
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Zero-Change Object Transmission
for Distributed Big Data Analytics

Mingyu Wu, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
and Shanghai AI Laboratory; Shuaiwei Wang, Institute of Parallel and Distributed Systems, SEIEE,
Shanghai Jiao Tong University; Haibo Chen and Binyu Zang, Institute of Parallel and Distributed

Systems, SEIEE, Shanghai Jiao Tong University and Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China

https://www.usenix.org/conference/atc22/presentation/wu

Zero-Change Object Transmission for Distributed Big Data Analytics

Mingyu Wu1,2, Shuaiwei Wang1, Haibo Chen1,3, and Binyu Zang1,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
Distributed big-data analytics heavily rely on high-level lan-

guages like Java and Scala for their reliability and versatility.
However, those high-level languages also create obstacles for
data exchange. To transfer data across managed runtimes like
Java Virtual Machines (JVMs), objects should be transformed
into byte arrays by the sender (serialization) and transformed
back into objects by the receiver (deserialization). The object
serialization and deserialization (OSD) phase introduces con-
siderable performance overhead. Prior efforts mainly focus on
optimizing some phases in OSD, so object transformation is
still inevitable. Furthermore, they require extra programming
efforts to integrate with existing applications, and their trans-
formation also leads to duplicated object transmission. This
work proposes Zero-Change Object Transmission (ZCOT),
where objects are directly copied among JVMs without any
transformations. ZCOT can be used in existing applications
with minimal effort, and its object-based transmission can
be used for deduplication. The evaluation on state-of-the-art
data analytics frameworks indicates that ZCOT can greatly
boost the performance of data exchange and thus improve the
application performance by up to 23.6%.

1 Introduction

High-level languages like Java and Scala are welcomed in
areas like big-data analytics thanks to their reliable and ver-
satile managed runtime environment. However, the abstrac-
tion provided by the managed runtime also introduces per-
formance overhead, especially for data exchange. Since man-
aged runtimes like Java Virtual Machines (JVMs) store data
in an opaque object-based format, they have to transform
objects into interpretable binary streams before exchanging.
The transformation contains two phases: a serialization phase
transforming objects into a byte array, and a deserialization
phase transforming the byte array back into objects. The
object serialization/deserialization (OSD) mechanism intro-
duces considerable transformation overhead and has become a

significant performance bottleneck in distributed object trans-
mission, especially for applications demanding large-scale
data exchange through network [3, 6, 13, 15, 44].

Prior work has recognized the performance problem in
OSD and proposed different approaches, both in software [26,
38, 39] and hardware [16, 32, 40, 46], to mitigate its effect.
However, those approaches mainly focus on optimizing spe-
cific phases in OSD, and the data transformation is still in-
evitable. Furthermore, although they can boost the perfor-
mance of OSD, many of them require extra programming
efforts to annotate serialization points or change the original
inter-JVM communication model. Last but not least, they treat
the transferred data as a monolithic byte array instead of indi-
vidual objects, which makes it difficult to identify duplicated
transmission and misses optimization opportunities.

Instead of optimizing OSD, this work aims at directly elimi-
nating the whole OSD process. To this end, this work proposes
Zero-Change Object Transmission (ZCOT), which provides
an ideal data exchange mechanism where objects are trans-
ferred among JVMs through direct object copying. When a
JVM receives objects from others, it can directly process them
without any modifications (Zero-Change). ZCOT removes the
demands for object transformation and thus improves the
performance of data exchange.

However, it is non-trivial to achieve zero-change communi-
cation given each JVM manages objects in a process-specific
and opaque format. To this end, ZCOT first introduces a glob-
ally shared abstraction named exchange space, a part of the
Java heap space accessible for multiple JVMs in a distributed
environment. ZCOT further adopts its distributed class-data
sharing (DCDS) mechanism, which provides a unified object
format to make objects in the exchange space interpretable
for all JVMs. To remain compatible with traditional OSD-
based applications, ZCOT proposes a two-level transmission
mechanism to bridge the gap between object-based copying
and traditional byte-based transmission.

As ZCOT introduces a globally shared exchange space,
it is responsible to manage objects shared among multiple
JVMs. By introducing a metadata server, ZCOT memorizes

USENIX Association 2022 USENIX Annual Technical Conference 137

the stored location for objects and helps build data transmis-
sion channels between JVMs. Since objects in big-data analyt-
ics are usually exchanged as a whole dataset, ZCOT embraces
group-based object management, which organizes objects in
groups and greatly reduces the traffic between the metadata
server and JVMs. Furthermore, ZCOT also integrates with
the garbage collections (GC) triggered in individual JVMs
and reduces the GC pause time.

ZCOT sends objects instead of byte arrays during transmis-
sion, which makes it object-conscious and easier to identify
duplicated objects. This work thus proposes a data dedupli-
cation mechanism to further optimize the data transmission.
The deduplication module in ZCOT leverages the exchange
space abstraction to memorize which objects have been sent
and avoids unnecessary object transmission in the future. Nev-
ertheless, deduplication may introduce references (or depen-
dencies) among different datasets. To this end, ZCOT extends
its distributed memory management module to consider inter-
group dependencies.

This work implements ZCOT in the HotSpot JVM of Open-
JDK 11, the long-time-support version for OpenJDK. ZCOT
is well-integrated with existing features in OpenJDK (like
APPCDS [30]) to remain friendly to Java developers. We
evaluate ZCOT against state-of-the-art OSD libraries and
optimizations with both the micro-benchmark and macro-
benchmark. The micro-benchmark contains both basic and
complicated data structures for data transmission, while the
macro-benchmark contains two big-data analytics frame-
works (Spark and Flink). The result for micro-benchmark
shows that ZCOT outperforms other OSD libraries, espe-
cially for complicated data structures, and reaches up to 4.35×
speedup compared with Naos [39], a state-of-the-art optimiza-
tion on OSD. As for macrobenchmark, ZCOT outperforms the
default OSD libraries in both Spark and Flink and thus boosts
the application time by up to 23.6% and 22.2%, respectively.

To summarize, the contribution of ZCOT includes:

• A distributed shared abstraction named exchange space
to enable zero-change object transmission among JVMs
while remaining compatible with traditional OSD-based
applications.

• A memory management mechanism on the globally
shared space integrated with GC in individual JVMs.

• A data deduplication module to identify and eliminate
unnecessary object transmission for further performance
improvement.

• Experiments on communication-intensive workload to
show the performance improvement of ZCOT over ex-
isting OSD libraries.

JVM 1

001100101…

serialization

JVM 2

001100101…

deserialization

Figure 1: The workflow of OSD

2 OSD Background

2.1 OSD

Language runtimes provide a high-level abstraction for
platform-independent code execution. As for user objects,
runtimes store them with an opaque format, which maintains
object data together with corresponding metadata (type infor-
mation, synchronization, memory management, etc.). Taking
Java as an example, JVMs maintain a header for each object
to store its metadata.

However, when data exchange among JVMs is required,
objects must go beyond the runtime scope. For example, ob-
jects might be persisted into disks and reused by other JVMs
later; they can also be sent and received through network.
To support those scenarios, objects have to be interpretable
even when leaving JVMs. Therefore, JVMs embrace the ob-
ject serialization/deserialization (OSD) mechanism, which
transforms Java objects into a generalized data format (seri-
alization) and transforms back when reusing in JVMs (de-
serialization). The Java system library (JSL) already provides
a built-in OSD library for applications. Figure 1 shows the
workflow of JSL’s OSD. As for the serialization part, objects
are transformed into a byte array that follows a data format
agreed among JVMs. The byte array will be written into disks
or sent through network. When another JVM receives the byte
array, it transforms the byte array back into objects through
deserialization.

The OSD mechanism has two major advantages. First, the
library provides a general-purpose data format so that Java ob-
jects can be transformed among JVMs with different versions
and configurations. Second, the serialized data is compressed
and induces smaller footprints in both disks and network.

2.2 Limitations and opportunities

The major disadvantage for OSD is its performance penalty.
The performance problem of OSD in big-data analytics is
three-fold.

Transformation overhead. OSD introduces extra phases
for object persistence and transmission. To serialize an object,
OSD should traverse all its reachable objects and store their
type information. As for deserialization, OSD should scan
serialized data and reconstruct objects.

Memory footprint. OSD generates a considerable number
of temporary objects during data transformation. As shown

138 2022 USENIX Annual Technical Conference USENIX Association

Round 1

a -> b

c -> e

d -> f

…

Round 2

a -> 1.0

b -> 0.4

c -> 0.2

…

Round 3

a -> 0.8

b -> 0.9

c -> 0.1

…

……

010010…

011110…

100100…

111010…

011001…

111100…

010110…

010000…

011100…

serialized bytescontents

Figure 2: Duplicated data transmission in the page-rank ap-
plication

in Figure 1, byte arrays are generated during serialization and
become useless after sending out. Those temporary objects
can increase the memory pressure and cause more frequent
GCs.

Duplicated transmission. Big-data analytics leverage
OSDs in many rounds of communication and duplicated ob-
jects may be repetitively transformed and exchanged in each
round. Figure 2 shows a concrete example in Spark [44],
which calculates the popularity for each URL (simplified as
letters) with the page-rank algorithm [31]. Since the algorithm
executes for multiple iterations, the data transmission is also
conducted in many rounds. In the first round, the URL-based
network topology is sent through network, which consists of
many string pairs to indicate the point-to relationships among
URLs. In the later rounds, the rank value for each URL is
iteratively propagated, which is organized as key-value pairs.
Note that the strings in the key-value pairs are URLs that have
been sent in the first round. Unfortunately, since all objects
have been transformed and merged into byte arrays, JVMs
cannot tell that some objects have been received before. They
have to receive all objects as a monolithic byte array, which
leads to unnecessary network transmission and OSD phases.
In the Spark page-rank application, over 60% of transferred
objects are duplicated.

Furthermore, the advantages of OSD also fade with ad-
vances in hardware technologies. For example, the band-
width of off-the-shelf network devices can reach 100Gb/s
or larger, which makes network transmission time less im-
portant, so OSD may become a more significant bottleneck.
On the other hand, the general data format is not always re-
quired. Therefore, many optimizations have been proposed
to reduce the performance overhead of OSD, both in soft-
ware [26,38,39] and hardware [16,32,40,46]. Since hardware-
based approaches require building customized hardware ac-
celerators to improve OSD, this work mainly focuses on
software-based approaches with off-the-shelf hardware.

2.3 State-of-the-art optimizations

The basic idea behind OSD is to achieve an agreement on ob-
ject representation among JVMs. Therefore, optimizations on
OSD should consider how to create the agreement so that ob-
jects can cross JVMs’ boundaries. Besides, they also need to
consider issues like compatibility with existing applications.

Kryo. Kryo [38] is a fast OSD library for Java. Compared
to JSL’s OSD, Kryo refines the binary data format to achieve
a smaller serialized data size and better performance. Applica-
tions like Spark have leveraged Kryo as its default serializer.
Nevertheless, Kryo does not eliminate any phases in OSD;
objects still need to be transformed back and forth.

Skyway. Skyway [26] proposes to directly send object
graphs instead of serialized bytes. With Skyway, the seri-
alization phase is nearly removed as objects are no longer
transformed to a binary format. Although Skyway has simpli-
fied phases in OSD, modifications on objects are still required.
First, it needs to transform the type information in the head-
ers to a globally-agreed ID so that it can be identified by all
JVMs. Second, it needs to fix references after copying, as
objects have been moved to different addresses. Moreover,
Skyway also requires programmers to mark the point where
the serialization phase starts manually.

Naos. Naos [39] is a network-specific data transmission
mechanism. Similar to Skyway, Naos also employs a global
service to reach agreements for types, but it relies on RDMA
technology to achieve rapid zero-copy object transmission.
However, Naos still requires modifications on both object
headers and references. Besides, it only supports network-
based transmission, and existing applications need significant
modifications to leverage Naos.

2.4 Summary

Prior optimizations have proposed different solutions to re-
duce the overhead of OSD. However, they cannot eliminate
the whole OSD process. Table 1 compares the built-in OSD in
JSL with other optimizations. Although recent work like Naos
eliminates the serialization phase, a deserialization phase is
still required to fix the type information and the references.
Besides, none of them has considered the duplicated data
transmission problem.

This work proposes ZCOT (short for Zero-Change Object
Transmission), which aims to eliminate the whole OSD pro-
cess during data exchange. In ZCOT, object transmission is
conducted in the most straightforward way: the sender JVM
copies objects and the receiver can directly use them with-
out any modifications. ZCOT also considers the duplicated
transmission problem and provides a deduplication module.
Finally, ZCOT is not bound to specific network technologies
(like RDMA) and provides easy-to-integrate interfaces for
existing applications.

USENIX Association 2022 USENIX Annual Technical Conference 139

Data transmission mechanisms Serialization Deserialization Ease of Integration Data deduplication
JSL Slow Slow Yes No
Kryo Medium Medium Yes No
Skyway Fast (removed) Medium Medium No
Naos Fast (removed) Medium No No
ZCOT (this work) Fast (removed) Fast (removed) Yes Yes

Table 1: Comparisons on existing OSD optimizations against our work ZCOT

3 Design of ZCOT

3.1 Overview
The core idea of ZCOT is to build a distributed-shared-
memory (DSM)-like abstraction for JVMs running on dif-
ferent machines. Figure 3 illustrates the architecture of ZCOT.
In a ZCOT-enabled system, the heap for each JVM consists of
two parts: its private space (the original Java heap) and a glob-
ally shared exchange space. Objects are originally managed
in the private space. When they require to be sent through
network or persisted into disks, they will be copied to the ex-
change space. The exchange space is an abstraction available
for all JVMs; each JVM can directly access objects therein.
Therefore, object transmission can be achieved with direct
copying to the exchange space, and the whole OSD process
can be eliminated.

JVM 1 JVM 2 JVM 3

private space

direct write direct read

exchange space

…

Figure 3: The architecture of ZCOT

The idea for building a DSM-like abstraction is well-known
and has been studied for decades [2, 7, 9, 14, 20, 21, 25, 33–
35, 41, 42, 45]. Although our exchange space shares similar
wisdom with DSM, it is only used for data exchange and does
not need to tackle complicated issues like coherence. It also
assumes objects in the exchange space are immutable, which
usually holds for big-data analytics like Spark and Flink. If
a write operation occurs on objects in the exchange space,
ZCOT creates a copy for it on the JVM’s private heap. Never-
theless, combining the DSM concept with data transmission
in high-level languages is still not trivial. To enable efficient
and easy-to-use object transmission, ZCOT has to resolve the
following challenges.

• How to build a shared exchange space so that all JVMs
can access it freely? (Section 3.2)

• How to leverage the exchange space abstraction to sup-
port OSD-based applications? (Section 3.3)

• How to manage objects in the exchange space in the
presence of garbage collections in individual JVMs?

(Section 4)

• How to resolve the duplicated transmission problem?
(Section 5)

3.2 Distributed class-data sharing
ZCOT relies on its distributed class-data sharing (DCDS)
mechanism to build a globally accessible shared space. DCDS
guarantees that class-related metadata will be mapped into
the same virtual memory address for all JVMs. This helps
JVMs to achieve an agreement on the class metadata, so no
type-related modifications (e.g., identifiers) are required.

user jar

JDK tool

class archives

exchange space

class A

class X

class D

…

class space

Header

Data

JVM1

JVM2

JVM3

object space

1

2

3

Figure 4: The workflow of distributed class-data sharing

Figure 4 elaborates the workflow of DCDS. First, the clus-
ter manager should prepare a shared class archive for all JVMs.
The class archive should contain all classes whose correspond-
ing object instances would be shared during inter-JVM com-
munication. ZCOT relies on the tools provided by OpenJDK
to generate such class archives [30]. Afterward, the archive
will be used during JVM startup, and classes in the archive
will be mapped to a given virtual address. The virtual ad-
dress range is also memorized and marked as a part of the
exchange space (class space in Figure 4). This step assures
that JVMs share the same view on the classes. As shown in
Figure 4, an object in the exchange space stores a reference
to its class-related metadata. Since the reference points to the
class space, the object’s class information is interpretable for
all JVMs. Although DCDS requires the data types of appli-
cations should be known in advance, mainstream big-data
analytics frameworks usually guarantee this by sending a fat
jar file for execution.

Figure 5 shows how ZCOT transfers objects through net-
work with its DCDS support. First, the sender JVM applies for
an available memory chunk in the exchange space for object
copying. This is achieved by communicating with an external

140 2022 USENIX Annual Technical Conference USENIX Association

private space exchange space view

private space exchange space view

meta-server
1 2

copy3

fault1

(a) Sender: deep copy to a given address

private space exchange space view

private space exchange space view

meta-server

fault

forward

1

2

3
copy4

(b) Receiver: trigger a page fault and fetch data from the
sender

Figure 5: The workflow of ZCOT

metadata server (details in Section 4). Second, the sender
JVM copies objects to the chunk’s memory address. This step
is similar to a deep copy in a normal Java application. To
detect cycles and avoid repeated copying on the same object,
we add a marker word in each object header to store its new
address if it has been copied.

The copied objects are kept on the sender machine and
lazily retrieved by receivers. When a receiver JVM tries to
access this part of data (Figure 5b), it encounters a page fault
since the data is unavailable on its machine. We have regis-
tered the page fault handler in ZCOT-enabled JVMs so that
they can request the metadata server for faulted pages. The
metadata server has tracked the ownership of memory ad-
dresses in the exchange space, so it forwards the request to
the data owner. Afterward, the sender builds a connection
with the receiver and puts the requested objects to the desired
address. Now the receiver can directly access those objects
for further processing, with neither metadata updating nor
reference fixing (namely zero-change).

3.3 Supporting OSD-based scenarios
Thanks to the exchange space abstraction, a JVM can directly
access received objects without any modifications. However,
this mechanism is not compatible with traditional OSD-based
applications, which usually adopt byte arrays for commu-
nication. To this end, ZCOT should provide user-friendly
interfaces to integrate easily with applications.

Programming interfaces. JSL provides stream-based
classes for OSD implementation. The ObjectOutputStream
class provides the writeObject method to serialize an
object into a stream (usually files or network). Similarly,
the ObjectInputStream class provides the readObject
method to deserialize data into objects. Therefore, prior
OSD optimizations like Skyway implement new seri-
alizers/deserializers by inheriting those two classes for

ease of integration. ZCOT adopts a similar strategy and
Figure 6 shows its basic classes: ZCObjectOutputStream
and ZCObjectInputStream, which are subclasses of
ObjectOutputStream and ObjectInputStream, re-
spectively. Compared with ObjectOutputStream,
ZCObjectOutputStream slightly modifies the interface for
writeObject to support different OSD-based scenarios
(discussed later). To use ZCOT-based communications,
applications only need to replace the original stream classes
with ours. In contrast, prior work requires developers to
modify the original communication model or annotate the
serialization points [26, 39].

OSD-compatibility. To remain compatible with OSD in-
terfaces (writeObject and readObject), ZCOT should also
transfer data with byte arrays. To this end, ZCOT adopts a
two-level transmission mechanism. As illustrated in Figure 7,
ZCOT transfers data via both frontend and backend. The
frontend transmission is compatible with OSD interfaces, but
it only sends metadata, including the object’s start address
and the data length. When ZCObjectInputStream receives
the metadata through readObject, it directly accesses the
corresponding address and fetches objects through backend
transmission if a page fault is triggered (as mentioned in Fig-
ure 5b). ZCOT will launch dedicated VM threads in both
sender and receiver JVMs to transfer the requested objects.
This two-level design fills the gap between the byte-based
OSD interfaces and the object-based transmission in ZCOT.

Supporting different OSD scenarios. In OSD libraries,
objects are serialized and written into a stream (e.g., the
out variable defined on Line 3 in Figure 6) when invoking
writeObject, which are usually redirected into files or net-
work. To support both scenarios, ZCOT adds a parameter
volatile in the constructor of ZCObjectOutputStream (Line
6). When volatile is set to false, the copied objects will be writ-
ten into a file, and the memory pages can be soon reclaimed

USENIX Association 2022 USENIX Annual Technical Conference 141

1 // Output class
2 class ZCObjectOutputStream extends ObjectOutputStream {
3 private OutputStream out; // Private output stream
4
5 // Constructor
6 public ZCObjectOutputStream(OutputStream out,

boolean volatile /* Mode */)
7 throws IOException {...}
8
9 // Compatible with the serialization interface

10 public void writeObject(Object obj)
11 throws IOException {...}
12 ...
13 }
14
15 // Input class
16 class ZCObjectInputStream extends ObjectInputStream {
17 private InputStream in; // Private input stream
18
19 // Constructor
20 public ZCObjectInputStream(InputStream in)
21 throws IOException {...}
22
23 // Compatible with the deserialization interface
24 public Object readObject()
25 throws IOException{...}
26 ...
27 }

Figure 6: Basic classes in ZCOT

through GC (details in Section 4). Nevertheless, those objects
still reserve a corresponding virtual address in the exchange
space. When the object data is read by other JVMs, the meta-
data server asks the sender to pass the file so the receiver
can map it to the corresponding memory address. The case
is simpler when volatile is true, which indicates a network-
based transmission. In this scenario, objects are only kept in
memory and can be reclaimed only if they have been read by
others.

a

0x3000

aa b b

b

0x3000

Send buffer

OutputStream

(byte array)

InputStream

(byte array)

readObject()writeObject(a)

start address = 0x3000

a b

start address = 0x3000

Sender Receiver

Receive buffer

Java threads

VM threads

Frontend

Backend

Figure 7: The two-level data transmission mechanism in
ZCOT

Assumptions. Note that ZCOT is mainly designed to im-
prove the data exchange phase for big data analytics, so it
makes several assumptions about the transferred data. First, all
classes related to communication should be known in advance
so that they can be packed into the class archive. Second, the
transferred objects are read-mostly, otherwise copy-on-write

operations would be triggered for modification operations.
Lastly, objects are managed in large groups and share similar
life cycles, so they can be efficiently managed in the exchange
space. Since representative big-data analytics systems like
Spark conform to the above assumptions, ZCOT works well
for them.

4 Memory Management

Since the global exchange space is built atop a DSM-like ab-
straction, ZCOT should manage objects distributed to differ-
ent machines. Furthermore, the managed runtimes complicate
the scenario as they introduce their own memory manage-
ment strategy: garbage collections (GC). This section will
introduce how ZCOT manages the distributed exchange space
while remaining harmonized with GC in JVMs.

4.1 Group-based management

Unlike traditional DSM-based systems, ZCOT introduces
group, a semantic-aware notion for distributed memory man-
agement. As analyzed in Section 2, big-data analytics frame-
works treat serialized objects as a whole dataset (monolithic
byte array) and retrieve them together. Therefore, ZCOT puts
all objects copied in the same writeObject invocation to a
group so that they are managed together. When a receiver
encounters a page fault, ZCOT will send all related data pages
belonging to the same group to the receiver and avoid fu-
ture faults. This mechanism, namely group-based prefetching,
leverages the semantics in the OSD scenario to mitigate the
page-based management overhead in traditional DSM.

4.2 Metadata server

The metadata server is the core module for ZCOT’s memory
management. JVMs communicate with the metadata server
through remote procedure calls (RPCs) to acquire or release
memory resources in the exchange space. Figure 8 illustrates
the core data structures in the metadata server. The metadata
server is agnostic to groups; groups are only managed by
individual JVMs. It partitions the shared exchange space into
equal-sized memory chunks (256MB by default) for memory
allocation and deallocation. It also maintains an allocation
bitmap to mark if a chunk has been allocated. Each chunk is
assigned with an integer ID, which is calculated by its relative
offset compared with the exchange space’s start address. To
track the stored locations of chunks, the metadata server main-
tains a copy set for each chunk, which is stored in a chunk
mapping table. The copy set contains JVMs storing a copy of
the corresponding chunk (in memory or disk), which are also
represented with integer IDs. The mapping between a JVM’s
ID and information (e.g., IP address) is stored in a separated
member table.

142 2022 USENIX Annual Technical Conference USENIX Association

Since each JVM needs to communicate with the metadata
server, its reliability becomes considerable. To tolerate fail-
ures on the metadata server, we can introduce replicas for
it, and the overhead would be acceptable given the low fre-
quency of communications between the metadata server and
worker JVMs (several times in a data-processing stage lasting
for seconds).

exchange space …

0 1 0 0 1 0 0 … 0 0 0allocation bitmap

free chunk

chunk copy-set

1 {1}

4 {0}

…

JVMID ip:port

0 ip0:7270

1 ip1:2233

chunk mapping table

allocated chunk

member table

Figure 8: Important data structures in the metadata server.

4.3 RPC interfaces
The metadata server provides four important RPC interfaces
listed below.

int register(std::string ip, int port);

Chunk* acquire();

Chunk* get_remote(Address addr);

int release(Chunk* chunk);

register. register is only invoked when a JVM is
launched. ZCOT has provided a JVM option -XX:+UseZCOT,
and a JVM enabling this option automatically spawns an RPC
thread and sends a register RPC to the metadata server with
its IP address and listening port. After receiving the RPC, the
metadata server saves the IP and port number to the member
table, generates an integer as the JVM’s ID, and returns with
the ID. For subsequent RPCs, JVMs should always attach the
returned ID to help the metadata server maintain the stored
locations of objects (omitted in the interfaces above).

acquire. When a JVM runs out of allocated memory from
the exchange space, it should send acquire RPCs for more
memory resources. After receiving an acquire request, the
metadata server scans its bitmap to allocate an available chunk.
Afterward, the metadata server memorizes the relationship
between the allocated chunk and the JVM’s ID and returns
the chunk. To reduce the overhead of bitmap scanning, ZCOT
memorizes the address of the last successfully allocated chunk
and starts scanning there. If the scanned address reaches the
end of the exchange space, ZCOT will continue scanning from
the beginning. To handle simultaneous acquire requests,
ZCOT introduces a bitmap lock to ensure the bitmap is exclu-
sively accessed.

get_remote. The get_remote interface is used by JVMs
encountering a page fault when accessing a virtual address.
Since a page fault indicates the requested objects are not
stored locally, the JVM sends get_remote to fetch the corre-
sponding chunk. After receiving get_remote, the metadata
server gets the corresponding chunk containing the address
and finds which JVMs store the chunk by scanning the chunk
mapping table. As illustrated in Section 3.2, the metadata
server forwards the request to the corresponding JVM for
actual data transmission. Since the size of a chunk is rel-
atively large, sending chunks may introduce considerable
performance overhead. To reduce the transferred data size,
the sender JVM only sends used pages in the chunk, which
are represented as the length of data in the frontend trans-
mission (Figure 7). Due to ZCOT’s group-based prefetching
mechanism, the sender may directly send multiple chunks in
the same group to the receiver. In this case, the receiver is
responsible for sending an auxiliary RPC to update the copy
set in the metadata server.

release. The release interface is relatively simple. When
a JVM finds that objects in a chunk are no longer used, it sends
release to give up this chunk. After receiving release, the
metadata server removes the JVM’s ID from the correspond-
ing copy set in the chunk mapping table. If no JVM stores
this chunk, the metadata server will reclaim it by marking the
corresponding bit as free in the bitmap.

4.4 Garbage collection
JVMs have already implemented their garbage collection
(GC) algorithms to automatically reclaim unused memory.
When GC is triggered, JVMs track all live objects and re-
claim memory consumed by dead ones. Since objects in the
exchange space are reachable from individual JVMs, they
will also be affected by GC. To this end, ZCOT has integrated
its memory management strategy with G1, the default GC al-
gorithm in OpenJDK, to ensure the correctness of distributed
memory management and reduce GC overhead.

G1 basics. G1GC (short for Garbage-first Garbage Col-
lection [8] is the default garbage collector after OpenJDK
9 [29]. G1 divides the Java heap into equal-sized regions for
ease of management. It also maintains per-region metadata
named remember sets to memorize all references pointing to
objects in the same region. The remember set is updated by
instrumenting all write operations in Java code (also known
as write barriers). The G1 algorithm is mostly stop-the-world,
which means that application threads should be paused until
GC ends. During GC1, each selected region is processed si-
multaneously: a dedicated GC thread scans the remember set
of a region, finds all reachable objects, and copies them to an
empty region (named survivor region).

Integrated with G1. ZCOT extends the region-based de-
sign of G1 to support the exchange space. It proposes ZCRe-

1For simplicity, we only discuss the young GC and mixed GC in G1

USENIX Association 2022 USENIX Annual Technical Conference 143

gion, a new kind of region allocated from the metadata server.
Compared with regions in G1, the size of ZCRegion is not
fixed. Each ZCRegion corresponds to a group in the exchange
space, and all objects therein are expected to have the same
life cycle. Since objects in ZCRegions have different behav-
iors compared with those in other regions, G1 should treat
them specially. First, we modify the behavior of write barriers
to consider ZCRegions. When a reference points to objects in
a ZCRegion, we do not memorize this reference but only mark
the ZCRegion as used. This is because objects in a ZCRegion
are only collected when no references point to any of them.
Similarly, GC threads do not need to scan ZCRegions during
GC because all objects are treated as alive if there exists any
reference pointing to the region. When GC ends, the JVM will
scan all ZCRegions and find those containing no incoming ref-
erences. For those ZCRegions, the JVM invokes the release
RPC to reclaim corresponding chunks. If objects in a group
are written into disks, the corresponding ZCRegion can also
be reclaimed by GC, but the JVM does not invoke release
since the virtual address is still reserved by the group.

In summary, our design successfully integrates the memory
management of the exchange space with G1GC. When GC
ends, the memory resource in the exchange space is automati-
cally reclaimed by following the reachability-based algorithm.
Furthermore, by specially handling regions in the exchange
space, we avoid unnecessary metadata tracking and object
scanning. In some cases, this design can even reduce GC
pause time (as shown in Section 6.3).

5 Transmission Deduplication

Since ZCOT sends objects instead of byte arrays during trans-
mission, it would be much easier to track transmitted objects
and conduct deduplication. This section introduces the data
deduplication module in ZCOT based on its object-centric
transmission mechanism.

5.1 Overview
Figure 9 shows the effect of ZCOT’s data deduplication mod-
ule in the aforementioned page-rank example (compared
against Figure 2). When sending the URL-based network
topology in the first round, the sender has copied all URL
string pairs (together with two string objects) into their corre-
sponding addresses. In the next few rounds, the application
sends key-value pairs to update rank values for each URL.
Since all key-value pairs are sent as objects, it is much simpler
for ZCOT to find that all URL objects have been sent. There-
fore, the sender can directly update the references in those
key-value pairs with the addresses in the exchange space and
thus remove duplicated transmission on URL objects.

ZCOT runtime should be further extended to achieve data
deduplication. First, ZCOT should track copied objects to
rapidly find duplicated transmission. Second, ZCOT should

manage dependencies among object groups for safe memory
reclamation.

5.2 Duplication detection
A straw-man design for duplication detection would be scan-
ning all objects in the exchange space. However, this design
would induce considerable overhead given the large number
of objects. ZCOT instead follows a simple detection criterion:
if an object is in the exchange space, an attempt to copy it is
a duplicated one.

We still use page-rank as an example to explain ZCOT’s
duplication detection. Suppose a JVM receives the network
topology in round 1 (consider Figure 9); it reads URL objects
from the exchange space and uses them in the following
rounds. Therefore, when it propagates updated rank values to
other JVMs, it still uses the URL objects received from others.
When copying the URL-rank pairs in the next few rounds,
ZCOT checks each object’s address and thus avoids copying
those URL objects already in the exchange space.

5.3 Dependency management
Although data deduplication in ZCOT can reduce the net-
work overhead by avoiding repeated copying on the same
object, it also complicates memory management by intro-
ducing inter-group references. As mentioned in Section 4.1,
each invocation to writeObject creates a new group for
object management, and each group is separately used by call-
ing readObject. After deduplicating objects from different
groups, objects in a group can hold references to those in
another group, which should be correctly handled especially
when a group is being garbage collected. To this end, ZCOT
has managed those references as dependencies among groups.

Due to the large number of inter-group references, ZCOT
does not maintain reference-level dependencies. When a
group holds a reference to any objects in other groups, ZCOT
marks the group as dependent on others. The dependency
tracking is still achieved by extending the write barriers. To
memorize all dependencies, ZCOT extends the chunk map-
ping table in the metadata server to contain a dependency
set for each chunk, which stores all other chunks it relies on.
When a JVM finds that its group relies on another group af-
ter deduplication, it sends a new RPC add_dependency to
the metadata server. Since the metadata server is not aware
of groups, the RPC should specify all chunk IDs owned by
the group it relies on. Those chunk IDs will be added to the
corresponding dependency set by the metadata server.

Figure 10 uses an example to illustrate how ZCOT lever-
ages dependencies during object copying. After encounter-
ing a page fault on chunk 4, the receiver JVM sends a
get_remote RPC to the metadata server. By fetching the
dependency set in the chunk mapping table, the metadata
server finds all chunks that chunk 4 depends on. Afterward,

144 2022 USENIX Annual Technical Conference USENIX Association

Round 1

a -> b

c -> e

d -> f

…

Round 2

a -> 1.0

b -> 0.4

c -> 0.2

…

Round 3

a -> 0.8

b -> 0.9

c -> 0.1

…

…

H ref ref
H

H ref ref

H ref ref

H ref ref H 1.0

H ref ref H 0.4

H ref ref H 0.2

‘a’

H ‘b’

H ‘c’

H

H
H ref ref H 0.8

H ref ref H 0.9

H ref ref H 0.1

……

Objects sent in round 1 Objects sent in later rounds

Figure 9: ZCOT avoids duplicated object transmission in page-rank

chunk copy-set

1 {0, 1}

2 {0,1}

Metadata server

{0}3

{0}4

{}

{1,2,3}

{}

{}

dep-set

JVM 0 JVM 1

Chunk 1 Chunk 2Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 4

get_remote(chunk=4)forward(chunk=4, dep={3})

Transfer

Chunk 3 Chunk 4

Figure 10: ZCOT avoids sending duplicated data with depen-
dency tracking

ZCOT checks the copy set for each chunk to find if the re-
ceiver JVM already has a copy. If the receiver does not have
a copy, ZCOT adds the corresponding chunk ID in a message,
which will be forwarded to the sender JVM later for real data
transmission. In our example, since the receiver JVM already
has copied chunk 0 and 1, it only needs to receive chunk 4
(requested) and chunk 3 (dependent). This example indicates
that ZCOT can avoid duplicated data submission with slight
modifications on the metadata server.

5.4 Garbage collection

Adding dependencies also complicates GC for individual
JVMs. Since a group (represented as ZCRegions) can be ref-
erenced by others stored in remote JVMs, local GC cannot
determine if a group can be safely reclaimed. For example,
suppose JVM 0 stores a group (chunk 0) that contains a refer-
ence to another group (chunk 1) stored on JVM 1. Although
JVM 1 no longer contains references to chunk 1, the chunk
should not be collected because JVM 0 may access it through
references in chunk 0. To this end, we extend G1GC to con-
sider remote inter-group references.

In our refined GC algorithm, once a JVM detects a ZCRe-
gion has incoming references from other ZCRegions (through
write barriers), it marks the region as pinned and thus cannot
be reclaimed. It also sends the dependency relationship to
the metadata server through RPCs. When GC ends, the JVM

skips all pinned ZCRegions and only collects those with no
incoming references. A pinned ZCRegion can be reclaimed
when the metadata server finds that all chunks relying on
it have been released. In this case, the metadata server will
send a canRelease message to all JVMs in the correspond-
ing copy set, and those JVMs will mark the ZCRegion as
unpinned to safely reclaim it in later GC cycles.

5.5 Internalization

Big-data analytics usually generate a large number of objects
with simple types, such as Integer, String, Double, etc. Open-
JDK has provided an internalization mechanism to merge
those objects with the same content together. For example,
Integer objects whose values are between -128 and 127 would
be merged into one if their values are equal. ZCOT also em-
braces this mechanism for deduplication, but in its distributed
exchange space. It extends DCDS so that all JVMs allocate
a small region at the same virtual address during start-up to
contain globally-shared Integer objects. Thanks to this opti-
mization, the number of transferred Integers can be greatly
reduced.

6 Evaluation

6.1 Experimental setup

ZCOT is implemented atop the HotSpot JVM in OpenJDK
11.0.8-GA, with 8,327 lines of C code and 654 lines of Java
code. We leverage the following workloads to evaluate ZCOT.

Microbenchmark. The microbenchmark contains four dif-
ferent data types used in prior work [26, 39]: 2-dimension
points, key-value pairs, hashmaps, and media objects. To sim-
ulate big-data scenarios, we transfer them in large arrays
whose length is 65536. Since some baselines crashed for
large arrays of media objects, we reduced the length to 16384
for this data structure.

Spark. Spark (v3.0.0) is a data analytics engine that re-
quires massive data transmission among JVMs.

USENIX Association 2022 USENIX Annual Technical Conference 145

Flink. Apache Flink [6] (v1.14) is a distributed data pro-
cessing engine for both batch and streaming workloads.

As for baselines, we compare ZCOT with two commonly-
used OSD libraries (JSL and Kryo) and two state-of-the-art
OSD optimizations (Naos and Skyway2).

Our test environment includes a cluster with four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. Each
node contains dual Xeon E5-2650 CPUs and 128GB DRAM.

6.2 Microbenchmark
To directly compare ZCOT with state-of-the-art OSD opti-
mizations, we leverage the microperf tester in the Naos’ open-
source repository for evaluation. The tester involves a sender
and a receiver deployed on two separate machines and reports
the communication time with different type of data objects.
The heap size for all workloads is 16GB.

Figure 11 shows the results for ZCOT and other baselines,
which are the average of 1000 times of repetitive execution.
ZCOT achieves the best performance of all except for 2-
dimensional points. The average speedup is 2.28×, 1.94×,
2.19×, 3.95× compared with Naos, Skyway, Kryo, and JSL,
respectively. The result also suggests that ZCOT performs
better for complicated data structures. The media class from
the Java serialization benchmark set (JSBS) [37] is the most
complicated one, so the improvement is the largest especially
against Naos (4.35×). This is because the computation over-
head increases when the data structure becomes more com-
plex. For simple data structures like points, ZCOT’s reduction
on data transformation is offset by larger network overhead,
so it performs slightly worse than Naos and Skyway.

0

50

100

150

200

250

Map Media Pair Point

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

JSL Kryo Naos Skyway ZCOT

Figure 11: The evaluation results for microbenchmark

6.3 Spark
Ease of integration. To adopt ZCOT in Spark, we need to
implement a new data serializer ZCSerializer to replace
the default KryoSerializer. Although the name seems to

2Both implemented by Naos’ authors

WC TC

PR KM

LR

Figure 12: The performance of Spark applications

involve OSD phases, it is only for compatibility consider-
ations and still remains zero-change during transmission.
ZCSerializer contains 70 lines of code, and most of them
are inherited from the JSL serializer. Furthermore, we re-
place the original stream classes from JSL with ours. If a
Spark user wants to enable ZCOT, she only needs to (1) con-
figure the spark.serializer to ZCSerializer and (2) add -
XX:+UseZCOT to the launch option of all JVMs, which is
quite simple.

Evaluation results. We leverage five applications in the
example directory of Spark for evaluation. Their descriptions
and evaluated datasets are shown in Table 2. We configure
one node as the metadata server and Spark master while the
other three servers as Spark workers. The Java heap size for
each node is set to 80GB.

Figure 12 shows the results for all applications. The results
indicate that ZCOT can improve the performance by 13.9%
and 24.1% on average compared with Kryo and JSL, respec-
tively. Although Kryo has optimized the OSD performance
over JSL, our evaluation shows that the data transmission can
be further improved.

Application Dataset
PageRank (PR) LiveJournal [4]
Word Count (WC) LiveJournal
KMeans (KM) USCensus1990 [10]
Transitive Closure (TC) Blogs [1, 17]
Logistic Regression (LR) SUSY [5]

Table 2: Evaluated applications and datasets for Spark

We have further broken the results into four different
phases: write (serialization), read (deserialization), compu-

146 2022 USENIX Annual Technical Conference USENIX Association

tation, and garbage collection (GC). Since the four phases
are not overlapped in Spark (the GC phase only contains
stop-the-world time), the accumulated time is equal to the
overall execution time. Figure 12 indicates that the perfor-
mance mainly comes from the improvement in OSD-related
parts. Since OSD occupies a considerable portion in page-
rank execution, ZCOT can reach its best improvement (23.6%
and 38.1% w.r.t. Kryo and JSL). Averaged across all applica-
tions, ZCOT can reach 4.19× speedup in the write part and
2.95× in the read part over the default Kryo serializer (4.52×
and 3.81× speedup for write and read part in JSL). As for
GC, ZCOT shows comparable pause time with others. In PR,
LR, and TC, the GC time is even shorter than JSL and Kryo.
Although ZCOT needs to manage the copied groups (ZCRe-
gions), its coarse-grained collection strategy avoids scanning
objects inside ZCRegions. Moreover, ZCOT avoids generat-
ing monolithic byte arrays by eliminating the serialization
phase, which can mitigate the memory pressure and introduce
less frequent GC.

Note that the computation time in ZCOT is somewhat larger
than that in JSL and Kryo. This can be explained by two rea-
sons. First, since ZCOT does not compress the object contents
during transmission to achieve zero-change, the transferred
data size is larger than JSL and Kryo, which leads to larger
network overhead (included in the computation part). Second,
the data deduplication module makes objects in the same
dataset scattered into different virtual address ranges, which
may lead to more random memory accesses and cache misses.
Nevertheless, the overall performance improvement is satis-
fying.

Results for deduplication. We have also studied the ef-
fect of our data deduplication module. As shown in Table 3,
ZCOT can reduce the transferred data size for all four applica-
tions, ranging from 8.1% to 53.8%. Even for the non-iterative
application (WC), ZCOT is also helpful thanks to its inter-
nalization optimization technique. Meanwhile, LR and KM
receive smaller savings because they generate many different
Double objects in each iteration, which cannot be reused and
deduplicated. The result indicates that duplicated transmis-
sion is common in data analytics and ZCOT’s optimizations
are helpful. Note that the number of transferred bytes after
deduplication is still much larger than that in Kryo and JSL,
since both of them coverts objects in a compact format before
transmission. Therefore, it is still preferred to use ZCOT with
larger network bandwidth.

PR WC TC KM LR
dedup 15.25 4.13 5.03 5.37 5.55
no-dedup 31.64 5.50 10.88 5.86 6.04

Table 3: Average transferred bytes (GB) for Spark executors

Various settings and overhead analysis. We evaluate the
performance of ZCOT with various settings on the heap size
and the chunk size by using PR as an example. The results in

Figure 13 show that ZCOT is not sensitive to different settings
and reaches similar performance. We have also studied the
overhead of write barriers by running Spark applications atop
ZCOT’s JVMs (with Kryo serializers) and comparing the per-
formance against vanilla JVMs. The average overhead among
all applications is 2.73%, which is much smaller compared
with the improvement brought by ZCOT. We also find the
average communication overhead with the metadata server is
only several milliseconds for each data-processing iteration,
which usually lasts for seconds.

0

50

100

150

200

20 40 60 80

Heap Size (GB)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

(a) Maximum heap size

0

50

100

150

200

64 128 256 512

Chunk Size (MB)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

(b) Chunk size

Figure 13: Results for PR under various settings

6.4 Flink

Ease of integration. We have also integrated ZCOT to Flink,
another big-data analytics framework. Although Flink adopts
its built-in serializer and deserializer for OSD, the integration
is not complicated since we only need to replace them with
ZCOT’s OSD-compatible interfaces and streams.

Evaluation results. We leverage four representative SQL
queries in the TPC-H benchmark for evaluation (Q1, Q3, Q6,
and Q10) and rely on its built-in generator to create input
data (10GB). The configuration is similar to Spark: we launch
three workers on different machines for evaluation, but the
Java heap for each node is 20GB. Since the read and write
phases are overlapped in Flink, we do not break the execution
time into parts. The results in Figure 14 show that ZCOT
outperforms the built-in serializer in Flink for three out of
four queries and leads to 2.3%-22.2% improvement in query
execution time. ZCOT does not improve Q6 since it does
not involve a reduce operator and the amount of transferred
data is limited. It performs the best for Q10 (22.2%) since it
reaches 4.40× improvement for the write part and 1.44× for
the read part. The speedup is smaller compared with Spark
since Flink’s built-in serializers are manually optimized for
specific data structures (like tuples). Nevertheless, ZCOT still
shows better performance than the vanilla version of Flink,
which suggests the importance of zero-change transmission
mechanism.

USENIX Association 2022 USENIX Annual Technical Conference 147

0

20

40

60

Q1 Q3 Q6 Q10

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Vanilla ZCOT

Figure 14: The performance of Flink applications

7 Related work

7.1 OSD optimizations
OSD has become a considerable performance bottleneck es-
pecially for large-scale communication-intensive applications.
To optimize the time-consuming phases in OSD, prior work
such as Kryo [38], Skyway [26], and Naos [39] has refined
the transmission data format or leveraged the advances in
network hardware technologies. ZCOT instead aims at elim-
inating the whole OSD process. Apart from software-based
techniques, another line of work adopts hardware-based ap-
proaches to reduce OSD overhead. Optimus Prime [32] builds
a data transformation accelerator (DTA) to improve the OSD
throughput for microservices. Cereal [16] co-designs the data
transmission format with hardware accelerators to improve
the performance and energy efficiency of Spark applications.
Morpheus [40] moves the deserialization phase into smart
SSDs, while Hgum [46] leverages FPGAs to handle OSD
tasks. ZCOT is based on off-the-shelf hardware and thus or-
thogonal to those hardware-based optimizations.

7.2 Distributed language runtimes
The idea for building a distributed language runtime (e.g., dis-
tributed JVMs) has been explored for decades. Java/DSM [43]
builds a distributed JVM atop DSM for heterogeneous com-
puting. JESSICA [21, 47] provides a single global thread
space and transparently migrates Java threads for load bal-
ance. Comet [14] builds a DSM-abstraction for JVMs running
on both mobile devices and the cloud and relies on its mem-
ory model to achieve effective code offloading. Semeru [41]
proposes a universal Java heap abstraction so that a Java appli-
cation can freely access all memory resources in a memory-
disaggregated architecture. Those systems leverage a shared
heap to synchronize data among different endpoints, but they
do not consider the performance overhead of inter-JVM com-
munication for large applications. XMem [42] enables effi-
cient type-safe object sharing among multiple JVMs on the
same physical machine, but it does not consider distributed en-
vironments. ZCOT also proposes a distributed runtime design,

but it mainly focuses on boosting data transmission among
multiple JVMs.

7.3 Runtime optimizations for Java

High-level languages like Java are intensively used in large-
scale, distributed applications, which stimulates research inter-
ests in runtime optimizations for performance improvement.
ITask [11] makes data processing tasks interruptible when
facing large memory pressure, which leads to better perfor-
mance and fewer out-of-memory errors. Yak [27] divides the
application execution into epochs and triggers GC when an
epoch ends. Broom [12] embraces a region-based design and
puts objects with the same lifecycle into the same region for
fast reclamation. ScissorGC [18,19] proposes shadow regions
to improve the scalability of full GC phase. Taurus [22, 23]
coordinates GC from different JVMs to reach better perfor-
mance or smaller tail latency. Facade [28] and Deca [36]
store massive data objects in off-heap memory to reduce GC
pressure, while Gerenuk [24] enables speculative execution
on serialized data to reduce both memory footprint and GC
overhead. ZCOT focuses on eliminating the OSD process and
duplicated object transmission, and it also collects objects by
coordinating with the metadata server.

8 Conclusion

This work introduces ZCOT, which aims to eliminate the
object serialization/deserialization phase in data exchange
among language runtimes (like JVMs). ZCOT provides an
exchange space where objects are interpretable for all JVMs,
which removes the need for any data transformation during
object transmission. It also uncovers the duplicated object
transmission problem and provides a corresponding dedu-
plication mechanism. The evaluation shows that ZCOT can
significantly improve the performance of object transmission.

9 Acknowledgement

We sincerely thank our anonymous shepherd and reviewers
for their insightful suggestions. This work is supported in
part by the National Natural Science Foundation of China
(No. 62172272, 61925206, 62132014). Binyu Zang (byzang@
sjtu.edu.cn) is the corresponding author.

A Artifact Appendix

Abstract

ZCOT, or Zero-Change Object Transmission, is proposed to
optimize data exchange among multiple Java virtual machines
(JVMs) in a distributed environment. Instead of sending and

148 2022 USENIX Annual Technical Conference USENIX Association

byzang@sjtu.edu.cn
byzang@sjtu.edu.cn

receiving data with the costly object serialization/deserial-
ization (OSD) phase, ZCOT allows JVMs to directly com-
municate with Java objects, which significantly improves the
data exchange time, especially for applications like big data
analytics.

Scope

This artifact (including binaries, source code, documents, and
scripts) is used to conduct the main experiments in ZCOT,
which consists of the following two parts:

• Micro-benchmark performance. The result should
show that ZCOT outperforms recent OSD optimizations
(Skyway [26] and Naos [39]) and state-of-the-art OSD
libraries (Kryo [38] and JSL) for most data structures
used in Naos’ microbenchmark.

• Spark performance. The result should show that ZCOT
outperforms Kryo and JSL-based Spark applications in
both data exchange and task execution.

Note that we only report numbers evaluated on our ma-
chines, so the results might be different with various hardware
configurations.

Contents

We pack all related files into a zipped one, which contains the
following contents.

• README. A file containing instructions for artifact
evaluation.

• ZCOT-jdk. The source code of a modified OpenJDK to
support ZCOT.

• Meta-server. The source code of the metadata server
used in ZCOT.

• Micro. Scripts and jars used for the micro-benchmark.

• Spark. Since the code size of Spark is quite large, we
provide an executable binary for Spark, which is slightly
modified to evaluate ZCOT.

• Naos-jdk. A slightly modified version of Naos’ Open-
JDK to compare with ZCOT.

Hosting

Currently our code is not ready for open-source. Nevertheless,
you can contact us via mingyuwu@sjtu.edu.cn to obtain the
artifact.

Requirements
Hardware requirements. We evaluate ZCOT on four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. The
NIC bandwidth has a significant impact on ZCOT’s perfor-
mance.

Software requirements. The operating system used in our
machines is Ubuntu 16.04.2, but higher versions are also
acceptable. Note that huge pages should be enabled to run
ZCOT. Dependencies for installing OpenJDK have been listed
in the README file.

References
[1] Lada A Adamic and Natalie Glance. The Political Blogosphere and

the 2004 US Election: Divided they Blog. In Proceedings of the 3rd
International Workshop on Link Discovery, pages 36–43. ACM, 2005.

[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can far memory improve job throughput? In Proceed-
ings of the Fifteenth European Conference on Computer Systems, pages
1–16, 2020.

[3] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pages 1383–1394, 2015.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.
Group formation in large social networks: membership, growth, and
evolution. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 44–54,
2006.

[5] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for
exotic particles in high-energy physics with deep learning. Nature
communications, 5(1):1–9, 2014.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache flink: Stream and batch
processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[7] John B Carter, John K Bennett, and Willy Zwaenepoel. Implementation
and performance of munin. In Proceedings of the thirteenth ACM
symposium on Operating systems principles, pages 152–164, 1991.

[8] David Detlefs, Christine H. Flood, Steve Heller, and Tony Printezis.
Garbage-first garbage collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management, ISMM 2004, Vancouver,
BC, Canada, October 24-25, 2004, pages 37–48. ACM, 2004.

[9] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. Farm: Fast remote memory. In 11th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 14),
pages 401–414, 2014.

[10] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[11] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.
Interruptible tasks: Treating memory pressure as interrupts for highly
scalable data-parallel programs. In Proceedings of the 25th Symposium
on Operating Systems Principles, pages 394–409, 2015.

[12] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G Murray,
Steven Hand, and Michael Isard. Broom: Sweeping out garbage col-
lection from big data systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS {XV}), 2015.

USENIX Association 2022 USENIX Annual Technical Conference 149

mingyuwu@sjtu.edu.cn

[13] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. Graphx: Graph processing in a
distributed dataflow framework. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), pages
599–613, 2014.

[14] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,
and Xu Chen. {COMET}: Code offload by migrating execution trans-
parently. In 10th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 12), pages 93–106, 2012.

[15] Apache Hadoop. Hadoop, 2009.

[16] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin,
Tae Jun Ham, and Jae W Lee. A specialized architecture for ob-
ject serialization with applications to big data analytics. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 322–334. IEEE, 2020.

[17] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. Statistical properties of community structure in large social
and information networks. In Proc. Int. World Wide Web Conf., pages
695–704, 2008.

[18] Haoyu Li, Mingyu Wu, and Haibo Chen. Analysis and optimizations
of java full garbage collection. In Proceedings of the 9th Asia-Pacific
Workshop on Systems, pages 1–7, 2018.

[19] Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. Scissorgc: scal-
able and efficient compaction for java full garbage collection. In Pro-
ceedings of the 15th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 108–121, 2019.

[20] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems (TOCS), 7(4):321–
359, 1989.

[21] Matchy JM Ma, Cho-Li Wang, and Francis CM Lau. Jessica: Java-
enabled single-system-image computing architecture. Journal of Par-
allel and Distributed Computing, 60(10):1194–1222, 2000.

[22] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. Tau-
rus: A holistic language runtime system for coordinating distributed
managed-language applications. Acm SIGPLAN Notices, 51(4):457–
471, 2016.

[23] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. Trash
day: Coordinating garbage collection in distributed systems. In 15th
Workshop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[24] Christian Navasca, Cheng Cai, Khanh Nguyen, Brian Demsky, Shan
Lu, Miryung Kim, and Guoqing Harry Xu. Gerenuk: thin computation
over big native data using speculative program transformation. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 538–553, 2019.

[25] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. Latency-tolerant software dis-
tributed shared memory. In 2015 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 15), pages 291–305, 2015.

[26] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Dem-
sky, and Shan Lu. Skyway: Connecting managed heaps in distributed
big data systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-
28, 2018, pages 56–69. ACM, 2018.

[27] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance big-
data-friendly garbage collector. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pages
349–365, 2016.

[28] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guo-
qing Xu. Facade: A compiler and runtime for (almost) object-bounded
big data applications. ACM SIGARCH Computer Architecture News,
43(1):675–690, 2015.

[29] OpenJDK. Jep 248: Make g1 the default garbage collector, 2017.

[30] OpenJDK. Jep 310: Application class-data sharing, 2018.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
report, Stanford InfoLab, 1999.

[32] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland,
Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch.
Optimus prime: Accelerating data transformation in servers. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
1203–1216, 2020.

[33] Daniel J Scales and Monica S Lam. The design and evaluation of a
shared object system for distributed memory machines. In Proceed-
ings of the 1st USENIX conference on Operating Systems Design and
Implementation, pages 9–es, 1994.

[34] Ioannis Schoinas, Babak Falsafi, Alvin R Lebeck, Steven K Reinhardt,
James R Larus, and David A Wood. Fine-grain access control for
distributed shared memory. In Proceedings of the sixth international
conference on Architectural support for programming languages and
operating systems, pages 297–306, 1994.

[35] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 323–337, 2017.

[36] Xuanhua Shi, Zhixiang Ke, Yongluan Zhou, Hai Jin, Lu Lu, Xiong
Zhang, Ligang He, Zhenyu Hu, and Fei Wang. Deca: a garbage collec-
tion optimizer for in-memory data processing. ACM Transactions on
Computer Systems (TOCS), 36(1):1–47, 2019.

[37] Eishay Smith. Jvm-serializers, 2020.

[38] Esoteric Software. Kryo, 2021.

[39] Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoe-
fler. Naos: Serialization-free RDMA networking in java. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 1–14.
USENIX Association, July 2021.

[40] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and
Steven Swanson. Morpheus: Creating application objects efficiently
for heterogeneous computing. ACM SIGARCH Computer Architecture
News, 44(3):53–65, 2016.

[41] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In 14th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 20), pages 261–280, 2020.

[42] Michal Wegiel and Chandra Krintz. Xmem: type-safe, transparent,
shared memory for cross-runtime communication and coordination. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 327–338, 2008.

[43] Weimin Yu and Alan Cox. Java/dsm: A platform for heterogeneous
computing. Concurrency: Practice and Experience, 9(11):1213–1224,
1997.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston, MA, USA, June 22, 2010, page 95. USENIX
Association, 2010.

[45] Matthew J Zekauskas, Wayne A Sawdon, and Brian N Bershad. Soft-
ware write detection for a distributed shared memory. In Proceedings
of the 1st USENIX conference on Operating Systems Design and Im-
plementation, pages 8–es, 1994.

[46] Sizhuo Zhang, Hari Angepat, and Derek Chiou. Hgum: Messaging
framework for hardware accelerators. In 2017 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8.
IEEE, 2017.

[47] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. Jessica2: A dis-
tributed java virtual machine with transparent thread migration support.
In Proceedings. IEEE International Conference on Cluster Computing,
pages 381–388. IEEE, 2002.

150 2022 USENIX Annual Technical Conference USENIX Association

	Introduction
	OSD Background
	OSD
	Limitations and opportunities
	State-of-the-art optimizations
	Summary

	Design of ZCOT
	Overview
	Distributed class-data sharing
	Supporting OSD-based scenarios

	Memory Management
	Group-based management
	Metadata server
	RPC interfaces
	Garbage collection

	Transmission Deduplication
	Overview
	Duplication detection
	Dependency management
	Garbage collection
	Internalization

	Evaluation
	Experimental setup
	Microbenchmark
	Spark
	Flink

	Related work
	OSD optimizations
	Distributed language runtimes
	Runtime optimizations for Java

	Conclusion
	Acknowledgement
	Artifact Appendix

