replication such as standard

primary-backup (PBR) [5] and chain-replication [39], by

which a dataset is replicated M + 1 times to tolerate M

failures. However, this also means dedicating M copies

of CPU/memory without producing user work, requiring

more standby machines and thus multiplying energy con-

sumption.

This paper describes Cocytus, an efficient and avail-

able in-memory replication scheme that is strongly con-

sistent. Cocytus aims at reducing the memory consump-

tion for replicas while keeping similar performance and

availability of PBR-like solutions, though at additional

CPU cost for update-intensive workloads. The key of

Cocytus is efficiently combining the space-efficient era-

sure coding scheme with the PBR.

Erasure coding is a space-efficient solution for data

replication, which is widely applied in distributed stor-

age systems, including Windows Azure Store [15] and

Facebook storage [23]. However, though space-efficient,

erasure coding is well-known for its lengthy recovery and

transient data unavailability [15, 34].

In this paper, we investigate the feasibility of ap-

plying erasure coding to in-memory key/value stores

(KV-stores). Our main observation is that the abun-

dant and speedy CPU cores make it possible to per-

form coding online. For example, a single Intel Xeon

E3-1230v3 CPU core can encode data at 5.26GB/s for

Reed-Solomon(3,5) codes, which is faster than even cur-

rent high-end NIC with 40Gb/s bandwidth. However, the

block-oriented nature of erasure coding and the unique

feature of KV-stores raise several challenges to Cocytus

to meet the goals of efficiency and availability.
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The first challenge is that the scattered metadata like

a hashtable and the memory allocation information of

a KV-store will incur a large number of coding opera-

tions and updates even for a single KV put. This incurs

not only much CPU overhead but also high network traf-

fic. Cocytus addresses this issue by leveraging the idea

of separating metadata from data [42] and uses a hybrid

replication scheme. In particular, Cocytus uses erasure

coding for application data while using PBR for small-

sized metadata.

The second challenge is how to consistently recover

lost data blocks online with the distributed data blocks

and parity blocks1. Cocytus introduces a distributed on-

line recovery protocol that consistently collects all data

blocks and parity blocks to recover lost data, yet with-

out blocking services on live data blocks and with pre-

dictable memory.

We have implemented Cocytus in Memcached 1.4.21

with the synchronous model, in which a server sends re-

sponses to clients after receiving the acknowledgments

from backup nodes to avoid data loss. We also im-

plemented a pure primary-backup replication in Mem-

cached 1.4.21 for comparison. By using YCSB [8] to

issue requests with different key/value distribution, we

show that Cocytus incurs little degradation on throughput

and latency during normal processing and can gracefully

recover data quickly. Overall, Cocytus has high memory

efficiency while incurring small overhead compared with

PBR, yet at little CPU cost for read-mostly workloads

and modest CPU cost for update-intensive workloads.

In summary, the main contribution of this paper in-

cludes:

• The first case of exploiting erasure coding for in-

memory KV-store.

• Two key designs, including a hybrid replication

scheme and distributed online recovery that achieve

efficiency, availability and consistency.

• An implementation of Cocytus on Memcached [13]

and a thorough evaluation that confirms Cocytus’s

efficiency and availability.

The rest of this paper is organized as follows. The

next section describes necessary background information

about primary-backup replication and erasure coding on

a modern computing environment. Section 3 describes

the design of Cocytus, followed up by the recovery pro-

cess in section 4. Section 5 describes the implementa-

tion details. Section 6 presents the experimental data of

Cocytus. Finally, section 7 discusses related work, and

section 8 concludes this paper.

1Both data blocks and parity blocks are called code words in coding

theory. We term “parity blocks” as those code words generated from

the original data and “data blocks” as the original data.

2 BACKGROUND AND CHALLENGES

This section first briefly reviews primary-backup repli-

cation (PBR) and erasure coding, and then identifies op-

portunities and challenges of applying erasure coding to

in-memory KV-stores.

2.1 Background

Primary-backup replication: Primary-backup replica-

tion (PBR) [3] is a widely-used approach to providing

high availability. As shown in Figure 1(a), each pri-

mary node has M backup nodes to store its data repli-

cas to tolerate M failures. One of the backup nodes

would act as the new primary node if the primary node

failed, resulting in a view change (e.g., using Paxos [19]).

As a result, the system can still provide continuous ser-

vices upon node failures. This, however, is at the cost of

high data redundancy, e.g., M additional storage nodes

and the corresponding CPUs to tolerate M failures. For

example, to tolerate two node failures, the storage effi-

ciency of a KV-store can only reach 33%.

Erasure coding: Erasure coding is an efficient way to

provide data durability. As shown in Figure 1(b), with

erasure coding, an N-node cluster can use K of N nodes

for data and M nodes for parity (K +M = N ). A com-

monly used coding scheme is Reed-Solomon codes (RS-

code) [30], which computes parities according to its data

over a finite field by the following formula (the matrix is

called a Vandermonde matrix):
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An update on a DNode (a node for data) can be

achieved by broadcasting its delta to all PNodes (nodes

for parity) and asking them to add the delta to parity

with a predefined coefficient. This approach works sim-

ilarly for updating any parity blocks; its correctness can

be proven by the following equation, where A represents

the Vandermonde matrix mentioned in formula (1).
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In the example above, we denote the corresponding

RS-code scheme as RS(K,N). Upon node failures, any

K nodes of the cluster can recover data or parity lost in

the failed nodes, and thus RS(K,N) can handle M node
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(a) Key/value store with primary-backup replication
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(b) Key/value store with erasure coding

Figure 1: Data storage with two different replication schemes.

failures at most. During recovery, the system recalculates

the lost data or parity by solving the equations generated

by the above equation.

As only M of N nodes are used for storing parities,

the memory efficiency can reach K/N . For example,

an RS(3,5) coding scheme has storage efficiency of 60%

while tolerating up to two node failures.

2.2 Opportunities and Challenges

The emergence of in-memory computing significantly

boosts the performance of many systems. However, this

also means that a large amount of data needs to be placed

in memory. As memory is currently volatile, a node fail-

ure would cause data loss for a large chunk of memory.

Even if the data has its backup in persistent storage, it

would require non-trivial time to recover the data for a

single node [14].

However, simply using PBR may cause significant

memory inefficiency. Despite an increase of the volume,

memory is still a scarce resource, especially when pro-

cessing the “big-data” applications. It was frequently re-

ported that memory bloat either significantly degraded

the performance or simply caused server crashes [4].

This is especially true for workload-sharing clusters,

where the budget for storing specific application data is

not large.

Opportunities: The need for both availability and

memory efficiency makes erasure coding a new attrac-

tive design point. The increase of CPU speed and the

CPU core counts make erasure coding suitable to be used

even in the critical path of data processing. Table 1

presents the encoding and decoding speed for different

Reed-Solomon coding scheme on a 5-node cluster with

an average CPU core (2.3 GHz Xeon E5, detailed con-

figurations in section 6.1). Both encoding and decoding

can be done at 4.24-5.52GB/s, which is several hundreds

of times compared to 20 years ago (e.g., 10MB/s [31]).

This means that an average-speed core is enough to han-

dle data transmitted through even a network link with

40Gb/s. This reveals a new opportunity to trade CPU

resources for better memory efficiency to provide high

availability.

scheme encoding speed decoding speed

RS(4,5) 5.52GB/s 5.20GB/s

RS(3,5) 5.26GB/s 4.83GB/s

RS(2,5) 4.56GB/s 4.24GB/s

Table 1: The speed of coding data with different schemes for a 5-node

cluster

Challenges: However, trivially applying erasure cod-

ing to in-memory KV-stores may result in significant per-

formance degradation and consistency issues.

The first challenge is that coding is done efficiently

only in a bulk-oriented nature. However, an update op-

eration in a KV-store may result in a number of small

updates, which would introduce notable coding opera-

tions and network traffic. For example, in Memcached,

both the hashtable and the allocation metadata need to be

modified for a set operation. For the first case, a KV pair

being inserted into a bucket will change the four point-

ers of the double linked list. Some statistics like that for

LRU replacement need to be changed as well. In the

case of a hashtable expansion or shrinking, all key/value

pairs may need to be relocated, causing a huge amount

of updates. For the allocation metadata, as Memcached

uses a slab allocator, an allocation operation commonly

changes four variables and a free operation changes six

to seven variables.

The second challenge is that a data update involves

updates to multiple parity blocks across machines. Dur-

ing data recovery, there are also multiple data blocks and

parity blocks involved. If there are concurrent updates in

progress, this may easily cause inconsistent recovery of

data.

3 DESIGN

3.1 Interface and Assumption

Cocytus is an in-memory replication scheme for

key/value stores (KV-stores) to provide high memory

efficiency and high availability with low overhead. It

assumes that a KV-store has two basic operations:

V alue ← get(Key) and set(Key, V alue), where Key
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set operation

Coding group

get operation

Client

Client

Client
Parity Process 1update

metadata patch
diff

Data Process 3

update
metadata

generate 
diff

update
data

M3
Data3

Parity1

Parity Process 2update
metadata patch

diff
Parity2

Data Process 1

M3 M2 M1

M3 M2 M1

Data Process 2

M2

lookup

read value
Data2

M1 Data1

Figure 2: Requests handled by an coding group in Cocytus, where

K=3, M=2.

and Value are arbitrary strings. According to prior large-

scale analysis on key/value stores in commercial work-

loads [1, 24], Cocytus assumes that the value size is usu-

ally much larger than the key size.

Cocytus handles only omission node failures where a

node is fail-stop and won’t taint other nodes; commission

or Byzantine failures are not considered. It also does not

consider a complete power outage that crashes the en-

tire cluster. In such cases, it assumes that there is an-

other storage layer that constantly stores data to preserve

durability [24]. Alternatively, one may leverage battery-

backed RAM like NVDIMM [37, 35] to preserve dura-

bility.

Cocytus is designed to be synchronous, i.e., a response

of a set request returned to the client guarantees that the

data has been replicated/coded and can survive node fail-

ures.

Cocytus works efficiently for read-mostly workloads,

which are typical for many commercial KV-stores [1].

For update-intensive workloads, Cocytus would use

more CPU resources due to the additional calculations

caused by the erasure coding, and achieve a similar la-

tency and throughput compared to a simple primary-

backup replication.

3.2 Architecture

Cocytus separates data from metadata and leverages a

hybrid scheme: metadata and key are replicated using

primary-backup while values are erasure coded.

One basic component of Cocytus is the coding group,

as shown in Figure 2. Each group comprises K data pro-

cesses handling requests to data blocks and M parity pro-

cesses receiving update requests from the data processes.

A get operation only involves one data node, while a

set operation updates metadata in both primary and its

backup node, and generates diffs to be patched to the par-

ity codes.

Cocytus uses sharding to partition key/value tuples

into different groups. A coding group handles a key

shard, which is further divided into P partitions in the

group. Each partition is handled by a particular data

process, which performs coding at the level of virtual

address spaces. This makes the coding operation neu-

tral to the changes of value sizes of a KV pair as long

as the address space of a data process does not change.

There is no data communication among the data pro-

cesses, which ensures fault isolation among data pro-

cesses. When a data process crashes, one parity pro-

cess immediately handles the requests for the partition

that belongs to crashed nodes and recovers the lost data,

while other data processes continuously provide services

without disruption.

Cocytus is designed to be strongly consistent, which

never loses data or recovers inconsistent data. However,

strict ordering on parity processes is not necessary for

Cocytus. For example, two data processes update their

memory at the same time, which involves two updates

on the parity processes. However, the parity processes

can execute the updates in any order as long as they are

notified that the updates have been received by all of the

parity processes. Thus, in spite of the update ordering,

the data recovered later are guaranteed to be consistent.

Section 4.1.2 will show how Cocytus achieves consistent

recovery when a failure occurs.

3.3 Separating Metadata from Data

For a typical KV-store, there are two types of important

metadata to handle requests. The first is the mapping

information, such as a (distributed) hashtable that maps

keys to their value addresses. The second one is the allo-

cation information. As discussed before, if the metadata

is erasure coded, there will be a larger number of small

updates and lengthy unavailable duration upon crashes.

Cocytus uses primary-backup replication to handle the

mapping information. In particular, the parity processes

save the metadata for all data processes in the same cod-

ing group. For the allocation information, Cocytus ap-

plies a slab-based allocation for metadata allocation. It

further relies on an additional deterministic allocator for

data such that each data process will result in the same

memory layout for values after every operation.

Interleaved layout: One issue caused by this design

is that parity processes save more metadata than those in

the data processes, which may cause memory imbalance.

Further, as parity processes only need to participate in set

operations, they may become idle for read-mostly work-

loads. In contrast, for read-write workloads, the parity

processes may become busy and may become a bottle-

neck of the KV-store.
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Figure 3: Interleaved layout of coding groups in Cocytus. The blocks

in the same row belong to one coding group.

To address these issues, Cocytus interleaves coding

groups in a cluster to balance workload and memory on

each node, as shown in Figure 3. Each node in Cocy-

tus runs both parity processes and data processes; a node

will be busy on parity processes or data processes for

update-intensive or read-mostly workload accordingly.

The interleaved layout can also benefit the recovery

process by exploiting the cluster resources instead of one

node. Because the shards on one node belong to differ-

ent groups, a single node failure leads a process failure

on each group. However, the first parity nodes of these

groups are distributed across the cluster, all nodes will

work together to do recovery.

To extend Cocytus in a large scale cluster, there are

three dimensions to consider, including the number of

data processes (K) and the number of parity processes

(M) in a coding group, as well as the number of cod-

ing groups. A larger K increases memory efficiency but

makes the parity process suffer from higher CPU pres-

sure for read-write workloads. A larger M leads to more

failures to be tolerated but decreases memory efficiency

and degrades the performance of set operations. A neu-

tral way to extend Cocytus is deploying more coding

groups.

3.4 Consistent Parity Updating with
Piggybacking

Because an erasure-coding group has multiple parity pro-

cesses, sending the update messages to such processes

needs an atomic broadcast. Otherwise, a KV-store may

result in inconsistency. For example, when a data pro-

cess has received a set request and is sending updates to

two parity processes, a failure occurs and only one parity

process has received the update message. The following

recovery might recover incorrect data due to the incon-

sistency between parities.

A natural solution to this problem is using two-phase

commit (2PC) to implement atomic broadcast. This,

however, requires two rounds of messages and doubles

the I/O operations for set requests. Cocytus addresses

this problem with a piggybacking approach. Each re-

quest is assigned with an xid, which monotonously in-

creases at each data process like a logical clock. Upon

receiving parity updates, a parity process first records the

operation in a buffer corresponding with the xid and then

immediately send acknowledgements to its data process.

After the data process receives acknowledgements from

all parity processes, the operation is considered stable in

the KV-store. The data process then updates the latest

stable xid as well as data and metadata, and sends a re-

sponse to the client. When the data process sends the

next parity update, this request piggybacks on the latest

stable xid. When receiving a piggybacked request, the

parity processes mark all operations that have smaller xid

in the corresponding buffer as READY and install the up-

dates in place sequentially. Once a failure occurs, the

corresponding requests that are not received by all parity

processes will be discarded.

4 RECOVERY

When a node crashes, Cocytus needs to reconstruct lost

data online while serving client requests. Cocytus as-

sumes that the KV-store will eventually keep its fault tol-

erance level by assigning new nodes to host the recov-

ered data. Alternatively, Cocytus can degenerate its fault

tolerance level to tolerate fewer failures. In this section,

we first describe how Cocytus recovers data in-place to

the parity node and then illustrate how Cocytus migrates

the data to recover the parity and data processes when a

crashed node reboots or a new standby node is added.

4.1 Data Recovery

Because data blocks are only updated at the last step of

handling set requests which is executed sequentially with

xid. We can regard the xid of the latest completed request

as the logical timestamp (T ) of the data block. Similarly,

there are K logical timestamps (V T [1..K]) for a parity

block, where K is the number of the data processes in the

same coding group. Each of the K logical timestamps

is the xid of the latest completed request from the corre-

sponding data process.

Suppose data processes 1 to F crash at the same time.

Cocytus chooses all alive data blocks and F parity blocks

to reconstruct the lost data blocks. Suppose the logi-

cal timestamps of data blocks are T F+1, T F+2, ..., TK

and the logical timestamps of parity blocks are V T 1,
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V T 2, ..., V T F. If V T 1 = V T 2 = ... = V T F and

V T 1[F + 1..K] = �T F+1, T F+2, ..., TK�, then theses data

blocks and parity blocks agree with formula (1). Hence,

they are consistent.

The recovery comprises two phases: preparation and

online recovery. During the preparation phase, the par-

ity processes synchronize their request buffers that cor-

respond to the failed processes. Once the preparation

phase completes, all parity blocks are consistent on the

failed processes. During online recovery, alive data pro-

cess send their data blocks with its logical timestamp,

so the parity processes can easily provide the consistent

parity blocks.

4.1.1 Preparation

Once a data process failure is detected, a correspond-

ing parity process is selected as the recovery process

to do the recovery and to provide services on behalf of

the crashed data process. The recovery process first col-

lects latest xids which correspond to failed data processes

from all parity processes. Hence, a parity process has

a latest xid for each data process because it maintains

an individual request buffer for each data process. The

minimal latest xid is then chosen as the stable xid. Re-

quests with greater xid received by the failed data process

haven’t been successfully received by all parity processes

and thus should be discarded. Then, the stable xid is sent

to all parity processes. The parity processes apply the

update requests in place of which the xid equal to or less

than the stable xid in the corresponding buffer. After that,

all parity processes are consistent in the failed data pro-

cess because their corresponding logical timestamps are

all the same with the stable xid.

The preparation phase blocks key/value requests for a

very short time. According to our evaluation, the block-

ing time is only 7ms to 13 ms even under a high work-

load.

4.1.2 Online recovery

The separation of metadata and data enables online re-

covery of key/value pairs. During recovery, the recovery

process can leverage the replicated metadata to recon-

struct lost data online to serve client requests, while us-

ing idle CPU cycles to proactively reconstruct other data.

During the online recovery, data blocks are recovered

in a granularity of 4KB, which is called a recovery unit.

According to the address, each recovery unit is assigned

an ID for the convenience of communication among pro-

cesses.

As shown in Figure 4, there are five steps in our online

recovery protocol:

• 1. To reconstruct a recovery unit, a recovery process

becomes the recovery initiator and sends messages

DP3 DP4 PP1 PP2

1

2

2
3a 3a

3a 3a

5

44

3b 3b

3b 3b

3a

4

3b

3a

4

3b

3a

3b

3a

3b

Figure 4: Online recovery when DP1 and DP2 crash in an RS(4, 6)

coding group

consisting of the recovery unit ID and a list of in-

volved recovery processes to alive data processes.

• 2. When the ith data process receives the message,

it sends the corresponding data unit to all recovery

processes along with its logical timestamp Ti.

• 3(a). When a recovery process receives the data unit

and the logical timestamp Ti, it first applies the re-

quests whose xid equals to or less than Ti in the

corresponding buffer. At this time, the ith logical

timestamp on this recovery process equals to Ti.

• 3(b). The recovery process subtracts the corre-

sponding parity unit by the received data unit with

the predefined coefficient. After the subtraction

completes, the parity unit is no longer associated

with the ith data process. It stops being updated by

the ith data process. Hence, the rest of parity units

on this recovery process are still associated with the

ith data process.

• 4. When a recovery process has received and han-

dled all data units from alive data processes, it sends

the final corresponding parity unit to the recovery

initiator, which is only associated with the failed

data processes.

• 5. When the recovery initiator has received all par-

ity units from recovery processes, it decodes them

by solving the following equation, in which the

fn1, fn2, ..., fnF indicate the numbers of F failure
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data processes and the rn1, rn2, ..., rnF indicate

the numbers of F parity processes chosen to be the

recovery processes.
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Correctness argument: Here we briefly argue the

correctness of the protocol. Because when a data block

is updated, all parity processes should have received the

corresponding update requests. Hence, in step 3(a), the

parity process must have received all required update

requests and can synchronize its corresponding logical

timestamp with the received logical timestamp. Since

the received data block and parity block have the same

logical timestamps, the received data block should be the

same as the data block which is used to construct the par-

ity block. Because a parity block is a sum of data blocks

with the individual predefined coefficients in the Vander-

monde matrix, after the subtraction in step 3(b), the par-

ity block is only constructed by the rest of data blocks.

At the beginning of step 4, the parity block is only con-

structed by the data blocks of failed data processes be-

cause the parity process has done step 3 for each alive

data process. Finally, with the help of stable xid syn-

chronization in the preparation phase, the parity blocks

received in step 5 are all consistent and should agree with

equation 2.

4.1.3 Request Handling on Recovery Process

Cocytus allows a recovery process to handle requests

during recovery. For a get request, it tries to find the

key/value pair through the backup hashtable. If it finds

the pair, the recovery process checks whether the data

blocks needed for the value have been recovered. If the

data blocks have not been recovered, the recovery pro-

cess initiates data block recovery for each data block.

After the data blocks are recovered, the recovery process

sends the response to the client with the requested value.

For a set request, the recovery process allocates a new

space for the new value with the help of the allocation

metadata in the backup. If the allocated data blocks are

not recovered, the recovery process calls the recovery

function for them. After recovery, the recovery process

handles the operation like a normal data process.

4.2 Data Migration

Data process recovery: During the data process recov-

ery, Cocytus can migrate the data from the recovery pro-

cess to a new data process. The recovery process first

sends the keys as well as the metadata of values (i.e.,

sizes and addresses) in the hashtable to the new data pro-

cess. While receiving key/value pairs, the new data pro-

cess rebuilds the hashtable and the allocation metadata.

After all key/value pairs are sent to the new data process,

the recovery process stops providing services to clients.

When metadata migration completes, the data (i.e.,

value) migration starts. At that moment, the data pro-

cess can handle the requests as done in the recovery pro-

cess. The only difference between them is that the data

process does not recover the data blocks by itself. When

data process needs to recover a data block, it sends a re-

quest to the recovery process. If the recovery process

has already recovered the data block, it sends the recov-

ered data block to the data process directly. Otherwise,

it starts a recovery procedure. After all data blocks are

migrated to the data process, the migration completes.

If either the new data process or the corresponding re-

covery process fails during data migration, both of them

should be killed. This is because having only one of them

will lead to insufficient information to provide continu-

ous services. Cocytus can treat this failure as a data pro-

cess failure.

Parity process recovery: The parity process recov-

ery is straightforward. After a parity process crashes, the

data process marks all data blocks with a miss bit for that

parity process. The data processes first send the meta-

data to the recovering parity process. Once the transfer

of metadata completes, the logical timestamps of new

parity processes are the same with the metadata it has

received. After the transfer of metadata, the data pro-

cesses migrate the data that may overlap with parity up-

date requests. Before sending a parity update request

which involves data blocks marked with a miss bit, the

data process needs to send the involved data blocks to

the new parity process. In this way, data blocks sent to

the new parity process have the same logical timestamps

with the metadata sent before. After the new parity pro-

cess receives all data blocks, the recovery completes. If

either of the data processes fails during the recovery of

the parity process, the recovery fails and Cocytus starts

to recover the failed data process.

5 IMPLEMENTATION

We first built a KV-store with Cocytus from scratch.

To understand its performance implication on real KV-

stores, we also implemented Cocytus on top of Mem-

cached 1.4.21 with the synchronous model, by adding

about 3700 SLoC to Memcached. Currently, Cocytus

only works for single-thread model and the data migra-

tion is not fully supported. To exploit multicore, Cocy-

tus can be deployed with sharding and multi-process in-

stead of multi-threading. In fact, using multi-threading

has no significant improvement for data processes which
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may suffer from unnecessary resource contention and

break data isolation. The parity processes could be im-

plemented in a multi-threaded way to distribute the high

CPU pressure under write-intensive workloads, which

we leave as future work. We use Jerasure [27] and

GF-complete [26] for the Galois-Field operations in RS-

code. Note that Cocytus is largely orthogonal with the

coding schemes; it will be our future work to apply other

network or space-efficient coding schemes [33, 28]. This

section describes some implementation issues.

Deterministic allocator: In Cocytus, the allocation

metadata is separated from data. Each data process main-

tains a memory region for data with the mmap syscall.

Each parity process also maintains an equivalent mem-

ory region for parity. To manage the data region, Cocytus

uses two AVL trees, of which one records the free space

and the other records the allocated space. The tree node

consists of the start address of a memory piece and its

length. The length is ensured to be multiples of 16 and is

used as the index of the trees. Each memory location is

stored in either of the trees. An alloc operation will find

an appropriate memory piece in the free-tree and move it

to the allocated-tree and the free operations do the oppo-

site. The trees manage the memory pieces in a way sim-

ilar to the buddy memory allocation: large blocks might

be split into small ones during alloc operations and con-

secutive pieces are merged into a larger one during free

operations. To make the splitting and merging fast, all

memory blocks are linked by a list according to the ad-

dress. Note that only the metadata is stored in the tree,

which is stored separately from the actual memory man-

aged by the allocator.

PP1 PP2

(a) without pre-alloc

PP1 PP2

(b) with pre-alloc

Figure 5: In (a), the memory allocation ordering for X and Y is dif-

ferent on PP1 and PP2. In (b), thanks to the pre-alloc, the memory

allocation ordering remains the same on different procesess.

Pre-alloc: Cocytus uses the deterministic allocator

and hashtables to ensure all metadata in each node is

consistent. Hence, Cocytus only needs to guarantee that

each process will handle the related requests in the same

order. The piggybacked two-phase commit (section 3.4)

can mostly provide such a guarantee.

One exception is shown in Figure 5(a). When a re-

covery process receives a set request with X=a, it needs

to allocate memory for the value. If the memory for the

value needs to be recovered, the recovery process first

starts the recovery for X and puts this set request into a

waiting queue. In Cocytus, the recovery is asynchronous.

Thus, the recovery process is able to handle other re-

quests before the recovery is finished. During this time

frame, another set request with Y=b comes to the recov-

ery process. The recovery process allocates memory for

it and fortunately the memory allocated has already been

recovered. Hence, the recovery process directly handles

the set request with Y=b without any recovery and sends

requests to other parity processes for fault-tolerance. As

soon as they receive the request, other processes (for ex-

ample, PP2 in the figure) allocate memory for Y and fin-

ish their work as usual. Finally, when the recovery for

X is finished, the recovery process continues to handle

the set request with X=a. It also sends fault-tolerance re-

quests to other parity processes, on which the memory

is allocated for X. Up to now, the recovery process has

allocated memory for X and Y successively. However,

on other parity processes, the memory allocation for Y

happens before that for X. This different allocation or-

dering between recovery processes and parity processes

will cause inconsistency.

Cocytus solves this problem by sending a pre-

allocation request (shown in Figure 5(b)) before each set

operation is queued due to recovery. In this way, the par-

ity processes can pre-allocate space for the queued set

requests and the ordering of memory allocation is guar-

anteed.

Recovery leader: Because when multiple recovery

processes want to recover the two equivalent blocks si-

multaneously, both of them want to start an online re-

covery protocol, which is unnecessary. To avoid this sit-

uation, Cocytus assigns a recovery leader in each group.

A recovery leader is a parity process responsible for ini-

tiating and finishing the recovery in the group. All other

parity processes in the group will send recovery requests

to the recovery leader if they need to recover data, and

the recovery leader will broadcast the result after the re-

covery is finished. A recovery leader is not absolutely

necessary but such a centralized management of recovery

can prevent the same data from being recovered multiple

times and thus reduce the network traffic. Considering

the interleaved layout of the system, the recovery leaders

are uniformly distributed on different nodes and won’t

become the bottleneck.

Short-cut Recovery for Consecutive Failures:

When there are more than one data process failures and
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the data of some failed processes are already recovered

by the recovery process, the further recovered data might

be wrong if we do not take the recovery process into con-

sideration.

In the example given in Figure 4, suppose DP1 (data

process 1) fails first and PP1 (parity process 1) becomes

a recovery process for it. After PP1 recovered a part of

data blocks, DP2 fails and PP2 becomes a recovery pro-

cess for DP2. At that moment, some data blocks on PP1

have been recovered and others haven’t. To recover a

data block on DP2, if its corresponding data block on

DP1 has been recovered, it should be recovered in the

way that involves 3 data blocks and 1 parity block, oth-

erwise it should be recovered in the way that involves 2

data blocks and 2 parity blocks. The procedures of the

two kinds of recovery are definitely different.

Primary-backup replication: To evaluate Cocytus,

we also implemented a primary-backup (PBR) replica-

tion version based on Memcached-1.4.21 with almost the

same design as Cocytus, like synchronous write, piggy-

back, except that Cocytus puts the data in a coded space

and needs to decode data after a failure occurs. We did

not directly use Repcached [17] for two reasons. One

is that Repcached only supports one slave worker. The

other one is that set operation in Repcached is asyn-

chronous and thus does not guarantee crash consistency.

6 EVALUATION

We evaluate the performance of Cocytus by comparing

it to primary-backup replication (PBR) and the vanilla

Memcached. The highlights of our evaluation results are

the followings:

• Cocytus achieves high memory efficiency: It re-

duces memory consumption by 33% to 46% for

value sizes from 1KB to 16KB when tolerating two

node failures.

• Cocytus incurs low overhead: It has similar

throughput with PBR and vanilla KV-store (i.e.,

Memcached) and incurs small increase in latency

compared to vanilla KV-store.

• Cocytus can tolerate failures as designed and re-

cover fast and gracefully: Even under two node

crashes, Cocytus can gracefully recover lost data

and handle client requests with close performance

with PBR.

6.1 Experimental Setup

Hardware and configuration: Due to our hardware

limit, we conduct all experiments on a 6-node cluster of

machines. Each machine has two 10-core 2.3GHz In-

tel Xeon E5-2650, 64GB of RAM and is connected with

10Gb network. We use 5 out of the 6 nodes to run as

servers and the remaining one as client processes.

To gain a better memory efficiency, Cocytus could use

more data processes in a coding group. However, deploy-

ing too many data processes in one group increases the

burden on parity processes, which could be a bottleneck

of the system. Because of the limitation of our cluster, we

deploy Cocytus with five interleaved EC groups which

are configured as RS(3,5) so that the system can toler-

ate two failures while maximizing the data processes.

Each group consists of three data processes and two par-

ity processes. With this deployment, each node contains

three data processes and two parity processes of different

groups.

Targets of comparison: We compare Cocytus with

PBR and vanilla Memcached. To evaluate PBR, we dis-

tribute 15 data processes among the five nodes. For each

data process, we launch 2 backup processes so that the

system can also tolerate two node failures. This deploy-

ment launches more processes (45 processes) compared

to Cocytus (25 processes), which could use more CPU

resource in some cases. We deploy the vanilla Mem-

cached by evenly distributing 15 instances among the five

nodes. In this way, the number of processes of Mem-

cached is the same as the data processes of Cocytus.

Workload: We use the YCSB [8] benchmark to gen-

erate our workloads. We generate each key by concate-

nating the a table name and an identifier, and a value is

a compressed HashMap object, which consists of mul-

tiple fields. The distribution of the key probability is

Zipfian [10], with which some keys are hot and some

keys are cold. The length of the key is usually smaller

than 16B. We also evaluate the systems with differ-

ent read/write ratios, including equal-shares (50%:50%),

read-mostly(95%:5%) and read-only (100%:0%).

Since the median of the value sizes from Face-

book [24] are 4.34KB for Region and 10.7KB for Clus-

ter, we test these caching systems with similar value

sizes. As in YCSB, a value consists of multiple fields, to

evaluate our system with various value sizes, we keep the

field number as 10 while changing the field size to make

the total value sizes be 1KB/4KB/16KB, i.e., the field

sizes are 0.1KB/0.4KB/1.6KB accordingly. To limit the

total data size to be 64GB, the item numbers for 1/4/16

KB are 64/16/1 million respectively. However, due to

the object compression, we cannot predict the real value

size received by the KV-store and the values may not be

aligned as well; Cocytus aligns the compressed values to

16 bytes to perform coding.

6.2 Memory Consumption

As shown in Figure 6, Cocytus achieves notable mem-

ory saving compared to PBR, due to the use of erasure

coding. With a 16KB value size, Cocytus achieves 46%



176  14th USENIX Conference on File and Storage Technologies (FAST ’16)	 USENIX Association

 0

 50

 100

 150

 200

 250

 300

 350

zipf 1k 4k 16k

M
e

m
o

ry
 (

G
B

)

Item Size

Memcached

100%
100%

100% 100%

PBR

300%

312%

311% 310%

Cocytus-Metadata

239%
202%

180%
168%

Cocytus-Data

Figure 6: Memory consumption of three systems with different value

sizes. Due to the compression in YCSB, the total memory cost for

different value sizes differs a little bit.

memory saving compared to PBR. With RS(3,5), the ex-

pected memory overhead of Cocytus should be 1.66X

while the actual memory overhead ranges from 1.7X to

2X. This is because replicating metadata and keys intro-

duces more memory cost, e.g., 25%, 9.5% and 4% of

all consumed memory for value sizes of 1KB, 4KB and

16KB. We believe such a cost is worthwhile for the ben-

efit of fast and online recovery.

To investigate the effect of small- and variable-sized

values, we conduct a test in which the value size follows

the Zipfian distribution over the range from 10B to 1KB.

Since it is harder to predict the total memory consump-

tion, we simply insert 100 million such items. The result

is shown as zipf in Figure 6. As expected, more items

bring more metadata (including keys) which diminishes

the benefit of Cocytus. Even so, Cocytus still achieves

20% memory saving compared to PBR.

6.3 Performance

As shown in Figure 7, Cocytus incurs little performance

overhead for read-only and read-mostly workloads and

incurs small overhead for write-intensive workload com-

pared to vanilla Memcached. Cocytus has similar latency

and throughput with PBR. The followings use some pro-

filing data to explain the data.

Small overhead of Cocytus and PBR: As the three

configurations handle get request with similar opera-

tions, the performance is similarly in this case. How-

ever, when handling set requests, Cocytus and PBR intro-

duce more operations and network traffic and thus mod-

estly higher latency and small degradation of through-

put. From the profiled CPU utilization (Table 2) and

network traffic (Memcached:540Mb/s, PBR: 2.35Gb/s,

Cocytus:2.3Gb/s, profiled during 120 clients insert data),

we found that even though PBR and Cocytus have more

CPU operations and network traffic, both of them were

not the bottleneck. Hence, multiple requests from clients

can be overlapped and pipelined. Hence, the through-

put is similar with the vanilla Memcached. Hence, both

Cocytus and PBR can trade some CPU and network re-

sources for high availability, while incurring small user-

perceived performance overhead.

Higher write latency of PBR and Cocytus: The la-

tency is higher when the read-write ratio is 95%:5%,

which is a quite strange phenomenon. The reason is that

set operations are preempted by get operations. In Co-

cytus and PBR, set operations are FIFO, while set opera-

tions and get operations are interleaved. Especially in the

read-mostly workload, the set operations tend to be pre-

empted, as set operations have longer path in PBR and

Cocytus.

Lower read latency of PBR and Cocytus: There is

an interesting phenomenon is that higher write latency

causes lower read latency for PBR and Cocytus under

update-intensive case (i.e., r:w = 50:50). This may be

because when the write latency is higher, more client

threads are waiting for the set operations at a time. How-

ever, the waiting on set operation does not block the get

operation from other client threads. Hence, the client

threads waiting on get operation could be done faster

because there would be fewer client threads that could

block this operation. As a result, the latency of get is

lower.

6.4 Recovery Efficiency

We evaluate the recovery efficiency using 1KB value size

for read-only, read-mostly and read-write workloads. We

emulate two node failures by manually killing all pro-

cesses on the node. The first node failure occurs at 60s

after the benchmark starts. And the other node failure

occurs at 100s, before the recovery of the first failure

finishes. The two throughput collapses in each of the

subfigures of Figure 8 are caused by the TCP connection

mechanism and can be used coincidentally to indicate the

time a node fails. The vertical lines indicate the time that

all the data has been recovered.

Our evaluation shows that after the first node failure,

Cocytus can repair the data at 550MB/s without client

requests. The speed could be much faster if we use more

processes. However, to achieve high availability, Cocy-

tus first does recovery for requested units and recovers

cold data when the system is idle.

As shown in Figure 8(a), Cocytus performs similarly

as PBR when the workload is read-only, which confirms

that data recovery could be done in parallel with read

requests without notable overhead. The latencies for

50%, 90%, 99% requests are 408us, 753us and 1117us

in Cocytus during recovery. Similar performance can be

achieved when the read-write ratio is 95%, as shown in

Figure 8(b). In the case with frequent set requests, as

shown in Figure 8(c), the recovery affects the through-

put of normal request handling modestly. The reason
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(b) Write latency (r:w = 50:50)
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(c) Read latency (r:w = 95:5)
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(d) Write latency (r:w = 95:5)
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(g) Throughput (r:w = 95:5)
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Figure 7: Comparison of latency and throughput of the three configurations.

Read : Write
Memcached PBR Cocytus

15 processes 15 primary processes 30 backup processes 15 data processes 10 parity processes

50%:50% 231%CPUs 439%CPUs 189%CPUs 802%CPUs 255%CPUs

95%:5% 228%CPUs 234%CPUs 60%CPUs 256%CPUs 54%CPUs

100%:0% 222%CPUs 230%CPUs 21%CPUs 223%CPUs 15%CPUs

Table 2: CPU utilization for 1KB value size

is that to handle set operations Cocytus needs to allo-

cate new blocks, which usually triggers data recovery on

those blocks. Waiting for such data recovery to complete

degrades the performance. In fact, after the first node

crashes, the performance is still acceptable, since the re-

covery is relatively simpler and not all processes are in-

volved in the recovery. However, when two node failures

occur simultaneously, the performance can be affected

more notably. Fortunately, this is a very rare case and

even if it happens, Cocytus can still provide services with

reasonable performance and complete the data recovery

quickly.

To confirm the benefit of our online recovery proto-

col, we also implement a blocked version of Cocytus for

comparison. In the blocked version of Cocytus, the set

operations are delayed if there is any recovery in progress

and the get operations are not affected. From Figure 8,

we can observe that the throughput of the blocked ver-

sion collapses even when there is only one node failure

and 5% of set operations.

6.5 Different Coding Schemes

To understand the effect under different coding schemes,

we evaluate the Cocytus with RS(4,5), RS(3,5) and

RS(2,5). As shown in Figure 9, the memory consump-

tion of RS(2,5) is the largest and the one of RS(4,5) is

the least. All the three coding schemes benefit more from

larger value sizes. Their throughput is similar because

there are no bottlenecks on servers. However, the write

latency of RS(2,5) is a little bit longer since it sends more

messages to parity processes. The reason why RS(2,5)

has lower read latency should be a longer write latency

causes lower read latency (similar as the case described

previously).

7 RELATED WORK

Separation of work: The separation of metadata/key

and values is inspired by prior efforts on separation of

work. For example, Wang et al. [42] separate data from

metadata to achieve efficient Paxos-style asynchronous

replication of storage. Yin et al. [46] separate execution

from agreement to reduce execution nodes when tolerat-

ing Byzantine faults. Clement et al. [6] distinguish omis-

sion and Byzantine failures and leverage redundancy be-

tween them to reduce required replicas. In contrast,

Cocytus separates metadata/key from values to achieve

space-efficient and highly-available key/value stores.

Erasure coding: Erasure coding has been widely

adopted in storage systems in both academia and indus-

try to achieve both durability and space efficiency [15,

34, 29, 32, 23]. Generally, they provide a number of opti-

mizations that optimize the coding efficiency and recov-

ery bandwidth, like local reconstruction codes [15], Xor-

bas [32], piggyback codes [29] and lazy recovery [34].

PanFS [44] is a parallel file system that uses per-file era-

sure coding to protect files greater than 64KB, but repli-



178  14th USENIX Conference on File and Storage Technologies (FAST ’16)	 USENIX Association

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

Time (s)

PBR
Cocytus-blocked

Cocytus

(a) Throughput on recovery (r:w = 100:0)

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

Time (s)

PBR
Cocytus-blocked

Cocytus

(b) Throughput on recovery (r:w = 95:5)

 0

 50

 100

 150

 200

 250

 300

 0  50  100  150  200  250

T
h
ro

u
g
h
p
u
t 
(1

0
3
 o

p
s
/s

)

Time (s)

PBR
Cocytus-blocked

Cocytus

(c) Throughput on recovery (r:w = 50:50)

Figure 8: Performance of PBR and Cocytus when nodes fail. The vertical lines indicate all data blocks are recovered completely.
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Figure 9: Performance under different coding schemes

cates metadata and small files to minimize the cost of

metadata updates.

Replication: Replication is a standard approach to

fault tolerance, which may be categorized into syn-

chronous [5, 3, 39] and asynchronous [19, 2]. Mo-

jim [48] combines NVRAM and a two-tier primary-

backup replication scheme to optimize database repli-

cation. Cocytus currently leverages standard primary-

backup replication to provide availability to metadata

and key in the face of omission failures. It will be our

future work to apply other replications schemes or han-

dle commission failures.

RAMCloud [25] exploits scale of clusters to achieve

fast data recovery. Imitator [41] leverages existing ver-

tices in partitioned graphs to provide fault-tolerant graph

computation, which also leverages multiple replicas to

recover failed data in one node. However, they do not

provide online recovery such that the data being recov-

ered cannot be accessed simultaneously. In contrast, Co-

cytus does not require scale of clusters for fast recovery

but instead provide always-on data accesses, thanks to

replicating metadata and keys.

Key/value stores: There have been a considerable

number of interests in optimizing key/value stores, lever-

aging advanced hardware like RDMA [22, 36, 16, 43] or

increasing concurrency [11, 20, 21]. Cocytus is largely

orthogonal with such improvements and we believe that

Cocytus can be similarly applied to such key/value stores

to provide high availability.

8 CONCLUSION AND FUTURE WORK

Efficiency and availability are two key demanding fea-

tures for in-memory key/value stores. We have demon-

strated such a design that achieves both efficiency and

availability by building Cocytus and integrating it into

Memcached. Cocytus uses a hybrid replication scheme

by using PBR for metadata and keys while using erasure-

coding for values with large sizes. Cocytus is able to

achieve similarly normal performance with PBR and lit-

tle performance impact during recovery while achieving

much higher memory efficiency.

We plan to extend our work in several ways. First,

we plan to explore a larger cluster setting and study the

impact of other optimized coding schemes on the perfor-

mance of Cocytus. Second, we plan to investigate how

Cocytus can be applied to other in-memory stores using

NVRAM [40, 7, 45]. Finally, we plan to investigate how

to apply Cocytus to replication of in-memory databases.
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