
D-VSync: Decoupled Rendering and Displaying for
Smartphone Graphics

Yuanpei Wu
IPADS, Shanghai Jiao Tong University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education

Shanghai, China

Dong Du
IPADS, Shanghai Jiao Tong University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education

Shanghai, China

Chao Xu
Fields Lab, Huawei Central Software

Institute
Shanghai, China

Yubin Xia
IPADS, Shanghai Jiao Tong University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education

Shanghai, China

Ming Fu
Fields Lab, Huawei Central Software

Institute
Hangzhou, China

Binyu Zang
IPADS, Shanghai Jiao Tong University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education

Shanghai, China

Haibo Chen
IPADS, Shanghai Jiao Tong University
Engineering Research Center for

Domain-specific Operating Systems,
Ministry of Education

Key Laboratory of System Software
(Chinese Academy of Science)

Shanghai, China

Abstract
Rendering service, which typically orchestrates screen dis-
play and UI through Vertical Synchronization (VSync), is an
indispensable system service for user experiences of smart-
phone OSes (e.g., Android, OpenHarmony, and iOS). The re-
cent trend of large high-frame-rate screens, stunning visual
effects, and physics-based animations has placed unprece-
dented pressure on the VSync-based rendering architecture,
leading to higher frame drops and longer rendering latency.

This paper proposes Decoupled Vertical Synchronization
(D-VSync), which decouples execution and displaying in the
rendering service. D-VSync allows frames to be rendered a
number of VSync periods before being physically displayed
on the screen. The key insight behind D-VSync to resolve the
limitation of VSync is that, the decoupling enables sporadic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707235

long frames to utilize the computational power saved by com-
mon short frames, therefore providing a larger time window to
tolerate workload fluctuations. Evaluation results of 75 com-
mon OS use cases and apps on OpenHarmony (Mate 40 Pro,
Mate 60 Pro), 25 popular apps on Android (Google Pixel 5),
and simulations of 15 mobile games show that compared to
VSync, D-VSync on average reduces frame drops by 72.7%,
user-perceptible stutters by 72.3%, and rendering latency
by 31.1%, with only 0.13%–0.37% more power consumption.
D-VSync has been integrated into HarmonyOS NEXT.

CCS Concepts: • Software and its engineering→ Oper-
ating systems; •Computingmethodologies→Graphics
systems and interfaces.

Keywords: Operating system, graphics system, rendering
service, vertical synchronization

ACM Reference Format:
Yuanpei Wu, Dong Du, Chao Xu, Yubin Xia, Ming Fu, Binyu Zang,
and Haibo Chen. 2025. D-VSync: Decoupled Rendering and Dis-
playing for Smartphone Graphics. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (ASPLOS ’25), March
30–April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3669940.3707235

326

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://doi.org/10.1145/3669940.3707235
https://doi.org/10.1145/3669940.3707235
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3669940.3707235&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

1 Introduction

Smartphones have increasingly penetrated into people’s ev-
eryday life, resulting in an average usage of over 4.6 hours
per day for non-voice activities [43]. A majority of services
offered by smartphones heavily involve graphics UI (GUI),
where a performant rendering service is indispensable for
satisfiable user experiences [37, 62, 65].

Modern smartphone rendering architectures mainly stem
from the Vertical Synchronization (VSync) with triple buffer-
ing from Google’s Project Butter [39] dated back to 2012.
The goal of VSync is to synchronize the app rendering speed
with the screen refresh rate, through a pipeline design where
different steps like app logic, rendering, surface compositing,
and frame display all happen synchronously when a screen
VSync signal is triggered (§2). Android [13], iOS [20], Open-
Harmony [23], and browser engines [3] all adopt the VSync
rendering architecture [4, 10, 22, 24] for mobile devices.
However, there is a challenge for such an architecture

with the advent of high-resolution, high-refresh-rate, and
foldable screens. Specifically, the number of pixels that the
rendering service needs to render per second has increased
about 25 times compared to the original iPhone 4 and Galaxy
S. Even worse, advanced visual effects and physics-based
animations, such as Gaussian blur, dynamic shadows, and
particle effects, create substantial loads at specific key frames
(§3.1). Such a substantial increase of load, which far exceeds
the increasing pace of silicon advances, may cause harmed
user experiences such as user-perceptible stutters.

To illustrate the challenge, the paper presents a deep analy-
sis on contemporary rendering services from the perspective
of leading smartphone vendors. First, smartphone OSes still
face severe frame drops. Specifically, a frame drop occurs
when the rendering fails to keep pace with the screen re-
freshing, causing the previous content to be displayed again
for another frame. Our quantitative evaluation (with indus-
trial criteria) for 75 common use cases show that 26.6% and
38.6% cases (20 and 29) exhibited frame drops with an av-
erage frame drops per second (FDPS) of 7.51 and 8.42 with
GLES [11] and Vulkan [25] backends, on state-of-the-art
commercial smartphone (Mate60 Pro, 120Hz screen, Open-
Harmony [23]). Many important cases like closing the no-
tification center or clearing all notifications can only reach
95–105 FPS on the 120 Hz screen, causing noticeable stutters
to users. More experiments on different devices confirmed
the prevalence of frame drops in existing smartphone usages
(§3.2). The main reason is that frame drops are hard to eradi-
cate under VSync, where heavy long frames cannot always
complete before the fixed VSync deadline.
One intuitive approach is to leverage triple buffering in

VSync. This, however, yields high rendering latency: the time
difference between the timestamp represented by the frame
content and the time when this frame is displayed on the
screen. When a frame drop happens, subsequent rendered

2 VSync
period

1 VSync
period

rendering time (ms) on a 60 Hz screen

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
il
it

y

Figure 1. Cumulative Distribution Function (CDF) of
the frame rendering time (following the power law dis-
tribution). Most frames finish in one VSync period (78.3%).
However, despite the support of triple buffering, approxi-
mately 5% of frames fail to finish on time, causing stutters.

buffers will be “stuffed” into the third slot of the buffer queue,
waiting for an extra VSync period. We measured an aver-
age of 45.8 ms end-to-end rendering latency on Pixel 5, and
32.2 ms and 24.2 ms on Mate 40 Pro and Mate 60 Pro, re-
spectively (§3.3). Yet, prior studies suggested that lags of re-
sponsiveness impact more quality of experience (QoE) than
frame drops [61], and the Just Noticeable Difference (JND)
for human-eye latency discrimination is ≤15 ms [53, 54].

Based on our long-term experience in rendering services
and the analysis of real-world traces, we discovered the
power law distribution of frame rendering time: the
majority (≥95%) of frames are short and quick while a small
portion (≤5%) of key frames being heavily-loaded that cause
frame drops (Figure 1). The root cause of frame drops and
long rendering latency lies in the presence of bursty heavily-
loaded long frames. Such key frames need to process complex
application or rendering logic and fail to complete within
its designated VSync period, leading to stutters. The VSync
rendering architecture forcibly synchronizes the timing of
rendering with the fixed timing of screen refreshing, and
thus the core conflict is the always-fixed display refresh period
versus the fluctuation of rendering workloads with long and
short frames.

Based on this observation, this paper presents Decoupled
Vertical Synchronization (D-VSync), a novel rendering archi-
tecture in smartphone OSes addressing the issues of frame
drops and rendering latency. The key insight of D-VSync is
to break the close coupling of the rendering execution and the
periodic VSync events. D-VSync addresses the limitations of
VSync by performing rendering executions in advance under
possible and deterministic scenarios through a decoupled ren-
dering and displaying design. D-VSync allows sporadic long
frames to utilize the time saved by common short frames,
thus providing a larger time window to withstand stutters
caused by workload fluctuations.
The design of D-VSync faces three challenges. First, D-

VSync can no longer use the VSync signal of the screen to
trigger each frame’s rendering logic at a specific frequency.
Instead, D-VSync needs to explicitly control the timing, pac-
ing, pre-rendering limit, and frame buffer usage of each

327

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Figure 2. VSync rendering architecture and its rendering pipeline. In the runtime trace, Frame-2 is heavily-loaded and
misses the VSync deadline, causing a frame drop. Subsequent frames experience a higher latency due to buffer stuffing.

frame, based on different scenarios and requirements. To
address this challenge, D-VSync proposes Frame Pre-Executor
(FPE). When the FPE module determines that pre-rendering
is feasible, during deterministic animations and simple in-
teractions, it sends the Decoupled-VSync signal to trigger
frame execution of the related rendering processes (the app
process and the rendering service), ahead of the screen’s
VSync signal to fully utilize the idle CPU time saved by short
frames.

Second, D-VSync needs to ensure that all the content ren-
dered are totally correct, even though some dependencies of
a frame may not be ready during decoupled pre-rendering.
For animations, every frame needs correct timing to sam-
ple motion curves for proceeding the dynamic effects. As
D-VSync enables animations to run forward from the present,
simply using the current timestamp is not sufficient. There-
fore, D-VSync proposes Display Time Virtualizer (DTV) to
tackle this challenge. DTV virtualizes the future display time
of the rendering from the current execution time of the code,
enabling apps and the rendering framework to foresee when
the frame will be displayed. Consequently, frames can use
the virtualized display time to render its content.

Finally, D-VSync should be extensible to various user inter-
action scenarios and custom-rendering apps that bypass the
OS rendering framework (e.g., games or browsers). The new
abstractions and the high-performance mode make compati-
bility a challenge. D-VSync thereby proposes dual-channel
decoupling APIs: regular native apps get default performance
and frame rate benefits from D-VSync in the decoupling-
oblivious channel without any source code modifications
needed. Furthermore, D-VSync offers custom interfaces for
decoupling-aware apps, which achieve a balance between
exceptional performance and compatibility. We further care-
fully design D-VSync to be compatible with the latest tech-
nologies such as LTPO dynamic frame rates [31].

We have implemented D-VSync on OpenHarmony 4.0 and
Android 13. Comprehensive evaluations are conducted on
both the baseline systems and the D-VSync-based systems on
Google Pixel 5, Mate 40 Pro, andMate 60 Pro. Our evaluations
encompass microbenchmarks, 75 common OS use cases, 25
popular real-world applications, 15 mobile game simulations,
and 2 case studies focusing on decoupling-aware applica-
tions. The experiments are conducted both automatically

under production testing frameworks and manually by pro-
fessional user experience (UX) evaluators for objective data
and subjective data, respectively. The results demonstrate
significant improvements achieved by D-VSync. Specifically,
on average, D-VSync reduces the number of frame drops
by 72.7%, user-perceptible stutters by 72.3%, and rendering
latency by 31.1%, with 0.13%–0.37% increase in power con-
sumption. D-VSync has been integrated into HarmonyOS
NEXT as a key feature for smoothness.

2 VSync Rendering Architecture

This section introduces the basic concepts of VSync archi-
tecture and the specific designs on smartphone OSes.
Buffer queue. A frame buffer stores all the pixel data and
metadata of a frame, and a buffer queue is a First-In First-
Out (FIFO) queue of frame buffers, maintaining a producer-
consumer model of frames. Broadly speaking, the producer
of the model is the rendering service that renders frames, and
the consumer is the screen that displays frames, as shown by
the architecture diagram in Figure 2. A buffer queue contains
one front buffer for the screen panel to refresh its pixels,
and one or more back buffers for the software rendering
architecture to render into. Android and iOS configure two
back buffers (i.e., triple buffering), while OpenHarmony uses
three so that consecutive frames can render in parallel.
VSync signals. The swap between front-buffer and back-
buffer happens during the VSync signals (the purple trace in
Figure 2). Smartphone screens update frames at a configured
refresh rate, e.g., 60 Hz (or 120 Hz). Before every physical
panel refresh, the screen generates a hardware VSync signal,
marked HW-VSync, sending it to the rendering architecture
via a hardware abstraction layer (HAL) every fixed 16.7 ms
(or 8.3 ms). If the swap-in is not aligned with HW-VSync
signals, the display may show content from two frames,
resulting in screen tearing [59]. This also means that the
rendering of a frame must finish before the VSync deadline,
otherwise the screen panel will have to keep the last frame
for another VSync period with nothing to update, known as
a jank (i.e., frame drop).
VSync pipeline. The end-to-end rendering procedure usu-
ally spans at least two VSync periods, following a pipeline
structure illustrated in Figure 2. Different pipeline stages

328

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

 0

 1x108

 2x108

 3x108

 4x108

 5x108

 6x108

 7x108

 2010 2012 2014 2016 2018 2020 2022 2024

Project Butter
(VSync arch)

N
u

m
b

e
r

o
f
p

ix
e

ls
 t
o

 r
e

n
d

e
r

p
e

r
s
e

c
o

n
d

(s
c
re

e
n

 h
e

ig
h

t
×

 w
id

th
 ×

 r
e

fr
e

s
h

 r
a

te
) iPhone

iPhone Plus
iPhone Pro Max
Mate Pro
Mate X
Galaxy S
Galaxy S Ultra
Galaxy Z Fold
ROG Phone
Pixel
Pixel Pro
Pixel Fold
Oppo Find X
Oppo Find X Pro
Oppo Find N
Xiaomi
Xiaomi Pro

Figure 3. Trend in the number of pixels rendered per
second by the rendering architecture. The number has
increased about 25 times over the past one and a half decades.

such as the app UI logic, rendering, buffer swap-in, are trig-
gered by different software VSync signals (usually with fixed
offsets from HW-VSync). Specifically, in the first step, the
VSync-app signal will trigger the App UI thread to handle
inputs and deal with the UI logic. Upon completion, the UI
thread will invoke the render thread in Android, or the ren-
der service in OpenHarmony/iOS triggered by the VSync-rs
signal, to deal with animations and GPU rendering. Finally,
the buffer swap-in is handled by the SurfaceFlinger [9] in
Android triggered by the VSync-sf signal, or a designated
hardware thread in OpenHarmony/iOS aligning with HW-
VSync (omitted in Figure 2 for simplicity). To summarize,
the VSync rendering architectures use the consumer VSync
signals to drive each stage of the frame production in the
pipeline, to ensure every frame starts timely in real time.
Challenges of nowadays VSync architectures. However,
the VSync rendering architecture cannot guarantee that each
stage of the pipeline can finish within its designated VSync
period. The computational power for mobile devices does
not have much redundancy to tolerate workload fluc-
tuations, which are increasingly common nowadays as the
demands for visual quality rise (§3.1). The trace in Figure 2 il-
lustrates a concrete example of the frame drop and rendering
latency. If a workload-heavy frame unfortunately misses the
VSync deadline (Frame-2), then the screen will have nothing
to update, resulting in a jank. Users may experience a stutter
if it is a key frame in a series of screen updates. Unfortu-
nately, such frame drops are not uncommon. Even worse,
a frame drop lengthens the latency of subsequent frames.
For Frame-1, the rendering latency is the time difference
from when the UI thread starts (triggering of VSync-app) to
when the frame gets displayed, marked in the light gray ar-
row, about 2 VSync periods. Because the display of Frame-2
defers, the rendered buffer from Frame-3 will be stuffed in
the buffer queue and wait for another unnecessary VSync
period. All subsequent frames experience a delay of 3 VSync
periods, marked in the dark gray arrow, until another long
frame emerges. Longer rendering latency results in more lag
in the responsiveness of the system (§3.3).

OH 4.0

Gaussian Blur

Transparency

Color Gradient

Shadowing

Complementary
Colors

Particle E ect

Geometric
Transformation

HSL/HSV

Glyph Blur

Glass Material

Double Stroke

Blurring
Gradient

G2 Rounded
Corner

Icon Blur

Transparency
Gradient

Dynamic Lighting

OH 4.1 OH 5.X (Beta)

Motion Blur

Parallax

Bokeh

Rim Light

Dynamic
Shadowing

Dynamic Icon

Android 4 Android 5/6 Android 7 Android 8/9 Android 10/11 Android 12 Android 13/14 Android 15(Beta)

Scene Transition

Translucent UI

Full-screen
Immersive

Resolution Switch

3D Views

Realtime
Shadowing

Ripple
Animation

Vector Drawable

Multi-window

Noti cation
Template

Custom Pointer

Color
Calibration

Uni ed Margin

Picture-in-Picture

Wide-gamut
Color

Adaptive Icon

Dark Theme

Bubbles

Gesture
Navigation

Flexible Layouts

Splash Screen

Color Vector
Fonts

Programmable
Shaders

Custom Meshes

Matrix44

ClipShader

Large-screen
Multitasking

Dynamic Depth Rounded Corner
API

Themed Icon HDR Headroom

Picture-in-Picture
Animations

Figure 4. Trend in the increasing number of graphics
features supported. The darker visual effects represent
heavier rendering workloads in the key frames.

3 Characterizing OS Rendering Service
Despite the critical importance of rendering services in mod-
ern smartphone OSes, the topic is often underestimated and
(even) considered a resolved issue. This section presents an
in-depth analysis (from the perspective of leading smart-
phone vendors) to show the current trends in rendering
services, the inherent limitations of the VSync, and our in-
sights. We believe the analysis will not only motivate this
work, but also encourage a wide range of future research.

3.1 Trends in Rendering
Through summarizing the display hardware and OS ren-
dering capabilities of top smartphone brands over the past
decade, we observed clear trends in rendering: smartphone
vendors tend to deliver more immersive and richer visual ex-
periences to meet the increasing demand for exquisite and
attractive content from end users.
First, the baseline workloads of rendering nowadays has

increased about 25 times. Figure 3 illustrates the number
of pixels that the smartphone OS has to render per second
across flagship smartphones since the advent of the iPhone
4 and the first Galaxy S in 2010. Smartphone vendors are
integrating displays that are clearer (higher PPI, Pixels Per
Inch), smoother (higher refresh rates), and more immersive
(larger screen sizes) into their products. This trend continues
to grow, as evidenced by the successful sales of foldable
smartphones in 2023 and 2024 (Mate X, Galaxy Z, etc.) and
the gradual production of 144 Hz and 165 Hz phone screens.

Second, real-world scenes involve different combinations
of complex visual effects, making the rendering workloads
fluctuating and unpredictable. Figure 4 makes a growing list
of the supported graphics features in the rendering services
since Android 4 and OpenHarmony 4.0. The darker effects
represent heavier tasks where key frames require a substan-
tial amount of work (usually over 1 ms), while subsequent
frames may or may not be able to reuse the rendered cache.
The gap. Consequently, traditional VSync rendering archi-
tectures from over a decade ago are struggling to handle the
increasing rendering workloads: the volatile and unstable
frame execution time, along with the complicated logic re-
quired to process visual effects and animations, often fails to

329

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0 6030 90 120

Mate 60 Pro (OH 120Hz, GLES)

Mate 40 Pro (OH 90Hz, GLES)

Google Pixel 5 (AOSP 60Hz, GLES)
3.4%

3.5%

Mate 60 Pro (OH 120Hz, Vulkan)

6.3%

7.0%
 20.8%

27.5%

7.4%

7.8%

*

*

avg max FD%

Hz

*

*

Figure 5. Summary of the average and maximum per-
centage of frame drops (FD) over the total display time.

finish before the constant VSync deadline. Next, we present
the statistics and analysis regarding the issues.

3.2 A Quantitative Analysis on Frame Drops
Frame drop refers to the case where rendering misses the
VSync deadline and the screen has no buffer to update. It is
one of the most important metrics to show the performance
of rendering service and the user experience in industry.
Methodology and results.We first inspected 75 common
OS use cases by a industrial testing framework simulating
necessary user operations. A full frame rate is required for
these cases in industrial criteria. However, onMate 40 Pro (90
Hz screen) andMate 60 Pro (120 Hz) with OpenHarmony and
GLES backend [11], 9 and 20 out of 75 have frame drops, with
an average frame drops per second (FDPS) of 3.17 and 7.51. In
the current implementation of Vulkan backend [25], 29 cases
have frame drops with 8.42 FDPS.Many important cases such
as closing the notification center, clearing all notifications,
etc., can only reach 95–105 FPS, which are noticeable to users
and greatly affect the QoE of products. We also inspected
altogether 23,000 frames of 25 different Android apps on
Google Pixel 5 (60 Hz), by swiping the screen twice a second
to let the app keep rendering new content. The average FDPS
for those apps is 2.04, occupying 3.4% of the total display
time. Figure 5 illustrates a summary, and the blue bars in
Figure 11, 12, 13, and 14 present the details.
Based on our long-term experience with rendering and

analysis of real-world traces [8], we conclude that the deep
reason behind frame drops is the workload fluctuation. We
discover the power law distribution of frame rendering time:

Workload fluctuation is an inherent characteristic of render-
ing tasks, with the majority (≥95%) of frames being short and
quick, and a small portion (≤5%) of key frames being heavily
loaded that ultimately determines the user experience.

Overall, current VSync architectures lack the capability of
handling workload bursty and abdicate these responsibilities
to graphics programmers, which we consider improper.

3.3 A Quantitative Analysis on Rendering Latency
Long rendering latency is another significant issue, further
exacerbated by the buffer stuffing in VSync triple-buffering
architectures. As discussed in §2, a frame drop causes all the
subsequent frames to wait inside the third slot of the buffer
queue for another unnecessary VSync period.
Methodology and results. Figure 6 demonstrates the dis-
tribution of frames for representative apps. Most frames

 0

 20

 40

 60

 80

 100

W
alm

art

Q
Q
M

usic

X A
pkpure

G
roupM

e

FoxN
ew

s

Facebook

W
eibo

S
hein

S
tudentU

niv

Instagram

Zhihu

Lark
R
eddit

B
ooking

Tidal

D
oorD

ash

C
N
N
D
iscord

B
ilibili

S
napchat

Taobao

VidM
ate

Tripadvisor

P
interest

%
 o

f
to

ta
l
fr

a
m

e
s

frame drop buffer stuffing direct composition

Figure 6. Distribution of frames.Most frames wait inside
the buffer queue for another period due to buffer stuffing
after frame drops, creating unnecessary latency.

394 px

2.4 cm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

y
-d

is
p
la

c
e
m

e
n
t
in

 p
ix

e
l

frame index

Figure 7. Visualization of the rendering latency. The
ball falls behind the fingertip for at most 400 pixels.

get stuffed into the buffer queue rather than being directly
composited because of the frequent frame drops. Besides,
we measured an average rendering latency of 45.8 ms over
all the rendering workloads we recorded on Google Pixel 5.
On Mate 40 Pro and Mate 60 Pro, the latency averages at
32.2 ms and 24.2 ms, respectively. To directly visualize its
consequence and impact on the responsiveness of the sys-
tem, we write a simple app illustrated in Figure 7. It draws
a red ball every frame at the position of the touch event.
In the ideal situation without any latency, the ball should
strictly follow the touch and be covered by the fingertip.
However, as we swipe the finger upwards, we can clearly
see the ball that falls behind. When the latency is 45 ms, the
maximum position difference from the fingertip to the ball
reaches around 400 pixels (2.4 cm) as we swipe fast.
The long rendering latency is still an open challenge for

smartphones. Efforts on desktop AAA games like G-Sync [5],
Reflex [6], and FreeSync [2] cannot solve the issue due to
high power consumption and special hardware required [56].

3.4 Insights
The root cause of the issues is that: current rendering services
assume that the content to be rendered corresponds to the
present moment in time. Thus, the rendering execution must
be placed just before the frame displays to avoid any lag,
leaving it a very short time window to finish. Based on the
observation of the power law distribution of rendering, our
idea to tackle the issues is to utilize the computational
power saved by common short frames to provide a
larger time window to tolerate workload fluctuations.

330

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

Figure 8. The D-VSync rendering architecture, enhanc-
ing the conventional VSync for workload fluctuations.

To this end, our key insight is to break the assumption
and decouple the time that the rendering workload executes
and the time that the rendering frame represents. Under this
premise, a frame can be rendered much earlier under pos-
sible and deterministic conditions such as animations and
simple interactions, only with the knowledge about when
the content will be displayed. The decoupled pre-rendering
provides sporadic long frames a larger time window to with-
stand stutters, utilizing the idle time saved by common short
frames. D-VSync (our system) enlarges the maximum num-
ber of buffers that the buffer queue can hold, so that if a long
frame runs longer than expected, the screen is still able to
consume the pre-computed short frames in the buffer queue.

To implement a decoupled rendering architecture, we face
three challenges (detailed in §1): First, D-VSync must ex-
plicitly manage the execution of individual frames when pre-
rendering is feasible under deterministic scenarios. Second,
when rendering ahead, D-VSync needs to guarantee that
the frame content remains correct, as it would under VSync
architectures. Last, D-VSync should be extensible and compat-
ible with diverse interactive scenarios and custom-rendering
applications (e.g., games or browsers).

4 Decoupled Rendering and Displaying
(D-VSync)

To tackle these challenges, we propose Decoupled Vertical
Synchronization (D-VSync), a novel rendering architecture
enhancing the original VSync for workload instability.

4.1 The Overall Design of D-VSync
Figure 8 illustrates the overall architecture of D-VSync in the
OS rendering service. It offers another path for the frame
timing management, side by side with the traditional VSync,

Figure 9. The scope of D-VSync approach. D-VSync is
applicable to deterministic frames in animations (85%), and
extensible to predictable interactions (10%).

to control the execution of new frames when animations or
inputs update the screen content.
From the bottom up, when the screen HAL signals the

HW-VSyncs, the traditional VSync module directly posts
the software VSync events to the corresponding entities
in the rendering pipeline at the configured frequency and
offsets [24]. By contrast, D-VSync deploys the Frame Pre-
Executor (§4.3) to explicitly control the timing and pacing
of frame executions with D-VSync events posted prior to
the display VSyncs when deterministic scenarios make pre-
rendering feasible. Meanwhile, D-VSync configures larger
buffer queues for frames to accumulate, recycling originally
idle CPU time in short frames for the key (and long) frames
to use. The screen can consume pre-rendered short frames
accumulated in the buffer queue to avoid frame drops and
reduce latency when a long frame emerges due to workload
fluctuations.

The (D-)VSync events triggering the app UI thread and the
render service/thread are equipped with timestamps for the
OS UI framework and rendering logic to compute the frame
content. D-VSync introduces the Display Time Virtualizer
(§4.4) to decouple the conventional VSync timestamp of the
current code execution time with a virtual displaying time
of the frame, ensuring the correctness of frame content as if
in the VSync architecture.

Moreover, D-VSync includes a runtime controller and APIs
(§4.5) for custom-rendering apps that bypass the data path
provided by the OS rendering frameworks. For decoupling-
aware apps, D-VSync offers an extension of Input Prediction
Layer (§4.6) to expand to the interactive frames.

4.2 The Scope of D-VSync
An important question is that whether the decoupling and
pre-rendering is feasible for most rendering cases — so we are
not proposing a technique for rare cases but for common
cases. To answer the question, we further investigate the
characteristics of all the frames for a typical user, as shown
in Figure 9. Overall, frames to be rendered can be roughly

331

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Figure 10. Execution patterns in VSync and D-VSync. The workloads of the same frame are dyed the same color. D-VSync
has the accumulation stage and the sync stage. A long frame lets D-VSync consume rendered buffers to hide janks.

classified into two categories: animations and interactions,
while frames of animations are mostly deterministic.

We highlight three results. First, the majority of the frames
in real-world are animations following a clicking operation.
These include app opening, page transition, content load-
ing, screen rotation, notification clearing, etc. All of these
scenarios have noticeable impact on the user experience of
a smartphone OS. D-VSync can enhance the smoothness of
these deterministic pre-renderable animations, without re-
quiring any effort from the upper-layer developers. Second,
the yellow portions of the frames involve a real-time finger-
tip on the screen to trigger the movement that is usually
predictable. These simple interactions, such as zooming or
browsing on maps, require custom curve fitting of the input
status to close the gap between the decoupled pre-rendering
and displaying, which are categorized as D-VSync extensible.
Last, for renderings that rely on sensor data or real-time
online data (e.g., camera, or PvP games), D-VSync is not the-
oretically applicable. Yet, this should not be confused with
the scene animations or UI transitions widely used in games.
As a result, our decoupled pre-rendering of D-VSync ap-

plies to all deterministic frames for animations (85%) and
extends to simple interactive frames (10%), covering 95% of
the total frames in smartphones. For complex real-time
cases like online games or camera, D-VSync remains off.

4.3 Frame Pre-Executor (FPE)
Frame Pre-Executor (FPE) performs decoupled pre-rendering
to accumulate frames in deterministic scenarios. In the first
step, FPE receives requests to execute the next frame in
the last frame of the OS UI framework or the render ser-
vice/thread. Such requests are generated when animations
or inputs need to update the screen content. D-VSync mod-
ifies the UI framework to equip the requests with tags for
all animations and simple interactions when pre-rendering
is feasible. These requests cover more than 85% of the total
frames rendered in the smartphone (§4.2).

To pre-render frames in the decoupled manner, FPE posts
D-VSync events ahead of the screen display VSyncs. When

the last frame sending the request finishes, the next frame
can get started in the corresponding rendering pipeline stage
with the D-VSync event received. Figure 10 compares the
runtime traces between VSync and D-VSync. In summary,
FPE divides the rendering execution into 2 stages:
Accumulation Stage. In the original VSync architecture,
frame logic is only triggered by the VSync signal under a spe-
cific frequency, as shown in Figure 10 (a). The buffer producer
(software render thread/service) and the buffer consumer
(hardware screen) both execute at the same rate enforced by
the architecture, where a long frame produces three janks in
a row. In contrast, D-VSync proactively computes frames in
the beginning, as long as the pre-rendering does not exceed a
configured threshold, i.e., there are still empty slots available
in the buffer queue.

As illustrated in Figure 10 (b), because most short frames
do not occupy the entire VSync period, the buffers can quickly
get accumulated in the buffer queue as the screen slowly and
steadily consumes them every VSync period. In this runtime
trace, D-VSync configures 5 buffers in the buffer queue (1
front buffer for displaying with 4 back buffers for render-
ing) with the pre-rendering limit of 3 VSync periods. It is
the accumulation stage that provides a foundation for the
decoupled pre-rendering to function in D-VSync.
Sync Stage. D-VSync enters the sync stage as soon as the
pre-execution reaches the limit where there is no remaining
slot in the buffer queue. FPE triggers the execution of every
frame in alignment with the screen display, similar to the
conventional VSync architecture. The buffer consumption
and the buffer production are in the same pacing, marked by
the parallel dotted lines in Figure 10. The 2-stage design of D-
VSync answers how andwhy frame drops can be reduced. For
the exactly same series of workloads in VSync and D-VSync,
the former produces three janks in a row while the latter is
perfectly smooth. The screen consumes pre-rendered buffers
rather than being unresponsive when a heavy key frame (the
red frame in Figure 10) runs longer than expected. D-VSync
thus presents a bigger time window to tolerate fluctuations.

332

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

4.4 Display Time Virtualizer (DTV)
Display Time Virtualizer (DTV) provides the new abstrac-
tion of frame display time to the UI and rendering frame-
work, ensuring the content correctness during decoupled
pre-rendering.
VSync architecture relies on the frame execution time to

render the content, limiting the frame to be executed just
shortly before it is displayed. Otherwise, the content will
be outdated and there will be a noticeable lag. To break
the close coupling between displaying and rendering, DTV
brings Frame Display Timestamp (D-Timestamp in Figure 8),
replacing the current wall clock or the VSync timestamp
for frames to render their content. Animations use the D-
Timestamp to sample motion curves for list flinging, app
opening, page transition, screen rotation, etc. DTV guaran-
tees that animations never appear fast in accumulation or
slow down in long frames, with a uniform pacing just as the
fixed VSync rhythm in the traditional architectures.
DTV computes when the next frame that FPE is going

to trigger will be physically displayed on the screen. It is
observed that the behaviors of the rendering system are
deterministic: the screen HAL steadily consumes the buffer
queue in FIFO order every VSync period, and the number
of buffers queued and other configuration parameters such
as the VSync period or offsets are always available to query.
Based on the current states of the rendering system, DTV
calculates the frame display timestamp and sends it to the
UI and rendering framework with the D-VSync event.

As a result, applying DTV , D-VSync can pre-render frames
while also ensuring correctness. Even if frames get rendered
several VSync periods before, they are not aware of the time
discrepancy for their content, as they can directly foresee
when they will be displayed. DTV circumvents the latency
issue due to waiting inside the buffer queue, and reduces the
lengthened rendering latency after janks (in VSync).

4.5 Dual-channel Decoupling APIs
The compatibility with diverse apps is crucial to D-VSync for
large-scale deployment on commercial smartphones. Hence,
D-VSync proposes dual-channel decoupling APIs: it brings
default improvements directly to decoupling-oblivious app
binaries, as well as specialized enhancements for decoupling-
aware apps modified in source code.

For existing OS native apps, the OS UI framework handles
the cooperation with D-VSync, activating the decoupled pre-
rendering in deterministic animation scenarios. The apps re-
main decoupling-oblivious, and runs correctly in both VSync
and D-VSync-based systems (with better performance). No
source code modification is needed.
For interactive scenarios when pre-rendering is not in-

tuitive, or custom-rendering apps that use third-party ren-
dering engines, the runtime controller turns off D-VSync,

and the frame timing management defaults to the tradi-
tional VSync path. These cases, occupying less than 15%
of the frames according to our characteristic study (§4.2),
require decoupling-aware APIs to apply D-VSync. Specifically,
D-VSync exposes the following capabilities for decoupling-
aware pre-rendering: (1) an extensible Input Prediction Layer
(§4.6), for interactive scenarios when the fingertip is physi-
cally on the screen; (2) configuration of the pre-rendering
limit, which balances the performance andmemory usage; (3)
retrieval of the frame display time, for custom app-defined an-
imations that bypass the OS UI framework; and (4) a runtime
switch between D-VSync and VSync. §6.5 and §6.6 provide
case studies to demonstrate how custom-rendering interac-
tive apps can take advantage of D-VSync.

4.6 Extension: Input Prediction Layer (IPL)
D-VSync provides an extension of Input Prediction Layer (IPL)
for decoupled pre-rendering in interactive frames when a
fingertip (or a pen) is physically and continuously on the
screen, as shown in Figure 8. These frames include zoom-
ing in a map, browsing an image/pdf, touching on a list for
reading, etc. During the process of continuous user interac-
tions, because D-VSync may execute frames several VSync
periods before display, the latest status of the input events
(e.g., touching coordinates) lying in between the rendering
and displaying is missing. IPL aims to solve the issue.
IPL applies curve fitting to correct the current status of

input events to the anticipated status at the expected frame
display time computed by DTV . IPL is only activated for
frames when the fingertip is physically on the screen, during
a stream of inputs. For heavily-loaded scenarios, apps can
register their specific heuristic curves through implementing
an IPL interface. For instance, a map application can register
linear line fitting when the users operate zooming, as ren-
dering new vector tiles causes frame drops. IPL incurs minor
overheads in practice as simple heuristic curves can fit the
input patterns with very smooth user experience.

5 Implementation
We have implemented D-VSync in OpenHarmony 4.0 [23]
and Android Open Source Project 13 (AOSP) [13]. D-VSync
key modules take around 3,000 LOC in C++, and the periph-
eral code for modified components takes about 200 LOC.

5.1 D-VSync in OpenHarmony
We implement D-VSync on OpenHarmony with Mate40/60.
FPE. In OpenHarmony, the decoupled pre-execution pattern
is applied in the Render Service (RS [18]), the OS rendering
service, and the OS UI framework (ArkUI [7]). Every frame of
the RS and the app UI thread is triggered by the decoupling-
enhanced VSync-rs and VSync-app events, respectively. RS
and ArkUI mark deterministic animations in their rendering
and UI logic where decoupled pre-rendering is feasible. If it
is the case, FPE triggers their pre-execution to accumulate

333

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

X Apkpure

GroupMe

FoxNews

Facebook

Weibo
Shein

StudentUniv

Instagram

Zhihu
Lark

Reddit

Booking

Tidal
DoorDash

CNN
Discord

Bilibili
Snapchat

Taobao

VidMate

Tripadvisor

Pinterest

average: 2.04

0.58
0.25

0.06

F
D

P
S

 o
n
 G

o
o
g
le

 P
ix

e
l
5
 (

6
0
H

z
)

VSync 3 bufs
D-VSync 4 bufs
D-VSync 5 bufs
D-VSync 7 bufs

Walmart

Walmart

QQMusic

QQMusic

Figure 11. D-VSync FDPS reduction for apps.More frame drops are eliminated as D-VSync more proactively renders frames.
short frames for later possible long frames. FPE keeps the
state of pre-execution, i.e., the accumulation stage or the
sync stage, allowing at most 3 back buffers for pre-rendering
which tolerates most workload fluctuations in the wild.
DTV. The Display Time Virtualizer keeps a virtual clock of
frame displaying based on the real hardware VSync signals
as the frames accumulate. DTV maintains a model of the
VSync timestamps, periods, and offsets. It calculates the ex-
pected FrameDisplay Timestamp (D-Timestamp) for the next
frame triggered by the FPE, based on the current status of the
rendering pipeline. DTV calibrates the issued D-Timestamp
every few frames with hardware VSync signals to avoid er-
ror accumulation. DTV is also elastic to frame drops (still
possible in D-VSync) and skips VSync periods in such cases.
API. The decoupling APIs expose the runtime capabilities
of D-VSync. For interactive frames and custom-rendering
apps, D-VSync accepts requests for the D-VSync signals that
these scenarios can leverage for decoupled pre-rendering.
The pre-rendering limit and the frame display timestamp
computed are configurable and retrievable.

5.2 D-VSync in Android
We implement D-VSync on Android with Google Pixel 5.
FPE. In Android, the UI thread and the render thread of every
app are triggered by the choreographer [17] listening on the
VSync-app signals. FPE integrated inside the choreographer
keeps the D-VSync states and renders the next frame from
the looper [21] when a pre-rendering decision is made.
DTV. The DTV collaborates with FPE to ensure that, the D-
Timestamp always keeps constant pacing with the uniform
screen refresh maintained by SurfaceFlinger [9], through
necessary modelings and calibrations.
API. In addition to the APIs described in §5.1, D-VSync wires
the IPL to the root of the view tree which delivers the input
events. Apps can register custom curves for specific interac-
tive scenarios using the exposed APIs.

5.3 D-VSync with LTPO
LTPO (low-temperature polycrystalline oxide) screens [31]
support variable refresh rates. D-VSync aims to improve per-
formance, and LTPO targets at lowering power consumption.
Their benefits are mostly orthogonal from two dimensions.

Traditional LTPO approaches adjust the VSync frequency
based on specific scenarios: a fixed 30 Hz for movies, 60 Hz

Table 1. Platform configuration

device Pixel 5 Mate 40 Pro Mate 60 Pro
release Oct 2020 Nov 2020 Aug 2023
OS AOSP 13 OH 4.0 OH 4.0

backend GLES GLES GLES/VK
screen 1080 x 2340 1344 x 2772 1260 x 2720

refresh rate 60Hz / 16.7ms 90Hz / 11.1ms 120Hz / 8.3ms

for videos, and 120 Hz for interactions. D-VSync can adapt to
such changes of refresh rates by adjusting the D-Timestamp
calculation based on the scenarios as well.
State-of-the-art LTPO approaches, such as Apple’s Pro-

Motion [12], Huawei’s X-True [19], and Oppo’s O-Sync [14],
dynamically lower the VSync frequency in real time when
the motion of animations is slow enough for human eyes
to perceive the difference. For example, a swipe may start
at 120 Hz, and when the scrolling speed of the list drops
below a certain threshold, the refresh rate switches to 90 Hz
and eventually to 60 Hz. To ensure consistent rendering and
displaying (frames rendered at 𝑋 Hz are not displayed at
𝑌 Hz), D-VSync cooperates with the LTPO module to coor-
dinate the timing of rendering rate change and refresh rate
change in terms of accumulated frames if any. The frames
produced at frame rate 𝑋 must be consumed by the screen’s
HAL before the screen can switch to the new refresh rate
𝑌 . Every rendered buffer has a rendering rate bound to it,
controlling the display duration of the frame, as well as the
timing of the screen refresh rate change when two adjacent
frames have different rates.

The co-design (with LTPO) has also been implemented in
commercial smartphone OSes and devices.

6 Evaluation
We evaluate D-VSync on Google Pixel 5 (60 Hz) with AOSP
13, and Mate 40 Pro (90 Hz) and Mate 60 Pro (120 Hz) with
OpenHarmony 4.0. Table 1 illustrates the device configura-
tions. We report both the objective data of frame drops
collected by industrial testing framework, and the subjec-
tive data of stutters assessed by professional user experience
(UX) evaluators. We also evaluate the rendering latency, exe-
cution cost, power consumption, and present case studies of
decoupling-aware apps (map and Chromium [3]).

6.1 Reduction of Frame Drops
We collect the objective data through a testing framework
from a major smartphone vendor. It simulates necessary

334

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

0.0

5.0

10.0

15.0

20.0

25.0

cls notif ctr

rot btn anim

cam mode sel

tap cls notif

clr all notif

del one notif

cls ctrl ctr

pht to cam

tap cls ctrl

unlock lock

scrl tiktok

cam to pht

clr all tasks

clck hibd cd

scrl albums

sld ret hibd

scrl wechat

vert to hori

open album

open ctrl ctr

enter hibd

lock to pswd

open search

open notif ctr

qk opn apps

swp ret hibd

exit app slide

brtness adj

shw ph cd

average: 8.42

1.39

F
D

P
S

 o
n
 M

a
te

 6
0
 P

ro
 (

1
2
0
H

z
)

VSync 4 bufs
D-VSync 4 bufs

Figure 12. D-VSync FDPS reduction for common OS use cases with Vulkan backend. Appendix A lists the abbreviations.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

pht to cam

scrl videos

cls notif ctr

cam mode sel

vert to hori

hori to vert

clr all notif

scrl photos

scrl wechat

average: 3.17

0.97

F
D

P
S

 o
n

 M
a

te
 4

0
 P

ro
 (

9
0

H
z
)

VSync 4 bufs
D-VSync 4 bufs

0.0

4.0

8.0

12.0

16.0

20.0

32.0

36.0

clck settings

scrl videos

vert to hori

shw
 ctrl btns

clr all notif

hori to vert

scrl photos

cls notif ctr

scrl tiktok

scrl album
s

scrl w
echat

pht to cam

sld cls fd

open ctrl ctr

cam
 to pht

lock to psw
d

clck hibd cd

tap cls fd

cls ctrl ctr

scrl sets

average: 7.51

2.52

= =

F
D

P
S

 o
n

 M
a

te
 6

0
 P

ro
 (

1
2

0
H

z
)

VSync 4 bufs
D-VSync 4 bufs

Figure 13. D-VSync FDPS reduction with GLES.

real-user clicks and swipes for a defined set of scenarios.
Specifically, we report data from 25 world top apps covering
common categories, 75 OS use cases and apps encompassing
most system functionalities1, and simulations of D-VSync
on 15 mobile games. These testings embody years of experi-
ences from the smartphone deployment, represent real user
behaviors, and provide a reference for future research.

We first evaluate the performance of frame drop reduction
under different configurations of pre-rendering limit. As D-
VSync more proactively accumulates frames, frame drops
per second (FDPS) are reduced more, while the memory cost
for buffers will be higher (§6.4). As illustrated in Figure 11,
for each app and each configuration, 1000 frames in Google
Pixel 5 are recorded by swiping the main page twice a second.
When D-VSync is allowed to utilize 4 buffers, the default
setting of D-VSync, 71.6% of frame drops are eliminated, and
FDPS averages at 0.58. For 5 buffers, FDPS reduction reaches
87.7% and only one jank is detected for every 4 seconds.
To further prove the effectiveness of D-VSync, we evalu-

ate 75 common OS use cases and apps on Mate 40 Pro and
Mate 60 Pro that have frame drops in VSync. Averages are
derived from five runs to mitigate fluctuations. For the 9
cases that have frame drops on Mate 40 Pro, the average
FDPS is reduced from 3.17 to 0.97 by 69.4%, as shown in
Figure 13. For Mate 60 Pro, the reduction is 83.5% and 66.4%
for Vulkan and GLES backends respectively, illustrated in

1 Detailed descriptions and abbreviations are listed in Appendix A.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Honor of Kings (UI), 60Hz

Identity V (UI), 30Hz

Game for Peace (UI), 30Hz

RTK Mobile, 30Hz

CF: Legends (UI), 60Hz

Survive, 60Hz

8 Ball Pool, 60Hz

Happy Poker, 30Hz

Thief Puzzle, 60Hz

Teamfight Tactics, 30Hz

TK: Conspiracy, 30Hz

FWJ, 60Hz

Original Legends, 60Hz

PvZ 2, 30Hz

LTK, 90Hz

average: 0.79

0.25

F
D

P
S

 o
n

 M
a
te

 6
0
 P

ro VSync 3 bufs
D-VSync 4 bufs
D-VSync 5 bufs

Figure 14. Simulation in games for FD reduction.
Figure 12 and 13. Overall, the average frame drop reduction
on the three devices with D-VSync equipped is 72.7%.
Analysis. We compare Walmart and QQMusic in Figure 11,
where D-VSync significantly improves the former, not the
latter. For Walmart, frame drops are scattered in time and
most long frames take less than 3 VSync periods, which
is effectively addressed by the decoupled pre-rendering of
D-VSync. In contrast, QQMusic has a considerably skewed
distribution, with numerous long frames that even 7 buffers
fail to hide the jank. Therefore, D-VSync is not a panacea,
and inefficient code is still discouraged while D-VSync can
reduce frame drops to a large extent.
Simulation of Games. We collect the runtime traces (CPU
and GPU time of every frame) of 15 mobile games for UI and
scene animations where frame drops are common. We then
use scripts to simulate the D-VSync decoupled pre-rendering
pattern and count frame drops. These games use custom
rendering engines that bypass the D-VSync framework. Fig-
ure 14 illustrates the theoretical performance boosts of 68.4%
and 87.3% FDPS reduction using 4 or 5 buffers, respectively.

6.2 Reduction of User-perceived Stutters
We collect the subjective data assessed by our professional
user experience (UX) team. TheUX evaluators arewell trained
to perform the tasks listed in Table 2 and report any stutters
they perceive. The janks are later confirmed by a high-speed
camera recording the screen. Compared to the objective test-
ing cases, every task of UX evaluation involves multiple
consecutive operations in different scenes and pages. Table 2
compares the number of stutters perceived in VSync and D-
VSync on Mate 60 Pro. D-VSync on average reduces 72.3% of
the stutters over all the tasks, improving the user experience.

6.3 Reduction of Rendering Latency
D-VSync circumvents the unnecessarywaiting latency caused
by buffer stuffing in the triple-buffering VSync architecture.

335

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 2. Number of stutters preceived in professional
user experience (UX) evalution of different tasks.

Task Description VSync D-VSync
Cold start and close the Top 20 apps,

then slide through the multitasking interface. 20 12 ↓40%

Cold start every Top 10 news/social apps,
and immediately swipe upwards after start. 28 3 ↓89%

Hot start every Top 10 news/social apps,
and immediately swipe upwards after start. 25 2 ↓92%

In a game app, switch to a news app and swipe
upwards (switch back to the game and repeat 5 times) 20 3 ↓85%

In a short video app, open up the comments and swipe
upwards (slide to the next video and repeat 5 times) 20 2 ↓90%

In a music app, swipe through the music page and
click on one to play (switch back and repeat 5 times) 7 0 ↓100%

In a shopping app, swipe through the products page,
and open up a product to swipe through the details. 14 13 ↓7%

In a lifestyle app, swipe through the advertisements,
and open up all nearby restaurants to swipe through. 40 10 ↓75%

0 5040302010

Mate 40 Pro (90 Hz)

Google Pixel 5 (60 Hz)
45.8

31.2 (31.9%)

32.2

22.3 (30.7%)

24.2

16.8 (30.6%)
Mate 60 Pro (120Hz)

ms

VSync

D-VSync

Figure 15. Rendering latency reduction.

Through the decoupled Display-Timestamp, frames in D-
VSync are able to proactively accumulate with a future times-
tamp at hand to avoid any time discrepancy.
To evaluate the rendering latency, we write a script to

measure the duration from the execution of a frame (or the D-
Timestamp in D-VSync) to its final display (i.e., present fence
indicated by the screen HAL), for buffer-stuffing frames,
direct-composition (i.e., no waiting) frames, and frame drops,
across all the runtime traces we collect.

Figure 15 illustrates a summary on the three devices with
different refresh rates. On average, D-VSync reduces the ren-
dering latency by 31.1%.

6.4 Costs of D-VSync

Execution time. The pre-execution management and the
display time computation create minor execution overheads.
The D-VSync module spends an additional 102.6 µs of exe-
cution time every frame compared with the VSync baseline,
including both the FPE and DTV . The cost is negligible, oc-
cupying 1.2% of a 120 Hz VSync period. Besides, VSync/D-
VSync threads run on little cores that do not compete with
the UI/rendering threads on middle/big cores. §6.5 evaluates
the cost from the app side using decoupling-aware APIs.
Memory. D-VSync hasmore memory usage as we enlarge the
maximum number of frame buffers. A full-screen RGBA8888
frame buffer takes around 10 MB in Pixel 5 and 15 MB in
Mate phones. In Android, D-VSync that utilizes 4 buffers
takes about 10 MB per app in addition to the triple-buffering
VSync, permissible in modern smartphones with at least
8 GB of memory. For Mate 40 Pro and Mate 60 Pro, since
the render service by default uses 4 buffers for redundancy,

0.0

0.5

1.0

1.5

2.0

FDPS reduction Latency ZDP overhead

fr
a
m

e
 d

ro
p
s
 p

e
r

s
e
c
o
n
d

VSync 3 bufs -VSync 5 bufsD

0

50

100

150

200

0

15

30

45

60

e
x
e
c
u
ti
o
n
 t
im

e
 (

µ
s
)

Figure 16. Evaluation of the map app. Custom-rendering
interactive apps can also take advantage of D-VSync.

D-VSync does not cause any noticeable increase in memory
usage, with less than 10 KB used for the FPE, DTV , and API
logic itself.

6.5 Case Study-1: Map App
We demonstrate the potential of D-VSync for decoupling-
aware zoom operations by developing a map app using the
AMap SDK [1] on Android. Zooming requires two fingers to
remain on the screen for real-time adjustment of the zoom
level. During this process, different levels of vector tiles (ge-
ographic data) are loaded and rendered. Compared with
browsing, zooming has a heavier load with frame drops.

To reduce stutters, the map app registers a Zooming Dis-
tance Predictor (ZDP) using the IPL extension in D-VSync.
Users do zooming by increasing or decreasing the distance be-
tween the two fingertips. ZDP outputs the expected distance
at the D-Timestamp retrieved from the DTV API, based on a
linear line fitting of current (and historical) data of the dis-
tance. Through the runtime controller API, D-VSync is only
activated in zooming, not browsing. For the pre-rendering
limit, the map configures D-VSync to utilize 5 buffers.

The additional logic takes less than 200 LOC in Java, while
it eliminates 100% of frame drops and enhances the smooth-
ness significantly. For 3,600 frames recorded, the latency is
reduced by 30.2%, with an average execution time of 151.6 µs
every frame for ZDP , shown in Figure 16.

6.6 Case Study-2: Chromium Browser
Chromium [3] is an open-source web browser whose render-
ing pipeline takes HTML plain texts with data and scripts
to produce pixel bitmaps as frames (i.e., a custom-rendering
app). A web page is divided into layers with tiles that are ras-
terized asynchronously and later composited synchronously
with VSync signals. We developed the decoupled render-
ing scheme on the real-time compositor of Chromium in
OpenHarmony, which pre-renders frames during animations
using D-VSync-aware APIs. For Sina, Weather, and AI Life
pages, the average FDPS is reduced from 1.47 to 0.08 by 94.3%
during the flinging animations after swiping.

6.7 Power Consumption
The additional power consumption is essentially negligible,
as D-VSync merely shifts subsequent loads forward, allow-
ing more frames to be completed before the VSync deadline.

336

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

Specifically, the end-to-end power consumption of the device
increases 0.13%–0.37%. This overhead includes the render-
ing of frames that would have been dropped in the VSync
architecture (theoretically should have been rendered).
End-to-end power consumption. We use a power tester
connected to a fully charged Pixel 5, tracking the power
for 30 minutes after a 30-minute warmup. For an animation
programmed in the map app (both in VSync and in D-VSync
using FPE, DTV and APIs), the power consumption increases
0.13%. When 10% of the frames additionally invoke the ZDP
input curve fitting, the power increase reaches 0.37%.
CPU instructions. For the 75 OS use cases on Mate 60
Pro, we record the number of CPU instructions executed in
the render service. With D-VSync on and off, the averages
are 10.849 and 10.793 million instructions per frame. The
additional overhead is 0.52%.

7 Deployment Experience

We derived three lessons from our deployment of D-VSync.
Subjective data are equally important, particularly for
rendering systems interacting with end users. Some perfor-
mance aspects elude objectivemetrics. For example, incorrect
frame display time calculations can cause chaotic content
despite achieving higher frame rates. A comprehensive user
experience evaluation prior to deployment can provide a
more accurate reflection of the system’s benefits.
Educating app/system developers is crucial, especially
for the deployment of a new architecture. Graphics program-
mers ofter rely on runtime traces to locate performance bot-
tlenecks, while our new architecture fundamentally alters
the execution pattern. Therefore, we held lectures within the
company, exchanged ideas with top third-party application
partners, and wrote detailed architecture documentation.
Compatibility should be considered in advance, when
different related solutions are being developed in parallel.
D-VSync and LTPO solutions were developed almost simul-
taneously on HarmonyOS NEXT by different teams. Later,
we realized the potential interplay between the two, leading
to significant time spent resolving conflicts and correcting
designs. Early compatibility considerations and better com-
munication between teams would have increased efficiency.

8 Related Work

State-of-the-art research regarding the rendering system
usually focuses on optimizing one component in the whole
architecture [26, 27, 29, 33, 38, 44, 47, 49–51, 55, 60], propos-
ing new hardware extensions [45, 62–65, 68], or making use
of other system components to aid the rendering pipeline,
such as energy-aware scheduling, DVFS governing, or touch
boosting [32, 34–36, 42, 48, 52, 67] However, they mainly tar-
get at energy consumption. Improvements for frame drops
and latency are less focused or outstanding.

For optimizations relevant toD-VSync in mobile rendering,
LTPO [12, 14, 19, 31] supports variable screen refresh rates
to save power. Arnau et al. [28] propose parallel rendering
where two consecutive frames are rendered in parallel to
trade responsiveness for energy on mobile GPU, while D-
VSync is a solution to hide the display latency. Pathania
et al. [57, 58] implement an integrated CPU-GPU power
management strategy to adjust FPS to a target lower than
60 to save energy. However, 50 FPS in smartphones usually
implies that 10 janks are produced on a 60 Hz screen. Lo
et al. [52] and Choi et al. [34] estimate the execution time
of frames to adjust the CPU/GPU frequency, so each job
can finish just before the VSync signal to save energy. We
consider these works orthogonal but applicable to D-VSync
which gives a bigger time window for frame execution.

Similar techniques of D-VSync has been used in various
settings of mobile computing. Huang et al. [41], Yan et al.
[66], and Baeza-Yates et al. [30] use contextual information
to infer the next app to be used, facilitating app launching.
Agrawal et al. [26] pre-inflate UI layouts to reduce activity
transition time. PES [36] proactively anticipates events in
the DOM of web apps to better coordinate scheduling. On
the other hand, D-VSync pre-renders deterministic frames
where screen refresh imposes a more strict millisecond-level
deadline. Outatime [46] predicts navigation inputs to mask
network latency in cloud gaming using a Markov model.
Hou et al. [40] use LSTM and MLP to predict head and body
motion in VR. It is possible to integrate their predictors into
D-VSync for various interactive scenarios.

9 Conclusion
This paper introduces D-VSync, a new rendering architecture
for smartphoneOSes that eliminates frame drops and reduces
latency. Based on the power law distribution of rendering
workloads, D-VSync decouples the rendering execution from
the periodic display events so that accidental long frames
can use the computational power saved by common short
frames. D-VSync has been deployed as a pivotal innovation
in the next generation of major smartphone products. We an-
ticipate that it will have a significant impact on the evolution
of rendering architectures.

Acknowledgments
We sincerely thank our shepherd Yuhao Zhu and the anony-
mous ASPLOS’25 reviewers for their insightful suggestions.
We sincerely thank Xiaobo Xu, Shaoquan Qin, Hui Guo, and
other colleagues from Huawei Fields Lab for the commercial
implementation and deployment of D-VSync. This work was
supported in part by National Natural Science Foundation
of China (No. 62132014, 61925206, 62472279, 62302300), and
Startup Fund for Young Faculty at SJTU (SFYF at SJTU). Cor-
responding authors: Dong Du (dd_nirvana@sjtu.edu.cn) and
Yubin Xia (xiayubin@sjtu.edu.cn).

337

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 3. Detailed descriptions of the OS use cases and apps for end-to-end rendering performance evaluation.

Category Detailed Description Abbreviation
1 Phone Unlocking Swipe upwards in the lock screen to enter the password page lock to pswd
2 Phone Unlocking The fly-in animation of the sceneboard after entering the last digit of the password pswd to desk
3 Phone Unlocking Swipe upwards in the lock screen to unlock the phone (without password) unlock lock
4 Phone Unlocking The fly-in animation of the sceneboard (without password) lock to desk
5 Sceneboard Slide the sceneboard pages left and right (with default pre-installed apps) slide desk
6 Sceneboard Slide the sceneboard pages left and right when exiting an app exit app slide
7 Sceneboard Slide the sceneboard pages left and right with full folders (Figure 17(a)) slide full fd
8 App Operation App opening animation when clicking an app open app
9 App Operation App closing animation when swiping upwards close app
10 App Operation App closing animation when sliding rightwards sld cls app
11 App Operation Quickly open and close apps one after another qk opn apps
12 Folder Folder opening animation when clicking a folder open fd
13 Folder Folder closing animation when tapping the empty space outside tap cls fd
14 Folder Folder closing animation when sliding rightwards sld cls fd
15 Folder Folder closing animation when swiping upwards swp cls fd
16 Cards Long click the photos app and the cards show up (Figure 17(b)) shw ph cd
17 Cards Tap the empty space outside to close the cards of the photos app cls ph cd
18 Cards Long click the memos app and the cards show up shw mem cd
19 Cards Tap the empty space outside to close the cards of the memos app cls mem cd
20 Notification Center Swipe downwards to open the notification center open notif ctr
21 Notification Center Swipe upwards to close the notification center cls notif ctr
22 Notification Center Tap the empty space to close the notification center tap cls notif
23 Notification Center Click the trash can button to clear all notifications clr all notif
24 Notification Center Slide rightwards to delete one notification and the bottom ones move up del one notif
25 Control Center Swipe downwards to open the control center open ctrl ctr
26 Control Center Swipe upwards to close the control center cls ctrl ctr
27 Control Center Tap the empty space to close the control center tap cls ctrl
28 Control Center Click the unfold button to show all control buttons shw ctrl btns
29 Control Center Screen rotation button animation when clicking on the button rot btn anim
30 Control Center Click the settings button in the control center to enter the settings clck settings
31 Control Center Adjust the screen brightness in the control center brtness adj
32 Volume Bar The volume bar appears when clicking the physical volume adjustment button shw vol bar
33 Volume Bar Disappearing animation of the volume bar after some time of no operation vol bar gone
34 Volume Bar Short click the physical volume adjustment button to adjust volume clck adj vol
35 Volume Bar Long click the physical volume adjustment button to adjust volume lclck adj vol
36 Volume Bar Slide the volume bar on the screen to adjust volume sld adj vol
37 Volume Bar Tap the empty space to hide the volume bar hide vol bar
38 Tasks Swipe upwards on the sceneboard to enter tasks opn tasks dsk
39 Tasks Swipe upwards on the app to enter tasks opn tasks app
40 Tasks Slide the tasks left and right sld tasks
41 Tasks Swipe upwards to delete one task and the last task moves rightwards del one task
42 Tasks Click the trash can button to clear all tasks and go back to the sceneboard clr all tasks
43 Tasks Tap the empty space to leave the tasks leave tasks
44 Tasks Click one task to enter the app task open app
45 HiBoard Slide rightwards from the first page of the sceneboard to enter HiBoard (Figure 17(c)) enter hibd
46 HiBoard Click the weather card on HiBoard to enter weather app clck hibd cd
47 HiBoard Swipe upwards in the weather app to return to HiBoard swp ret hibd
48 HiBoard Slide rightwards in the weather app to return to HiBoard sld ret hibd
49 Global Search Swipe downwards to open global search open search
50 Global Search Slide rightwards to close global search cls search
51 Keyboard Click the browser search bar to show the virtual keyboard shw kb
52 Keyboard Click the keyboard hide button to hide the virtual keyboard hide kb
53 Screen Rotation Rotate the screen from vertical to horizontal when displaying a full-screen photo vert ph hori
54 Screen Rotation Rotate the screen from horizontal to vertical when displaying a full-screen photo hori ph vert

338

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

Category Detailed Description Abbreviation
55 Screen Rotation Rotate the screen from vertical to horizontal when displaying an app vert to hori
56 Screen Rotation Rotate the screen from horizontal to vertical when displaying an app hori to vert
57 Photos Scroll the albums in the photos app scrl albums
58 Photos Click into one album and enter its photo list open album
59 Photos Scroll the photo list in the photos app scrl photos
60 Photos Click into one photo and view the photo in full screen clck photo
61 Photos Browse the full-screen photo brws photo
62 Photos Swipe downwards the full-screen photo to return to the photo list ret photos
63 Photos Slide rightwards the full-screen photo to return to the photo list sld ret photos
64 Photos Click the back button in the photo list to return to the album list ret albums
65 Camera Click the photo preview in the camera app to enter the photos app cam to pht
66 Camera Slide rightwards from the photos app to return to the camera app pht to cam
67 Camera Slide inside the camera app to select between camera modes cam mode sel
68 Browser Click the pages button to see all the opening pages in the browser app brwsr pages
69 Settings Scroll the settings in the main page of the settings app scrl sets
70 Settings Click the bluetooth setting in the settings app to enter the subpage clck bt
71 Settings Click the WLAN setting in the settings app to enter the subpage clck wlan
72 Settings Click the login tab in the settings app to enter the subpage clck login
73 Other Apps Scroll the main page of WeChat scrl wechat
74 Other Apps Scroll the videos of TikTok scrl tiktok
75 Other Apps Scroll the video lists of Videos scrl videos

(a) Full Folders (b) App Cards (c) HiBoard

Figure 17. (a) A sceneboard page full of folders, where the
dashed box encompasses a folder. (b) App cards show up
when long clicking an app. (c)HiBoard appears when sliding
rightwards on the first page of the sceneboard.

A Appendix
A.1 Abstract
This appendix lists the 75 common OS use cases and apps
that the paper uses to conduct end-to-end evaluations on
the VSync-based and D-VSync-based systems. These cases
are carefully selected to cover a wide range of system func-
tionalities, such as unlocking the phone, rotating the screen,
opening apps, etc., as well as a set of commonly used system
apps, such as the camera, photos, control center, notification
center, etc. These use cases form a benchmark that compre-
hensively tests the performance of the OS rendering service,
providing a reference for the follow-up research.

A.2 Methodology
The 75 OS use cases and apps are fully automated through
python scripts that mimic necessary human operations. A
phone is connected to the PC through a USB cable, and
script commands are sent through OpenHarmony Device
Connector (HDC) [15], a tool similar to ADB [16] that de-
bugs and controls the device. Before any test starts, a setup
script installs required apps, positions them correctly on the
sceneboard (desktop), and pushes dummy data like photos
and videos onto the phone. Every test case starts and ends
on the first page of the sceneboard. Each script first enters
the start position of the test from the first page, and then
records a trace while performing simulated clicks or swipes.
Finally, it counts the number of frame drops and calculates
the frame drops per second (FDPS) from the trace. Averages
are derived from five runs to mitigate fluctuations.

A.3 Detailed Descriptions
Detailed descriptions of the use cases are shown in Table 3.
The corresponding abbreviations are used in Figure 12 and
13 of the paper.

References
[1] Amap open platform | amap api. https://lbs.amap.com/.
[2] Amd freesync™ technology. https://www.amd.com/en/technologies/

free-sync.
[3] Chromium. https://www.chromium.org/Home/.
[4] Compositor thread architecture. https://www.chromium.org/

developers/design-documents/compositor-thread-architecture/.
[5] Nvidia g sync: The best gaming monitors. https://www.nvidia.com/en-

us/geforce/products/g-sync-monitors/.
[6] Nvidia reflex victory measured in milliseconds. https://www.nvidia.

com/en-us/geforce/technologies/reflex/.

339

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://lbs.amap.com/
https://www.amd.com/en/technologies/free-sync
https://www.amd.com/en/technologies/free-sync
https://www.chromium.org/Home/
https://www.chromium.org/developers/design-documents/compositor-thread-architecture/
https://www.chromium.org/developers/design-documents/compositor-thread-architecture/
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/
https://www.nvidia.com/en-us/geforce/products/g-sync-monitors/
https://www.nvidia.com/en-us/geforce/technologies/reflex/
https://www.nvidia.com/en-us/geforce/technologies/reflex/

D-VSync: Decoupled Rendering and Displaying for Smartphone Graphics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

[7] Openharmony arkui_ace_engine. https://gitee.com/openharmony/
arkui_ace_engine.

[8] Perfetto - system profiling, app tracing and trace analysis - perfetto
tracing docs. https://perfetto.dev/docs/.

[9] Surfaceflinger and windowmanager. https://source.android.com/docs/
core/graphics/surfaceflinger-windowmanager.

[10] Understanding user interface responsiveness. https://developer.
apple.com/documentation/xcode/understanding-user-interface-
responsiveness/.

[11] Opengl es - the standard for embedded accelerated 3d graphics, 07
2011. https://www.khronos.org/api/opengles.

[12] ipad pro, in 10.5-inch and 12.9-inch models, introduces the world’s
most advanced display and breakthrough performance, 06 2017.
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-
12-9-inch-models-introduces-worlds-most-advanced-display-
breakthrough-performance/.

[13] Android open source project, 2019. https://source.android.com/.
[14] Oppo find x3 pro | oppo global, 03 2021. https://www.oppo.com/en/

smartphones/series-find-x/find-x3-pro/.
[15] hdc, 12 2022. https://docs.openharmony.cn/pages/v4.0/en/device-dev/

subsystems/subsys-toolchain-hdc-guide.md/.
[16] Android debug bridge (adb), 08 2023. https://source.android.com/docs/

setup/build/adb.
[17] Choreographer, 04 2023. https://developer.android.com/reference/

android/view/Choreographer.
[18] Graphics subsystem, 04 2023. https://gitee.com/openharmony/docs/

blob/master/en/readme/graphics.md.
[19] Huawei mate x3 - huawei global, 03 2023. https://consumer.huawei.

com/en/phones/mate-x3/.
[20] ios 17, 12 2023. https://www.apple.com/ios/ios-17/.
[21] Looper, 02 2023. https://developer.android.com/reference/android/os/

Looper.
[22] Nativevsync, 12 2023. https://docs.openharmony.cn/pages/v4.0/en/

application-dev/reference/native-apis/_native_vsync.md/.
[23] Openatom openharmony, 12 2023. https://www.openharmony.cn/

mainPlay.
[24] Vsync, 11 2023. https://source.android.com/docs/core/graphics/

implement-vsync.
[25] Vulkan | cross platform 3d graphics, 2024. https://www.vulkan.org/.
[26] Sumeen Agrawal, Manith Shetty, Sripurna Mutalik, and Anuradha

Kanukotla. Method to improve ui rendering using predictive sequence
modelling. In 2022 26th International Conference on Pattern Recog-
nition (ICPR), pages 5031–5037, 2022. https://doi.org/10.1109/
ICPR56361.2022.9956234.

[27] Martí Anglada, Enrique de Lucas, Joan-Manuel Parcerisa, Juan L.
Aragón, Pedro Marcuello, and Antonio González. Rendering elim-
ination: Early discard of redundant tiles in the graphics pipeline. In
2019 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 623–634, 2019. https://doi.org/10.1109/
HPCA.2019.00014.

[28] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis.
Parallel frame rendering: Trading responsiveness for energy on a
mobile gpu. In Proceedings of the 22nd International Conference on
Parallel Architectures and Compilation Techniques, pages 83–92, 2013.
https://doi.org/10.1109/PACT.2013.6618806.

[29] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis.
Eliminating redundant fragment shader executions on a mobile gpu
via hardware memoization. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages 529–540, 2014.
https://doi.org/10.1109/ISCA.2014.6853207.

[30] Ricardo Baeza-Yates, Di Jiang, Fabrizio Silvestri, and Beverly Harri-
son. Predicting the next app that you are going to use. In Proceed-
ings of the Eighth ACM International Conference on Web Search and
Data Mining, WSDM ’15, page 285–294, New York, NY, USA, 2015.
Association for Computing Machinery. https://doi.org/10.1145/

2684822.2685302.
[31] Ting-Kuo Chang, Chin-Wei Lin, and Shihchang Chang. 39-3: Invited

paper: Ltpo tft technology for amoleds†. SID Symposium Digest of
Technical Papers, 50(1):545–548, 2019. https://doi.org/10.1002/
sdtp.12978.

[32] Wei-Ming Chen, Sheng-Wei Cheng, Pi-Cheng Hsiu, and Tei-Wei Kuo.
A user-centric cpu-gpu governing framework for 3d games on mobile
devices. In 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 224–231, 2015. https://doi.org/10.1109/
ICCAD.2015.7372574.

[33] Yanju Chen, Junrui Liu, Yu Feng, and Rastislav Bodik. Tree traversal
synthesis using domain-specific symbolic compilation. In Proceedings
of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’22, page
1030–1042, New York, NY, USA, 2022. Association for Computing
Machinery. https://doi.org/10.1145/3503222.3507751.

[34] Yonghun Choi, Seonghoon Park, and Hojung Cha. Graphics-aware
power governing for mobile devices. In Proceedings of the 17th An-
nual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’19, page 469–481, New York, NY, USA, 2019. As-
sociation for Computing Machinery. https://doi.org/10.1145/
3307334.3326075.

[35] Yonghun Choi, Seonghoon Park, Seunghyeok Jeon, Rhan Ha, and
Hojung Cha. Optimizing energy consumption of mobile games. IEEE
Transactions on Mobile Computing, 21(10):3744–3756, 2022. https:
//doi.org/10.1109/TMC.2021.3058381.

[36] Yu Feng and Yuhao Zhu. Pes: Proactive event scheduling for responsive
and energy-efficient mobile web computing. In Proceedings of the
46th International Symposium on Computer Architecture, ISCA ’19,
page 66–78, New York, NY, USA, 2019. Association for Computing
Machinery. https://doi.org/10.1145/3307650.3322248.

[37] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Yunhao Liu, Feng Qian,
Liangyi Gong, and Tianyin Xu. Trinity: High-Performance mobile
emulation through graphics projection. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pages 285–
301, Carlsbad, CA, July 2022. USENIX Association. https://www.usenix.
org/conference/osdi22/presentation/gao.

[38] Yi Gao, Yang Luo, Daqing Chen, Haocheng Huang, Wei Dong,
Mingyuan Xia, Xue Liu, and Jiajun Bu. Every pixel counts: Fine-
grained ui rendering analysis for mobile applications. In IEEE INFO-
COM 2017 - IEEE Conference on Computer Communications, pages 1–9,
2017. https://doi.org/10.1109/INFOCOM.2017.8057023.

[39] Chet Haase and Romain Guy. For butter or worse: Smoothing out
performance in android uis, 01 2012. https://www.youtube.com/watch?
v=Q8m9sHdyXnE.

[40] Xueshi Hou and Sujit Dey. Motion prediction and pre-rendering at
the edge to enable ultra-low latency mobile 6dof experiences. IEEE
Open Journal of the Communications Society, 1:1674–1690, 01 2020.
https://doi.org/10.1109/OJCOMS.2020.3032608.

[41] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen. Predict-
ing mobile application usage using contextual information. In Proceed-
ings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp
’12, page 1059–1065, New York, NY, USA, 2012. Association for Com-
puting Machinery. https://doi.org/10.1145/2370216.2370442.

[42] Nohyun Jung, Gwangmin Lee, Seokjun Lee, and Hojung Cha. Tbooster:
Adaptive touch boosting for mobile texting. In Proceedings of the 17th
International Workshop on Mobile Computing Systems and Applications,
HotMobile ’16, page 63–68, New York, NY, USA, 2016. ACM. https:
//doi.org/10.1145/2873587.2873592.

[43] Kaylin. Phone screen time addiction- new survey data & statistics, 01
2024. https://www.harmonyhit.com/phone-screen-time-statistics/.

[44] Gwangmin Lee, Seokjun Lee, Geonju Kim, Yonghun Choi, Rhan Ha,
and Hojung Cha. Improving energy efficiency of android devices by
preventing redundant frame generation. IEEE Transactions on Mobile

340

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://gitee.com/openharmony/arkui_ace_engine
https://gitee.com/openharmony/arkui_ace_engine
https://perfetto.dev/docs/
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://source.android.com/docs/core/graphics/surfaceflinger-windowmanager
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://developer.apple.com/documentation/xcode/understanding-user-interface-responsiveness/
https://www.khronos.org/api/opengles
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://source.android.com/
https://www.oppo.com/en/smartphones/series-find-x/find-x3-pro/
https://www.oppo.com/en/smartphones/series-find-x/find-x3-pro/
https://docs.openharmony.cn/pages/v4.0/en/device-dev/subsystems/subsys-toolchain-hdc-guide.md/
https://docs.openharmony.cn/pages/v4.0/en/device-dev/subsystems/subsys-toolchain-hdc-guide.md/
https://source.android.com/docs/setup/build/adb
https://source.android.com/docs/setup/build/adb
https://developer.android.com/reference/android/view/Choreographer
https://developer.android.com/reference/android/view/Choreographer
https://gitee.com/openharmony/docs/blob/master/en/readme/graphics.md
https://gitee.com/openharmony/docs/blob/master/en/readme/graphics.md
https://consumer.huawei.com/en/phones/mate-x3/
https://consumer.huawei.com/en/phones/mate-x3/
https://www.apple.com/ios/ios-17/
https://developer.android.com/reference/android/os/Looper
https://developer.android.com/reference/android/os/Looper
https://docs.openharmony.cn/pages/v4.0/en/application-dev/reference/native-apis/_native_vsync.md/
https://docs.openharmony.cn/pages/v4.0/en/application-dev/reference/native-apis/_native_vsync.md/
https://www.openharmony.cn/mainPlay
https://www.openharmony.cn/mainPlay
https://source.android.com/docs/core/graphics/implement-vsync
https://source.android.com/docs/core/graphics/implement-vsync
https://www.vulkan.org/
https://doi.org/10.1109/ICPR56361.2022.9956234
https://doi.org/10.1109/ICPR56361.2022.9956234
https://doi.org/10.1109/HPCA.2019.00014
https://doi.org/10.1109/HPCA.2019.00014
https://doi.org/10.1109/PACT.2013.6618806
https://doi.org/10.1109/ISCA.2014.6853207
https://doi.org/10.1145/2684822.2685302
https://doi.org/10.1145/2684822.2685302
https://doi.org/10.1002/sdtp.12978
https://doi.org/10.1002/sdtp.12978
https://doi.org/10.1109/ICCAD.2015.7372574
https://doi.org/10.1109/ICCAD.2015.7372574
https://doi.org/10.1145/3503222.3507751
https://doi.org/10.1145/3307334.3326075
https://doi.org/10.1145/3307334.3326075
https://doi.org/10.1109/TMC.2021.3058381
https://doi.org/10.1109/TMC.2021.3058381
https://doi.org/10.1145/3307650.3322248
https://www.usenix.org/conference/osdi22/presentation/gao
https://www.usenix.org/conference/osdi22/presentation/gao
https://doi.org/10.1109/INFOCOM.2017.8057023
https://www.youtube.com/watch?v=Q8m9sHdyXnE
https://www.youtube.com/watch?v=Q8m9sHdyXnE
https://doi.org/10.1109/OJCOMS.2020.3032608
https://doi.org/10.1145/2370216.2370442
https://doi.org/10.1145/2873587.2873592
https://doi.org/10.1145/2873587.2873592
https://www.harmonyhit.com/phone-screen-time-statistics/

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Yuanpei Wu et al.

Computing, 18(4):871–884, 2019. https://doi.org/10.1109/TMC.
2018.2844202.

[45] Junseo Lee, Seokwon Lee, Jungi Lee, Junyong Park, and Jaewoong Sim.
Gscore: Efficient radiance field rendering via architectural support for
3d gaussian splatting. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, ASPLOS ’24, page 497–511, New York,
NY, USA, 2024. Association for Computing Machinery. https://doi.
org/10.1145/3620666.3651385.

[46] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury
Degtyarev, Sergey Grizan, Alec Wolman, and Jason Flinn. Outatime:
Using speculation to enable low-latency continuous interaction for
mobile cloud gaming. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’15,
page 151–165, New York, NY, USA, 2015. Association for Computing
Machinery. https://doi.org/10.1145/2742647.2742656.

[47] Wenjie Li, Yanyan Jiang, Chang Xu, Yepang Liu, Xiaoxing Ma, and Jian
Lü. Characterizing and detecting inefficient image displaying issues in
android apps. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 355–365, 2019.
https://doi.org/10.1109/SANER.2019.8668030.

[48] Xianfeng Li and Gengchao Li. An adaptive cpu-gpu governing frame-
work for mobile games on big.little architectures. IEEE Transactions
on Computers, 70(9):1472–1483, 2021. https://doi.org/10.1109/
TC.2020.3012987.

[49] Xianfeng Li and Gengchao Li. Hb-retriple: Mobile rendering optimiza-
tion based on efficient history reusing. Journal of Systems Architec-
ture, 129:102627, 2022. https://doi.org/10.1016/j.sysarc.2022.
102627.

[50] Xianfeng Li, Gengchao Li, and Xiaole Cui. Retriple: Reduction of
redundant rendering on android devices for performance and energy
optimizations. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020. https://doi.org/10.1109/DAC18072.2020.
9218517.

[51] Junrui Liu, Yanju Chen, Eric Atkinson, Yu Feng, and Rastislav Bodik.
Conflict-driven synthesis for layout engines. Proc. ACM Program.
Lang., 7(PLDI), jun 2023. https://doi.org/10.1145/3591246.

[52] Daniel Lo, Taejoon Song, and G. Edward Suh. Prediction-guided
performance-energy trade-off for interactive applications. In 2015
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 508–520, 2015. https://doi.org/10.1145/2830772.
2830776.

[53] Katerina Mania, Bernard D. Adelstein, Stephen R. Ellis, and Michael I.
Hill. Perceptual sensitivity to head tracking latency in virtual envi-
ronments with varying degrees of scene complexity. In Proceedings of
the 1st Symposium on Applied Perception in Graphics and Visualization,
APGV ’04, page 39–47, New York, NY, USA, 2004. Association for Com-
puting Machinery. https://doi.org/10.1145/1012551.1012559.

[54] Ann McNamara, Katerina Mania, and Diego Gutierrez. Perception
in graphics, visualization, virtual environments and animation. In
SIGGRAPH Asia 2011 Courses, SA ’11, New York, NY, USA, 2011. As-
sociation for Computing Machinery. https://doi.org/10.1145/
2077434.2077448.

[55] Jiayi Meng, Sibendu Paul, and Y. Charlie Hu. Coterie: Exploiting frame
similarity to enable high-quality multiplayer vr on commodity mobile
devices. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 923–937, New York, NY, USA, 2020. As-
sociation for Computing Machinery. https://doi.org/10.1145/
3373376.3378516.

[56] Khalid Moammer. Amd freesync vs nvidia g-sync - dissected and
compared, 03 2015. https://wccftech.com/amd-freesync-nvidia-gsync-
verdict/.

[57] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika
Mitra. Power-performance modelling of mobile gaming workloads

on heterogeneous mpsocs. In Proceedings of the 52nd Annual De-
sign Automation Conference, DAC ’15, New York, NY, USA, 2015. As-
sociation for Computing Machinery. https://doi.org/10.1145/
2744769.2744894.

[58] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated
cpu-gpu power management for 3d mobile games. In Proceedings of
the 51st Annual Design Automation Conference, DAC ’14, page 1–6,
New York, NY, USA, 2014. Association for Computing Machinery.
https://doi.org/10.1145/2593069.2593151.

[59] Rob Shafer. What is screen tearing and how do you fix it? [sim-
ple guide], 03 2022. https://www.displayninja.com/what-is-screen-
tearing/.

[60] Wei Song, Mengqi Han, and Jeff Huang. Imgdroid: Detecting image
loading defects in android applications. In 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering (ICSE), pages 823–834,
2021. https://doi.org/10.1109/ICSE43902.2021.00080.

[61] Josef Spjut, Ben Boudaoud, Kamran Binaee, Jonghyun Kim, Alexander
Majercik, Morgan McGuire, David Luebke, and Joohwan Kim. La-
tency of 30 ms benefits first person targeting tasks more than refresh
rate above 60 hz. In SIGGRAPH Asia 2019 Technical Briefs, SA ’19,
page 110–113, New York, NY, USA, 2019. Association for Computing
Machinery. https://doi.org/10.1145/3355088.3365170.

[62] Blaise Tine, Varun Saxena, Santosh Srivatsan, Joshua R. Simpson, Fadi
Alzammar, Liam Cooper, and Hyesoon Kim. Skybox: Open-source
graphic rendering on programmable risc-v gpus. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3, ASPLOS 2023,
page 616–630, New York, NY, USA, 2023. Association for Computing
Machinery. https://doi.org/10.1145/3582016.3582024.

[63] Nisarg Ujjainkar, Jingwen Leng, and Yuhao Zhu. Imagen: A general
framework for generating memory- and power-efficient image pro-
cessing accelerators. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, ISCA ’23, New York, NY, USA,
2023. Association for Computing Machinery. https://doi.org/10.
1145/3579371.3589076.

[64] Nisarg Ujjainkar, Ethan Shahan, Kenneth Chen, Budmonde Duinkhar-
jav, Qi Sun, and Yuhao Zhu. Exploiting human color discrimination for
memory- and energy-efficient image encoding in virtual reality. In Pro-
ceedings of the 29th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 1, ASP-
LOS ’24, page 166–180, New York, NY, USA, 2024. Association for Com-
puting Machinery. https://doi.org/10.1145/3617232.3624860.

[65] Chenhao Xie, Xie Li, Yang Hu, Huwan Peng, Michael Taylor, and
Shuaiwen Leon Song. Q-vr: system-level design for future mo-
bile collaborative virtual reality. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’21, page 587–599, New
York, NY, USA, 2021. Association for Computing Machinery. https:
//doi.org/10.1145/3445814.3446715.

[66] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie
Liu. Fast app launching for mobile devices using predictive user
context. In Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’12, page 113–126, New
York, NY, USA, 2012. Association for Computing Machinery. https:
//doi.org/10.1145/2307636.2307648.

[67] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. Event-based
scheduling for energy-efficient qos (eqos) in mobile web applica-
tions. In 2015 IEEE 21st International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 137–149, 2015. https:
//doi.org/10.1109/HPCA.2015.7056028.

[68] Yuhao Zhu and Vijay Janapa Reddi. Webcore: Architectural support for
mobile web browsing. In 2014 ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), pages 541–552, 2014. https://doi.
org/10.1109/ISCA.2014.6853239.

341

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary on A
pril 7, 2025.

https://doi.org/10.1109/TMC.2018.2844202
https://doi.org/10.1109/TMC.2018.2844202
https://doi.org/10.1145/3620666.3651385
https://doi.org/10.1145/3620666.3651385
https://doi.org/10.1145/2742647.2742656
https://doi.org/10.1109/SANER.2019.8668030
https://doi.org/10.1109/TC.2020.3012987
https://doi.org/10.1109/TC.2020.3012987
https://doi.org/10.1016/j.sysarc.2022.102627
https://doi.org/10.1016/j.sysarc.2022.102627
https://doi.org/10.1109/DAC18072.2020.9218517
https://doi.org/10.1109/DAC18072.2020.9218517
https://doi.org/10.1145/3591246
https://doi.org/10.1145/2830772.2830776
https://doi.org/10.1145/2830772.2830776
https://doi.org/10.1145/1012551.1012559
https://doi.org/10.1145/2077434.2077448
https://doi.org/10.1145/2077434.2077448
https://doi.org/10.1145/3373376.3378516
https://doi.org/10.1145/3373376.3378516
https://wccftech.com/amd-freesync-nvidia-gsync-verdict/
https://wccftech.com/amd-freesync-nvidia-gsync-verdict/
https://doi.org/10.1145/2744769.2744894
https://doi.org/10.1145/2744769.2744894
https://doi.org/10.1145/2593069.2593151
https://www.displayninja.com/what-is-screen-tearing/
https://www.displayninja.com/what-is-screen-tearing/
https://doi.org/10.1109/ICSE43902.2021.00080
https://doi.org/10.1145/3355088.3365170
https://doi.org/10.1145/3582016.3582024
https://doi.org/10.1145/3579371.3589076
https://doi.org/10.1145/3579371.3589076
https://doi.org/10.1145/3617232.3624860
https://doi.org/10.1145/3445814.3446715
https://doi.org/10.1145/3445814.3446715
https://doi.org/10.1145/2307636.2307648
https://doi.org/10.1145/2307636.2307648
https://doi.org/10.1109/HPCA.2015.7056028
https://doi.org/10.1109/HPCA.2015.7056028
https://doi.org/10.1109/ISCA.2014.6853239
https://doi.org/10.1109/ISCA.2014.6853239

	Abstract
	1 Introduction
	2 VSync Rendering Architecture
	3 Characterizing OS Rendering Service
	3.1 Trends in Rendering
	3.2 A Quantitative Analysis on Frame Drops
	3.3 A Quantitative Analysis on Rendering Latency
	3.4 Insights

	4 Decoupled Rendering and Displaying (D-VSync)
	4.1 The Overall Design of D-VSync
	4.2 The Scope of D-VSync
	4.3 Frame Pre-Executor (FPE)
	4.4 Display Time Virtualizer (DTV)
	4.5 Dual-channel Decoupling APIs
	4.6 Extension: Input Prediction Layer (IPL)

	5 Implementation
	5.1 D-VSync in OpenHarmony
	5.2 D-VSync in Android
	5.3 D-VSync with LTPO

	6 Evaluation
	6.1 Reduction of Frame Drops
	6.2 Reduction of User-perceived Stutters
	6.3 Reduction of Rendering Latency
	6.4 Costs of D-VSync
	6.5 Case Study-1: Map App
	6.6 Case Study-2: Chromium Browser
	6.7 Power Consumption

	7 Deployment Experience
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Appendix
	A.1 Abstract
	A.2 Methodology
	A.3 Detailed Descriptions

	References

