
UGache: A Unified GPU Cache for Embedding-based
Deep Learning

Xiaoniu Song1,2 Yiwen Zhang1 Rong Chen1,2 Haibo Chen1
1Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

2Shanghai Artificial Intelligence Laboratory

Abstract
This paper presents UGache, a unified multi-GPU cache sys-
tem for embedding-based deep learning (EmbDL). UGache
is primarily motivated by the unique characteristics of Em-
bDL applications, namely read-only, batched, skewed, and
predictable embedding accesses. UGache introduces a novel
factored extraction mechanism that avoids bandwidth con-
gestion to fully exploit high-speed cross-GPU interconnects
(e.g., NVLink and NVSwitch). Based on a new hotness met-
ric, UGache also provides a near-optimal cache policy that
balances local and remote access to minimize the extraction
time. We have implemented UGache and integrated it into
two representative frameworks, TensorFlow and PyTorch.
Evaluation using two typical types of EmbDL applications,
namely graph neural network training and deep learning
recommendation inference, shows that UGache outperforms
state-of-the-art replication and partition designs by an aver-
age of 1.93× and 1.63× (up to 5.25× and 3.45×), respectively.

Keywords: GPU cache, Embedding, GPU interconnect
ACM Reference Format:
Xiaoniu Song, Yiwen Zhang, Rong Chen, and Haibo Chen. 2023.
UGache: A Unified GPU Cache for Embedding-based Deep Learn-
ing. InACM SIGOPS 29th Symposium on Operating Systems Principles

(SOSP ’23), October 23–26, 2023, Koblenz, Germany. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3600006.3613169

1 Introduction
Embedding-based deep learning (EmbDL), as exemplified by
deep learning recommendation (DLR) and graph neural net-
work (GNN), has garnered significant attention and found
a widespread use in production environments. Unlike tra-
ditional deep learning (DL), EmbDL can efficiently handle

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613169

sparse inputs such as user IDs and graph nodes by mapping
them into embedding entries via embedding tables. However,
the embedding table size associated with DLR and GNN ap-
plications can typically reach up to 400GBs, surpassing the
limited capacity of GPUmemory. Consequently, fetching em-
bedding entries from host memory via the PCIe bandwidth,
which is an order of magnitude slower than the GPU’s high
bandwidth memory (HBM), has become a system bottleneck.

In real-world workloads, accessing embedding entries of-
ten reveals a skewed pattern where some entries are accessed
more frequently than others. Therefore, many EmbDL sys-
tems cache a portion of the most frequently accessed (i.e.,
hottest) embeddings on GPU memory [43, 46]. However, the
performance bottleneck still remains due to memory limi-
tations on a single GPU (typically several dozens of GBs).
For example, prior work [46] reports that 67% of the time
(20.7ms out of 31.3ms) is spent on embedding extraction of
GNN training, and fetching missing data from host memory
accounts for 86% of the extraction time (17.9ms).

Recently, multi-GPU platforms with high-speed intercon-
nects (e.g., NVLink and NVSwitch) have become mainstream
in modern datacenters. In such setups, each GPU can di-
rectly access the memory of other GPUs with an-order-of-
magnitude higher bandwidth compared to accessing host
memory. This presents an opportunity to build a larger ag-
gregated embedding cache across multiple GPUs. However,
blindly deploying single-GPU cache systems [43, 46] on
multi-GPU platforms is inefficient, since each GPU will inde-
pendently cache the same frequently accessed embeddings.
Such a replication cache policy disregards the high bandwidth
among GPUs and causes cache redundancy.
Several recent research efforts [5, 7, 8, 45] therefore at-

tempt to develop a multi-GPU embedding cache that effi-
ciently utilizes high-speed interconnects. However, prior
work is often inefficient due to the variety and complexity
of multi-GPU platforms and fails to address fundamental
challenges in cache policy and extraction mechanism. In
terms of cache policy, a partition approach is proposed to
cache as many embedding entries as possible. However, this
policy suffers from diminishing marginal utility, as it slightly
improves the global hit rate while greatly reducing the local
hit rate. Given that the inter-GPU bandwidth is still much
slower than the local bandwidth (300 vs. 900 GB/s), the perfor-
mance gain will be insignificant or even negative. In terms of

627

https://doi.org/10.1145/3600006.3613169
https://doi.org/10.1145/3600006.3613169
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600006.3613169&domain=pdf&date_stamp=2023-10-23

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

extraction mechanism, most existing EmbDL systems lever-
age message passing for cross-GPU embedding extraction,
which involves additional cost of buffering and copying data.
While recent work [45] eliminates this cost by exploiting the
zero-copy semantics of modern GPUs, it still suffers from
bandwidth congestion and consequent GPU core stall.
We propose UGache, an embedding cache system that

addresses challenges related to extraction mechanism and
cache policy, efficiently unifying the memory of multiple
GPUs. In order to avoid GPU cores from excessively compet-
ing for limited link bandwidth, UGache introduces a novel
factored extraction mechanism that statically dedicates dif-
ferent GPU cores to fetch embedding entries from different
sources. This dedication turns previous random, unrestricted
parallelism into an organized one, thereby avoiding band-
width congestion and consequent core stall. To achieve an
optimal cache policy, the key is to find a balance between
caching more distinct entries to improve global hit rate and
caching more replicas to improve local hit rate. UGache in-
troduces a new metric called “hotness” to measure the access
frequency of embedding entries and models the extraction
time on multi-GPU platforms as a mixed-integer linear pro-
gramming (MILP) problem. Given available GPU memory,
the bandwidth hierarchy, and hotness statistics, UGache can
find a near-optimal solution to minimize the extraction time.
UGache acts as an embedding layer that can be seam-

lessly integrated into EmbDL application workflows. To
demonstrate its flexibility and support for rich EmbDL ap-
plications, we have implemented UGache and integrated
it into two popular DL frameworks, TensorFlow and Py-
Torch. The source code of UGache is publicly available
at https://github.com/SJTU-IPADS/ugache. Our evaluation in-
cluded two typical types of EmbDL applications: GNN train-
ing and DLR inference. For GNN training, UGache outper-
forms state-of-the-art replication and partition designs by an
average of 2.21× and 1.33× (up to 5.25× and 1.85×), respec-
tively. Similarly, for DLR inference, UGache still provides
an average of 1.51× and 2.07× performance improvements
(up to 2.34× and 3.45×), respectively.
Contributions. We make the following contributions.
(1) A comprehensive analysis of performance issues and chal-
lenges for building an efficient embedding cache on multi-
GPU platforms (§3).
(2) A factored extraction mechanism for implementing cross-
GPU embedding extraction to avoid bandwidth congestion
and improve GPU utilization (§5).
(3) A cache policy solver that handles the variety and com-
plexity of multi-GPU platforms, ensuring minimized extrac-
tion time through mixed-integer linear programming (§6).
(4) A prototype implementation integrated into mainstream
DL frameworks (§7) and an evaluation that shows the efficacy
and efficiency of UGache over state-of-the-art (§8).

������� ���	�
��
��������������
�����������
���	�
�����

������������
���	�
��	��

�������������
���	�
����������

���
��	

�

�����������������������������

������������	������

���

���

�����������
���	�
�����

�
 !"�##��	

�����
���	�
� �$��

�

!
"
�
#
#
��
	
�

$
�
"

�
�
�
�
$
��

%
&
'
�#
�!

�

Figure 1. The execution flow of embedding-based deep learning.

2 Characterizing Embedding-based DL
The embedding technique is designed to handle sparse inputs
in deep learning applications. Compared to traditional deep
learning that only uses dense inputs such as user age or pixel
color in images, embedding-based deep learning (EmbDL)
involves sparse inputs that are one-hot and encoded as a
list of IDs in a large value domain. For instance, in the deep
learning recommendation (DLR) model, the sparse inputs
may refer to the ID of a movie or a user involved in the
recommendation. In GNN, the sparse inputs may refer to the
ID of a paper or author in a citation graph.
The traditional DL model cannot process sparse inputs

directly; therefore, an embedding layer is introduced to con-
vert them into dense inputs (see Figure 1). Specifically, em-

bedding tables (EMTs) represent a mapping from sparse in-
puts into dense values where keys are IDs and values are
D-dimensional embedding vector entries. The embedding
table is often organized as a matrix with shape N ×D, where
N represents possible ID cases. The embedding layer extracts
corresponding entries for each key from the embedding table
into a continuous output region. These extracted embedding
entries can be used in conjunction with dense layers (e.g.,
MLP layers) and dense inputs for further computation.

In EmbDL, the end-to-end time is often dominated by the
embedding layer [21, 29, 43, 44, 46]. Compared to megabyte-
sized dense layers, typical embedding layers can reach sizes
up to hundreds of gigabytes, far exceeding the capacity of
existing GPU’s memory, and are often stored in host memory.
Due to PCIe bandwidth limitations, time spent transferring
the embedding from host to GPU becomes the system bot-
tleneck. According to Table 1, during the training of unsu-
pervised GNN, the embedding layer can take up to 113ms,
while dense layers only take around 10ms.
Characteristics. We summarize the following features of
embedding access.
Read-only access. In EmbDL, embedding access is typically
restricted to read-only. This is due to the read-only nature
of inference and the use of pre-training schemes, which en-
sure read-only access to embedding even during training.

628

https://github.com/SJTU-IPADS/ugache

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

In pre-training, the embedding table is trained beforehand
and distributed across different downstream workloads. The
model’s dense portion is trained and updated in downstream
workloads, while the embedding table remains static. For in-
stance, the embedding table in GNN is incorporated into the
dataset and remains unchanged during the model training.
Batched, subset access. Computation in DL applications is of-
ten performed in a batched, iterative manner. However, un-
like traditional DL applications where all parameters par-
ticipate in each iteration, EmbDL only accesses a subset of
embedding entries using batched sparse inputs as keys. The
final number of selected entries is often orders-of-magnitude
larger than the original batch size of the input. For instance,
in DLR, each input in a batch contains multiple keys for
dozens, or even hundreds, of embedding tables. Similarly,
in GNN, the embedding of k-hop neighbors of each input
node is also required. Consequently, the final number of
embedding entries to access can be at the million level.
Skewed access. In the subset access pattern, the keys of the
embedding entries are selected with skewness rather than
uniformity. For instance, in DLR [35], inputs closely relate to
user preferences which follow a power-law distribution [38,
38, 43, 44]. In GNN, due to the power-law nature of the
graph topology, the k-hop neighbors of input nodes are also
skewed [15, 19, 22], leading to skewed access of embedding
entries [29, 39, 46].
Stable, predictable access. The skewness of accessing embed-
dings is predictable and stable in EmbDL. Mature methods
exist in current systems to predict the frequency of access
for each embedding entry. For instance, during model train-
ing, profiling the access pattern of the initial few epochs
can anticipate access in subsequent epochs [46]. Similarly, in
DLR inference, hot entries in different daily traces are highly
alike [17]. In GNN, leveraging the graph’s degree can help
since embedding entries associated with high-degree nodes
are more likely to be accessed [29].

3 Challenges of Multi-GPU Embedding Cache

Single-GPU embedding cache. The characteristics of em-
bedding access in EmbDL applications inspire the design
of embedding cache [16, 18, 29, 43, 46], which caches fre-
quently accessed entries into GPU memory to reduce the
cost of fetching data from host memory. However, the perfor-
mance issue remains due to memory limitations on a single
GPU, and the time of embedding layer still dominates the
end-to-end time. As shown in Table 1, in unsupervised GNN
training, enabling embedding cache (w/ $) on a single GPU
can reduce the extraction time from 113.3ms to 20.7ms, yet
it still takes up about 66% of the end-to-end time.
Multi-GPU platforms with fast interconnects. In mod-
ern datacenters, multiple GPUs with fast interconnects (e.g.,
NVLink) on a single machine has been a common setting.

Table 1. The breakdown of runtime and data amount for a typical

EmbDL application. The MLP and EMT layers are the same as those

shown in Figure 1. “w/ $” indicates that the embedding cache is enabled.

“Access Gmem Ratio” means the ratio of GPU memory accesses to total

memory accesses. EmbDL: Unsupervised GraphSAGE [24] training.

Dataset: OGB-MAG240M [3]. Testbed: The server has one NVIDIA
A100 GPU with 80 GB memory.

EmbDL Application
➊+➌ ➋

Total (w/ $)
MLP EMT (w/ $)

Execution Time (ms) 10.6 113.3 (20.7) 123.9 (31.3)
Data Size (GB) 0.002 363 (69.6 in $) 363 (69.6 in $)
Access Gmem Ratio 100% 0% (84.6%) 0% (84.6%)

These interconnects unite the high bandwidthmemory (HBM)
of multiple GPUs, enabling a larger cache. However, creating
an embedding cache across multiple GPUs poses two funda-
mental challenges in cache policy and extraction mechanism.
The cache policy must reasonably place embedding entries
across multiple GPUs, while the extraction mechanism must
efficiently utilize fast connections to fetch embeddings across
multiple GPUs. Existing systems offer suboptimal solutions
from both perspectives.
3.1 Cache Policy
The cache policy of existing multi-GPU embedding cache
can be categorized as replication or partition.
Replication cache. Systems such asHPS [43] andGNNLab [46]
directly port single-GPU cache tomulti-GPU platform,where
each GPU independently caches the hottest entries. How-
ever, in data-parallel deployment, requests are randomly
sent to GPUs, causing each GPU to observe highly similar
access frequency. Consequently, the cache of each GPU cov-
ers similar requests, behaving like a replication cache, which
wastes bandwidth across GPUs. On HPS, we observe that
over 99% of cache-hit requests on each GPU are identical
when running DLR inference workload.
Partition cache. To utilize the fast interconnects between
GPUs, existing systems evenly partition the hottest entries
among each GPU [5, 7, 8, 45]. This partition policy caches
as many individual entries as possible and serves majority
of accesses through fast GPU interconnects, resulting in
improved performance.

However, the partition policy faces issues withmarginal ef-
fects and low local hit rates. With a given total GPU memory
budget, the partition policy blindly caches as many embed-
dings into GPU memory as possible. Since the power-law
distribution of embedding access results in a long-tail effect,
increasing cache capacities using a partition policy does not
lead to proportionate increases in hit rates. On the other
hand, because the partition policy extracts most entries from
remote GPUs, it results in a much lower local hit rate com-
pared to the replication policy. Since the bandwidth between
GPUs is still not fast enough, partition policy does not signifi-
cantly improve, and can even worsen performance compared

629

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

H
it
 R

a
te

 (
%

)

Cache ratio

Rep

Part.Local

Part.Global

 0

 2

 4

 6

 8

 0 5 10 15 20 25

E
x
tr

a
c
t
T

im
e
 (

m
s
)

Cache ratio

Rep

Part

UGache

Figure 2. Comparison of (a) hit rate and (b) extraction time between

replication and partition cache with the increase of cache ratio. Eval-

uation using supervised GraphSAGE training with OGB-Papers100M

on a 8×A100 platform.

to replication policy, despite the fact that partition policy
benefits from fast GPU interconnects.
Challenges. We train supervised GraphSAGE [24] with
OGB-Papers100M [4] on a testbed with eight A100 GPUs.1
Figure 2(a) shows the hit rates of using replication and parti-
tion cache. For partition cache, we present both the global
and local hit rates to differentiate between cache hits on local
memory and NVLink. The replication policy reaches a 95%
local hit rate under a cache ratio of 12%, but the extraction
is still bottlenecked by PCIe, which is nearly two-orders-of-
magnitude slower than GPU’s local bandwidth. The partition
policy, however, only improves the global hit rate from repli-
cation’s 95% to 99%, due to the long-tail nature of power-law
distribution. Also, this improvement in global hit rate comes
at the cost of the low local hit rate. The partition policy
forces 7

8 hit access on other GPUs, decreasing the local hit
rate to 12%. As the bandwidth of NVLink is still much lower
than GPU’s local bandwidth, the performance improvement
of partition is eliminated, as shown in Figure 2(b). Under
a cache ratio of 12%, the partition policy achieves a perfor-
mance identical to the replication policy. Meanwhile, the par-
tition policy cannot leverage a cache capacity above 12.5%,
while the replication policy continues to increase local hit
rate and surpass the partition policy.
Several optimizations have been proposed recently to in-

crease the local hit rate and reduce non-local accesses for
partition cache, including locality-aware dispatching [31]
and vertical partitioning [21]. However, these approaches
are still inefficient in memory utilization due to the long-tail
effect. Furthermore, they are limited to specific workloads
(e.g., GNN) and require significant changes in applications,
which hinders their use in more general scenarios.

3.2 Extraction Mechanism
The variety and limitation of existing multi-GPU platform’s
topology and bandwidth bring challenges to developing an
efficient extraction mechanism.
GPU topology. The topology of GPU interconnects can be
categorized into two types: hard-wired and switch-based.
In a hard-wired platform, the total outbound bandwidth of a
single GPU is physically divided among all connected remote

1Detailed experimental setup can be found in §8.

���

��� ��� ��� ���

���������

�����	
�

�

��
������������������

��������� ��� ��������� ���

�

��

���

������

���

Figure 3. The interconnect topology of multi-GPU servers: (a) 4 GPU

with hard-wired interconnects, (b) 8 GPU with hard-wired intercon-

nect like DGX-1 (V100), and (c) 8 GPU with switch-based interconnects

like DGX A100.

GPUs, creating a uniform, fully-connected graph as shown
in Figure 3(a). This ensures that the connection between each
pair can be concurrently utilized without collision. However,
as the number of GPUs scales up, the connections between
GPUs become irregular due to numeric limitations of the
GPU’s port. Figure 3(b) shows the non-uniform topology of
DGX-1 system with 8×V100 GPUs. The bandwidth varies be-
tween GPU pairs, and some GPU pairs are even unconnected,
forcing them to resort to the slower PCIe links.

In a switch-based platform shown in Figure 3(c), all GPUs
are directly connected to NVSwitch, where the bandwidth
between different GPU pairs is dynamically allocated. While
the NVSwitch’s bandwidth is able to support all GPUs’ full
outbound bandwidth, bandwidth collision can still occur
when a GPU is accessed by multiple GPUs simultaneously.
Remote extraction arrangement. The procedure for read-
ing embedding entries is accomplished through the extract
function below:

!!"#$%&#!!'($)*!+,-.&/-"!"#$%&'()*()#$

%!!0$.!+&!!"#!)1!'()*'+,-'"!"#$#

.!!!!/0'*1!$,-&2!034,-'"!"##!

5!!!!0$.!.!6(!+,(7'"/+0"1$+'1#

8!!!!!!'()*()9+:9.:!2!$,-9.:!!

In each iteration, the application provides a batch of keys that
identify the required entries and calls the extract function.
These keys are then dispatched to a set of cores on the GPU,
such as stream processors (SM) in NVIDIA GPUs, where each
core concurrently extracts entries for different keys.

To perform the extraction procedure on a multi-GPU plat-
form, existing systems can be classified into two categories:
message-based and peer-based approaches. Message-based
systems utilize message-passing interfaces [5, 7, 8, 20] to
exchange embedding entries spread across the embedding
table. These systems employ buffering to conduct one round
of large message passing instead of multiple rounds of small
messages. Specifically, each GPU first extracts globally re-
quired embedding entries into a contiguous buffer, then ex-
changes these buffers, and finally reorders the exchanged
buffers back to the original key order of the input batch. This

630

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

 0

 1

 2

 3

4xV100 8xA100

E
x
tr

a
c
t
T

im
e
 (

m
s
)

Message

Peer

UGache

 0

 2

 4

 6

 8

 10

4xV100 8xA100

Message

Peer

UGache

Figure 4. The extraction time in DLR inference with (a) criteo-TB

and (b) a Zipfian-generated synthetic dataset (α = 1.2) using different
extraction mechanism.

approach leverages AllToAll primitives in collective com-
munication libraries (e.g., NCCL [11]) to exchange buffers,
achieving both high-efficiency embedding exchange and
adaptability to various multi-GPU platforms. However, the
inevitable buffering involves multiple rounds of data move-
ment, and causes performance degradation [45].

Amodernmulti-GPU platform can unify host memory and
every GPU memory into a single address space [1], allowing
for peer-based access. This means that a GPU can directly
load or store a non-local address, eliminating redundant data
movement in the message-based approach and enabling zero-
copy embedding extraction. Prior work [33, 45] has utilized
peer-based access to optimize embedding extraction. A single
kernel function can be launched to extract from multiple
source locations, where each streaming multiprocessor (SM)
locates the required embeddings on the fly through a hash
table or hash function (refer to the locate function at Line
2 in the extract function above).

The peer-based approach requires manual handling of var-
ious topology and link usage. However, we have found that
existing systems’ naive use of peer access has flaws in both as-
pects. The existing system overlooks the mismatch between
the high parallelism of GPUs and interconnects’ capacity,
resulting in bandwidth congestion that causes GPU cores to
stall and reduces system performance by up to 50%. Addi-
tionally, existing systems assume a uniform, fully-connected
graph for GPU interconnect topology and employ a partition
policy, leading to decreased performance when deployed to
platforms with non-uniform bandwidths and unconnected
GPU pairs like 8×V100.

To demonstrate the performance issues in existing extrac-
tion mechanisms, we conducted DLR inference with Criteo-
TB [6] and a Zipfian-generated synthetic dataset (α = 1.2).
As shown in Figure 4, the peer-based approach shows a
significant improvement in performance compared to the
message-based approach, which involves additional data
movement. However, a considerable gap still remains be-
tween the peer-based approach and our proposed system.

4 Overview of UGache
We propose UGache, a unified multi-GPU embedding cache
system for EmbDL applications. As shown in Figure 5, UGache
seamlessly enhances existing embedding layers by caching
embedding entries across multiple GPUs while hiding plat-
form details. Internally, UGache comprises two major com-
ponents: Extractor (§5) and Solver (§6), which address two

��� ��� ���

������

	

���� 	�����

�
����

������ ����������

�������
�

�

��
�

�

���

����� ��������
��
!�"#"$���%$��&&'

�� ���(�)
���
!�"#"$�����
���
)$����'

Figure 5. The system architecture of UGache. As an embedding

layer, UGache serves lookups from applications and DL frameworks.

fundamental challenges in extraction mechanism and cache

policy, respectively.
Extractor provides a factored extraction mechanism to ex-
tract embedding entries from multiple sources. The core
idea is to statically dedicate GPU cores to access different
sources. This static dedication limits concurrent GPU cores
accessing same link within the link’s capacity, thus avoid-
ing bandwidth congestion and consequent core stall. For
switch-based platforms, it also avoids cross-GPU bandwidth
collision without involving explicit synchronization. Extrac-
tor further introduces local extraction padding to tolerate
potential load imbalance caused by dedication. Consequently,
UGache improves bandwidth and GPU core utilization and
speeds up embedding extraction.
Solver determines the cache policy for placing embedding
entries on multiple GPUs and provides guidance to Extractor
on where to find the entries. To obtain an optimal cache
policy, Solver finds a balance between caching more distinct
entries to improve global hit rate and caching more replicas
to improve local hit rate. To achieve this balance, Solver
defines a hotness metric to measure the access frequency for
each entry and profiles hardware platform’s information to
estimate embedding extraction time. Then, it utilizes MILP
to solve a cache policy to minimize the extraction time. To
simplify the solving procedure, Solver further batches similar
entries to reduce the scale of MILP problem. Cooperating
with UGache’s Extractor, Solver further guarantees load
balance, handles diverse platforms, and ultimately reduces
global extraction time.
UGache adopts a straightforward design that takes ad-

vantage of EmbDL’s batched, read-only access guarantee to
coordinate Extractor and Solver without the complexity of
maintaining cache consistency. In the foreground, Extractor
processes lookup requests from DL frameworks and applica-
tions. In the background, Solver solves a new cache policy

631

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

B
a
n
d
w

id
th

 (
G

B
/s

)

Num of Cores Used

CPU

Local

Remote

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

B
a
n
d
w

id
th

 (
G

B
/s

)

Num of Cores Used

CPU

Local

Remote

G
0
<
-G

1
G

1
<
-G

0

G
2
<
-G

4
G

3
<
-G

4

Figure 6. The tolerance of concurrent cores for each source location.

Tested on (a) 4×V100, a hard-wired platform and (b) 8×A100, a switch-

based platform.

and invokes Filler to (re)fill the cache content when neces-
sary. Coordination between Extractor and Solver is achieved
through a simple per-GPU hashtable. Each cached embed-
ding entry is associated with its source location in the format
of <GPU_i, Offset>, which guides Extractor to read the en-
try from Offset on GPU_i, while Solver and Filler update
the hashtable and cache contents.

5 Extraction Mechanism
To achieve efficient embedding extraction across multiple
GPUs, the major challenge is handling the conflict between
high parallelism of GPUs and limited bandwidth to non-local
memory. We conducted a microbenchmark and found that
non-local memory can only tolerate a few concurrent GPU
cores. Then we analyse how existing systems suffer from this
limitation, and present how UGache’s Extractor resolves it.

5.1 Characteristics of Extraction Procedure
Figure 6(a) illustrates link tolerance of concurrent GPU cores.
While local memory allows for all cores to extract concur-
rently, non-local memory can only tolerate a portion of cores
to exhaust its bandwidth. PCIe limits host extraction band-
width, allowing fewer than 10% of cores. On hard-wired
platform like 4×V100 (§3.2), the outbound bandwidth is phys-
ically partitioned to other three GPUs, causing the tolerance
of 1

3 cores to concurrently extract from each remote GPU.
On switch-based multi-GPU platform, NVSwitch dynami-

cally allocates bandwidth instead of static partitioning. Fig-
ure 6(b) shows the same test on a switch-based 8×A100
platform. When only single GPU is extracting without in-
terference from other GPU, the remote bandwidth tolerates
almost all GPU cores. However, when multiple GPUs si-
multaneously extract from the same GPU, their bandwidth
conflicts as Figure 6(b)’s right part demonstrates.

5.2 Performance Issues: Link Congestion
Existing systems (e.g., WholeGraph [45]) utilize peer-based
approach to extract entries (§3.2). They leverage the high
parallelism of GPUs by enabling GPU cores to extract from
different locations concurrently, albeit in an unorganized
manner. The input keys in the current batch are randomly
dispatched to GPU cores. Each core identifies the source
location of the dispatched key and fetches the corresponding
embedding entry to local memory. However, the random
dispatching manner can easily cause link congestion when

�� �� ������ �� ��

� � � � �

� � � � �

� � � � �

� � � � �

� � �

� � �

� � �

� � �

����

	

�

�

�

�

�

�
����
��

������
��

��
�����
��

�
�����

��
�

� � �� �����
�� �����
������ ������!����� ! ���� ! ���� !���� �
��� ����������
�"

��

�
�����

�

Figure 7. An example of congestions on different interconnects when

accessing data on GPU memory and host memory.

concurrent cores are extracting from the same source, which
exhausts the link bandwidth towards the source location.
Figure 7 provides an example of congestion. Each num-

bered block represents a key to be read and its source lo-
cation. While the random partition of embeddings ensures
statistical load balance of keys to read from each source at a
global perspective, the random dispatch manner causes an
instantaneous load imbalance from a local perspective. The
first and second dashed boxes illustrate that too many cores
are concurrently reading from a slow physical link (i.e., PCIe
to host memory, partitioned link to pair GPU in a hard-wired
platform). These slow links tolerate fewer cores, forcing over-
allocated cores to stall, causing low core utilization. The third
dashed box illustrates that in a switch-based platform, con-
current cores of different GPUs may also exhaust inbound
link bandwidth and lead to GPU core stall.

5.3 Factorized Extraction Mechanism
UGache proposes a factored extraction mechanism (FEM)
based on the above observation. The idea is to dedicate spe-
cialized cores to extract from each source location, limiting
concurrency within link’s tolerance, preventing link conges-
tion and core stall.
Figure 8 shows the scheme of factored extraction mech-

anism. With batched incoming keys of embedding entries
spread acrossmultiple source locations, these keys are grouped
according to their source location. Then, GPU cores are ded-
icated to handle non-local groups first. For each non-local
group of keys, a subset of GPU cores are dedicated to extract
their embedding entries. This limits the number of concur-
rent cores extracting from the same link within the link’s
tolerance, avoiding congestion and stalls.

Dedicating cores to non-local extraction avoids congestion
but may result in ragged extraction time and cause load
imbalance. UGache leverages the remaining local group to
pad the ragged extraction time of the non-local group. Local
extraction is arranged after non-local extraction and given
low priority. Once the corresponding extraction of the non-
local group finishes, dedicated cores handle the remaining

632

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

� � �� ����	
�� 	�
��������� ������������� � � ���� � � ���� � ����	 ���
���������������

� � � � �

� � � � �

� � � � �

� � � � �

�

�

�

�

�

�

�

�

�

�

����

����

����

��

��������
��������

�
����

���� �����

�
�

�

�

��

��

��

����

����

����

�����������

��

�

�

�

�

�

�
��

�
�

��� !
��

"#��!��

Figure 8. The execution flow of factored extraction mechanism.

keys in the local group. Since local extraction can tolerant
all GPU cores, ragged extraction time can be sufficiently
padded.
Core Dedication Strategy. The remaining question is how
to determine the number of cores dedicated to each non-local
group. Figure 6 indicates that only a few cores are needed for
host extraction. Given the low host extraction bandwidth,
UGache first dedicates a small number of cores for host to
prevent extremely ragged time.
For remote GPUs connected via NVLink, the remaining

cores are sliced based on the ratio of link bandwidth. This
design is compatible with both switch-based and hard-wired
platforms. On a hard-wired platform, given the small number
of cores dedicated for host extraction, the remaining cores
are in line with the tolerance of remaining cross-GPU links.
Thus, the dedication ensures bandwidth and core utilization,
and handles potential non-uniform bandwidth.
For switch-based platforms, the remaining cores are di-

vided equally among each remote GPU. This abstracts the
switch topology into a fully connected hard-wired platform.
On a multi-GPU platform with N GPUs, the dedication only
occupies 1

N−1 outbound bandwidth of each remote GPU, due
to the control of number of cores as Figure 6. Even when
multiple GPUs are extracting simultaneously from the same
remote GPU, their bandwidth does not overlap, resulting in
implicit coordination to avoid bandwidth congestion.
The static dedication allows UGache to fully utilize all

GPU cores for concurrent embedding extraction. By avoiding
GPU cores competing for and being stalled by a congested
link, UGache efficiently utilizes multiple links concurrently,
and improves link utilization from a global perspective.

6 Cache Policy
UGache’s Solver provides cache policy for guiding the place-
ment of embedding entries on multiple GPUs and directs
UGache’s Extractor to locate embedding entries. Through
selectively caching more copies of frequently accessed em-
bedding entries, Solver can control the ratio of data extracted
from different sources (i.e., local GPU memory, remote GPU
memory with varying bandwidths, and host memory). The
control decision takes into account the distribution of access
frequency of each embedding entry and the topology of the

Table 2. Terminology

Symbol Type Description

G Par Available GPUs
M Par Available source (all GPUs and host DRAM)
E Par All cacheable entries
Capj Par Capacity of source location j ∈ M

Ti←j Par Time for GPUi to extract an entry from j ∈ M

he Par Hotness of entry e
Ri←j Par Ratio of GPUi ’s core to extract from j ∈ M

aei←j Var Whether GPUi reads entry e from j ∈ M

ti Var Total extraction time of GPUi
t
j
i Var Extraction time of GPUi spent on j ∈ M

sej Var Whether entry e is stored on j ∈ M

multi-GPU platform, as well as its bandwidth hierarchy. To
make a reasonable decision, Solver defines a hotness metric
to model the access frequency. Based on hotness and the pro-
filed information of the multi-GPU platform, Solver models
the optimal cache policy as a MILP problem and provides a
solution that minimizes the estimated extraction time.

6.1 Hotness Metric

The hotness metric measures the frequency of access for each
embedding entry. UGache utilizes this metric to estimate
the contribution of accessing different entries to the total
extraction time.

One way to implement the hotness metric is to internally
count the accesses of each individual entry in UGache. How-
ever, real-world applications often provide additional seman-
tics to simplify measuring hotness. For example, in model
training workloads, the same dataset is accessed repeatedly
by each epoch. Recent work [46] observes that measuring
hotness solely on the first epoch is sufficient to estimate the
frequency of subsequent epochs. In many GNN workloads,
the vertex degree in graph datasets can approximate the ac-
cess frequency; vertices with higher degrees are more likely
to be accessed [29]. To ensure flexibility for applications
with these semantics, UGache’s Solver allows applications
to directly provide measured hotness.

6.2 Modelling of Extraction Time

Using hotness and platform information, UGache’s Solver
builds a model to estimate the time spent on embedding ex-
tractionwith the arrangement variation of embedding storage

and embedding access. The storage arrangement describes
where to put an embedding entry, while the access arrange-
ment describes which source location to read from when the
same embedding entry is stored by multiple reachable GPUs.
Solver models and minimizes the extraction time through
access arrangement, which limits storage arrangement and
is further constrained by each GPU’s cache capacity.
The Solver first defines a set of binary variables aei←j ,

indicating whether destination GPUi accesses embedding

633

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

entry e from source location j when aei←j = 1:∑
j ∈M

aei←j = 1 ∀i ∈ G,∀e ∈ E

To ensure accessibility, the sum of aei←j must be 1, as shown
in the equation above.
Based on aei←j , UGache is now able to ❶ construct the

storage arrangement for each source GPU and constrain it
by cache capacity, and ❷ estimate the total extraction time
for each GPU as the target to be minimized.
Storage Arrangement. The connection between storage
and access arrangement is straight forward: if any GPU ac-
cesses an embedding entry e from source location j, then j
must store e . To model this behavior, UGache defines an-
other set of binary variables sje indicating whether source
location j stores embedding entry e:

sje ≥ aei←j ∀i ∈ G,∀j ∈ M,∀e ∈ E∑
e ∈E

sje ≤ Capj ∀j ∈ M

The first equation describes the aforementioned constraint
between sje and aei←j , while the second equation limits the
total stored embedding entries on j within its capacity.
Time Estimation. Based on aei←j , hotness metric, and pro-
filed platform’s information, UGache can construct the total
extraction time by summing aei←j with hotness and access
time cost as weight:

t ji =
∑
e ∈E

Ti←j ∗ he ∗ a
e
i←j ∀i ∈ G,∀j ∈ M

In the above equation, he is the hotness of embedding e ,Ti←j
is the time of reading one embedding from source j to GPU i .
t ii ,tCPUi ,t ji describes the total time of GPU i reading from local
cache, fallback location, and remote GPU j respectively. The
platform’s bandwidth and topology are introduced by Ti←j ,
whose value is the reciprocal of bandwidth. For unconnected
GPU pairs, its value can be set as infinity. In practice, UGache
removes the corresponding t ji of unconnected GPU pairs to
simplify the model.
Based on t ji , the total extraction time ti of GPU i can be

constructed according to the design of UGache’s Extractor:
ti ≥ t ji ∀i ∈ G,∀j ∈ M

ti ≥
∑
j ∈M

t ji ∗ Ri←j ∀i ∈ G

The first equation considers that the absolute time extracting
from each non-local location may be extremely imbalanced,
e.g., host extraction dominates when cache capacity is ex-
tremely insufficient. The second equation considers the usual
case that Extractor’s local extraction is able to handle load
imbalance of each source, as Figure 8 shows. In the second
equation, Ri←j is the ratio of cores dedicated to extract from

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 8 16

E
m

b
.
E

n
tr

ie
s
 (

%
)

Hotness (Log Scale)

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 4 8 16

E
m

b
.
E

n
tr

ie
s
 (

%
)

Coarse
grained

block

 0

 0.2

 0.4

 0.6

 0.8

 16 32 64 128

Fine
grained

block

 0

 0.2

 0.4

 0.6

 0.8

 16 32 64 128

Figure 9. Batch embedding entries with similar log-scale hotness

into blocks to reduce model complexity.

source j . Summing t ji with Ri←j as weight calculates the area
of Figure 8 to estimate total extraction time.
Finally, the target of the MILP can be constructed by the

maximum of each GPU’s extraction time:
minimize z, z ≥ ti ,∀i ∈ G

The constructed model can be solved by mature optimization
tools like Gurobi [9].

6.3 Complexity, Approximation and Optimizations
The MILP problem above provides an optimal solution that
adapts various platforms and workloads. However, on large
datasets, the problem is impossible to solve in an accept-
able time. With E representing number of embedding entries
and G representing number of GPUs, the MILP problem in
UGache contains EG2 + 2EG + G2 + 2G + 1 variables and
EG2 + EG + 2G2 + 5G constraints. The total number of non-
zero elements in the MILP problem is also at O(EG2). As the
MILP problem is NP-complete, solving this problem has an
exponential cost with respect to E and G. For a large E (e.g.,
millions of entries), the cost becomes unacceptable. A recent
work [39] proposes a heuristic approach to finding an opti-
mal policy in an acceptable time by replicating hot and parti-
tioningwarm embedding entries across every GPU. However,
this approach is limited to a uniform fully-connected plat-
form and cannot be generalized to non-uniform platforms.
To simplify problem-solving complexity while maintain-

ing generality, UGache proposes an approximate solution
that provides a near-optimal result in an acceptable time (e.g.,
10 seconds). The idea is to batch similar entries, decide their
placements and access policies together. Since entries with
similar hotness tend to have similar placement decisions,
UGache batches entries with similar hotness into blocks,
and builds the MILP problem at the granularity of a block.2

To control the loss of precision, UGache deploys two op-
timizations. The first optimization classifies similar hotness
levels on a log scale (see the X-axis of Figure 9). This is be-
cause a hotness difference at a larger base (e.g., 110 and 120)
is less distinguishable than the same difference at a smaller
base (e.g., 10 and 20). The second optimization controls the
size of a single block by dividing it into smaller ones (see
the Y-axis in Figure 9). The block size is controlled through
a combination of coarse and fine granularity. Due to the
large number of infrequent entries at a low hotness level, the
2The size each block needs to be added to the MILP problem.

634

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

maximum size of a single block is limited to a fixed portion
to prevent excessively large blocks. On the contrary, at high
hotness levels, the maximum size of a block is limited based
on the number of entries in the same hotness level, allowing
for a sophisticated policy when available cache ratio is low. In
practice, UGache limits the maximum size of a single block
at a low hotness level to 0.5% of total entries and adjusts
block size at high hotness levels to ensure that each level is
split into at least N (the number of GPUs) fine-grained blocks.
We find that this strategy adapts well to most scenarios.

By reducing the granularity of placement from embedding
entry to block, UGache decreases E from several billions
to less than one thousand. As G is a small constant, the
scale of the MILP problem is significantly reduced. UGache
takes around 10 seconds to solve the MILP problem, which is
acceptable compared to the data loading time [46]. Further-
more, the difference between our near-optimal results and
the theoretical optimal results is less than 2% on average.

7 Implementation

7.1 System Integration

To integrate UGache into EmbDL’s workflow, we follow
prior works to expose it as an embedding layer for main-
stream DL frameworks with compatible APIs. Applications
can take advantage of UGache’s high-performance embed-
ding extraction by replacing the reference of embedding layer
with UGache. The core logic of UGache was implemented
with roughly 12K lines of C++ and CUDA code. Above the
core logic, UGache is wrapped into an embedding layer in
PyTorch [37] and TensorFlow [14].

7.2 Cache Refresh

As a cache system, UGache needs to handle potential varia-
tions in workload’s hotness. Traditional systems often use
evict policies such as LRU to track hot entries and perform
evictions on the fly. While this design provides great feasibil-
ity for dynamic workloads, it incurs maintenance overhead
and increases the complexity of cache system, especially
for multi-GPU cache. Fortunately, the stable and predictable
pattern of embedding workloads (§2) ensures that hotness
remains stable for a long period (e.g., days). This allows
UGache to build a static cache with infrequent refreshes in a
background, periodical manner, reducing design complexity
significantly.
In the foreground, UGache samples input requests and

records hotness by CPU, hiding its performance impact. In
the background, UGache’s Refresher collects statistics and
periodically re-evaluates Solver’s model with the new hot-
ness. When the estimated extraction time increases signif-
icantly, the refresh procedure is triggered. Refresher first
invokes Solver to solve a new cache policy. According to the
new cache policy, Refresher evicts old entries and inserts
new entries into UGache’s hashtable and cache content on

GPU. To ensure that foreground embedding extraction al-
ways reads correct content, Refresher waits for a foreground
batch between the update of hashtable and cache content.

To balance the trade-off between the impact on foreground
embedding extraction and the duration of the refresh pro-
cedure, Refresher controls the resource usage and refresh
granularity. Typically, the entire refresh procedure takes
around 20 seconds, with less than 10% impact on foreground
requests during the procedure.

7.3 Hardware Requirements

Core dedication.UGache’s Extractor requires explicit control
over GPU’s cores to execute different code to implement GPU
core dedication. While there isn’t yet a method to implement
such control, CUDA provides Multi-Process Service (MPS) as
a workaround. UGache leverages MPS’s API to create multi-
ple GPU contexts with limitation of GPU core occupation,
and launches kernels on these contexts to achieve GPU core
dedication.
Kernel priority. To handle potential load imbalance, local ex-
traction must be launched early but scheduled after the ex-
traction kernel of non-local locations. UGache leverages
stream priority in CUDA, letting local extraction be launched
on a stream with lower priority to achieve this goal.

8 Evaluation
We evaluated UGache on two types of EmbDL applications:
GNN training and DLR inference. For GNN training, we
integrated UGache into PyTorch [37] and followed Whole-
Graph [45] to reuse its graph sampler. All systems leveraged
DGL [40] as the backend engine for model training. For DLR
inference, we integrated UGache into TensorFlow [14].

8.1 Experimental Setup
Testbeds. To demonstrate the generalization of UGache,
we conducted experiments on three multi-GPU servers with
different configurations:
• Server A: four V100 (16GB, SXM2) GPUs, two Intel Xeon
Gold 6138 CPUs (total 40 cores), and 384GB of host mem-
ory.
• Server B: eight V100 (32 GB, SXM2) GPUs, two Intel Xeon
Platinum 8163 CPUs (total 48 cores), and 724GB of host
memory.
• Server C: eight A100 (80 GB, SXM4) GPUs, two Intel Xeon
Gold 6348 CPUs (total 56 cores), and 1 TB of host memory.

Figure 3 shows the GPU interconnect topology of these
servers, where Server A and Server B are hard-wired plat-
forms, and Server C is a switch-based platform. Each NVLink
has a bandwidth of 25GB/s, resulting in a total outbound
bandwidth of 150GB/s and 300GB/s for V100 and A100, re-
spectively. All experiments were conducted in Docker using
NVIDIA’s image with Python v3.8, PyTorch v1.13.0, CUDA
v11.7, DGL v0.9.1, and TensorFlow v2.9.1.

635

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

Table 3. GNN and DLR Datasets used in evaluation. VolumeG (resp.

VolumeE) is the data volume of graph topological (resp. embedding)

data in host memory. Note that MAG ships with float16 embedding,

while other datasets use float32.

Dataset #Vertex #Edge Dim. VolumeG VolumeE

PA [4] 111M 3.2 B 128 12.8 GB 53GB
CF [27] 65.6M 3.6 B 256 14GB 62GB
MAG [3] 232M 3.2 B 768 13.8 GB 349GB

Dataset #Entry #Table Dim. Skewness VolumeE

CR [6] 882M 26 128 N/A 420.9 GB
SYN-A 800M 100 128 1.2 381.5 GB
SYN-B 800M 100 128 1.4 381.5 GB

Applications. For GNN, we trained two popular models,
GCN [26] and GraphSAGE [24]. Both models were evaluated
in supervised settings. Furthermore, we evaluated Graph-
SAGE in an unsupervised setting for link prediction appli-
cations. The training procedure of GCN (resp. GraphSAGE)
adopted standard 3-hop (resp. 2-hop) random neighborhood
sampling [49], following GNNLab [46]. We refer the readers
to the original papers [24, 26] for more details.
For DLR, we ran inference workloads using two popular

models, DLRM [36] and DCN [41]. DLRM consisted of six
MLP layers and one embedding layer associated with the
dataset, following the settings in [43]. DCN included an
additional Cross layer, following the settings in the official
TensorFlow example [14].

By default, we set the per-GPU batch size to 8K, similar
to prior work [46]. However, training large datasets or unsu-
pervised models in GNN can lead to out-of-memory (OOM)
errors, even without caching, due to the high memory con-
sumption of intermediate results. In such cases, we turned
down the batch size on GPUs with smaller memory capacity.
Datasets. For GNN training, we used 3 datasets, namely a so-
cial graph, Com-Friendster [27] (CF), and two GNN datasets
from Open Graph Benchmark (OGB) [2]: a citation network,
OGB-Papers100M (PA), and an academic network, OGB-
MAG240M (MAG). Since CF originally lacks embeddings
and labels, and no training set was provided officially, we
generated random embeddings and labels, and randomly se-
lected a small portion of vertices as the training set, similar
to prior works [21, 30]. We followed the standard prepro-
cessing procedure in the OGB leaderboards [13] to convert
PA and MAG into unidirectional homogeneous graphs.
For DLR inference, we first evaluated Criteo-TB [6] (CR),

a commonly used dataset that contains 26 embedding tables.
Each request contains a single key for each table. We further
evaluated two synthetic datasets, SYN-A and SYN-B, to keep
up with the growing size of datasets. Both SYN-A and SYN-B
include 100 embedding tables, and their request keys were
generated from a power-law distribution with α=1.2 and 1.4,

respectively. Although the total size of cacheable entries in
SYN-A and SYN-B is similar to CR, their requests are larger.

Among these datasets and models, the main factors affect-
ing the workload of embedding extraction are the dataset
and the sampling method used in GNN. while the model
type (e.g., GCN and GraphSAGE) mainly affects the perfor-
mance of the dense layer (MLP). Since the embedding layer is
our main optimization target, we primarily vary the dataset
and GNN sampling method to obtain a diverse range of em-
bedding extraction workloads in order to demonstrate the
performance of UGache.
Baselines. In GNN training, we compare UGache with two
state-of-the-art systems: GNNLab [46] andWholeGraph [45].
GNNLab dedicates specialized GPUs for graph sampling,
which saves GPU memory from graph storage to enable
a larger replication cache. WholeGraph builds a partition
cache and conducts straightforward peer-based embedding
extraction. However, WholeGraph fails to launch when ei-
ther ① the total GPU memory cannot hold all embeddings
or ② unconnected GPU pairs exist. Therefore, we further
implemented a new baseline called PartU that extendsWhole-
Graph. PartU partitions only hot embeddings to GPU and
stores cold embeddings on the CPU. To handle unconnected
GPU pairs on the 8×V100 platform, PartU uses the clique
approach in Quiver [7], which splits the 8 GPUs into two
fully-connected cliques. Each clique has an individual parti-
tion cache, avoiding cross-clique access. We also offer RepU
that uses an identical codebase as PartU but employs a repli-
cation cache.
In DLR inference, we compare UGache with HPS [43]

and SOK [8], both of which are TensorFlow embedding plu-
gins from the same codebase as HugeCTR [42]. HPS builds
a replication cache with LRU-based online eviction, while
SOK builds a partition cache and conducts message-based
embedding extraction.

Finally, all systems, including UGache, use the same back-
end: DGL+PyTorch for GNN training and TensorFlow for
DLR inference. Each system is warmed up using either the
first epoch for training or the first 1,000 iterations for infer-
ence. We conduct each experiment three times and report
the average results.

8.2 Overall Performance

We first compare UGache to state-of-the-art systems in GNN
andDLR across awide range of application settings. Figure 10
reports the end-to-end time for each system. On average,
UGache outperforms GNNLab and HPS (replication cache
systems) by 2.21× (up to 5.25×) and 1.51× (up to 2.34×), re-
spectively. In GNN, UGache has improved performance over
GNNLab due to the unification of multiple GPUs to build a
larger cache. In unsupervised GNN, negative sampling re-
duces the skewness of embedding access, resulting in a even
larger improvement over GNNLab’s limited cache capacity

636

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

Server A

GNNLab

WholeGraph
+CPU

UGache
+Clique

 0

 2

 4

 6

 8

 10

 12

 14

 0

 2

 4

 6

 8

 10

 12

 14

 0

 1

 2

 3

 4

 0

 1

 2

 3

 4

 0

 10

 20

 30

 40

 0

 10

 20

 30

 40

 0

 1

 2

 3

 4

 5

 6

 7
Server B

E
n

d
 t

o
 E

n
d

 E
p

o
c
h

 T
im

e
 (

s
)

 0

 1

 2

 3

 4

 5

 6

 7
Server B

E
n

d
 t

o
 E

n
d

 E
p

o
c
h

 T
im

e
 (

s
)

 0

 1

 2

 3

 4

 5

 6

 7
Server B

E
n

d
 t

o
 E

n
d

 E
p

o
c
h

 T
im

e
 (

s
)

 0

 0.4

 0.8

 1.2

 1.6

 2

 0

 0.4

 0.8

 1.2

 1.6

 2

 0

 0.4

 0.8

 1.2

 1.6

 2

 0

 10

 20

 30

 40

 50

 0

 10

 20

 30

 40

 50

 0

 10

 20

 30

 40

 50

 0

 0.5

 1

 1.5

 2

 2.5

PA CF MAG

Server C

GCN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

PA CF MAG

SAGE Sup.

 0

 1

 2

 3

 4

 5

PA CF MAG

SAGE Unsup.

 0

 5

 10

 15

 20
Server A

HPS SOK UGache

 0

 10

 20

 30

 40

 50

 0

 5

 10

 15

 20

 25
Server B

E
n

d
 t

o
 E

n
d

 I
te

ra
ti
o

n
 T

im
e

 (
m

s
)

 0

 10

 20

 30

 40

 50

 0

 2

 4

 6

 8

 10

 12

 14

CR SYN-ASYN-B

Server C

DLRM

 0

 5

 10

 15

 20

CR SYN-ASYN-B

DCN

Figure 10. The end-to-end time of (a) an epoch in GNN training and (b) an iteration in DLR inference on different systems and platforms.

of single GPU. When compared to HPS in DLR, UGache
further benefits from its static design with no online eviction
cost. While the workload in DLR is much more skewed than
in GNN, the improvement of UGache over the replication
cache system is slightly lower than in GNN.
UGache also outperforms WholeGraph and SOK (parti-

tion cache systems) by 1.33× (up to 1.85×) and 2.07× (up to
3.45×) on average, respectively. Comparing to WholeGraph
in GNN, UGache benefits from a more efficient cache policy
and its factored extraction mechanism. When deployed on
a 4×V100 platform or with the MAG dataset, host extrac-
tion still dominates due to limited cache capacity, explaining
UGache’s small improvement in these cases. The only case
when UGache is slower is running unsupervised Graph-
SAGE with MAG on 4×V100 platform. In this case, the cache
capacity is significantly inefficient, exposing UGache’s cost
of approximate cache policy solution. Comparing to SOK in
DLR, UGache further benefits from peer-based embedding
extraction and has a larger improvement. Note that in DLR,
with higher skewness, SOK’s performance is often worse
than HPS’s replication cache due to the low local hit rate of
partition policy.
We break down the end-to-end time to focus on the im-

provement of UGache’s techniques on embedding extraction
in Figure 11. The improvement over GNN baselines comes
from UGache’s novel technique in cache policy and extrac-
tion mechanism, with UGache outperforming GNNLab and
WholeGraph by 3.57× and 2.62× in embedding extraction,
respectively. Note that despite GNNLab’s extraction being
faster than WholeGraph in some cases with higher skew, its
end-to-end time is slower due to transferring samples across
GPUs through queues in host memory.
In DLR, we introduce a comparison between PartU and

RepU to isolate UGache’s performance improvement of
novel techniques. Comparing to HPS and SOK, RepU and

 0

 10

 20

 30

 40

 50

 60
Server A

 0

 10

 20

 30

 40

 50

 60

 0

 20

 40

 60

 80

 100

RepU PartU UGache HPS SOK

 0
 2
 4
 6
 8

 10
 12
 14

 0

 10

 20

 30

 40

 50

 60

 70
Server B

E
m

b
e

d
d

in
g

 E
x
tr

a
c
ti
o

n
 T

im
e

 (
m

s
)

 0

 10

 20

 30

 40

 50

 60

 0

 40

 80

 120

 160

 200

 0

 5

 10

 15

 20

 0

 5

 10

 15

 20

 25

PA CF MAG

Server C

GCN

 0

 2

 4

 6

 8

 10

 12

PA CF MAG

SAGE Sup.

 0

 4

 8

 12

 16

 20

PA CF MAG

SAGE Unsup.

 0

 2

 4

 6

 8

 10

CR SYN-A SYN-B

DLRM

Figure 11. The embedding extraction time in one iteration of GNN

training and DLR inference on different systems and platforms.

PartU improve by 2.39× and 3.18×, respectively. The perfor-
mance gap is brought by RepU ’s static cache design with no
online eviction and PartU ’s peer-based embedding extrac-
tion. UGache further improves embedding extraction from
RepU and PartU by 1.79× and 2.19×, respectively.

8.3 Performance Breakdown
We now break the performance improvement of UGache
that comes from cache policy and extraction mechanism.
Figure 12 demonstrates the time taken for embedding extrac-
tion when these two techniques are incrementally applied in
supervised GraphSAGE with PA and CF on an 8×A100 plat-
form. When the cache ratio is small (e.g., 2% in PA), UGache
produces a cache policy similar to partition, and the 1.72×
improvement over partition is mainly due to UGache’ ex-
traction mechanism.
As the cache ratio increases, UGache’s cache policy di-

verges from partition by leveraging sufficient cache capacity

637

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25E
x
tr

a
c
ti
o

n
 T

im
e

 (
m

s
)

Cache ratio per GPU

RepU

PartU

+Policy

UGache

 0

 10

 20

 30

 40

 0 5 10 15 20 25 30 35 40

Cache ratio per GPU

Figure 12. The embedding extraction time by incrementally apply-

ing techniques in UGache on Server C.

 0

 10

 20

 30

 40

 50

CF MAG CR SYN-A

GCN DLRM

L
in

k
 U

ti
liz

a
ti
o

n
 (

%
)

w/o FEM

w/ FEM

 0

 20

 40

 60

 80

CF MAG CR SYN-A

GCN DLRM

Figure 13. The utilization of (a) PCIe and (b) NVLink during em-

bedding extraction on Server C.

to balance the local and global hit rate. The divergence point
and the improvement brought by cache policy depend on the
skewness of the datasets. Eventually, the cache policy always
dominates UGache’s performance improvement under high
cache ratio.

8.4 Bandwidth Utilization
To study the improvement of UGache’s factored extraction
mechanism (FEM), we use NVIDIA Nsight Systems [12] to
measure the bandwidth utilization of PCIe and NVLink. Mea-
suring the utilization during embedding extraction requires
sub-millisecond sampling, and it is currently only available
on the A100 GPU. To ensure a fair comparison, we removed
locally hit keys in each batch in advance, leaving only access
to remote GPU and host memory. As shown in Figure 13,
UGache’s congestion-avoid factored extraction mechanism
(w/ FEM) significantly improves the utilization of PCIe and
NVLink by 1.91 × and 3.47× on average, respectively. How-
ever, for GCN with CF, the amount of non-local access is
small due to the small dataset volume and high cache ratio,
making performance improvement relatively trivial.

8.5 Cache Policy
UGache improves cache performance by balancing the local
and global hit rate. We measured the portion of data accessed
from each cache location and compared the results of RepU ,
PartU , and UGache. The top of Figure 14 shows the results
for supervised GraphSAGE trainingwith PA, a highly skewed
dataset, on the 8×A100 platform. At low cache ratio (2%), only
a small portion of entries can be cached. Therefore, UGache
produces an almost identical cache policy to partition cache,
resulting in similar local and global hit rates to PartU . In
contrast, RepU suffers from a low global hit rate (i.e., 63.5%).

As the cache ratio increases (8%), UGache can cache more
copies of the hottest entries, significantly improving the local
hit rate from 12.4% (partition) to 86.7%, while only slightly
sacrificing the global hit rate from 99.1% to 98.1%. Figure 15

 0

 20

 40

 60

 80

 100

A
c
c
e

s
s
 R

a
te

 (
%

)

PartU

From Local

UGache

From Remote GPU

RepU

From Host DRAM

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12
Cache ratio per GPU

Figure 14. The hit rate of local GPU cache, remote GPU cache, and

host memory (from bottom to top) in one step on Server C, measured

in GraphSAGE training with PA (high skew) and CF (low skew).

 0

 4

 8

 12

 16

E
m

b
e

d
d

in
g

 E
x
tr

a
c
ti
o

n
 T

im
e

 (
m

s
)

PartU

From Local

UGache

From Remote GPU

RepU

From Host DRAM

 0

 20

 40

 60

 80

 2 4 6 8 10 12
Cache ratio per GPU

Figure 15. The runtime for extracting entries in one step, follow-

ing the same setup as Figure 14. All baselines enable the extraction

technique in UGache.

shows that this trade-off leads to better performance for
UGache compared to RepU and PartU . The increased local
extraction time in UGache reduces remote extraction time3,
resulting in a 2.0× improvement over partition cache.

The bottom of Figures 14 and 15 show the results of using
CF. As CF is not highly skewed, the global hit rate is lower
when the cache ratio is small. Therefore, sacrificing the global
hit rate to improve local hit rate is unwise. UGache’s cache
policy values the global hit rate more, resulting in cache hit
rate and performance similar to partition cache.

UGache’s Solver introduces approximation when solving
a cache policy. Therefore, we quantify the effect of UGache
by comparing to theoretically optimal cache policy. For each
platform, the optimal cache is constructed as described in
§6.3. However, for Server B, the MILP problem at the granu-
larity of embedding entry cannot be solved in a feasible time
due to the large volume of datasets. Thus, we construct a spe-
cial case to reduce the scale of MILP problem and obtain an
optimal policy on Server B. In DLR with synthetic datasets,
each embedding table shares the same size and skewness.
We limit the scope of MILP to the first embedding table, and
3To measure the extraction time in PartU and RepU for each source, both
systems adopt UGache’s extract mechanism. The local extraction time can
only be estimated due to padding in UGache’s extraction mechanism.

638

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

 0

 0.5

 1

 1.5

 2

CR SYN-A SYN-B

Server A

DLRME
x
tr

a
c
ti
o

n
 T

im
e

 (
m

s
)

 0

 2

 4

 6

 8

 10

SYN-As SYN-Bs

Server B

DLRM

 0

 1

 2

 3

 4

 5

 6

 7

PA CF MAG PA CF MAG PA CF MAG

Server C

GCN SAGE Sup. SAGE Unsup.

Optimal

UGache

Figure 16. Comparison of extraction time between UGache and the

theoretically optimal cache policy.

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 50 100 150 200

R
e
fr

e
s
h
 s

ta
rt

R
e
fr

e
s
h
 s

to
p

R
e
fr

e
s
h
 s

ta
rt

R
e
fr

e
s
h
 s

to
p

In
fe

re
n
c
e
 T

im
e
 (

m
s
)

Timeline (s)

Figure 17. The inference timeline of DLRM with cache refresh trig-

gered in UGache.

apply the same solved policy to the rest of tables. We further
reduced the size of a single embedding table to 10,000 to
achieve a yet feasible time for solving. The reduced dataset
contains 1 million entries in total, and is named as SYN-As
and SYN-Bs. Figure 16 reports the embedding extraction time
of UGache and optimal cache. Both results adopt UGache’s
extraction mechanism and only differ in cache policy. The
gap between UGache and optimal cache policy is 1.9% on
average, proving the efficiency of UGache approximation.

8.6 Refreshment

We further evaluated UGache’s refresh procedure. Since
there is little variation in skewness across the evaluated
workloads, refresh hardly improves extraction time. So we
focused on the speed of the refresh procedure and its impact
on foreground application. Figure 17 shows the time con-
sumed by foreground DLRM inference with CR over time
on an 8×A100 platform, where the refresh procedure is man-
ually triggered at around 40 and 150 seconds.

Since the cache policy solving and background cache evic-
tion compete for CPU and GPU resources, the refresh pro-
cedure inevitably impacts foreground application. To limit
the impact, UGache restricts the number of CPU cores used
and splits the cache updates into multiple small-batch up-
dates. By controlling the intervals between cache updates,
UGache manages to strike a balance between faster refresh
and a smaller impact on application. In Figure 17, the entire
refresh procedure takes 28.69 seconds on average and only
impacts foreground application by 10%.

9 Related Work
There has been increasing attention paid to eliminating bot-
tlenecks caused by embedding layers in EmbDL applications.
Single-GPU EmbDL systems. HPS [43] builds a single
GPU embedding cache using LRU with multi-level hierarchi-
cal storage architecture and specialized support for online

model updating for industrial deployment. Fleche [44] flat-
tens multiple embedding tables to build a single cache with
global perspective and leverages kernel fusion to reduce
overhead of kernel maintenance. EVStore [28] further im-
proves cache capacity and inference throughput by exploit-
ing approximation from mixed-precision and embedding
similarity. However, when deployed to multi-GPU platforms,
these systems lead to a replication cache and ignore the fast
connections between GPUs.
Multi-GPU EmbDL systems. Recently, EmbDL systems
have proposed specialized designs for multi-GPU platforms.
For GNN, PaGraph [29] estimates the access frequency of em-
beddings based on degree information of the local-deducted
graph and caches embeddings associated with high-degree
nodes. GNNLab [46] dedicates specialized GPUs to conduct
graph sampling, reducing redundant copies of graph data
to increase cache capacity. It also proposes pre-sampling
to more accurately estimate access frequency for cache em-
beddings. To efficiently leverage cross-GPU interconnects,
WholeGraph [45] partitions graph and embeddings onto
multiple GPUs and adopts peer-based access to implement
cross-GPU graph sampling and zero-copy embedding ex-
traction. Quiver [7] moves graph data to host memory to
increase the cache capacity for embeddings and proposes
clique-based partition cache to handle unconnected GPUs.
P3 [21] vertically partitions embeddings and postpones trans-
ferring embeddings to reduce communication costs. In [39],
hot data is replicated and warm data is partitioned across
every GPU for GNN training based on a heuristic search.
For DLR, prior work on multi-GPU embedding cache

mainly focuses on model training [8, 23, 34, 42, 47, 48]. These
systems partition embeddings across multiple GPUs and
exchange them through message-based communication li-
braries (e.g., NCCL [11]). RecShard [38] builds a table-level
partition cache for DLR training on multiple GPUs and also
uses MILP to reduce communication costs.

10 Conclusion
This paper present UGache, a unified multi-GPU cache de-
signed for EmbDL. UGache fully exploits high-speed inter-
connects to accelerate remote GPU memory accesses, and
offers an near-optimal data placement with a unified abstrac-
tion for various GPU interconnects and bandwidths. Our
evaluation confirms the advantage and efficacy of UGache.

Acknowledgments
We sincerely thank our shepherd Adam Belay and the anony-
mous reviewers. This work was supported in part by the Na-
tional Key Research and Development Program of China (No.
2022YFB4500700), the National Natural Science Foundation
of China (No. 62272291, 61925206, 62132014), the HighTech
Support Program from STCSM (No. 22511106200), and a re-
search grant from Shanghai Artificial Intelligence Laboratory.
Corresponding author: Rong Chen (rongchen@sjtu.edu.cn).

639

rongchen@sjtu.edu.cn

SOSP ’23, October 23–26, 2023, Koblenz, Germany X. Song, Y. Zhang, R. Chen, and H. Chen

References
[1] 2011. Peer-to-Peer and Unified Virtual Addressing. https:

//developer.download.nvidia.com/CUDA/training/cuda_webinars_

GPUDirect_uva.pdf.
[2] 2021. Open Graph Benchmark: Benchmark datasets, data loaders and

evaluators for graph machine learning. https://ogb.stanford.edu/.
[3] 2021. Open Graph Benchmark: The MAG240M dataset. https://ogb.

stanford.edu/docs/lsc/mag240m/.
[4] 2021. Open Graph Benchmark: The ogbn-papers100M dataset. https:

//ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M.
[5] 2022. Distributed Embeddings · NVIDIA-Merlin. https://github.com/

NVIDIA-Merlin/distributed-embeddings

[6] 2022. Download Criteo 1TB Click Logs dataset - Criteo AI Lab. https:
//ailab.criteo.com/download-criteo-1tb-click-logs-dataset/.

[7] 2022. quiver-team/torch-quiver. https://github.com/quiver-team/

torch-quiver

[8] 2022. Sparse Operation Kit · NVIDIA-Merlin. https://github.com/

NVIDIA-Merlin/HugeCTR

[9] 2023. Gurobi Optimizer. https://www.gurobi.com/.
[10] 2023. Multi-Process Service. http://docs.nvidia.com/deploy/mps/

index.html

[11] 2023. Nvidia Collective Communication Library (NCCL). https://

developer.nvidia.com/nccl.
[12] 2023. NVIDIA Nsight Systems. https://developer.nvidia.com/nsight-

systems.
[13] 2023. Open Graph Benchmark Leaderboards. https://ogb.stanford.

edu/docs/leader_overview/.
[14] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learn-
ing. 265–283. https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/abadi

[15] Lada A Adamic and Bernardo A Huberman. 2000. Power-law distribu-
tion of the world wide web. science 287, 5461 (2000), 2115–2115.

[16] Muhammad Adnan, Yassaman EbrahimzadehMaboud, DivyaMahajan,
and Prashant J. Nair. 2021. Accelerating recommendation system train-
ing by leveraging popular choices. Proceedings of the VLDB Endowment

15, 1 (Sept. 2021), 127–140.
[17] Saurabh Agarwal, Ziyi Zhang, and Shivaram Venkataraman. 2022.

BagPipe: Accelerating Deep Recommendation Model Training.
arXiv:2202.12429 [cs].

[18] Keshav Balasubramanian, Abdulla Alshabanah, Joshua D Choe, and
Murali Annavaram. 2021. cDLRM: Look Ahead Caching for Scalable
Training of Recommendation Models. In Proceedings of the 15th ACM

Conference on Recommender Systems (RecSys ’21). Association for Com-
puting Machinery, New York, NY, USA, 263–272.

[19] Rong Chen, Jiaxin Shi, Yanzhe Chen, andHaibo Chen. 2015. PowerLyra:
differentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer Systems.
1–15.

[20] Message P Forum. 1994. MPI: A Message-Passing Interface Standard.
Technical Report. University of Tennessee, USA.

[21] Swapnil Gandhi and Anand Padmanabha Iyer. 2021. P3: Distributed
Deep Graph Learning at Scale. In Proceedings of the 15th USENIX

Conference on Operating Systems Design and Implementation (OSDI’21).
[22] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. 2012. Powergraph: Distributed graph-parallel com-
putation on natural graphs. In 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’12). 17–30.
[23] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He, and

Wenzhi Liu. 2021. ScaleFreeCTR:MixCache-basedDistributed Training

System for CTR Models with Huge Embedding Table. In Proceedings of

the 44th International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval (SIGIR ’21). Association for Computing
Machinery, New York, NY, USA, 1269–1278.

[24] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In Proceedings of the 31st

International Conference on Neural Information Processing Systems

(NeurIPS’17). 1025–1035.
[25] Mohamed Assem Ibrahim, Onur Kayiran, and Shaizeen Aga. 2022.

Efficient Cache Utilization via Model-aware Data Placement for Rec-
ommendation Models. In The International Symposium on Memory

Systems (MEMSYS 2021). Association for Computing Machinery, New
York, NY, USA, 1–11.

[26] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifica-
tion with Graph Convolutional Networks. In Proceedings of the 5th

International Conference on Learning Representations (ICLR’17).
[27] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. In

Proceedings of the 22nd International Conference on World Wide Web

(WWW ’13 Companion). Association for Computing Machinery, New
York, NY, USA, 1343–1350.

[28] Daniar H. Kurniawan, RuipuWang, Kahfi S. Zulkifli, Fandi A.Wiranata,
John Bent, Ymir Vigfusson, and Haryadi S. Gunawi. 2023. EVStore:
Storage and Caching Capabilities for Scaling Embedding Tables in
Deep Recommendation Systems. In Proceedings of the 28th ACM In-

ternational Conference on Architectural Support for Programming Lan-

guages and Operating Systems, Volume 2 (ASPLOS 2023). Association
for Computing Machinery, New York, NY, USA, 281–294.

[29] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.
PaGraph: Scaling GNN training on large graphs via computation-
aware caching. In Proceedings of the 11th ACM Symposium on Cloud

Computing. ACM, Virtual Event USA, 401–415.
[30] Zhiqi Lin, Cheng Li, Youshan Miao, Yunxin Liu, and Yinlong Xu. 2020.

Pagraph: Scaling GNN Training on Large Graphs via Computation-
aware Caching. In Proceedings of the 11th ACM Symposium on Cloud

Computing (SoCC’20). 401–415.
[31] Xupeng Miao, Yining Shi, Hailin Zhang, Xin Zhang, Xiaonan Nie, Zhi

Yang, and Bin Cui. 2022. HET-GMP: A Graph-based System Approach
to Scaling Large Embedding Model Training. In Proceedings of the

2022 International Conference on Management of Data (SIGMOD ’22).
Association for Computing Machinery, New York, NY, USA, 470–480.

[32] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang,
Yangyu Tao, and Bin Cui. 2021. HET: scaling out huge embedding
model training via cache-enabled distributed framework. Proceedings
of the VLDB Endowment 15, 2 (Oct. 2021), 312–320.

[33] Seung Won Min, Kun Wu, Sitao Huang, Mert Hidayetoğlu, Jinjun
Xiong, Eiman Ebrahimi, Deming Chen, andWen-mei Hwu. 2021. Large
graph convolutional network training with GPU-oriented data com-
munication architecture. Proceedings of the VLDB Endowment 14, 11
(Oct. 2021), 2087–2100.

[34] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew
Tulloch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo
Park, Liang Luo, Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti
Basant, Yuxi Hu, Jiyan Yang, Ehsan K. Ardestani, Xiaodong Wang,
Rakesh Komuravelli, Ching-Hsiang Chu, Serhat Yilmaz, Huayu Li,
Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie Wen, Hong Li,
Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna Dhuli-
pala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam,
Adi Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak,
Krishnakumar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab
Bhattacharya, Petr Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao,
Mikhail Smelyanskiy, Bill Jia, and Vijay Rao. 2022. Software-hardware
co-design for fast and scalable training of deep learning recommenda-
tion models. In Proceedings of the 49th Annual International Symposium

640

https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://developer.download.nvidia.com/CUDA/training/cuda_webinars_GPUDirect_uva.pdf
https://ogb.stanford.edu/
https://ogb.stanford.edu/docs/lsc/mag240m/
https://ogb.stanford.edu/docs/lsc/mag240m/
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M
https://ogb.stanford.edu/docs/nodeprop/#ogbn-papers100M
https://github.com/NVIDIA-Merlin/distributed-embeddings
https://github.com/NVIDIA-Merlin/distributed-embeddings
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
https://github.com/quiver-team/torch-quiver
https://github.com/quiver-team/torch-quiver
https://github.com/NVIDIA-Merlin/HugeCTR
https://github.com/NVIDIA-Merlin/HugeCTR
https://www.gurobi.com/
http://docs.nvidia.com/deploy/mps/index.html
http://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://ogb.stanford.edu/docs/leader_overview/
https://ogb.stanford.edu/docs/leader_overview/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

UGache: A Unified GPU Cache for Embedding-based Deep Learning SOSP ’23, October 23–26, 2023, Koblenz, Germany

on Computer Architecture (ISCA ’22). Association for Computing Ma-
chinery, New York, NY, USA, 993–1011.

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems.

[36] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov,
Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-
namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira,
Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha
Smelyanskiy. 2019. Deep Learning Recommendation Model for Per-
sonalization and Recommendation Systems. arXiv:1906.00091 [cs].

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural informa-

tion processing systems 32 (2019).
[38] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline

Trippel, and Carole-Jean Wu. 2022. RecShard: statistical feature-based
memory optimization for industry-scale neural recommendation. In
Proceedings of the 27th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

’22). Association for Computing Machinery, New York, NY, USA, 344–
358.

[39] Shihui Song and Peng Jiang. 2022. Rethinking graph data placement
for graph neural network training on multiple GPUs. In Proceedings

of the 36th ACM International Conference on Supercomputing (ICS ’22).
Association for Computing Machinery, New York, NY, USA, 1–10.

[40] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song,
Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He,
George Karypis, Jinyang Li, and Zheng Zhang. 2019. Deep Graph Li-
brary: A Graph-Centric, Highly-Performant Package for Graph Neural
Networks. arXiv preprint arXiv:1909.01315 (2019).

[41] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep &
Cross Network for Ad Click Predictions. In Proceedings of the AD-

KDD’17 (ADKDD’17). Association for Computing Machinery, New
York, NY, USA, 1–7.

[42] Zehuan Wang, Yingcan Wei, Minseok Lee, Matthias Langer, Fan Yu,
Jie Liu, Shijie Liu, Daniel G. Abel, Xu Guo, Jianbing Dong, Ji Shi, and
Kunlun Li. 2022. Merlin HugeCTR: GPU-accelerated Recommender
System Training and Inference. In Proceedings of the 16th ACM Confer-

ence on Recommender Systems (RecSys ’22). Association for Computing
Machinery, New York, NY, USA, 534–537.

[43] Yingcan Wei, Matthias Langer, Fan Yu, Minseok Lee, Jie Liu, Ji Shi, and
ZehuanWang. 2022. A GPU-specialized Inference Parameter Server for
Large-Scale Deep Recommendation Models. In Proceedings of the 16th

ACM Conference on Recommender Systems (RecSys ’22). Association for
Computing Machinery, New York, NY, USA, 408–419.

[44] Minhui Xie, Youyou Lu, Jiazhen Lin, QingWang, Jian Gao, Kai Ren, and
Jiwu Shu. 2022. Fleche: an efficient GPU embedding cache for person-
alized recommendations. In Proceedings of the Seventeenth European

Conference on Computer Systems. ACM, Rennes France, 402–416.
[45] Dongxu Yang, Junhong Liu, Jiaxing Qi, and Junjie Lai. 2022. Whole-

Graph: A Fast Graph Neural Network Training Framework with Multi-
GPUDistributed SharedMemoryArchitecture. IEEEComputer Society,
767–780. ISSN: 2167-4337.

[46] Jianbang Yang, Dahai Tang, Xiaoniu Song, Lei Wang, Qiang Yin, Rong
Chen, Wenyuan Yu, and Jingren Zhou. 2022. GNNLab: a factored

system for sample-based GNN training over GPUs. In Proceedings of

the Seventeenth European Conference on Computer Systems (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 417–434.

[47] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary,
Jade Nie, Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, and
Xia Hu. 2022. AutoShard: Automated Embedding Table Sharding for
Recommender Systems. In Proceedings of the 28th ACM SIGKDDConfer-

ence on Knowledge Discovery and Data Mining (KDD ’22). Association
for Computing Machinery, New York, NY, USA, 4461–4471.

[48] Yuanxing Zhang, Langshi Chen, Siran Yang, Man Yuan, Huimin Yi, Jie
Zhang, JiamangWang, Jianbo Dong, Yunlong Xu, Yue Song, Yong Li, Di
Zhang,Wei Lin, Lin Qu, and Bo Zheng. 2022. PICASSO: Unleashing the
Potential of GPU-centric Training for Wide-and-deep Recommender
Systems. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 3453–3466. ISSN: 2375-026X.

[49] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang
Song, Quan Gan, Zheng Zhang, and George Karypis. 2020. DistDGL:
Distributed Graph Neural Network Training for Billion-Scale Graphs.
In Proceedings of the 10th IEEE/ACMWorkshop on Irregular Applications:

Architectures and Algorithms (IA3’20). 36–44.

641

	Abstract
	1 Introduction
	2 Characterizing Embedding-based DL
	3 Challenges of Multi-GPU Embedding Cache
	3.1 Cache Policy
	3.2 Extraction Mechanism

	4 Overview of UGache
	5 Extraction Mechanism
	5.1 Characteristics of Extraction Procedure
	5.2 Performance Issues: Link Congestion
	5.3 Factorized Extraction Mechanism

	6 Cache Policy
	6.1 Hotness Metric
	6.2 Modelling of Extraction Time
	6.3 Complexity, Approximation and Optimizations

	7 Implementation
	7.1 System Integration
	7.2 Cache Refresh
	7.3 Hardware Requirements

	8 Evaluation
	8.1 Experimental Setup
	8.2 Overall Performance
	8.3 Performance Breakdown
	8.4 Bandwidth Utilization
	8.5 Cache Policy
	8.6 Refreshment

	9 Related Work
	10 Conclusion
	References

