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Abstract
The appealing properties of NVM including high perfor-

mance, persistence, and byte-addressability, and a recent ac-
tive thread of building remote memory systems with RDMA,
have produced considerable interest in combining them for
fast and persistent remote memory systems. However, many
prior systems are either based on emulated NVM or have
failed to fully exploit NVM characteristics, leading to sub-
optimal performance.

This paper conducts a systematic study to summarize op-
timization hints that the system designer can use to exploit
NVM with RDMA better. Specifically, we demonstrate how
system configurations, NVM access patterns, and RDMA-
aware optimizations affect the efficacy of RDMA-NVM sys-
tems. Based on the summarized hints, we empirically study
the design of two existing RDMA-NVM systems, namely a
distributed database (DrTM+H) and a distributed file system
(Octopus). Both systems are designed when no production
NVM is available, and neither of them achieves good perfor-
mance on it. Our optimized systems achieve up to 2.4X (from
1.2X) better performance.

1 Introduction

People have been studying systems with emerging hardware
technologies like Remote Direct Memory Access (RDMA)
and Non-Volatile Memory (NVM) for many years, includ-
ing but not limited to databases [8, 11, 25, 37, 39, 53], file
systems [31, 32, 58], key-value stores [2, 10], and distributed
shared memory systems [33, 38, 61]. These RDMA-NVM
systems can either leverage NVM to persistently store the
data or use it as DRAM to extend DRAM capacity.

Unfortunately, few systematic studies examined how to
best leverage NVM with RDMA, since production NVM is
only publicly available via Intel Optane DC persistent mem-
ory [36] (Optane PM1) until recently. Except for a few sys-
tems [22,33], prior work either uses emulated NVM [58,61]

1Since we exclusively study Optane PM in this paper, we use the terms
NVM and Optane PM interchangeably throughout the paper.

or simply treats DRAM as NVM [8, 11, 32, 53]. Without
such a study, system developers are unclear whether existing
RDMA-NVM designs are efficient for Optane PM due to the
following three reasons. First, emulating NVM with RDMA
is particularly challenging because, to the best of our knowl-
edge, most NVM emulators use CPU for the emulation [49].
However, RDMA may access NVM in a CPU-bypassing
manner. Second, a recent study revealed that even the em-
ulator could not faithfully simulate many Optane PM fea-
tures [59]. Finally, a few systems evaluated with Optane PM
do not consider its unique performance characteristics [33].

Our initial experiments further demonstrate that RDMA-
NVM systems suffer from inferior performance when they
treat NVM as DRAM. For example, the performance of re-

mote write is far from the limits of NVM (§3) after switching
the memory used in a remote write benchmark from DRAM
to NVM: 16B one-sided RDMA WRITE only achieves 29%
of NVM’s ideal write throughput. Hence, it is imperative to
conduct a thorough study of the inferior performance and pro-
vide optimizations to mitigate the inefficiency.

There have been valuable studies on how to efficiently use
NVM [59] with CPU and how CPU cache may affect the
efficiency of RDMA with NVM [22]. Yang et al. [59] pro-
vide optimizations for the CPU to best utilize Optane PM.
We study their findings on RDMA-NVM systems and con-
firm the importance of their optimizations. Nevertheless, we
found some of the optimizations are suboptimal when consid-
ering RDMA. We further present optimizations that are best
suited for RDMA on NVM. Kalia et al. [22] is the most rel-
evant work: we share the same goal of improving RDMA’s
performance with NVM. Specifically, they identify how CPU
cache could hinder RDMA from fully utilizing NVM write
bandwidth. We made a similar observation during our study.
Besides, we also study other RDMA-NVM related factors,
including inappropriate system configurations (§4.1) and ap-
plication access patterns (§4.2).

Finally, existing systems use two network roundtrips to
implement persistent write atop RDMA and NVM [20] be-
cause existing RDMA hardware is unaware of NVM. We ar-
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gue that RDMA-NVM systems should consider broadly ex-
plored RDMA-aware optimizations [23, 24] to improve the
persistent write performance with RDMA. With the help of
known RDMA-aware optimizations, RDMA only needs one
roundtrip for remote persistent write on the current hardware
platforms (§4.3).

In this paper, we conduct a thorough systematic study on
how to best utilize NVM with RDMA. Note that our focus
is on remote write, i.e., the client issues write to the server
NVM, either using one-sided or two-sided RDMA. The re-
mote NVM read performance is close to that of DRAM (§3).
To summarize, the contributions of this paper are:

A summary of optimization hints (H1–H9) to best uti-

lize NVM with RDMA (§4). We study and collect vari-
ous RDMA-NVM related optimizations—scattered from dif-
ferent sources—into one systematic study. We also propose
new optimizations (H6–H8) that address the limitations of
the existing study. The summarized hints are categorized
into system configuration advice (§4.1), access pattern ad-
vice (§4.2) and RDMA-aware advice (§4.3). We empirically
demonstrate how these hints help to fully utilize NVM for
different RDMA primitives, i.e., RDMA can attain close to
NVM write bandwidth and processing power.

An end-to-end study of improved RDMA-NVM system

designs (§6). We use the summarized hints to analyze
and improve the design of existing RDMA-NVM systems,
namely a distributed database (DrTM+H [53]) and a dis-
tributed file system (Octopus [32]). We find that there is
still significant room for improvement because both of them
are designed when no production NVM is available. Our
study helps to improve the throughput of DrTM+H by 1.5X
and 2.2X for TPC-C [46] new-order transaction and Small-
Bank [45], respectively. It also improves the I/O throughput
of file data operations in Octopus by up to 2.4X (from 1.2X).
These results strongly suggest we need further revisiting the
design and implementations of existing RDMA-NVM sys-
tems, especially those not designed for Optane PM.

Our tools and benchmarks are available at https://github.
com/SJTU-IPADS/librdpma.

2 Background

Figure 1 presents typical hardware components of a node
with NVM in an RDMA-capable cluster. RDMA-capable
NIC (RNIC) and NVM are attached to the processor, and they
communicate with each other via the PCI Express (PCIe)
bus.

2.1 Optane PM (NVM)

Intel Optane DC persistent memory [36] (Optane PM) is
the first commercially available NVM. Besides a huge
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Figure 1. Hardware components of a node with NVM in an RDMA-

capable cluster.

performance gain compared to traditional persistent stor-
age (e.g., SSD), Optane PM also provides a DRAM-
like memory interface. Thus, CPU can use load and
store/non-temporal store2 (ntstore) to read and write
it, and RNIC can access it through PCIe read/write transac-
tions.

Our study relies on an in-depth look at how Optane PM
handles reads/writes. The right half of Figure 1 presents an
overview of its components. Data is stored in NVM DIMMs
(3D XPoint), while XController (XCtrl) transforms the read-
/write requests from the processor/PCIe into read/write re-
quests to 3D XPoint. XCtrl has two important features. First,
it receives requests in cacheline (CLine) granularity (64B),
while 3D XPoint stores data in XPLine granularity (256B).
Such a difference in granularity may incur read/write ampli-
fication. Second, in order to reduce write amplification, XCtrl
has a small write-combining buffer (XBuffer) that merges ad-
jacent cacheline writes into one XPLine write. Note that read
requests also compete for XBuffer with write requests [59].

Persistent domain. Data is persistent once it reaches the
node’s persistent domain. On the current hardware platform,
the persistent domain comprises the Optane PM and the pro-
cessor’s memory controller, as shown in Figure 1. Future
hardware will further extend the persistent domain to the pro-
cessor cache [4]. Nevertheless, the scope of the persistent do-
main is orthogonal to the results of this paper. We describe
its impact in §5 in more detail.

Asymmetric performance feature. Optane PM is known
for two asymmetric performance features. First, its read is
much faster than write (320Gbps vs. 100Gbps). Second, se-
quential write has a higher bandwidth than random write due
to the involvement of XBuffer.

Optane PM counters. Optane PM provides various useful
counters3 that we use to analyze its behavior: NReadReq and

2non-temporal store has the same semantic as store except that it by-
passes the CPU cache.

3Measured via ipmctl [5].
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Figure 2. An overview of the interaction between RDMA and

NVM.

NWriteReq record how many 64B read and write requests
are received by XCtrl, while NMediaRead and NMediaWrite
record how many bytes are read/written by 3D-XPoint Me-
dia. Based on these counters, we calculate the counter rates
and use the counter rates to compute the read/write amplifi-
cation of NVM: e.g., NMediaWrite rate / (NWriteReq rate

×64) measures the write amplification of Optane PM.

2.2 Remote direct memory access (RDMA)

RDMA is a fast networking feature with high through-
put (e.g., 100Gbps bandwidth), low latency (e.g., 2µs),
and low CPU overhead. Representative implementations of
RDMA include InfiniBand (IB) and RDMA over Converged
Ethernet (RoCE). RDMA is well-known for its one-sided
primitives (READ/WRITE4): RDMA-capable NIC (RNIC)
can directly read/write the server memory bypassing the
server CPU. RDMA also provides two-sided primitives
(SEND/RECV) that are similar to message passing.

QP and the programming model of RDMA. RDMA
hosts use queue pair (QP) to issue RDMA requests. The QP
contains one send queue and one completion queue. To issue
an RDMA request (e.g., one-sided RDMA READ), the host
calls post_send, which uses memory-mapped IO (MMIO) to
post the request to the send queue. If the host marks the re-
quest as signaled, then it can further obtain the completion
event of the sent request, e.g., whether the payload of the
READ has been fetched to the host, by polling the comple-

tion queue via poll_comp.

2.3 RDMA with NVM

Figure 2 shows how various RDMA primitives interact with
Optane PM. One-sided RDMA primitives communicate with
Optane PM through PCIe read/write transactions, while two-
sided RDMA uses server CPU to read/write Optane PM5.

4We may use READ/WRITE as one-sided RDMA READ/WRITE.
5Although two-sided RDMA can use PCIe read/write transactions to write
messages to Optane PM, we omit the discussion of such a case because its
mechanism is the same as one-sided RDMA WRITE.
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Figure 3. Three execution flows of using one-sided RDMA to write

the server NVM. Note that without proper configurations (see §2.3),

all three request flows are possible. The client uses the MMIO to

post the WRITE request (REQ), and the client RNIC generates the

response (RESP) via DMA. When DDIO (§2.3) is enabled, RNIC

writes to the server’s last level cache (LLC). Otherwise, RNIC di-

rectly writes to Optane PM. P denotes the persistent point of the

data, i.e., when the client can ensure the WRITE is persistent.

When different RDMA primitives access NVM, several fac-
tors may impact their efficacy:

Access granularity. RNIC, CPU and NVM (including
XController and 3D XPoint) have different access granu-
larities. Requests that do not match the device granularity
cause extra read/write requests to the NVM. Hence, systems
should carefully tune their NVM access patterns for differ-
ent RDMA primitives (§4.2). Table 1 summarizes the access
granularities of different devices.

Table 1: Access granularities of different hardware components.

CPU PCIe XController 3D XPoint

Granularity CLine CLine CLine XPLine

Payload 64B 64B 64B 256B

DDIO. Data Direct I/O (DDIO) [16] aims to improve the
server cache locality of the DMA-ed data, which allows the
last level cache (i.e., L3 Cache) as the primary destination of
the RNIC’s DMA-ed data (e.g., one-sided RDMA WRITE
and two-sided RDMA). However, it is not friendly to Optane
PM (§4.1).

Persistence. Two-sided primitives can use extended CPU
instructions (e.g., clwb) to ensure that the write to NVM is
persistent. However, one-sided RDMA has no such instruc-
tion. Thus, one-sided RDMA-NVM WRITE is not persistent.

Figure 3 depicts three possible execution flows of one-
sided RDMA-NVM WRITE on the current hardware plat-
forms, only in the second case that the data is persistent (❷).
In the first case (❶), the data is not persistent because it still
resides in the volatile processor cache when the client re-
ceives the response. In the third case (❸), the data is cached
at the RNIC’s internal buffer when the client believes the
write has finished. RNIC is not in the persistent domain (see
Figure 1).
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Table 2: The configurations of machines in our testbed.

Name # Hardware

Server 1 2x Intel Xeon Gold 5215M (10 cores), 384GB DRAM

2x ConnectX-5 IB RNIC (100Gbps)

1x 1.5T NVM (12x Optane DIMM)

Client 5 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM

2x ConnectX-4 IB RNIC (100Gbps)

Implementing persistent one-sided RDMA WRITE over
current hardware (i.e., guarantee to achieve ❷ in Figure 3)
requires specific configurations and extra one-sided requests:
we should first disable DDIO to bypass the processor cache
and then send an extra one-sided RDMA READ to the same
QP issued the WRITE [19] to flush the previously cached
WRITEs. These two steps guarantee the WRITE is executed
as the second case in Figure 3. However, a strawman imple-
mentation of this strategy uses two network roundtrips for
a single write [20]. We describe optimizations for persistent
WRITE in §4.3.

3 Testbed and Methodology

Testbed. Table 2 lists the hardware descriptions of our
testbed. The server machine that equips Optane PM has two
10-core Intel Xeon Gold 5215M processors, 384GB DRAM
and two ConnectX-5 MT27800 100Gbps Infiniband NIC.
We attach six NVM DIMMs to each server’s processor, al-
lowing them to achieve the maximum (ideal) bandwidth of
Optane PM (320Gbps for read and 100Gbps for write). Each
client machine has two 12-core Intel Xeon E5-2650 v4 pro-
cessors, 128GB of DRAM, and two ConnectX-4 MCX455A
100Gbps Infiniband NIC. All machines are connected to a
Mellanox SB7890 100Gbps InfiniBand Switch.

Target systems and evaluation methodology. The focus
of this paper is on remote write, i.e., the client issues write re-
quests to the server NVM using either one-sided or two-sided
RDMA. For remote read, we find it has close performance to
that of DRAM due to the asymmetric read/write performance
feature (§2.1) of NVM.

To empirically analyze the read/write features of RDMA
with NVM, we conduct a microbenchmark to evaluate the
performance of remote read and remote write implemented
by different RDMA primitives. In this benchmark, each
client sends read/write requests with different payloads to
the server’s NVM via RDMA, similar to prior work [10, 23,
40,53]. The request addresses are chosen randomly. For one-
sided RDMA, the client directly uses its primitives to imple-
ment remote read and remote write. For two-sided RDMA,
the client sends messages to the server, and the server read-
s/writes NVM with memcpy after receiving the messages. We
implement the benchmark on a state-of-the-art distributed ex-
ecution framework designed for RDMA [53]. Unless other-
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wise mentioned, we report the per-socket peak throughput or
bandwidth of reading/writing NVM through RDMA.

Figure 4 and Figure 5 present the performance of re-

mote read on DRAM and NVM for one-sided and two-sided
RDMA, respectively. For large payloads (e.g., 2,048B), the
read performance of NVM is close to that of DRAM for both
one-sided and two-sided primitives (99% and 90%). Read-
ing NVM can hardly become a bottleneck in RDMA-NVM
systems since NVM has a much higher read bandwidth than
RNIC (320Gbps vs. 100Gbps). Note that for small reads
(e.g., 16B), two-sided RDMA READ still suffers from ob-
vious throughput degradation: it only achieves 59% of the
DRAM read throughput. This is because CPU has much a
higher read latency when reading NVM compared to DRAM
(271ns vs. 82ns)6. In contrast, increased NVM read latency
has negligible impact on one-sided RDMA READ since the
PCIe latency is the dominant factor (~1000ns [35]).

Unlike remote read, the performance of remote write is
much slower than that of DRAM, as shown in Figure 6 and
Figure 7. More importantly, these results are not optimal be-
cause the measured performance is far from the theoretical
limit of NVM or RDMA. For example, one-sided RDMA
WRITE can achieve only 29% of the NVM peak write
throughput (15M vs. 52M reqs/sec7) for small 16B writes.

6Measured by Intel Memory Latency Checker (MLC) [17].
7We estimate the NVM peak write throughput by dividing its peak write
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Table 3: A summary of design advice, optimization hints, and whether the hints can apply to a specific RDMA primitive. ✓ indicates a

positive optimization effect, and “–” means the hint does not target the case.

Design advice Optimization hints One-sided Two-sided

A1. Configuration (§4.1) H1. Avoid cross-socket NVM accesses ✓ ✓

H2. Limit concurrent access to a single NVM DIMM for two-sided RDMA - ✓

H3. Disable DDIO; if DDIO must be enabled, use two-sided RDMA ✓ -

A2. Access pattern (§4.2) H4. Use ntstore instead of store for large writes - ✓

H5. Use XPLine granularity for writes ✓ ✓

H6. Use PCIe DW granularity (64B) for small writes (i.e., less than XPLine) ✓ -

H7. Use cacheline granularity (64B) with ntstore for small writes (i.e., less than XPLine) - ✓

H8. Use less atomic operations on NVM ✓ ✓

A3. RDMA-aware (§4.3) H9. Enable outstanding request with doorbell batching for one-sided persistent WRITE ✓ -
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Further, one-sided and two-sided RDMA saturate only 38%
and 12.5% of the NVM’s peak write bandwidth for large
2,048B writes, respectively. Therefore, there is significant
room for improvement.

Our approach. To understand why remote write has infe-
rior performance, we conduct a systematic study to summa-
rize various performance-relevant factors for RDMA to write
NVM. Inspired by a recent CPU-specific NVM study [59],
we mainly follow two directions. First, we investigate what
system configurations can affect RDMA’s efficiency with
NVM (§4.1). Second, we study which access patterns from
RDMA are friendly to NVM (§4.2). For each direction, we
empirically study whether known NVM optimizations are
necessary or optimal for RDMA. The results show that some
setups are not necessary, while some optimizations are sub-
optimal for RDMA. To this end, we present new optimiza-
tions by fully considering NVM characteristics with RDMA.
Finally, we use existing RDMA optimizations to improve the
persistent write of one-sided RDMA atop of NVM (§4.3).

bandwidth (100Gbps) with the size of XPLine (256B).
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A preview of the optimization results. Figure 6 and Fig-
ure 7 present our optimized version of one-sided and two-
sided RDMA NVM write (NVM-opt). After applying all the
optimizations, they have significantly better performance and
achieve close to the NVM limit. For example, one-sided 16B
RDMA NVM WRITE achieves 45M reqs/sec, 87% of the
ideal peak throughput of NVM write.

4 Design Advice

This section summarizes design advice and optimization
hints for high-performance RDMA-NVM systems, as shown
in Table 3. We present both new optimizations (e.g., Hint 6,
H6) and brief descriptions of known optimizations. Further,
we show that some known optimizations that only consider
CPU accessing NVM are sub-optimal for RDMA (e.g., H5).
Among these optimizations, H1–H8 applies to systems that
use Optane PM as volatile storage and persistent storage,
while H9 only targets systems that use Optane PM as per-
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sistent storage.
We make two assumptions about the hardware compo-

nents. First, the RNIC is a PCIe-based device, which holds
for most existing RNICs [24]. Second, the NVM is Optane
PM [36], the first (and only) commercially available NVM
device. Unless otherwise stated, we use the same remote

write microbenchmark in §3 for the study.

4.1 Configuration advice

A prior CPU-specific NVM study [59] has provided valuable
configuration setups (e.g., NUMA setup) for the CPU to bet-
ter utilize NVM. We summarize these setups in H1 and H2.
A natural question to answer is: do RDMA-NVM systems
require the same setups? Our study reveals that first, RDMA-
NVM systems should also consider H1. Meanwhile, one-
sided RDMA does not necessarily require H2 as the CPU.
Finally, RDMA introduces a new configuration option, H3.
Succinctly, the configuration advice for RDMA-NVM sys-
tems is the following three optimization hints:

H1. Avoid cross-socket NVM accesses;

H2. Limit concurrent access to a single NVM DIMM for
two-sided RDMA;

H3. Disable DDIO; If DDIO must be enabled, use two-sided
RDMA for large NVM writes;

Hint H1. Yang et al. [59] found that the NVM write band-
width of a socket could be halved from other sockets. Since
an RNIC leverages its attached socket to access NVM from
another socket (see Figure 1), slow cross-socket NVM ac-
cesses also impact RDMA-NVM systems. Figure 9 and Fig-
ure 8 illustrate this: removing cross-socket access improves
the baseline two-sided and one-sided RDMA write perfor-
mance by up to 2.4X (8Gbps vs. 19Gbps) and 2X (15M
vs. 30M reqs/sec), respectively. Thus, RDMA-NVM systems
should also avoid cross-socket NVM accesses.
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Apply H1. Readers may wonder whether H1 is feasible in
real systems. One strategy to apply H1 is first attaching one
RNIC for each socket, and then treating each socket as a log-
ical node in a cluster. Such a setup is common in RDMA-
capable systems [11, 29, 51, 54, 62], and it naturally avoids
cross-socket NVM access. Furthermore, even if there are in-
sufficient RNICs for each socket to have a dedicated RNIC,
one can adopt the techniques in IOctopus [42] to apply H1.
Using IOctopus, one RNIC can simultaneously communicate
with multiple sockets. Hence, RDMA can directly access the
NVM bypassing the attached socket.

Hint H2. Another observation from Yang et al. [59] is that
the CPU fails to scale up when writing to a single NVM
DIMM. This phenomenon also affects two-sided RDMA be-
cause it uses CPU to write to the NVM. As shown in Fig-
ure 10(a), compared to using four threads at the server to han-
dle writes, two-sided RDMA-NVM write bandwidth drops
37% when using 20 threads. Note that to avoid interference
from other factors, we have enabled all other optimizations
hints in this experiment. Therefore, system designers should
also reduce concurrent access to a single NVM DIMM for
two-sided RDMA. In practice, designers can control which
DIMM to access by selecting the appropriate NVM ad-
dresses [59]. For example, assuming the starting address of
the NVM is 4KB-aligned, and the NVM is interleaved on 6
DIMMS, the first and seventh 4KB is on the first DIMM, and
the second 4KB is on the second DIMM, etc.

Does one-sided RDMA suffer from the same issue? To
quantify this, we further conduct an experiment to mea-
sure the concurrent write performance of one-sided RDMA-
NVM WRITE. In this benchmark, we increase the number
of clients that send concurrent one-sided RDMA WRITE to
a single NVM DIMM, and measure their aggregated band-
width. Figure 10(b) presents the results: one-sided RDMA
WRITE scales well with the increased number of concurrent
requests. This implies that one-sided RDMA is more robust
when concurrently accessing a single NVM DIMM.
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itives in this experiment.

To the best of our knowledge, it remains unknown why
the CPU cannot scale up when accessing a single NVM
DIMM. Yang et al. [59] suspected that the high NVM access
latency may cause head-of-line blocking effects at the pro-
cessor. Similarly, we suspect that the RNIC can scale well
for one-sided RDMA because the increased latency of NVM
access is not that significant compared to PCIe latency.

Hint H3. One important RDMA-specific configuration is
whether to enable DDIO, which controls the destination of
one-sided RDMA WRITE (§2.3). A prior study has revealed
that DDIO has a huge performance impact on one-sided
RDMA-NVM WRITE for large payloads [22]; we also made
a similar observation during our study. Consequently, H3 is
an important configuration setup for RDMA-NVM systems.

Impact of DDIO. Figure 11(a) shows the effects of DDIO
on one-sided RDMA-NVM WRITE. Since large RDMA-
NVM WRITE is more sensitive to DDIO, we use a bulk write
benchmark where a single client issues a sufficient large pay-
load to measure the peak bandwidth of WRITE. With DDIO
enabled, we observe that WRITE can only reach half of the
NVM peak bandwidth (42Gbps vs. 100Gbps). On the other
hand, the WRITE can achieve close to NVM peak bandwidth
with DDIO disabled.

Ideally, the client should saturate the RNIC(NVM) band-
width in this benchmark. However, it fails because DDIO
changes the sequential writes from RNIC to random writes
to NVM. Figure 12(a) illustrates this: the RNIC first sequen-
tially writes the data into the cache, after that the cache ran-
domly evicts the data to the NVM. Random writes cannot
saturate NVM bandwidth because NVM has less chance to
merge adjacent writes to avoid write amplification (see §2.1).

Measuring the write amplification of DDIO. To quantify
the effect of DDIO, Figure 11(b) analyzes the write amplifica-
tion of NVM8 with different configurations. We can see that

8We measure the write amplification of DDIO via NVM counters. §2.1 de-
scribes the measurements in more detail.
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enabling DDIO incurs a roughly 2X write amplification to
NVM WRITE, which explains why the bandwidth is halved
for a large payload (e.g., more than 64KB).

Implications for RDMA-NVM systems. If the systems
must use one-sided RDMA WRITE to saturate the NVM
bandwidth, we recommend considering H3 to turn off the
DDIO first. The system can statically enable/disable DDIO
via the BIOS setups [58] or dynamically adjust the bits in In-
tegrated I/O (IIO) Configuration Registers [1, 13, 18] at run-
time. We follow prior work [13] to use configuration registers
to configure DDIO at runtime.

Limitations of disabling DDIO. On the current hardware
platform, the DDIO configuration affects all the devices on
a processor. Thus, server CPU will have a poorer cache lo-
cality for DMA-ed data (e.g., messages in two-sided primi-
tives) with DDIO disabled, resulting in degraded two-sided
RDMA performance. For example, we measured a 57%
peak throughput drop (54M vs. 23M reqs/sec) of two-sided
RDMA primitives after disabling DDIO. Therefore, the cur-
rent RDMA-NVM systems will make a trade-off between the
bandwidth of one-sided RDMA NVM WRITE and the per-
formance of two-sided RDMA. Considering the limitations
of disabling DDIO, we extend H3 as follows:

H3 (extended). If DDIO must be enabled, use two-sided
RDMA for large NVM writes;

Two-sided RDMA can leverage the CPU at the server to fully
utilize NVM [59]. Hence, RDMA-NVM systems can adopt a
hybrid approach for implementing NVM write based on the
request payload size.

4.2 Access pattern advice

Tuning systems NVM access pattern according to the Optane
PM’s features is critical to NVM-aware systems. Known op-
timizations for CPU include choosing the appropriate CPU
instructions and using the proper access granularity [59]. We
summarize these hints in H4–H5:
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H4. Use ntstore instead of store for large writes;

H5. Use XPLine granularity for writes;

Both hints can also benefit RDMA-NVM systems. However,
we found H5 is not optimal when considering RDMA, espe-
cially for small writes, because it incurs huge network am-
plification. For example, applying H5 only improves the per-
formance of 16B one-sided RDMA NVM WRITE by 1.1X
(31M vs. 34M reqs/sec), which remains far from NVM’s
ideal processing rate (52M reqs/sec). In this case, H5 will in-
cur 16X (256B vs. 16B) network amplification to one-sided
RDMA WRITE. Since moving 256B data to DRAM over
RDMA is even slower than NVM ideal processing rate (37M
vs. 52M reqs/sec, as shown in Figure 6), the network would
first become the bottleneck for small writes.

To this end, we found the key for small writes to fully uti-
lize NVM is to avoid sending unnecessary read requests to

the NVM. As we have mentioned in §2.1, NVM read requests
compete for XCtrl processing power with NVM write re-
quests. Hence, unnecessary read requests would drastically
reduce the NVM write throughput. This fact allows using a
smaller access granularity to saturate NVM’s processing rate
with RDMA.

CPU and RNIC generate an extra read request to NVM if
the payload of the write request does not fit their access gran-
ularities (i.e., cacheline and PCIe DW). They execute such
a write request in a read-modify-write pattern to avoid over-
writing the original content. Thus, using the CPU/RNIC ac-
cess granularity is sufficient to prevent sending unnecessary
reads from the device to NVM. Based on this observation,
we first propose H6–H7 to complement H5 for small writes.
Further, since the read-modify-write pattern is not friendly
to NVM, we also propose H8 to suggest systems use fewer
such operations. Specifically, we propose the following hints
to complement H4–H5:

H6. For one-sided RDMA, use PCIe data word (64B) gran-
ularity when the payload is smaller than XPLine;

H7. For two-sided RDMA, use cacheline granularity (64B)
with ntstore when the payload is smaller than
XPLine;
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reads for one-sided RDMA WRITE. On the other hand, two-sided

RDMA further needs to use ntstore.

H8. Use less atomic operations on NVM;

Hint H6. PCIe issues write in a read-modify-write pattern
with PCIe partial-write. Figure 12(b) shows a concrete ex-
ample where the RNIC uses PCIe to write 8B at 0x40. It will
first send a read request to the NVM to read the data word at
0x40 (❶). Then, it overwrites the entire data word according
to the write request (❷).

Figure 8(a) presents the optimized performance of H6

to one-sided RDMA WRITE: it improves the performance
of 16B WRITE to 87% of the NVM’s peak write through-
put (45M vs. 52M reqs/sec). The result is 1.3X faster than
applying H5 thanks to the reduced network amplification.
Figure 13(a) further examines how eliminating PCIe partial
write helps to prevent sending read requests to the NVM. We
apply H6 by first aligning the written address to PCIe DW
(+1. Align to PCIe DW), and then padding the payload size
(+2. Pad to PCIe DW) to a multiple of PCIe DW. As we
can see, after applying both steps, one-sided RDMA WRITE
does not issue a read request to the NVM. Consequently,
small WRITEs (e.g., no larger than 64B) can reach close to
the NVM processing limit.

We should mention that reducing the PCIe partial write
may also benefit one-sided RDMA-DRAM WRITE. How-
ever, our experiments show that it may even have a nega-
tive effect on DRAM WRITE. For example, the 16B DRAM
WRITE has a 25% performance degradation on our testbed
after applying H6.

Hint H7. Similar with H6, H7 suggests how to prevent
read-modify-write for two-sided RDMA. As shown in Fig-
ure 8, it improves the 16B two-sided RDMA-NVM WRITE
performance by 1.8X (19M vs. 35M reqs/sec). To apply
H7, two-sided RDMA should use ntstore together with use
cacheline granularity (+1. Align to Cacheline and +3. Pad to
Cacheline, as shown in Figure 13(b)). This is because, the
CPU would pre-fetch the cacheline using NVM read with
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store. As shown in Figure 13(b), two-sided RDMA-NVM
WRITE always achieves a 100% read/write ratio even after
using the proper access granularity.

Hint H8. A lesson learned from H7–H8 is that the read-
modify-write access pattern is not friendly to NVM. Atomic
operations (e.g., one-sided RDMA ATOMIC compare and
swap) naturally follow a read-modify-write pattern. Worse,
the designer cannot apply prior hints to optimize atomic op-
erations. For instance, one-sided RDMA ATOMICs cannot
apply H6 since they use a fixed 8B granularity. Consequently,
we suggest using fewer atomics on NVM for RDMA. Note
that we are not suggesting disabling atomics, but moving

the data for atomic operations (e.g., spinlock) from NVM to

DRAM whenever possible.

Discussion of H6–H8. Although applying H6 and H7 may
waste NVM storage for storing the padding, while adopting
H8 could change the persistent semantic of atomic data, we
believe H6–H8 is actionable in real systems. This is because
there are many scenarios in RDMA-NVM systems that can
use H6-H8 without wasting storage or changing the applica-
tion semantics. For instance, existing RDMA-NVM enabled
databases [10,11,25,53,54] do not require the lock to be per-
sistent. Thus, we can safely move their lock metadata from
NVM to DRAM. Furthermore, distributed logging [10, 11]
naturally uses padding to accommodate future logs. Thus,
applying H6 to logging does not introduce additional storage
overhead. Finally, as we will present in §6, H6–H8 can have
huge performance improvements for existing systems. For
example, H6–H8 can improve the performance of DrTM+H
on the SmallBank [45] benchmark by 1.79X (3.9M vs. 7.0M
txns/sec, see Figure 16).

4.3 RDMA-aware advice

Finally, we discuss how known RDMA-aware optimizations
can mitigate the inefficiency of implementing persistent
write atop of existing hardware platforms. As we have men-
tioned in the introduction, a strawman approach to imple-
menting persistent write using one-sided RDMA requires
two network roundtrips: the first WRITE attempts to store
the data to NVM, while the second READ ensures that the
written data is flushed to the persistent domain (e.g., Op-
tane PM). Fortunately, it is possible to leverage well-known
RDMA-aware optimizations to avoid the additional network
roundtrip of READ. H9 summarizes this fact:

H9. Enable outstanding request with doorbell batching for
one-sided persistent RDMA WRITE.

Specifically, outstanding request [23] allows us using the
completion of READ as the completion of the WRITE, as
long as the two requests are sent to the same QP. Since

the READ to persist the WRITE must be post to the same
QP as the WRITE (§2.3), we no longer need to wait for the
first WRITE to complete. Thus, this optimization reduces the
wait time of the first network roundtrip. Applying outstand-
ing request to persistent WRITE is correct because first, later
READ flushes previously WRITE [19], and RNIC processes
requests from the same QP in a FIFO order [6].

Based on outstanding request, doorbell batching [24] fur-
ther allows us to send the READ and WRITE in one request
using the more CPU and bandwidth efficient DMA, reducing
the latency of posting RDMA requests.

On our testbed, a single one-sided RDMA request takes
2µs. Thus, a strawman implementation of remote persistent

write uses 4µs. After applying H9, one-sided remote persis-

tent write takes 3µs latency to finish.

5 Discussion of Future Trends

Generality of the study. Our study focuses on specific
RNIC (Mellanox ConnectX-5) and NVM (Intel Optane DC
Persistent Memory), while other hardware devices may yield
different results. Nevertheless, we believe ConnectX-5 is
a representative RNIC, as recent generations of Mellanox
RNICs (e.g., Connect-IB, ConnectX-4) all share the same ar-
chitecture. Moreover, Optane PM is the only commercially
available NVM. Finally, we also provide open-source tools
that the developers can use to examine their design choices
under different hardware configurations.

Next-generation NVM. The next-generation of NVM not
only has a better performance but also provides a larger scope
of persistent domain. First, it will have a 25% higher band-
width [21]. Second, it will include the processor cache in its
persistent domain [4]. This feature is desirable for one-sided
RDMA since one-sided RDMA no longer depends on DDIO
for WRITE to be persistent (§2.3). Consequently, the de-
signer does not need to make a trade-off between one-sided
persistence and two-sided RDMA performance (§4.1).

On the other hand, the new features of next-generation
NVM are unlikely to change the advice of our study. First,
the primary focus of our study is how to avoid NVM write

becoming the bottleneck in RDMA-NVM systems (§3),
even when NVM write has a comparable performance with
RDMA (see Figure 1). Thus, the 25% bandwidth improve-
ment of the next-generation NVM is insufficient to twist
the performance comparisons between RDMA and NVM,
since future generations of RDMA will have much higher
bandwidth. For example, RNIC with 200Gbps bandwidth
has already been commercially available [3], which is 2X
higher than our evaluated RNIC. Besides performance, the
enhanced functionality of next-generation NVM, i.e., putting
cache in the persistent domain, is also unlikely to address
the current performance issue caused by the cache. This is
because the random cache eviction is still not suitable for
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NVM. Meanwhile, an extra one-sided RDMA READ is still
required to ensure persistence as long as the RNIC is not re-
designed.

Suggestions to hardware designers. There are proposals
to extend RDMA to cooperate with NVM, e.g., Talpey et

al. [44] proposed to add a one-sided commit primitive to
support one-side persistent RDMA WRITE. Nevertheless,
our study reveals that existing proposals are insufficient:
the hardware designers not only need to consider hardware

extensions to support more functionality, but also should

consider extensions for better performance. For instance,
adding an RDMA-version of ntstore, e.g., one-sided non-

temporal RDMA WRITE that allows the WRITE to bypass
the cache—can greatly improve the flexibility in configuring
DDIO for RDMA-NVM systems (§4.1).

6 Improved System Designs

Existing or future RDMA-NVM systems can benefit from
the summarized optimization hints in our study (§4). In this
section, we present how we use these hints to improve the
performance of two open-source RDMA-NVM systems, a
distributed database (DrTM+H [53]), and a distributed file
system (Octopus [32]). Both systems are designed when no
production NVM is available.

6.1 Distributed database

DrTM+H [53] is a distributed transactional system designed
for RDMA and NVM. It fully leverages the power of one-
sided and two-sided RDMA to boost transaction execution.
We choose it for optimization for two reasons. First, its
concurrency control and replication protocol use RDMA
and NVM heavily. Therefore, there may exist a huge space
for improvements. Second, most existing RDMA-NVM dis-
tributed databases adopt a similar protocol [8, 10, 11, 25, 37]
as DrTM+H. Thus, our improved DrTM+H design can po-
tentially benefit these systems.

Overview. DrTM+H uses optimistic concurrency con-
trol [28] (OCC) to ensure strict serializability and primary-
backup replication to achieve high availability [8, 11]. It or-
ganizes NVM as a distributed shared memory pool similar
to prior work [10, 32, 54], which stores the database records
and transaction logs. DrTM+H uses four phases to execute
a transaction, each interacts with NVM using RDMA as
follows: Execution uses one-sided RDMA READ to read
records stored in NVM; Validation uses one-sided RDMA
Compare and swap (CAS) to acquire the lock co-located with
the record; Logging uses one-sided RDMA WRITE to repli-
cate the transaction updates to backups; Commit uses two-
sided RDMA to update and unlock the records.
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Figure 14. The performance of DrTM+H on (a) TPC-C/no and

(b) SmallBank.

6.1.1 Optimizations

The original DrTM+H neither considers the performance fea-
tures of NVM (§2.1), nor the persistence issue of one-sided
RDMA WRITE (§2.3). In this section, we first apply opti-
mizations that are beneficial to DrTM+H both when using
NVM to extend DRAM capacity and to support durability
(i.e., H1–H8):

• Separate the memory pool from different sockets to avoid
cross-socket NVM access (H1).

• Configure DrTM+H with DDIO disabled (H3).

• Use ntstore to optimize the commit phase (H4).

• Align and pad logs/records larger than 256B to XPLine
granularity (H5).

• Align and pad logs/records smaller than 256B to 64B gran-
ularity (H6 + H7).

• Implement a DRAM-based lock service for the validation

phase (H8). Note that it is safe not persisting the locks in
NVM because DrTM+H does not require the locks to be
persistent even when durability is enabled.

Second, we use H9 to optimize DrTM+H when use NVM to
support durability. When following existing approach [20]
to support durable transactions, DrTM+H has to use two net-
work roundtrips to persist a single transaction log at the log-
ging phase. With the help of H9, the logging phase only use
one roundtrip:

• Implement remote persistent log with H9 in one roundtrip.

6.1.2 Evaluation

Setup. By default, DrTM+H executes transactions in a
symmetric setting [10]: each machine both stores database
partition and executes transactions. Nevertheless, we eval-
uate it in an asymmetric setting due to the lack of NVM-
capable machines (Table 2): the NVM server stores the
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database while other machines execute transactions. We use
two representative OLTP benchmarks to evaluate its perfor-
mance:

TPC-C/no [46] simulates the workload of an ordering sys-
tem that contains complex read/write workloads. We config-
ure the NVM server to store ten warehouses and other ma-
chines to execute the new-order (no) transaction, the domi-
nant transaction of TPC-C [46].

SmallBank [45] models a simple banking application
where each transaction issues one or two read/write requests.
We store 20,000,000 bank accounts at the NVM server and
run the standard-mix transactions at clients.

Comparing targets. In Figure 14, DRAM is the vanilla
DrTM+H running on DRAM. +NVM runs DrTM+H on Op-
tane PM, and +OPT(H1-H8) further applies optimizations
(§6.1.1). +Persist adopts an existing approach [20] to sup-
port durability atop of +OPT(H1-H8). Finally, +OPT(H9)

optimizes +Persist with H9.

Performance without Persistence. Figure 14 presents the
throughput-latency results of both workloads. We plot the
graph by increasing the number of clients until the through-
put is saturated. +OPT(H1-H8) improves the DrTM+H’s
performance under TPC-C/no and SmallBank by 1.45X and
2.20X, respectively.

To analyze the contributions of each optimization, Fig-
ure 15 and Figure 16 further present factor analyses of evalua-
tion results on TPC-C/no and SmallBank, respectively. First,
we can see that several hints are beneficial to both work-
loads. For example, H8 (use atomic operations less on NVM)
speedups TPC-C/no and SmallBank by 1.17X and 1.19X, re-
spectively. On the other hand, some hints have negative ef-
fects for certain workloads: SmallBank drops 15% through-
put when adding H3, this is because H3 is only beneficial
when the application is bottlenecked by NVM’s bandwidth.
Finally, some hints have more contributions to SmallBank
than TPC-C/no. For example, H7 has a 1.4X speedup on
SmallBank but does not affect TPC-C/no. H7 only improves
transaction utilizations of NVM write throughput, while
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SmallBank is more sensitive to the NVM write throughput
utilization due to its simpler workloads.

Performance with persistence. As shown in Figure 14,
supporting persistent transaction (+Persist) adds 5% and
15% performance overhead to +OPT(H1-H8) on TPC-C/no
and SmallBank, respectively. The overhead is from the addi-
tional one-sided RDMA READ at the logging phase. Hence,
reducing this network roundtrip with H9 improves TPC-C/no
and SmallBank’s performance by 1.01X and 1.17X, respec-
tively.

6.2 Distributed file system

Octopus [32] is a distributed file system designed for RDMA
and NVM. Due to space limitations, we only give a brief
overview of it and our applied optimizations.

Overview. Octopus uses a distributed NVM pool to store
the file system metadata and its file data blocks. It achieves
high throughput and bandwidth for reading/write file data
through Client-Active Data I/O: the client directly read-
/write a file’s data block using one-sided RDMA READ-
/WRITE. Besides Client-Active Data I/O, Octopus also lever-
ages RDMA-enabled distributed transactions to update the
filesystem metadata. Similar to DrTM+H (§6.1), its transac-
tional protocol uses one-sided RDMA ATOMICs to coordi-
nate conflicting metadata operations.

Optimizations. We focus on improving Octopus’s Client-

Active Data I/O because the distributed transaction is not sup-
ported in its current public available codebase9. Nevertheless,
we believe our findings can also improve distributed transac-
tion performance in Octopus, e.g., using H8 to improve its
lock performance.

6.2.1 Evaluation

We use the same Data I/O benchmark in the Octopus pa-
per [32] for the evaluation. In this benchmark, each client
writes a fixed payload to a random location in a randomly
chosen file. The client first uses two-sided RDMA to query

9https://github.com/thustorage/octopus
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Figure 17. Data I/O (a) throughput and (b) bandwidth of Octopus

(Multiple Clients).

the file metadata (e.g., data block addresses). Then, it writes
the data payload with one-sided RDMA WRITE.

Comparing targets. In Figure 17, DRAM is the vanilla
Octopus using DRAM to emulate the NVM pool. +NVM

uses Optane PM as NVM pool, and +OPT(H1-H8) applies
our optimizations to +NVM. +Persist further adopts an exist-
ing approach [20] to support synchronous durable file write
atop pf +OPT(H1-H8). Finally, +OPT(H9) leverages H9 to
reduce network roundtrips for persistence of +Persist.

Performance. As shown in Figure 17, +OPT(H1-H8) im-
prove +NVM by up to 2.4X (from 1.2X), mainly due to ap-
plying H3. Without H3, Octopus’s client-active I/O cannot
fully saturate NVM’s write bandwidth because it uses one-
sided RDMA WRITE with DDIO enabled to write to the
NVM. Further, +OPT(H9) outperforms +Persist by 1.06X
(from 1.02X), thanks to the reduced RDMA roundtrips for
persistent write.

7 Related Work

RDMA-NVM systems. We continue the line of research
of using RDMA and NVM to improve the performance and
reliability of distributed systems [8, 11, 32, 33, 38, 39, 43,
58, 61]. Kashyap et al. [27] explores the trade-offs of us-
ing different methods to ensure NVM write persistence with
RDMA. They conduct their experiments on emulated NVM.
Our study instead focuses on Optane PM. Orion [58] is a
distributed file system designed for RDMA and NVM. It
does not consider RDMA-ware optimizations (i.e., H9) and
chooses two-sided RDMA for the persistent write. Our study
provides another design decision for them. Hotpot [38] uses
RDMA and NVM to build a distributed persistent shared
memory. AsymNVM [33] proposes an asymmetric architec-
ture to use NVM with RDMA. Though AsymNVM is eval-
uated with Optane PM, it does not consider the performance
features of Optane PM. Hence, we believe our study can fur-
ther improve its performance on Optane PM.

RDMA-aware optimizations. Our work is built upon
broadly explored RDMA-aware optimizations [7, 10, 24, 25,
47, 52, 53]. The evaluating execution framework [53] has in-
tegrated most of these optimizations. FaRM [10] proposes

various techniques to utilize RNIC’s cache better, e.g., using
huge pages. Kalia et al. [24] present the importance of under-
standing the low-level factors of how RNIC works. Based on
this, they propose various RDMA-aware optimizations such
as doorbell batching. FaSST [25] presents an efficient and
scalable RPC framework atop two-sided RDMA datagram
primitive. LITE [47] uses kernel indirection to improve the
scalability of one-sided RDMA. Wukong [40, 56, 60] lever-
ages RDMA to improve the performance of distributed graph
store and further considers the interaction between RDMA
and GPU [51].

NVM-aware systems. Except for RDMA-NVM systems,
researchers are building NVM-aware systems for decades, in-
cluding but not limited to file systems [9,12,57], NVM-aware
data structures [48, 63], key-value stores [26], NVM-aware
JVM [41, 55], and transactions on NVM [14, 15, 30, 34, 50].
Like RDMA-NVM systems, most of them use emulated
NVM since there is no commercially available NVM at that
time. We hope our study can further inspire future research
on revisiting previous NVM-aware systems on Optane PM.

8 Conclusion

Designing high-performance RDMA-NVM systems requires
a clear understanding of the interaction between RDMA and
NVM. This paper provides a systematic study on how to
best utilize NVM with RDMA, which summarizes nine op-
timization hints. By examining existing RDMA-NVM sys-
tems with these hints, we found room for improvements, es-
pecially for those not targeting production NVM: our opti-
mized DrTM+H is up to 2.2X faster on Optane PM, while
our optimized Octopus file system is up to 2.4X faster. We
believe our summarized hints as well as experiences in ap-
plying them to existing systems can benefit future systems
developers when designing systems with RDMA and NVM.
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