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State-of-the-art Text-to-SQL models rely on fine-tuning or few-shot prompting to help LLMs learn from
training datasets containing mappings from natural language (NL) queries to SQL statements. Consequently,
the quality of the dataset can greatly affect the accuracy of these Text-to-SQL models. Unlike other NL tasks,
Text-to-SQL datasets are prone to errors despite extensive manual efforts due to the subtle semantics of SQL.
Our study has found a non-negligible (>30%) portion of incorrect NL to SQL mapping cases exists in popular
datasets Spider and BIRD.

This paper aims to improve the quality of Text-to-SQL training datasets and thereby increase the accuracy
of the resulting models. To do so, we propose a necessary correctness condition called execution consistency.
For a given database instance, an NL to SQL mapping satisfies execution consistency if the execution result
of an NL query matches that of the corresponding SQL. We develop SQLDriller to detect incorrect NL to
SQL mappings based on execution consistency in a best-effort manner by crafting database instances that
likely result in violations of execution consistency. It generates multiple candidate SQL predictions that differ
in their syntax structures. Using a SQL equivalence checker, SQLDriller obtains counterexample database
instances that can distinguish non-equivalent candidate SQLs. It then checks the execution consistency of an
NL to SQL mapping under this set of counterexamples. The evaluation shows SQLDriller effectively detects
and fixes incorrect mappings in the Text-to-SQL dataset, and it improves the model accuracy by up to 13.6%.

CCS Concepts: • Information systems → Structured Query Language; • Computing methodologies →
Machine translation; • Human-centered computing→ Natural language interfaces.
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1 Introduction

Text-to-SQL leverages the recent advances of NLP machine learning models to translate a natural
language (NL) query into a SQL query [2, 23, 40]. This approach holds great promise to enable a vast
population of non-technical users to effectively and intuitively retrieve information in databases
[2, 10, 40]. As such, Text-to-SQL finds application in many scenarios, including business intelligence
(BI) and data analysis systems, virtual assistants, and educational tools [18, 21, 32, 39, 43, 52].

To learn to translate NL queries to SQL, a machine learning model must have access to a large
training dataset containing many instances of NL to SQL mappings. Natural Language Processing
researchers have curated several such datasets like Spider [57] and BIRD [30]. With the recent
success of large language models (LLM), state-of-the-art Text-to-SQL models are based on either
fine-tuning using a Text-to-SQL training dataset [27–29, 45, 47, 51] or few-shot prompting with
examples extracted from the training dataset [20, 28, 42]. Upon training with the training dataset, a
test dataset is utilized to assess and measure the model’s accuracy.

To improve Text-to-SQL accuracy, researchers have invested great amounts of effort to improve
the underlying model architecture [6, 16, 20, 27–29, 42, 45, 47, 51, 61]. However, the quality (aka
correctness) of the dataset also critically affects the model’s accuracy. Unfortunately, the issue of
dataset quality has so far been overlooked in the research community. Unlike many task-specific NL
datasets such as question answering or basic mathematical reasoning, it can be intricate to ensure
the correctness of instances in Text-to-SQL datasets due to the subtle and complex semantics of
SQL. Figure 1 shows an example of incorrect NL to SQL mapping in the Spider training dataset.
The NL query aims to list the name of each aircraft and the number of flights it has completed.
This SQL is incorrect because it leaves out any aircraft with no flights recorded in the Flight
table by using INNER JOIN instead of LEFT JOIN. There are 17 similar mappings with incorrect
JOIN types among each set of 500 mappings randomly selected from Spider’s training and test
datasets, correspondingly. Such incorrect SQL mappings in the datasets affect Text-to-SQL model
accuracy from two aspects. In the test dataset, the incorrect SQL mappings may cause imprecise
model accuracy evaluation results. Such mappings accidentally misjudge the correctness of SQL
predictions frommodels and cause imprecise accuracy evaluation results. In the training dataset, the
non-negligible amount of incorrect SQL mappings leads to mispredictions of models. We attribute
several test mispredictions to this training dataset error in Figure 1 such as a test NL query aiming
to list the stadium name and the number of concerts of each one. More broadly, we have studied
168 incorrect predictions of 3 top-ranking models [20, 27, 42] that use the Spider dataset. Among
these, 42 (25%) are due to errors in the training dataset.
As the error in Figure 1 demonstrates, the incorrect JOIN type exhibits a subtle semantic dis-

tinction from the correct counterpart, which is rather tricky to detect. Since the datasets usually
contain a large number of mappings crafted mostly by non-expert-level SQL users with limited
experience1, it is understandable that errors arise despite a great amount of manual care and effort
(e.g., the Spider authors have spent more than 450 man-hours reviewing all the 10,000 instances of
the whole dataset [57]).

1e.g., Spider dataset is mostly written by 11 undergraduate students
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NL query: 
What is the name of each 
aircraft and how many flights 
does each one complete?

(Incorrect) SQL mapping:
SELECT T1.name, count(*)
FROM Aircraft AS T1 
JOIN Flight AS T2
ON T1.aid = T2.aid
GROUP BY T1.aid

Expected SQL mapping:
SELECT T1.name, count(T2.fid)
FROM Aircraft AS T1 
LEFT JOIN Flight AS T2
ON T1.aid = T2.aid
GROUP BY T1.aid

nameaid
‘Boeing’1
‘Airbus’2

aidfid
21

Aircraft Flight

Countname
0‘Boeing’
1‘Airbus’

Countname
1‘Airbus’

Countname
0‘Boeing’
1‘Airbus’

Fig. 1. An example of incorrect Text-to-SQL mapping in Spider’s training dataset. Using INNER JOIN instead

of LEFT JOIN, the incorrect SQL would leave out any aircraft with no flight recorded in the Flight table.

This paper aims to improve the quality of Text-to-SQL datasets. We develop a tool, SQLDriller,
to automatically flag likely incorrect NL to SQL mappings in the training dataset and propose a fix.
As the test dataset serves as the ground truth to assess model accuracy, we perform a meticulous
manual review of every mapping after SQLDriller has done its fix to maximize correctness. Efforts
involved in the manual review are manageable since the test dataset is much smaller than the whole
dataset’s size (e.g. 20% in Spider).
The central challenge faced by an error-detection tool such as SQLDriller lies in the lack of

any formal semantics for NL statements. To tackle this, our insight is to make the user’s intent
for an NL query explicit using concrete database instances. Specifically, we propose a correctness
condition called execution consistency. An NL to SQL mapping (𝑞𝑛𝑙 → 𝑞𝑠𝑞𝑙 ) satisfies execution
consistency in a given database instance if the “execution result” of 𝑞𝑛𝑙 matches that of 𝑞𝑠𝑞𝑙 .
Execution consistency is a necessary but not sufficient correctness condition for NL to SQLmapping.
It is a particularly useful property because it can be automatically checked on any concrete database
instance by leveraging LLMs’ NL reasoning capability to “execute” an NL query and compare that to
SQL’s execution result. Based on execution consistency, we develop SQLDriller to detect incorrect
mappings in a best-effort manner by crafting database instances that likely cause the violation of
execution consistency.
In designing SQLDriller, we make the key observation that incorrect SQL mappings usually

differ in both syntax and keyword usage from the correct counterparts. Thus, SQLDriller starts
by using a base Text-to-SQL model to generate multiple SQL candidates for a given NL query in
addition to the original SQL. Next, SQLDriller introduces a SQL equivalence checker to generate
counterexamples (concrete database instances) that can distinguish non-equivalent SQLs in this
candidate set. By checking execution consistency of the given NL to SQL mapping using the
counterexamples, SQLDriller can detect incorrect SQL mapping and propose a correct fix. False
negatives sometimes occur if the SQL candidate set does not contain any correct SQL or inaccurate
LLM NL execution happens to produce results that match those of an incorrect SQL. False positives
(judging correct SQLs as incorrect) may also happen if inaccurate NL execution produces results that
do not match those of a correct SQL. Based on the improved training datasets, we further optimize
and improve the prediction accuracy of Text-to-SQL models using SQLDriller. In particular, we
change the models to generate multiple SQL predictions and rely on SQLDriller to pick the optimal
SQL, which is the one satisfying execution consistency with the NL query on the largest number of
generated counterexamples.

To summarize, this paper has the following contributions:
• It introduces a necessary correctness condition for Text-to-SQL, uponwhich a new tool, SQLDriller,
is developed to automatically detect and fix potential errors in Text-to-SQL translations.
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Table 1. The error rate of various hardness levels in Spider’s and BIRD’s 500 sampled training mappings. The

NL and SQL query complexity increases from “Easy” to “Extra” level.

Dataset
Error Rate

All Easy Medium Hard Extra

Spider train
183/500
(36.6 %)

19/145
(13.1 %)

84/220
(38.2 %)

53/93
(57.0 %)

27/42
(64.3 %)

BIRD train
272/500
(54.4 %)

2/3
(66.7 %)

119/298
(39.9 %)

52/83
(62.7 %)

99/116
(85.3 %)

• It presents a systematic study on the quality of Text-to-SQL datasets and introduces a new test
dataset derived from the Spider and BIRD benchmarks, offering a fair and precise evaluation.

• It successfully improves the quality of Spider and BIRD training dataset by automatically fixing
the errors which can improve the accuracy of 6 top-ranking models by up to 13.6%.

• It provides comprehensive lessons based on the incorrect Text-to-SQL mappings discovered by
SQLDriller, which hopefully can shed light on the developers who trying to build new datasets.

2 Background and Motivation

2.1 Preliminaries

Text-to-SQL Model Training. Text-to-SQL techniques enable users to query databases in a more
intuitive and user-friendly manner [2, 10, 40]. Its basic idea is to allow users to query databases
using natural language (NL) and employ Text-to-SQL models to translate the NL query into an
executable SQL query to execute in the database. Text-to-SQL models are machine-learning models
trained with a Text-to-SQL dataset. A Text-to-SQL dataset consists of a set of NL to SQL translation
mappings and is typically divided into a training and a test (development) set for model training
and accuracy evaluation, respectively [30, 57].
With the rise of Large Language Models (LLMs) [13, 25, 34, 44, 50], developers utilize them as

the pre-trained models to perform supervised fine-tuning [27–29, 47, 51]. The training mappings
are fed to the model and used to fine-tune the model’s internal parameters to fit in Text-to-SQL
tasks. Additionally, other models are tuned through dedicated prompting on powerful generative
LLMs such as GPT models [37]. They apply few-shot in-context learning [15], which incorporates
existing training mappings as examples to the prompt context of LLMs for instruction [20, 28, 42].
Both fine-tuned and prompted models learn from and heavily rely on the training dataset to derive
significant performance in Text-to-SQL.
SQL Equivalence Verification. SQL equivalence verification checks whether a pair of SQL is
semantically equivalent, i.e., outputting the same execution result for arbitrary given input tables.
It is widely employed in scenarios such as validating the correctness of SQL rewrites [8, 9, 54]
and providing counterexamples for database testing and bug detection [9, 22]. Existing works
have developed automated tools to verify SQL equivalence relationships [14, 22, 54]. Such a tool
constructs first-order logic formulas to model the semantics of SQL queries. It calls an SMT solver
[4, 12] to automatically verify the formula denoting that two SQLs output the same result for
arbitrary input tables, then determines equivalence relationships according to the solver’s response.
For non-equivalent SQL pairs, the SMT solver returns a concrete solution that assigns values to each
variable in the formula. Such a value assignment violates the formula and is called a counterexample
to this formula. By converting the value assignment into the records of input tables, the formula’s
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Fig. 2. CDF of error rates of all the schemas.
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Fig. 3. CDF of SQL pairs’ Jaccard similarity.

counterexample can be transformed into a counterexample of the SQL pair in the form of a concrete
database instance [9, 22].

2.2 Text-to-SQL DatasetQuality

As is the case with all machine learning models, the quality of the training and test dataset is crucial
to the accuracy and prediction capability of Text-to-SQL models. Existing works [30, 57, 61] have
demonstrated that a Text-to-SQL dataset with diverse and comprehensive NL to SQL mappings can
significantly improve the model’s prediction capability. In addition to traditional models, recent
LLM-based models use the training dataset for fine-tuning or prompt engineering. [27, 28, 47, 51]
have shown that fine-tuning existing pre-trained language models can achieve notable accuracy.
Other works design dedicated prompts with NL to SQL mapping examples from the training dataset
and improve accuracy by over 10% compared to baselines without careful prompting [16, 20, 42].
Dataset Quality vs. Model Accuracy. The datasets play a crucial role in Text-to-SQL research,
yet there has been little work focusing on improving their quality. To evaluate the adequacy of
existing datasets and address potential oversights, we conducted an in-depth study of Spider [57]
and BIRD [30], which are known as the leading Text-to-SQL datasets. These datasets, developed
and maintained by a large team over several years, have served as the benchmarks for evaluation
in the field and are applied by over 80 models according to their website rankings [1, 36]. They
both consist of more than 10,000 NL to SQL mappings for model training and testing, with 200
and 80 distinct schemas in total, respectively. Following a careful study of the datasets, several key
observations have emerged.

First, there exists a non-negligible portion of incorrect mappings within the dataset. We randomly
sample 500 mappings from Spider and BIRD’s training datasets respectively for a detailed study
of all associated NL to SQL mappings. These samples span over all the hardness levels defined
by Spider [57] shown in Table 1, whose distribution roughly represents that of the whole dataset.
Among these samples, an overall error rate of over 35% is identified. Spider’s training dataset has
183 errors of 500 mappings (36.6%) across 10 schemas, while the number is 272 of 500 mappings
(54.4%) in BIRD’s samples across 10 schemas. As shown in Table 1, the error rate increases with the
rising hardness2 of mappings. The error rates for Spider and BIRD both exceed 38% in medium-level
mappings, 57% in hard ones, and even reach above 60% for extra-hard ones. Furthermore, Figure 2
shows that almost all the schemas exhibit a non-negligible portion of errors, indicating that these
errors are not skewed in their distribution across the schemas. Schemas in Spider’s training dataset
have the highest error rate of 57.1%, the lowest of 13.1%, and the average of 30.1%. Corresponding
numbers of schemas in BIRD are 84.0%, 36.0%, and 50.0%.

2Hardness levels defined by Spider are also applied to BIRD since BIRD’s defined levels are not available in its training set
(only manually annotated in development set.
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Table 2. Model accuracy results evaluated with original SQL mappings (Original Accuracy) and with corrected

SQL mappings (Re-evaluated Accuracy).

Model Dataset
Original

Accuracy (%)

Re-evaluated

Accuracy (%)

DAIL-SQL (5 shots) Spider test 83.7 61.8 (↓ 21.9)
DIN-SQL Spider test 83.0 61.3 (↓ 21.7)
RESDSQL (T5-3b) Spider test 76.2 52.3 (↓ 23.9)
Graphix-T5 (T5-large) Spider test 64.8 46.3 (↓ 18.5)
SFT CODES (3b) Bird dev 46.3 38.1 (↓ 8.2)
CODES (7b, 5 shots) Bird dev 37.0 31.4 (↓ 5.6)

Second, incorrect mappings in the dataset play a decisive role in model prediction errors. In
Spider’s entire training dataset, more than 150 mappings exhibit a similar pattern of misusing
INNER JOIN as LEFT JOIN like the example in Figure 1. These error mappings span over 60 distinct
schemas. Consequently, despite using 3 top-ranking Text-to-SQL models developed under Spider
[20, 27, 42], none could accurately infer the NL query resembling the one in Figure 1. Specifically,
when tasked with predicting SQL with 10 similar NL queries under different schemas, all the models
consistently generate SQLs with INNER JOIN and fail to produce the correct results. Fixing these
incorrect mappings and retraining the models allows them to generate the correct SQLs.

Third, detecting and fixing errors poses a significant challenge due to the intricate semantics of
SQL. Despite the authors dedicating 450 man-hours to reviewing all the mappings in Spider [57],
a substantial portion of errors persist in the dataset. To assess whether the incorrect mappings
are typically syntactically close to the correct ones and are easy to detect and fix, we carefully fix
the errors in the sampled mappings and measure the similarity between SQLs before and after
fixing. We apply Jaccard similarity [55] that calculates the intersection of the commonly used SQL
keywords, tables, and columns. Figure 3 reveals that 53.0% and 40.4% of all the errors identified
within Spider and BIRD’s 500 training samples exhibit a similarity score below 0.5, signifying
dissimilarity between the SQL pairs. The variety of dissimilarity patterns among these errors
further complicates the reviewing process for developers.
Real Model Accuracy with Fixed Test Dataset. The test dataset provides the ground truth for
assessing Text-to-SQL model accuracy. Since the test dataset represents a small portion of the
overall dataset (e.g., 20% in Spider), it is more tractable to undertake a meticulous manual review
of the Spider test and BIRD development dataset (BIRD’s test dataset is not open-sourced). We
carefully review every NL to SQL mapping after SQLDriller has provided its fix to maximize the
correctness of the test dataset. This work is completed by 4 senior students who are familiar with
SQL language, taking 80 man-hours for each dataset. In total, we have found 810 (37.7%) errors
among 2147 mappings in the Spider test dataset and 768 (50.1%) among 1534 mappings in the BIRD
development dataset.

We re-evaluate the models on the modified test dataset. As depicted in Table 23, the models get
an accuracy drop from 5.6% to 23.9% compared with what they originally reported. The consistent
accuracy drop is related to fixing incorrect SQLmappings in the original test dataset, which excludes

3Original Accuracy of BIRD models is lower than those in the original paper, since we check SQL result equivalence on bag
semantics but not set semantics used in BIRD.
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NL Query: 
“Show the …”

Original SQL:
“SELECT …”

Phase 1: DB Instance Generation
(Sec. 4.1)

Base  Model

Candidate 
SQLs

SQL 
Equivalence 

Checker

Phase 2: NL / SQL Execution
(Sec. 4.2)

Original
SQL

Candidate 
SQLs

NL

counter-
examples

SQL Execution 
Engine

NL

Original
SQL

Candidate 
SQLs

NL Execution
Simulator

Phase 3: Scoring and SQL Fixing
(Sec. 4.3)

Candidate 
Scorer

NL

Original
SQL

Candi
date1

Candi
date2

Score=1

Score=2

Score=0

Candi
date1

1.1: Generate multiple 
SQL candidates

1.2: Check equivalence 
and generate counter-
examples

2.1: “Execute” NL on 
each DB instance

2.2: Execute SQLs on 
each DB instance

3.1: Score each SQL by the 
number of execution result 
matchings with NL

3.2: Pick one with the 
highest score as a fix

Candi
date1

Candi
date2

Original
SQL

Fig. 4. An overview of SQLDriller workflow.

misjudgments of SQL predictions’ correctness. Just like incorrect SQL mappings resembling the
example in Figure 1, they accidentally misjudged incorrect SQL predictions with INNER JOIN as
correct and those with LEFT JOIN as incorrect. For the predictions of RESDSQL whose accuracy
drops themost, there are 103 suchmisjudgments concerning the JOIN type.We fix all suchmappings
by modifying INNER JOIN into LEFT JOIN. The predictions with INNER JOIN are thus judged
incorrect. For other fixed errors, the comprehensive case study in Section 6.4 can be followed. In
this paper, the re-evaluated accuracy results serve as our baselines and optimization targets.

3 System Overview

To improve the quality of Text-to-SQL training datasets, we aim to develop a tool to automatically
flag and fix likely incorrect NL to SQL mappings. To achieve that, we first propose a new correctness
condition, namely execution consistency. Based on this, we develop an error-detecting and fixing
algorithm for Text-to-SQL datasets.

3.1 Execution Consistency

The primary challenge for an error-detecting tool lies in the absence of formal semantics for NL
statements. To address this, our approach is to clarify the user’s intent for an NL query using
concrete database instances. Taking Figure 1 as an example, given a concrete database instance
with records of two aircrafts and one flight, the execution result of NL query should return 1 flight
for the aircraft “Airbus” and 0 flight for “Boeing”, while the SQL execution result only returns
the flight count of “Airbus”. The inconsistency in their execution result implies that the NL to
SQL mapping may contain errors. Based on the above insight, we propose a correctness condition
termed execution consistency with the following definition:

Definition 1 (Execution Consistency in Text-to-SQL). An NL to SQL mapping (𝑞𝑛𝑙 → 𝑞𝑠𝑞𝑙 )
satisfies execution consistency under a given database instance if the “execution result” of 𝑞𝑛𝑙
matches that of 𝑞𝑠𝑞𝑙 .4

Based on the definition of execution consistency, we develop a tool designed to automatically
flag and fix incorrect NL to SQL mappings, namely SQLDriller.

3.2 Basic Workflow

Detecting and fixing incorrect NL to SQL mappings poses three primary challenges: firstly, how to
create database instances that are likely to reveal violations of execution consistency; secondly,
how to really “execute” a natural language query on concrete database instances; lastly, how to
automatically and efficiently fix the identified incorrect mappings.
4In this definition, we consider the NL query does not have ambiguity that may correspond to multiple SQL answers.
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Prompt
Consider the data in each table:
Table Aircraft: {aid: 1, name: Boeing}, {aid: 2, name: Airbus}
Table Flight: {fid: 1, aid: 2} …

What is the execution result of the query: {NL query} ?

Natural Language Query
What is the name of each aircraft and how many flights does each one complete?

nameaid
‘Boeing’1

‘Airbus’2

aidfid

21

Database Instance

LLM Response

countname

0‘Boeing’

1‘Airbus’

Given the data: 

nameaid

‘Boeing’1

‘Airbus’2

aidfid

21

We count the number for each aircraft record:
• For aircraft with aid=1 and name ‘Boeing’, 

there is no completed flight since no flight 
has a corresponding aid=1.

• For aircraft with aid=2 and name ‘Airbus’, 
there is one flight with aid=2.

The final result is:

Fig. 5. A example of executing an NL query with LLM.

Firstly, the absence of formal semantics for NL queries presents a challenge in automatically
constructing database instances that differentiate between NL and SQL query semantics. Unlike
SQL queries with well-defined semantics, NL queries lack a formal and structured representation
of semantics, which even leads to ambiguity. For example, the NL query “Show the number of
packages sent.” cannot determine whether to return a counting number of all packages or the
package number of each package. This hinders the systematic construction of database instances
where the NL query’s intention yields different results from SQL. As a result, no existing tool could
precisely construct such database instances. To tackle this, we focus on constructing database
instances that differentiate between non-equivalent SQLs predicted by the same NL query instead.
SQLDriller employs a SQL equivalence checker to construct such database instances. As the
workflow shown in Figure 4, given an NL query, a base Text-to-SQL model is used to generate a
set of candidate SQLs that differ from the original SQL. The SQL equivalence checker then checks
SQL equivalence and generates counterexamples for non-equivalent SQLs. Counterexamples are
concrete database instances that can identify non-equivalent SQLs within the set. Non-equivalent
SQLs show different execution results on the counterexamples, thus reflecting semantic distinctions
between them. Using such counterexamples, SQLDriller checks execution consistency and detects
incorrect NL to SQL mappings.

Secondly, SQLDriller utilizes large language models (LLMs) to “execute” NL queries on concrete
database instances. The recent success of LLMs empowers users to directly execute an NL query
on a specific database instance through dedicated prompting. Figure 5 shows an example, where it
directly integrates the concrete database instance into the prompt context and makes the user’s
intent for executing the NL query on the instance explicit to ask for LLM’s response. According to
our micro-benchmark evaluation in Section 4.2, prompting LLMs to execute NL queries achieves
remarkable accuracy, up to 91.0% and 83.2% accuracy for Spider and BIRD datasets, respectively.
This indicates the promising capability of LLMs in NL query execution. The detailed prompts and
micro-benchmark designs will be discussed in Section 4.2.
Lastly, SQLDriller introduces a scoring algorithm to rank the SQL candidates. The candidate

with the highest score is deemed likely correct and will be taken as a recommendation. This is
because execution consistency is promising to tag the potential incorrect mappings but is not
sufficient to judge whether a SQL is correct. An incorrect SQLmay also satisfy execution consistency
on particular database instances. In the example of Figure 6, the first two SQLs are incorrect but
𝑆𝑄𝐿1 still satisfies execution consistency on the first generated counterexample, which is the same
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SQL1:
SELECT T1.name, count(*)
FROM Aircraft AS T1 
JOIN Flight AS T2
ON T1.aid = T2.aid
GROUP BY T1.aid

SQL3 (Expected):
SELECT T1.name, count(T2.fid)
FROM Aircraft AS T1 
LEFT JOIN Flight AS T2
ON T1.aid = T2.aid
GROUP BY T1.aid

nameaid
‘Boeing’1
‘Airbus’2

aidfid
21
12

Aircraft Flight

Countname
1‘Airbus’

Countname
1‘Boeing’
1‘Airbus’

SQL2: 
SELECT T1.name, count(*)
FROM Aircraft AS T1 
JOIN Flight AS T2
ON T1.aid = T2.aid
GROUP BY T1.aid

Countname
1‘Boeing’
1‘Airbus’

Countname
0‘Boeing’
1‘Airbus’

Countname
1‘Boeing’
1‘Airbus’

Countname
2‘Boeing’
2‘Airbus’

nameaid
‘Boeing’1
‘Airbus’2

aidfid
21

Aircraft Flight

Instance 1

Instance 2

Result 1 Result 2

Result 1 Result 2

Result 1 Result 2

score = 1

score = 0

score = 2

Fig. 6. An example of performing the scoring algorithm on various SQL candidates.

as the expected 𝑆𝑄𝐿3. Therefore, more counterexamples are necessary to further differentiate
between the correct and incorrect SQLs. The second counterexample successfully differentiates
𝑆𝑄𝐿3 from other incorrect ones and allows SQLDriller to judge execution results among multiple
instances and identify the SQL that is more likely to be correct. As Figure 4 shows, the scoring
and ranking mechanism is designed to assign a score to each SQL based on the times its execution
results match the NL query. The SQL candidate with the highest score is selected as the final choice.

4 SQLDriller Design

This section describes the workflow of SQLDriller and provides details of its key components.

4.1 Database Instance Generation

To effectively identify incorrect mappings in the dataset, SQLDriller must reveal violations of
execution consistency on specific database instances. To make SQLDriller effective, such instances
should be prone to triggering the violation if the mapping exactly contains an error. However, the
lack of formal semantics for NL queries makes it challenging to directly construct instances to detect
the errors. Fortunately, we have observed a key insight to address this issue. For a Text-to-SQL
model, asking it to generate multiple SQL predictions that vary in syntax structures increases
the chance of producing at least one correct SQL to the NL query. In our experiments on several
models [16, 20, 28, 42, 48], when prompted to output multiple predictions as opposed to a single
one, we observe an increase from 62.3% to 81.8% in the probability of producing one correct SQL
within the set. In this way, the correct SQL differs in its semantics from other predictions (or
the original SQL). Since counterexamples serve to distinguish non-equivalent SQLs, they can
effectively differentiate and pick the correct SQL from incorrect ones. Therefore, SQLDriller first
generates a set of SQL candidates, then uses a SQL equivalence checker to check equivalence and
generate counterexamples as database instances to detect errors. These generated SQLs also serve
as candidates for automated SQL fixing.
Generating Preliminary SQLCandidates. SQLDriller uses a base Text-to-SQLmodel to produce
a set of initial SQL candidates. These candidates must satisfy two key requirements. First, they
should be syntactically and semantically diverse to yield counterexamples for error detection, as
well as potentially correct SQL candidates. Second, their semantics should closely align with the
natural language query’s semantics, avoiding significant deviations.
As LLM-based Text-to-SQL techniques have evolved, we design a dedicated prompt shown in

Figure 7 that instructs the model to generate multiple SQL queries satisfying the above requirements.
For the first requirement, based on our observation, a potentially correct SQL can differ from the
original one in both syntax structures and keywords used. Therefore, we explicitly instruct the
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… (Previous prompt contents)
Please provide N candidate SQL queries for the previous question that you believe are the correct answers. 
These candidate SQL queries are encouraged to differ greatly from each other in their syntax structures 
and used keywords, as long as you believe they are correct corresponding to the previous question. 

List the N candidate SQLs one by one in JSON format, which should be like: 
{"answers": ["SELECT...", "SELECT...", ..., "SELECT..."] }"

Fig. 7. The added prompt to ask a Text-to-SQL model to generate multiple diverse SQL candidates.

model to produce multiple SQL queries (with a parameter 𝑁 as the number of candidates) that differ
in syntax and keyword usage, as highlighted in the bold text of Figure 7. For the second requirement,
we instruct the model to generate SQL statements it deems potentially correct responses to the NL
query, in order to mitigate excessive deviation from the natural language query semantics. Finally,
we instruct the model to output SQL in a specific JSON format, which simplifies the extraction
and collection of the generated SQLs. Furthermore, unlike most Text-to-SQL models that rely on
fine-tuning or few-shot prompting, SQLDriller employs a zero-shot model for SQL generation
to avoid potential negative impacts of training datasets that may include incorrect mappings and
negatively affect the SQL predictions.

Using this prompt design to generate syntactically diverse SQL candidates enables the model to
produce semantically different ones as well, enabling counterexample generation for subsequent
error detection. For instance, in Figure 6, the SQL candidates syntactically vary in their JOIN types
and JOIN conditions and exhibit different semantics. We apply the prompt to several top-ranking
models and conduct a preliminary experiment on 500 sampled mappings of Spider and BIRD. When
𝑁 is 10, the generated candidate set contains an average of 3.2 semantically distinct groups of SQLs
for each NL query, with a maximum of up to 8 groups. 𝑁 is empirically set to 10 since a smaller
value yields fewer distinct groups (2.6 when 𝑁 is 5), and a larger one does not significantly increase
the number (3.6 when 𝑁 is 20) but with substantial time overhead.
Design of a Hybrid Checker. After collecting SQL candidates, SQLDriller creates a set of
database instances for execution. It proposes a SQL equivalence checker to check the equivalence
between each SQL candidate and the original SQL, then generates counterexamples for non-
equivalent pairs as database instances. However, designing the checker is challenging because the
capabilities of existing tools [9, 14, 22, 54] cannot satisfy our requirements for equivalence checking
and counterexample generation.
There are two main types of SQL equivalence verification tools: full-equivalence and bounded-

equivalence verifiers. Full-equivalence verifiers [14, 54] prove whether two SQL queries are equiv-
alent across all possible input database instances. They guarantee that two SQLs are equivalent
if the result is Equivalent, but they are unable to generate counterexamples when SQLs are non-
equivalent due to inherent limitations [14, 54]. In contrast, bounded-equivalence verifiers [9, 22]
check equivalence within a specific bound of input table sizes and can provide counterexamples
when SQLs are Non-Equivalent. However, they are prone to timeouts when evaluating equivalent
SQL queries, as they repeatedly increase the bounds to search for counterexamples, which leads to
significant verification time costs.
To tackle this challenge, SQLDriller integrates two types of verifiers into its SQL equivalence

checker to benefit from their strengths and enhance the verification capability. Specifically, it
integrates SQLSolver [14] and VeriEQL [22] which are popular full- and bounded-equivalence
verifiers with strong capabilities, respectively. As shown in Figure 8, it begins with SQLSolver to
check if two SQL queries are equivalent. If SQLSolver confirms equivalence, the checker immediately
classifies them as equivalent. Otherwise, if it returns Non-Equivalent or Unknown, the equivalence
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< 𝑆𝑄𝐿!, 𝑆𝑄𝐿" >

SQLSolver

EQ

Return EQ

VeriEQL

NEQ / UNKNOWN
Bound := 1

NEQ

Return (NEQ,       )

Bound = K ?

EQ

Bound += 1NY

Test Suite 
Execution

EQ

Return EQ

NEQ

Return (NEQ,       )

SQL Equivalence Checker

Fig. 8. The workflow of hybrid SQL equivalence checker.

of the SQL queries remains uncertain. At this point, VeriEQL is called to check if the queries are Non-
Equivalent and try to generate counterexamples. Since it has been observed that counterexamples
for most non-equivalent SQLs are typically in a small size [22], VeriEQL sets up the bound from 1
to a value 𝐾 , which is empirically set as 10 to efficiently search for counterexamples since a larger
size can easily incur timeouts. VeriEQL performs a round of verification under each bound size and
increments the size by 1 if the SQL pair is verified Equivalent in the current round. It terminates
when it either finds a counterexample or confirms the pair as Equivalent under the maximum
bound. Finally, as a backup for timeouts or unreliable verification results from the verifiers, our
checker uses the Test Suite Execution [60] technique. This involves running two SQL queries on a
series of generated database instances. If the execution results differ on any instance, the SQLs are
confirmed non-equivalent, and such instance is returned as a counterexample.

To avoid generating redundant counterexamples and reduce the time cost, each time two SQLs
come, the checker first runs them on existing generated counterexamples. If execution results differ,
they are directly judged non-equivalent without calling the verifiers.
Making Counterexamples Practical. SQLDriller uses an LLM to simulate NL query executions
on generated counterexamples. However, current tools are not tailored to produce counterexamples
with realistic and meaningful values, which are essential for accurate LLM execution. Specifically,
meaningless or invalid column values may cause the LLM tomisunderstand and produce unexpected
results, leading to misjudgments in consistency checks.

Figure 9 presents the examples. In the first example, a record has an unrealistic “age” of 2147483648.
During NL execution, the LLM dismisses this record as invalid and omits it from the average age
calculation, whereas SQL includes it. Given that such a situation should not occur in real-world
scenarios, the execution difference between LLM and SQL does not indicate the incorrectness of
SQL. In the second example, unusual values of the “name” column cause the LLM to mistakenly treat
them as dirty values and exclude them from processing, also leading to unexpected NL execution
results. To prevent such issues and capture realistic counterexamples, we add extra “CHECK”
constraints for numeric- and string-type columns in the schema definitions to keep the values
within a practical range.
CREATE TABLE Dogs(

dog_id INT PRIMARY KEY ,

name VARCHAR ,

age INT ,

CHECK name IN ('Jack', 'Bella ', 'Leo', ...),

CHECK age BETWEEN 0 AND 100

);
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Expected SQL:
SELECT avg(age) FROM Dogs WHERE dog_id IN (SELECT dog_id FROM Treatments)

Natural Language Query:
Calculate the average age of the dogs who went through treatments.

agenameDog_id
1‘Jack’1

2147483648‘Jack’2

Dog_idT_id
11

22

Dogs Treatments I would filter out invalid ages: 
Dog with dog_id 1 has an age of 
2147483648, which doesn't seem 
to be a valid age.

agenameDog_id
1'2147483648'1

3'2147483649'2

Dogs Treatments Since the database stores dirty
values on the names of dogs with
dog_id 1 and 2, we automatically
prune out these records.

Dog_idT_id
11

22

GPT result: 1,  SQL result: 0

GPT result: 0,  SQL result: 2

DB Instance 1:

DB Instance 2:

GPT response

GPT response

Fig. 9. Examples of the unrealistic counterexamples.

In this example, we constrain dog names to realistic ones and the ages between 0 and 100. For
string-type columns, we extract all constant strings from the SQL queries, along with 10 random
extra practical values generated by a GPT model based on the table and column names. Numeric-
type columns should not contain excessively large values, so we set their range from 0 to 100 by
default to provide enough value candidates for counterexample generation. If a SQL predicate
contains constant values, the range should cover all these values. We set the range from 0 to 2 × 𝑐 ,
where 𝑐 represents the maximal positive value that appeared. Setting it twice helps provide value
candidates to handle predicates like “WHERE col > c” for counterexample generation. Likewise, a
minimal negative value 𝑐 < 0 sets the range from 2 × 𝑐 to 0, correspondingly.

4.2 Natural Language Execution

Besides an off-the-shelf SQL execution engine to execute SQLs, SQLDriller develops an “executor”
to simulate NL query execution. This NL executor should directly understand the NL query seman-
tics, manipulate data, and produce the final outcome. Fortunately, the tiny size of counterexamples
provides an opportunity to leverage LLM’s inherent reasoning capability to execute NL queries ac-
curately. The tiny size consumes a compact LLM context window, facilitating LLM’s understanding
of records in the instance and enabling precise data manipulations. Therefore, SQLDriller instructs
the LLM to directly traverse each record in the counterexample and perform query-specific data
manipulation to form the final result.
We design a dedicated prompt for the NL query execution task in Figure 10. First, the prompt

provide detailed schema information including table names, column names, and integrity constraints
(primary keys and foreign keys). It also sequentially lists every record in the tables, presents the
NL query, and asks for its execution result on this counterexample. Then, we instruct the LLM to
traverse each record and think step-by-step about how to manipulate the data and produce the
final result. In this way, the LLM outputs each step of its cognitive process and data manipulations
and formulates the output format of the execution result as a list of tuples.

When an LLM executes NL queries on the database instances, it may overlook specific execution
rules that fall beyond its knowledge. This leads to unexpected mismatching with SQL’s execution
results. For instance, the SQL standard specifies that aggregations like SUM, AVG, or MAX/MIN on
an empty set should return NULL values. However, the LLM would unexpectedly return 0 by its
common sense. To tackle this, we integrate a post-processing step in the prompt that instructs the
LLM to adjust the execution results. In Figure 10, we provide specific instructions for the LLM to
modify its preliminary results by itself to follow specific execution rules.
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Now we need to query a database storing the following tables: 
Table T1: {id: v1, col2: v2}, {id: v1, col2: v2} …
Table T2: {id: v1, col2: v2, col3: v3}, {id: v1, col2: v2, col3: v3} …
Here, T1.id is the primary key of T1; T2.id is the primary key of T2.

For the natural language query: Show …, what is the execution result on the tables?
Please carefully learn relationships of tables by primary keys and foreign keys, think step-by-step, then analyze and 
infer the execution result.
Specifically, you first schedule a step-by-step plan of result construction.
Then choose tables with columns to be output, scan over each record of the table, and perform query-specific data 
manipulations to construct the result.

Finally, list out the result. Each record is a Python-type tuple with one or more columns:
``` #result: [(record0), (record1), (record2), ...] ```

After you have decided the final result, you should analyze and try to fix the execution result for any potential issues.

- Instruction 1: check aggregation
When the query asks for aggregation results (e.g. count, sum, max, min, average), please return a number as the 
result rather than some records.
If no record participates in aggregation when calculating an aggregation result, do not return empty set as aggregation 
result. Return 0 when calculating count, and return None when calculating sum, max, min or average values.
…

List input tables, describe 
the task, and specify output format

Postprocess the execution result

Fig. 10. The simplified prompt of executing an NL query on a database instance.

To assess the accuracy in NL query execution with the prompt design, we construct a micro-
benchmark derived from existing datasets. The off-the-shelf LLMs achieve remarkable accuracy of
up to 91.0% and 83.2% for Spider’s and BIRD’s micro-benchmarks, as shown in Table 3. Specifically,
we generate 500 random database instances on 100 NL to SQL mappings (5 for each) sampled from
our fixed Spider test and BIRD development dataset, respectively. The table size of the instances is
limited to 5 to match the size of most generated counterexamples. The evaluated LLMs excel in
mappings of various hardness levels. GPT-4-turbo, the most outstanding one, shows 92.2%, 88.3%,
94.4%, and 92.9% accuracy for Spider’s easy, medium, hard, and extra levels, and 92.7%, 76.1%, and
60.0% for BIRD’s simple, moderate, and challenging levels.

4.3 Execution Result Scoring

SQLDriller checks whether an NL to SQL mapping satisfies or violates execution consistency
after retrieving execution results of the NL and SQL queries. If execution consistency is violated,
SQLDriller tries to pick a potentially better-suited SQL candidate as a fix for the original SQL.
The preferred SQL candidate should match the execution results of the NL query on more database
instances than the original SQL.

To achieve this, SQLDriller employs a scorer to evaluate each SQL and picks the one with the
highest score. Given a set of database instances, the scorer treats the NL query’s execution results
on them as the oracle. It then checks, for each SQL, how many instances where its execution result
is the same as the oracle. The score of a SQL is assigned as the exact number of such instances. If
the highest score surpasses that of the original SQL, the corresponding SQL candidate is picked and
returned as a fix. Otherwise, SQLDriller preserves the original SQL, as no better-suited candidate
is available in the SQL candidate set.
It is possible that multiple SQL candidates score higher than the original SQL and share the

same highest score. In this case, more database instances are needed to further differentiate which
candidate is better. SQLDriller reruns the previous steps only on these highest-scoring SQL
candidates. It calls the SQL equivalence checker to generate counterexamples among them and
scores on the execution results of these counterexamples. Finally, a SQL candidate that outperforms
the others is picked and returned by SQLDriller.
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Table 3. LLMs’ NL execution accuracy on the micro-benchmarks derived from existing Text-to-SQL datasets.

Model
Spider test

(500 instances)
BIRD dev

(500 instances)
Claude 3.5 Sonnet 451 (90.2 %) 391 (78.2 %)
GPT-4o 455 (91.0 %) 402 (80.4 %)
o1-preview 444 (88.8 %) 416 (83.2 %)
GPT-4-turbo 455 (91.0 %) 415 (83.0 %)

5 Optimizing Model Inference

Besides fixing errors and improving the dataset quality, SQLDriller can also be utilized to improve
Text-to-SQL model inference accuracy. As illustrated in Section 4.1, it has been observed that
generating multiple SQL predictions increases the possibility of containing the correct answer
within the prediction set. With this observation, precisely selecting the correct SQL within a
prediction set generated by the model is the key to accuracy improvements. Since SQLDriller’s
underlying workflow is to effectively select the best-suited SQL within a candidate set, it can
improve model accuracy by selecting the best-suited SQL within multiple model predictions.
To apply SQLDriller for optimization, the paradigm of Text-to-SQL model inference changes

from generating one single prediction to “brainstorming” and generating multiple SQL predictions
given an NL query. The prompt design in Figure 7 can be applied to the models to achieve that. After
collecting a set of SQL predictions, SQLDriller employs execution consistency and performs its
scoring algorithm on them. Specifically, since the original ground truth SQL is not available in the
scenario of model inference, SQLDriller checks equivalence and generates counterexamples only
among the generated SQL predictions. It then executes the NL query on these counterexamples and
scores each SQL prediction based on the number of consistent execution results with the NL query.
Finally, the highest-score SQL is selected to be the model’s final prediction result. As evaluated in
Section 6.2, this optimization consistently improves all the models’ accuracy, by up to 9.2%.

6 Evaluation

We aim to answer the following questions in our evaluation:
Q1. How much accuracy improvement can the repaired datasets bring to Text-to-SQL models?
Q2. How effective is SQLDriller in detecting and fixing incorrect NL to SQL mappings in existing
Text-to-SQL datasets?
Q3.What lessons can we learn from incorrect mappings on NL to SQL translation?

6.1 Setup

Datasets. We evaluate on the popular Text-to-SQL datasets, Spider [57] and BIRD [30]. They both
have a training set of over 8,000 mappings and a development set of over 1000 mappings. Spider
has open-sourced its 2147 test mappings. We view BIRD’s development set as the test set since its
real test set is not open-sourced.
Models. We evaluate accuracy on these models: DAIL-SQL [20], DIN-SQL [42], RESDSQL [27] and
Graphix-T5 [29] for Spider, SFT CODES and CODES [28] for BIRD. These models are the highest-
ranked open-sourced ones on the leaderboards. DAIL-SQL uses NL similarity to pick training
mappings as examples for few-shot prompting [20]. DIN-SQL is also few-shot prompted, with
its examples statically encoded and unchanged for each prediction [42]. We directly fix incorrect
examples in DIN-SQL’s prompt for evaluation. CODES applies few-shot prompting after fine-tuning
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a model. RESDSQL [27], Graphix-T5 [29] and SFT CODES [28] fine-tune pre-trained models with
the training mappings. RESDSQL’s fine-tuned T5-3b, Graphix-T5’s fine-tuned T5-large, and SFT
CODES’s 3b models are evaluated. Prompting-based models can generate multiple SQLs by adding
the prompt in Figure 7 to their prompt template. RESDSQL and CODES output a sequence of SQL
predictions during inference [27, 28], but lack support on such promptings. So we directly collect
all the SQL predictions during their inference. C3 [16] and CHESS [48] are not evaluated since
0-shot prompted models do not access training data.
Accuracy Metric.We use Test Suite Accuracy metric [60] to evaluate accuracy. This metric checks
whether the predicted and ground truth SQL execute consistently on a large set of database instances
[60]. It has much fewer false positives [60] than Execution Accuracy metric, which executes the
SQLs on only one given instance. Exact Match Accuracy [57] checks SQL syntax structure for
equivalence. Its strict equivalence condition is prone to false negatives [60] that judge equivalent
SQLs as non-equivalent. So we do not apply it.
Baseline. We compare SQLDriller with a baseline of LLM consistency technique on accuracy
improvement and error fixing. The baseline selects the most “confident” SQL among the candidates
using prompt-agreement confidence estimation in [41], which evaluates each response’s LLM log
probability across diverse prompts. We use GPT-3 to generate 100 diverse prompt templates that
ask for selecting one of the SQL candidates given the NL query. We randomly pick 20 templates for
each Text-to-SQL mapping, encode the NL query and SQL candidates into each template, and call
GPT-4 to select and return the selection’s log probability. The SQL with the highest average log
probability in 20 LLM calls is finally selected.
Implementation Details. SQLDriller uses a base model to generate the SQL candidate set given
an NL. We apply the prompt design of C3 [16] and CHESS [48] for Spider and BIRD respectively,
since they rank first among 0-shot prompted models in the leaderboards. We add the prompt in
Figure 7 to their prompt templates. For NL execution, we call GPT-4 for its high accuracy and
affordable price. We call 5 times for each database instance and pick the majority of these execution
results to return. We use SQLite v3.45.1 [11] as the SQL execution engine.
Testbed. We fine-tune the models on a server with 8 NVIDIA A100 (80G) GPUs, 1 Intel(R) Xeon(R)
Gold 6348 CPU, 1 TB memory, CentOS Linux 7 operating system.

6.2 Accuracy Improvement

We fine-tune the models with the original and fixed datasets and evaluate their accuracy. All the
training mappings are automatically checked and fixed by SQLDriller. For rare cases with NL
ambiguity (<2% in Spider and BIRD) that SQLDriller gives another SQL as a fix, we keep the
original SQL as the answer in accuracy evaluation.

As shown in Table 4, SQLDriller brings accuracy improvements ranging from 3.6% to 13.6% to
these models. Specifically, 4 models achieve substantial improvements of more than 10.0%, where
RESDSQL and SFT CODES achieve the highest in Spider and BIRD, up to 13.6% and 11.2%, respec-
tively. According to the analysis in Figure 11, RESDSQL and SFT CODES’s improvements mainly
come from the fixed higher-quality training dataset, which brings 7.2% and 6.5% improvements
to them. We attribute this to the fact that fine-tuned models are more susceptible to the quality
of training data. Besides, DAIL-SQL and DIN-SQL gain comparable improvements of 12.9% and
12.3%, respectively. The improvements to these prompting models (using GPT-4) mainly come
from the optimization of execution consistency (9.2% of 12.9% and 9.1% of 12.3% in Figure 11). It
reveals that such GPT-based prompting models benefit from the prompt that asks for generating
multiple diverse SQL predictions, substantially increasing the possibility of containing correct SQLs
within the set. So they gain more accuracy improvements than RESDSQL and SFT CODES from
execution consistency. The prompting CODES model has a 6.1% improvement with 2.8% from the
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Table 4. The evaluation of Text-to-SQL model accuracy improvements brought by SQLDriller. For BIRD, we

use levels that are manually annotated by its developers: “Simple”, “Moderate”, and “Challenging”, which are

different from those of Spider.

Model Dataset Training
Scheme

Accuracy Improvement (%)

All
Easy /
Simple

Medium /
Moderate

Hard /
Challenging

Extra

DAIL-SQL
(5 shots)

Spider test Prompting
+ 12.9
(61.8 → 74.7)

− 0.4
(90.2 → 89.8)

+ 9.4
(68.5→ 77.9)

+ 24.8
(41.5→ 66.3)

+ 23.5
(34.5 → 58.0)

DIN-SQL Spider test Prompting
+ 12.3
(61.3 → 73.6)

− 1.1
(87.9 → 86.8)

+ 9.3
(66.9→ 76.2)

+ 24.8
(41.9→ 66.7)

+ 20.2
(38.9 → 59.1)

RESDSQL
(T5-3b)

Spider test Fine-tune
+ 13.6
(52.3 → 65.9)

+ 1.9
(86.0 → 87.9)

+ 8.4
(60.3→ 68.7)

+ 29.2
(28.3→ 57.5)

+ 21.3
(19.6 → 40.9)

Graphix-T5
(T5-large)

Spider test Fine-tune
+ 3.6
(46.3 → 49.9)

+ 0.6
(79.8 → 80.4)

+ 3.8
(53.6→ 57.4)

+ 3.9
(22.9→ 26.8)

+ 3.4
(15.4 → 18.8)

SFT CODES
(3b)

BIRD dev Fine-tune
+ 11.2
(38.1 → 49.3)

+ 12.1
(47.0 → 59.1)

+ 11.8
(26.2→ 38.0)

+ 4.9
(22.2→ 27.1)

/

CODES
(7b, 5 shots)

BIRD dev Prompting
+ 6.1
(31.4 → 37.5)

+ 6.7
(40.7 → 47.4)

+ 6.3
(19.2→ 25.5)

+ 2.8
(13.2→ 16.0)

/

optimization of execution consistency, relatively lower than that of DAIL-SQL and DIN-SQL. We
attribute this to the stronger capability of GPT-4 than the base language model used by CODES
and the greater difficulty of Text-to-SQL mappings in BIRD than Spider. Graphix-T5’s modest
3.6% improvement is due to our decision not to apply execution consistency’s optimization, as it
lacks inherent support for outputting multiple SQL predictions in inference. To conclude, fixing
SQL mappings to improve the dataset quality and optimization of execution consistency bring
substantial accuracy improvements to models despite their diverse model designs.
SQLDriller brings accuracy improvements to varied Text-to-SQL hardness levels. As shown

in Table 4, the improvement for Spider’s hard and extra-hard mappings reaches over 20%. Easy
mappings do not gain that much improvement since the evaluated models have effectively tackled
these mappings and achieved high accuracy. For BIRD, SQLDriller consistently improves accuracy
for simple and moderate mappings (>11% for SFT CODES and >6% for CODES). It achieves moderate
improvement for challenging ones due to their inherent challenges of semantic understanding and
SQL query translation to the models.
Execution Consistency vs. LLM Consistency.We compare execution consistency with LLM
consistency on their impact on accuracy improvements. Figure 11 shows that execution consistency
brings higher improvements than LLM consistency to all the models. LLM consistency even
negatively impacts 3 models, with an accuracy drop of up to 0.6% on DIN-SQL. We attribute LLM
consistency’s weakness to its lack of awareness of SQL’s subtle execution semantics. For example,
among the SQL candidates in Figure 1, LLM consistency selects the one with INNER JOIN, which
is its most “confident” option based on the log probability of LLM inference. It merely decides
based on the textual statements of SQL and fails to delve into SQL execution semantics. Execution
consistency, instead, selects based on SQLs’ execution results on concrete database instances. It
explicitly reveals the subtle semantic difference between LEFT JOIN and INNER JOIN by presenting
a database instance with an aircraft record having no completed flight and revealing the necessity
of LEFT JOIN to preserve such record. Execution consistency thus brings more accurate semantic
matching between NL and SQL queries and gains higher accuracy improvements.
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Fig. 11. Accuracy improvements analysis. “w/ EC” and “w/ LC” mean using Execution Consistency and

LLM Consistency, respectively. Negative impacts of LLM Consistency are depicted by grey diagonal lines.

Graphix-T5 does not apply them for accuracy improvement since it cannot output multiple SQLs in inference.

Impact of Ambiguity. Ambiguous NL queries in Spider and BIRD may inevitably exist, but these
constitute a minority. 25 and 33 mappings in the Spider test and BIRD development dataset are
detected to have ambiguity. To assess the impact of ambiguous mappings on benchmarking, we
consider both the original and fixed SQL queries as ground truth answers to re-evaluate the accuracy.
The models’ original and improved accuracy in Table 4 all increase by less than 0.5% and 0.9%
for Spider and BIRD datasets, respectively, exhibiting limited impact on the accuracy outcomes.
Hence, the conclusion that SQLDriller brings significant accuracy improvements still holds. For
ambiguous mappings in training sets, we also preserve the original SQL. Actually, mapping the NL
to any correct SQL does not notably degrade the dataset quality due to their low proportion.

6.3 Detecting and Fixing Dataset Errors

This section analyzes SQLDriller’s effectiveness of using execution consistency to automatically
detect and fix incorrect NL to SQL mappings. To do this, we manually review the sampled 500
training mappings in Spider and BIRD’s training dataset, providing ground truth to check whether
detections and fixes are correct or not.
Detecting Errors. Table 5 shows the results. Among the 183 and 272 incorrect mappings of Spider
and BIRD, 149 (81.4%) and 207 (76.1%) violate execution consistency on at least one database
instance and are detected by SQLDriller. Despite a few false negatives (34 and 48 for Spider
and BIRD), the high proportion of detected errors (high true positive rate) reveals that execution
consistency can effectively detect incorrect NL to SQL mappings. On the other hand, SQLDriller
inevitably introduces a few false positives. For Spider and BIRD, 282 of 317 and 200 of 228 correct
mappings satisfy execution consistency on the generated counterexamples. The remaining ones
violate execution consistency, showing a false positive rate of 11.0% and 12.3% for Spider and BIRD,
respectively. We consider the low false positive rate acceptable compared to the high true positive
rate of execution consistency for error detection.
We dig into the reasons for these misjudgments. Of the 34 false negatives in Spider that over-

look the error, 19 lack necessary counterexamples and fail to trigger the violation of execution
consistency. The other 15 mappings stem from inaccurate NL executions of LLM that accidentally
match the incorrect SQL’s execution results and claim compliance with execution consistency.
Among 65 BIRD’s false negatives, 45 lack counterexamples and 20 suffer from inaccurate NL
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Table 5. Analysis of error detection. “# Incorrect / Correct” represents manual judgments of the mapping’s

correctness. “# Inconsistent / Consistent” means violating or satisfying execution consistency.

Dataset # Incorrect # Inconsistent # Correct # Consistent
Spider train 183 149 (81.4%) 317 282 (89.0%)
BIRD train 272 207 (76.1%) 228 200 (87.7%)

executions. On the other hand, the 35 and 28 false positives that misjudge correct mappings as
violating execution consistency are also caused by inaccurate NL executions. To conclude, the main
cause of misjudgments lies in both the lack of counterexamples (mostly due to lacking correct
SQL candidates generated) and inaccurate LLM-based NL executions. Thus, enhancing the SQL
candidate generation capability along with LLM’s NL execution accuracy is regarded as subsequent
optimization pathways for SQLDriller.
Automated SQL Fixing. SQLDriller tries to fix the SQL for each NL to SQL mapping that violates
execution consistency. Table 6 shows the results of automated SQL fixing on Spider and BIRD’s
500 samples. For Spider, SQLDriller fixes 138 of 183 incorrect mappings, among which 110 (60.1%)
are fixed to be completely correct. The remaining 28 are partially or wrongly fixed. For BIRD, it
fixes 185 of 272 incorrect mappings, where 142 (52.2%) are completely fixed. On the other hand,
for 317 and 228 correct mappings in Spider and BIRD, SQLDriller preserves the original SQL for
309 (97.5%) and 218 (95.6%) mappings, respectively. It introduces a low false positive rate of 2.5%
and 4.4% on SQL fixing for Spider and BIRD, which are significantly lower than the corresponding
true positive rates. This contributes to SQLDriller’s effect of improving the quality of datasets
by fixing incorrect mappings while introducing few false positives, thus bringing model accuracy
improvements illustrated in Section 6.2.
We analyze the root cause of the misjudgments. Among 73 incorrect Spider mappings that are

not correctly fixed, 41 lack correct SQL candidates within the set to pick, which is limited by
the capability of the model used to generate multiple SQLs. In the remaining 32 mappings, the
correct SQLs are present within the set. 11 fail to generate counterexamples to differentiate between
the original and the correct SQL due to the limited checking capability of the SQL equivalence
checker. 21 result from inaccurate LLM NL executions that hinder SQLDriller from scoring the
highest to the correct SQL. For 130 unfixed BIRD mappings, 79 lack correct candidates, 15 lack
counterexamples to differentiate, and 36 for inaccurate NL executions. Inaccurate NL execution is
also the root cause of the 8 and 10 false positives that mistakenly fix the original correct SQL.
Compared to error detection, the SQL fixing task exhibits a lower false positive rate (<5% v.s.

>10%) along with a lower true positive rate (≈60% v.s. ≈80%). We attribute this to the scoring
mechanism in SQLDriller. There are cases where the NL to SQL mapping violates execution
consistency but the SQL remains unfixed. When it occurs on correct mappings, such violations
stem from inaccurate NL executions, causing SQL candidates to execute differently from the NL
query and lose corresponding scores. It prevents SQL miscorrections and thus contributes to a
lower false positive rate of ≈ 8%. As to incorrect mappings, the SQL candidates fail to surpass the
original SQL’s score due to the absence of a better-suited SQL. Correct fixes are not provided on
such detected incorrect mappings, leading to SQL fixing’s lower true positive rate of ≈ 20%. To
conclude, SQLDriller cannot fix all its detected errors, but its scoring mechanism mitigates the
introduction of SQL miscorrections.
Execution Consistency vs. LLM Consistency.We compare execution consistency with LLM
consistency baseline on their effectiveness of SQL fixing. As shown in Table 6, execution consistency
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Table 6. Analysis of SQL fixing. “# Incorrect / Correct” represents manual judgments of the mapping’s

correctness. “# Correctly Fixed / Remain Unfixed (EC / LC)” are SQLDriller (i.e., Execution Consistency) or

LLM Consistency baseline’s choice of correctly fixing it with another SQL or remaining the original SQL.

Dataset # Incorrect
# Correctly
Fixed (EC)

# Correctly
Fixed (LC)

# Correct
# Remain

Unfixed (EC)
# Remain

Unfixed (LC)
Spider train 183 110 (60.1%) 42 (23.0%) 317 309 (97.5%) 283 (89.3%)
BIRD train 272 142 (52.2%) 78 (28.7%) 228 218 (95.6%) 162 (71.1%)

outperforms LLM consistency on its higher true positive rate and lower false positive rate in
both Spider and BIRD. It successfully fixes 37.1% and 23.5% more incorrect mappings than LLM
consistency, while also introducing 8.2% and 24.5% fewer miscorrections. This also stems from
execution consistency’s capability to delve into SQL execution semantics by executing concrete
database instances, as illustrated in the baseline comparison in Section 6.2. It thus provides more
accurate SQL fixes, such as effectively picking the SQL candidate with LEFT JOIN in Figure 1
as the fix, while applying LLM consistency remains the original SQL with INNER JOIN unfixed.
Therefore, execution consistency exhibits stronger effectiveness in error fixing, which contributes
to higher-quality Text-to-SQL datasets.

6.4 Analysis and Lessons

In this section, we provide an analysis of the detected incorrect NL to SQL mappings, followed by a
case study as lessons to Text-to-SQL developments.
Distribution. We analyze the distribution of all 2393 Spider training mappings that violate execu-
tion consistency across their different NL and SQL complexities. In this way, we try to understand
the potential characteristics of NL and SQL that are prone to errors.

Figure 12 shows the trend between consistency violation rate and mapping complexity (measured
by number of tokens in NL and SQL query). Each point represents the violation rate of mappings
with a token number between the previous X-axis scale and the current one (each interval range of
the X-axis scale is 3). It shows that the violation rate of NL to SQL mappings arises as the number
of tokens in either the NL or the SQL query increases. The violation rate of mappings exceeding 30
tokens in NL or SQL query (the point of the largest X-axis value) rises to an extremely high value,
over 0.6 and 0.4, respectively. It reveals that developers tend to make mistakes on more complex
NL to SQL mappings. A longer NL query is harder to understand, leading to challenges in writing
the SQL. A longer SQL is prone to errors since it typically consists of multiple sub-clauses to write.
Developers have to consider the correctness of not only all the sub-clauses but also the whole SQL
query made up of each sub-clause.
Case Study on Errors. The incorrect Text-to-SQL mappings exhibit various error patterns. We
present a summary of our detected common patterns as lessons for developers in future develop-
ments, as shown in Table 7.
Pattern 1: Improper use of JOIN causes records omitted. An NL query asks for aggregate results for
each entity record (record with a primary key in a table) should include all records, and omitting
any record misleads the user that these records do not exist. In the first example of Table 7, a teacher
with no course should not be excluded by the join condition. Instead, his/her number of courses
should be 0 to return. The improper INNER JOIN accidentally omits such teacher records and can
be fixed by using LEFT JOIN instead, which is the same as the example in Figure 1. SQLDriller
provides another fix in this case: a scalar sub-query on the SELECT clause counting the number of
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Fig. 12. Relationships between the Execution Consistency violation rate and the mapping complexity (# of

tokens in NL and SQL).

courses for each teacher. Such error occurs not only on SQLs with JOIN but also on those with a
single table that represents an N-to-N relationship of two entities.
Pattern 2: Improper duplication or deduplication. The records returned to the user should be
properly displayed without redundant duplication or deduplication. When an NL query asks for
some attributes of each entity record, the returned record of attributes should correspond one-to-
one with all the entity records. An intuitive example is using SQL “SELECT fname, age FROM

student” to answer the NL query “Show the first name and age of each student”. However, in
the second example of Table 7, an error of duplication occurs. An INNER JOIN is performed on
table “Student” with another table “Has_Pet” representing an N-to-N relationship between tables
“Student” and “Pets”. This JOIN operation unexpectedly returns multiple duplicated records with
the same student’s first name and age. For instance, if a 20-year-old student “Bob” owns ten pets,
the record (“Bob”, 20) is presented ten times in the result set. Simply adding a DISTINCT keyword
for deduplication could exclude duplicated combinations of first name and age from different
students, which unexpectedly misses information about some students owning pets. Such results
are improper and could mislead users or downstream applications about which students or how
many students own pets due to redundant or missing records. To solve it, an IN sub-query in the
predicate should be used to properly return the required records.
Pattern 3: Improper attribute selection on Aggregation and Set operations. A primary key uniquely
identifies one record of the entity represented by the table, while other attributes cannot serve as a
unique identifier. However, some mappings improperly use non-key attributes for SQL operators
like set operations and aggregation. The first and third examples in Table 7 illustrate such an issue.
Using the non-key attribute “name” on GROUP BY or EXCEPT operator, they overlook a special
condition that records in the operated table share the same “name”. This leads to incorrect execution
results of the counts or set differences and fails to meet the requirement of NL queries. The first
example incorrectly calculates counts from different teachers with the same name, while the third
one unexpectedly excludes employees who lack a certain certificate but share the same name with
others having that certificate. Hence, the primary key should be used on GROUP BY or replace
EXCEPT with a NOT IN sub-query in the predicate to correctly answer the NL query.
Pattern 4: Incomplete Top-K selection. The problem of SQL that retrieves records with the maximal
or minimal value of an attribute has been widely discussed [30, 57, 59]. Both operators LIMIT 1

and RANK OVER() = 1 are originally considered acceptable. However, if a column has multiple
maximal/minimal values, the operator LIMIT 1 may choose different records in different situations.
For the original SQL of the fourth example in Table 7, it returns a status with the largest number of
competitions. If using another column “c.city_id” on the Equi-JOIN condition as the GROUP BY

key, the total order of the records is different, and another status with the same largest number
will be returned. Using LIMIT 1 to return only one of the statuses does not meet the requirement
and makes the user unaware of the existence of multiple records with the same maximal/minimal
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Table 7. The selected examples of common incorrect Text-to-SQL translations.

Natural Language Query Original SQL Corrected SQL Description

What are the names of the
teachers and how many
courses do they teach?

SELECT t.name , COUNT (*)

FROM course_arrange c

JOIN teacher t

ON c.teacher_id = t.id

GROUP BY t.name

SELECT t.name ,

(SELECT COUNT (*)

FROM course_arrange

WHERE teacher_id = t.id)

FROM teacher t

1. Improper use of
JOIN causes record
omitted
2. Improper GROUP

BY attributes for Ag-
gregation

Find the first name and age
of students who have a pet.

SELECT s.fname , s.age

FROM student s

JOIN has_pet h

ON s.stu_id = h.stu_id

SELECT fname , age

FROM student

WHERE stu_id IN

(SELECT stu_id FROM has_pet)

Improper duplication
or deduplication

Show names for all employ-
ees who do not have certifi-
cate of ‘Boeing 737’.

SELECT name FROM employee

EXCEPT

SELECT e.name

FROM employee e

JOIN certificate c

ON e.eid = c.eid

JOIN aircraft a

ON a.aid = c.aid

WHERE a.name = 'Boeing 737'

SELECT name FROM employee

WHERE eid NOT IN

(SELECT eid FROM certificate

WHERE aid IN

(SELECT aid FROM aircraft

WHERE name = 'Boeing 737')

)

Improper attribute se-
lection on Set opera-
tions

Show the status of the city
that has hosted the greatest
number of competitions.

SELECT c.status

FROM city c

JOIN farm_competition fc

ON c.city_id =

fc.host_city_id

GROUP BY fc.host_city_id

ORDER BY COUNT (*) DESC

LIMIT 1

SELECT status FROM (

SELECT c.status ,

RANK() OVER(ORDER BY

COUNT (*) DESC) AS rk

FROM city c

JOIN farm_competition fc

ON c.city_id =

fc.host_city_id

GROUP BY fc.host_city_id

) AS ranked WHERE rk = 1

Incomplete top-K
selection

Find the ID and cell phone
of the professionals who
operate two or more types
of treatments.
(‘treatments.treatment_
type_code’ is an attribute
that identifies a unique
treatment type)

SELECT p.prof_id ,

p.cell_number

FROM professionals p

JOIN treatments t

ON p.prof_id = t.prof_id

GROUP BY p.prof_id

HAVING COUNT (*) >= 2

SELECT p.prof_id ,

p.cell_number

FROM professionals p

JOIN treatments t

ON p.prof_id = t.prof_id

GROUP BY p.prof_id

HAVING COUNT(DISTINCT

t.treatment_type_code) >= 2

Domain-specific nat-
ural language query
misunderstanding

values. Thus, all the statuses with the most competitions should be returned by using the RANK
OVER() operator. It is worth noting that the incomplete selection issue is not limited to Top-1
selections, but includes arbitrary Top-K selections (LIMIT K) as well.
Other Patterns: Domain-specific query misunderstanding. In addition to the above patterns, a
significant portion of mappings exhibit domain-specific query misunderstanding and semantic mis-
matching in their SQLs. Such misunderstandings lead to diverse incorrect SQL patterns, including
incorrect table scans and joins, selected columns, aggregate functions, expressions in predicates, etc.
Take the last case in Table 7 as an example, the NL query asks for “two or more types of treatments”
but the SQL only counts the number of treatments regardless of their types. A corrected SQL
modifies the parameter of the COUNT function to the column treatment.treatment_type_code and
counts distinct values of this column. This example illustrates that a subtle difference in the SQL
can lead to incorrectness and a wrong answer to the NL query.
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7 Discussion

In this section, we provide a discussion on potential directions for the optimizations and applications
of SQLDriller.
Ambiguity in Text-to-SQL. Natural language’s ambiguity causes diverse interpretations of NL
queries, leading to one NL query being mapped to multiple SQL queries. However, state-of-the-art
datasets Spider and BIRD follow a one-to-one mapping between NL and SQL queries without
accounting for NL ambiguity by default [30, 57]. While a few ambiguous cases exist, they constitute
a minority and have limited impact on our evaluation, as shown in Section 6.2. Our system,
SQLDriller, is also primarily designed to detect errors that do not stem from NL ambiguity, such
as the examples in the case study in Section 6.4. In SQLDriller, ambiguous mappings are flagged as
errors to return: it identifies them by selecting one of the interpretations of the NL query to execute
and triggering the violation of execution consistency between NL and SQL queries. If the LLM’s NL
execution does not select other interpretations, potential ambiguity may not be effectively detected.
For future datasets with more ambiguous contexts, we believe an advanced Text-to-SQL correctness
condition should be proposed. What’s more, enhancing the LLM’s capability of exploring more
interpretations to execute the NL query remains a compelling avenue for future research.
Scaling to Enterprise Dataset. It is interesting to scale NL execution in SQLDriller to real-
world enterprise datasets, which mainly involves two aspects: schema complexity (number of
tables and columns and their relationships) and table size (number of records). NL execution scales
better than SQL prediction in schema complexity. We test on BEAVER [7], a benchmark that
open-sources 48 mappings of an enterprise dataset with 99 tables and 16 columns for each table on
average. The NL execution accuracy of GPT-4 reaches 42.1% on the generated random database
instances with a bounded table size of 5 records. While not notably high compared to that of Spider
and BIRD in Table 3, it exceeds 12.1% compared to predicting SQL using the top-ranking model
[48] to execute instances (30.0%). Incorrect NL executions stem from a lack of comprehensive
understanding of domain-specific knowledge and complex relationships among tables and columns.
For further improvement, specific techniques can be applied to the NL executor, such as calculating
the embedding similarity between NL query and table or column names to precisely select tables
and columns to operate [48].
On the other hand, NL execution does not scale well as the number of table records increases.

When the table size is increased to 100, the NL execution accuracy drops to 17.5% due to a longer
context for LLM to understand. BEAVER’s originally given database, which has over 10 thousand
records in the tables, even exceeds the context window size of GPT models. Thus, the long LLM
context bottlenecks NL execution accuracy when dealing with large database instances, which is
left as part of our future work to solve. In SQLDriller, NL execution remains effective thanks to
the inherent tiny size of counterexamples between non-equivalent SQLs.
Adopting LLM Consistency Checking. LLM consistency checking is a well-studied technique
in the NLP domain [3, 17, 41, 53, 62]. It optimizes model inference by encouraging consistent
responses across perturbations of input prompts, aiming to output reliable and accurate predictions.
Although not as effective as execution consistency in revealing semantic differences and detecting
errors, we believe it presents opportunities to optimize NL execution in SQLDriller, by picking the
most reliable result it evaluates. Adopting the simple self-consistency [53] is feasible, by repeatedly
calling LLM with the same prompt and picking one from multiple results via majority voting.
Advanced consistency-checking techniques automatically generate multiple prompt variants of
the same intent and use advanced metrics to evaluate LLM responses (e.g., average log probability
of LLM) [3, 41, 62]. However, they are specifically designed for multiple-choice questions, and
applying them to NL execution presents challenges: first, for the dedicated prompt design of NL
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execution, it is hard to automatically generate prompt variants and guarantee their effectiveness;
second, the metrics are designed for multiple-choice questions with pre-determined answer choices
but do not show effectiveness on open-ended questions [41, 62] like NL execution. Restructuring
diverse NL execution results into a multiple-choice question and applying the techniques achieves
comparable accuracy to the original result while incurring more complexity and overhead. Thus,
developing effective consistency-checking techniques targeting NL execution results becomes the
main challenge and is left as part of future work.
Exploring Broader Applications. Besides fixing errors in existing datasets, SQLDriller has
the potential to facilitate training data generation by automatically generating and validating SQL
mappings given NL queries. It effectively saves manual efforts but falls slightly short in fine-tuning
models compared to fixing errors in existing datasets. The quality of generated training data is
constrained by the inherent prediction capability of the model used to generate SQL candidates.
There are cases where the model fails to generate correct SQL in the candidate set, leading to
inevitable errors in the training dataset. We test by using SQLDriller to generate and validate SQL
mappings and retraining the models. The generated Spider and BIRD training dataset has 73.0%
and 58.0% correct mappings in our 500 samples respectively, lower than the proportion achieved
by fixing existing datasets: 83.8% and 72.0%5 for Spider and BIRD in Table 6. Retrained models
naturally show lower accuracy than those achieved by fixing existing datasets (dark-blue segments
in Figure 11), with SFT CODES having the greatest drop of 1.7%, from 44.6% to 42.9%. Nevertheless,
we believe SQLDriller holds promise in training data generation scenarios, such as automatically
validating human-crafted SQLs in crowdsourcing.

Exploring potential applications of SQLDriller to other tabular data scenarios is also inter-
esting. In Table QA and fact-checking scenarios, existing works typically design and prompt an
LLM-based agent to schedule a plan across data retrieval, manipulation, and intricate reasoning
[58, 66]. Throughout their workflow, some sub-steps could involve generating SQL queries to
retrieve essential data from the given tables [58, 66]. SQLDriller can help generate accurate SQL
queries given specific contexts and precisely retrieve data in the tables with large data volumes for
subsequent reasoning and answer generation.

8 Related Work

Text-to-SQL. Text-to-SQL tasks are typically accomplished using large language models [13, 34,
37, 44, 49]. These models undergo supervised fine-tuning on a Text-to-SQL dataset [27–29, 47, 51].
LLM also allows direct prompt engineering without fine-tuning. DAIL-SQL [20], DIN-SQL [42]
and CODES [28] are few-shot prompted, which pick NL to SQL examples for LLM in-context
learning. Chain-of-Thought reasoning is also adopted in [16, 42, 48], decomposing Text-to-SQL into
sub-steps (e.g., schema linking, query classifying, and SQL generation) to perform. DB-GPT [65]
automatically generates effective input LLM prompts by generating and ranking prompt candidates
with a customized scoring function. These works focus on model designs or training schemes,
while we target the underlying dataset quality, which is orthogonal to them.
Text-to-SQL Dataset. Several Text-to-SQL datasets are created for model development. Earlier
datasets [19, 24, 26, 56, 61] suffer from low SQL complexity and domain diversity. Spider [57] and
BIRD [30] are state-of-the-art cross-domain datasets with more complex and diverse NL to SQL
mappings. They are manually crafted following several rounds of manual reviewing. BEAVER [7]
and QATCH [38] target proprietary enterprise databases with a large number of tables and columns.
AmbiQT [5] and AMBROSIA [46] are datasets specifically evaluating ambiguous NL queries. [33]

5It includes both incorrect mappings that are correctly fixed and correct ones that remain unfixed in Table 6. E.g., 309 plus
110 out of 500 mappings in Spider (83.8%).
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demonstrates the challenge of obtaining high-quality training data due to noisy manual annotations.
It also provides a Text-to-SQL error analysis taxonomy that targets error localization and cause.
SQL Equivalence Verifying. Developing automated tools to verify SQL equivalence is a well-
studied problem. There are mainly two types of such verification tools. Full-equivalence verifiers
[8, 14, 54, 63, 64] check whether SQLs are equivalent under any input tables. Bounded-equivalence
ones [9, 22] check the equivalence under a bounded table size. They can provide counterexamples
for non-equivalent SQL pairs. SQLDriller hybrids the verifiers to maximize the capability of SQL
equivalence checking and provide reliable outputs.
LLM Consistency Checking. LLM consistency checking is a well-studied problem in the NLP
field. Self-consistency [53] is applied to Text-to-SQL model inference [16] by picking one from
multiple SQL predictions via majority voting. [3, 41, 62] propose advanced consistency checking
techniques with prompt consistency, which encourages consistent model behavior across various
prompts. They provide potential optimizations for more accurate model responses.
Applications for Tabular Data. Besides Text-to-SQL, applications for tabular data like Table QA
and fact-checking are emerging. ReAcTable [58] and AutoTQA [66] design LLM-based agents to
schedule a plan to retrieve data from the given tables, perform analysis, and generate the answer.
Table-GPT [31] targets fine-tuning an LLM to understand tabular and columnar text better. [35]
mentions using visual language models to process visual tabular inputs.

9 Conclusion

This paper develops a tool to automatically flag and fix likely incorrect NL to SQL mappings in
Text-to-SQL datasets and improve model accuracy. We first introduce execution consistency, a new
correctness condition for NL to SQL mapping, to facilitate checking. Based on this, we develop
SQLDriller to flag likely incorrect NL to SQL mappings and provide a potential SQL fix. The
evaluation shows that SQLDriller effectively detects and fixes incorrect mappings in popular
datasets and improve the model accuracy by up to 13.6%.
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