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ABSTRACT
With the emergence of the serverless computing paradigm
in the cloud, researchers have explored many challenges of
serverless systems and proposed solutions such as snapshot-
based booting. However, we have noticed that some of these
optimizations are based on oversimplified assumptions that
lead to infeasibility and hide real-world issues. This paper
aims to analyze the gap between current serverless research
and real-world systems from a perspective of industry, and
present new observations, challenges, opportunities, and
insights that may address the discrepancies.
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1 INTRODUCTION
Serverless computing [40] has become an emerging para-
digm of today’s cloud and data center infrastructures [2, 4, 6,
8]. It uses one single-purpose service or function as the basic
computation unit, which eases computing in several ways.
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First, it helps application developers focus on the core logic,
and leaves infrastructure-related tasks like auto-scaling to
the serverless platform. Second, it adopts the “pay-as-you-go”
model with fine-grained charging granularity (e.g., 1ms [3])
so that users can save costs for unused computing resources.
Third, serverless computing also benefits cloud providers
such that they can manage their resources more efficiently.
There are already many optimizations of serverless sys-

tems. However, despite these efforts, there is still a significant
gap between current solutions and efficient, practical server-
less systems. For example, many researches have attempted
to optimize instance initialization [5, 7, 9, 33, 39, 52, 59, 64, 66]
to reduce cold start latency. Nevertheless, even if these opti-
mizations successfully reduce the initialization overhead to
<10ms, on real serverless systems such as Knative [13] on top
of Kubernetes (K8s) [21], it still requires hundreds of millisec-
onds to start an instance. The reason for this is that cold start
latency is not only made up of instance initialization costs
but also other overheads that are overlooked by research
works. For example, Knative relies on K8s state synchroniza-
tion to deliver scale-out requests, which incurs non-trivial
communication costs (§3). Additionally, before initialization,
the K8s scheduler must choose a node for the new instance,
which incurs scheduling costs (§4). These overlooked over-
heads represent gaps and highlight the discrepancy between
common assumptions in research work and actual indus-
try situations. It is essential to realize these gaps to make
serverless research steps further.

This paper presents five open challenges observed in real-
world serverless systems and industry practices to illustrate
the gaps, as shown in Table 1. Firstly, we emphasize that
instance cold starts are usually out of the critical path of end-
to-end latency. Cold start latency does not directly affect
end-to-end latency but does so indirectly through queuing,
scheduling, and routing policies. Secondly, many serverless
systems based on K8s take advantages of its declarative fea-
ture, which provides benefits such as cluster management
simplicity. However, it can also introduce drawbacks like
higher and uncertain end-to-end latency. Thirdly, schedul-
ing costs can be significant in terms of latency and resource
consumption, especially in large-scale clusters with more
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Table 1: Gaps between research and real-world sys-
tems.
Challenges Research works Real-world systems
Cold start Synchronous Asynchronous
Declarative tax Hardly consider Non-trivial cost
Scheduling cost <100ms (<120 nodes) >10s (2K nodes)
Scheduling policy Single policy ≥20 policies
Sidecar Hardly consider Non-trivial cost

than 1,000 nodes. Therefore, an efficient scheduler for server-
less platforms can be critical. Fourthly, designing a single
scheduling policy may not be sufficient in real schedulers
such as the K8s scheduler. Typically, more than 20 scheduling
policies are used in conjunction and scheduling choices are
considered holistically. However, due to a lack of balancing
among these policies, the final scheduling results may be sub-
optimal. Fifthly, we focus on the sidecar component, which
is often overlooked in research work but is very common in
real-world serverless systems. We discuss the advantages of
sidecars in terms of functionality and modularity, but also
mention the additional overhead this component may bring.

By outlining these challenges, we hope to inspire further
research in the area and enable researchers to advance state-
of-the-art serverless systems. Also, since addressing these
challenges necessitates cooperation between academia and
industry, recognizing the challenges is an essential step, or
the initial step, for such cooperation.
Methodology. The challenges and insights presented in this
paper are drawn mainly from our experience of applying re-
search optimizations to real-world serverless systems (Func-
tionGraph, Huawei Cloud). While research has made signif-
icant progress, we find that further steps are necessary to
fully tackle real-world problems. To bridge the gap between
research and industry, we examine common assumptions
and issues in research work while also highlighting points
easily overlooked from the industry perspective. This paper
does not cover all prevalent topics in serverless computing,
e.g., heterogeneous serverless [32]. Although we mostly use
K8s and serverless platforms like Knative as examples, the
challenges and gaps discussed are general for serverless com-
puting.

2 CHALLENGE I: ASYNCHRONOUS
START

Optimizing cold start latency is crucial for serverless comput-
ing for two primary reasons. Firstly, serverless has a much
higher frequency of cold starts than other cloud paradigms
due to its on-demand provisioning nature. Secondly, cold
starts can significantly increase the end-to-end latency of
requests [33], which can negatively affect user experience.
As a result, there is a lot of research work [5, 7, 9, 25, 26, 33,
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Figure 1: Synchronous start v.s. asynchronous start.

39, 42, 44, 52, 59, 64, 66, 68, 76] being conducted to optimize
cold start latency in serverless computing.
Synchronous and asynchronous starts. However, we ob-
serve a mismatch between the cold starts considered in re-
search works and real-world systems. Specifically, most ex-
isting works only consider synchronous starts, where a re-
quest can be directly handled by an instance if there are idle
instances available (warm start); otherwise, the request is
blocked until a new instance is created and then handled
by the new instance (cold start), as shown in Figure 1 (a).
However, in industry, such as in our cloud, serverless plat-
forms use asynchronous starts, as shown in Figure 1 (b). In
this case, for every incoming request, the router always de-
livers the request to a function instance (if there are any)
without explicit start operations. Instead, the system deploys
a dedicated component, usually called AutoScaler, to monitor
metrics (e.g., RPS, tail latency, etc.) and launch new instances
asynchronously when existing instances are insufficient to
handle loads. Serverless systems utilize a queue to buffer
pending requests until they are handled by active instances.
Gaps & challenges.With asynchronous starts, cold start la-
tency is not only related to instance creation, such as prepar-
ing a Docker container [52], but also other factors, such as
the queue size and request rate. To illustrate the implications
of asynchronous starts on end-to-end latency, let us consider
the specific implementation of Knative [13], as shown in Fig-
ure 2. Knative uses a per-instance queue design, where the
router delivers requests to instances consisting of a queue
container and an application container. The queue container
buffers incoming requests and delivers them one-by-one to
the application container to handle. This per-instance queue
design is common in reality, for example, our public server-
less platform also applies the approach.

To illustrate how asynchronous starts can affect queuing
and thus tail latency, we can consider a simplified scenario
where only one instance exists in the cluster at the beginning.
As requests continue to arrive, if the number of requests
waiting in the queue exceeds a threshold value L, a scale-out
command is triggered to create a new instance. For simplicity,
let the execution latency of each request bed , and the internal
arrival time (IAT) between two requests be a fixed value σd
(0 < σ < 1). In this case, the queue will continue to grow
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until it reaches length L at time tscale as follows:

N (tscale ) = (
1
σd

−
1
d
)tscale = L ⇒ tscale =

Lσd

1 − σ

Suppose the instance initialization latency is T . Before the
second instance is created, new requests continue to be sent
to the first instance, and the number of requests in the in-
stance’s queue continues to grow. As a result, when the
second instance is initialized, the latency of the last request
in the queue is:

Tail_e2e_latency = N (T + tscale )d = Ld +T
1 − σ

σ

As per the example, the impact of the initialization latency
on the end-to-end latency is magnified by other factors, in-
cluding the queue size, execution time, and arrival rate of
requests. Since all the factors affect the end-to-end latency,
merely accelerating instance initialization may not be suffi-
cient for achieving good performance. Therefore, it is essen-
tial to consider other factors, such as proactive auto-scaling
policies and queue design, for reducing the end-to-end la-
tency. Even though prior scheduling systems designed for
serverless computing [37, 41, 60, 62] and other distributed
systems [27, 38, 43, 49, 53, 58] have optimized end-to-end la-
tency through special queuing or scheduling methods, How-
ever, few of them consider the impact of asynchronous starts,
which is unique and common in the serverless scenario, so
their design choices may have limitations in some cases.
Asynchronous starts could be influential with plentiful

instance scaling, typically with load spikes. In some cases,
for example, when the request interval (σ in the example) is
small, the queuing latency can affect the tail latency more
significantly than the instance initiation latency.
Opportunities & suggestions. Considering asynchronous
startup, it is important to rethink design choices of prior
works on various aspects, such as scheduling, routing, or
queuing. Take queuing as an example, when constructing
the queuing model to help design the queuing policy, the
dynamic change in the number of queues, i.e., asynchronous
starts, should be considered as a new dimension. With this
new consideration, minor adjustments in design choices have
the potential to yield significant performance improvements.
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Figure 3: Serverless systems and K8s.

For instance, Hermod [41] notices and discusses the per-
formance of different queuing choices, such as late binding
or early binding. Late binding has a centralized gateway or
router with a queue, while early binding has per-instance
queues (e.g., Knative). Hermod chooses early binding, which
employs a processor-sharing mechanism to execute func-
tions for better end-to-end latency. The choice achieves great
performance under its scope, where the number of instances
is fixed regardless of scaling. However, there are trade-offs
that in cases where asynchronous cold starts are frequent,
late binding can better balance the queuing sizes of new and
old instances. Continuing with the prior example, if we use
late binding with a centralized queue, when the second in-
stance is created, the requests in the queue can be consumed
by both instances rather than a single instance (i.e., the first
instance), resulting in halved tail latency, i.e., about 2x better:

Tail_e2e_latency =
Ld +T 1−σ

σ

2

Insight I
With the introduction of asynchronous cold starts, there

are novel opportunities for specialized designs for systems
such as scheduling or queuing systems to further optimize
end-to-end latencies in serverless computing. Design choices
made based on assumptions of synchronous start may need
to be reevaluated in the context of asynchronous start.

3 CHALLENGE II: DECLARATIVE TAX
Serverless systems often utilize a low-level infrastructure
to manage instances in a large-scale cluster, with K8s [21]
being the most widely-used infrastructure today, as shown
in Figure 3. However, it is important to consider whether K8s
is the right system for serverless computing. In practice, we
observe that K8s’ declarative approach brings both benefits
and challenges to serverless platforms.
The declarative approach of K8s. K8s adopts a declarative
approach to manage resources in the cluster, where any com-
ponent can declare its “expected state” of some resources,
and the corresponding controllers (a term in K8s) are respon-
sible for making the resource meet the expected state. Some
serverless platforms [1, 12, 13, 18, 19, 23], for example Open-
FaaS, utilize this feature to implement auto-scalability, as
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shown in Figure 4 (a). OpenFaaS implements serverless func-
tions using K8s Deployment, which has a state named replica
to represent the number of instances of the function. To scale-
out, OpenFaaS simply modifies the value of replica instead of
manually creating new instances, and then the infrastructure
will eventually launch new instances as expected.

While the declarative approach simplifies themanagement
of resources and enables features like auto-scalability, it also
introduces challenges for serverless platforms.
Gaps & challenges. The declarative method used by K8s re-
quires many communications and synchronization between
multiple components, incurring non-trivial overheads. Each
operation through API server takes a few milliseconds [20],
while a complete state synchronization process requires mul-
tiple communications through the API server. For example,
Figure 4 (b) shows the essential synchronization messages
required to create a new instance, which includes at least six
messages through API server. In serverless systems (such
as Knative) which extend K8s with customized objects, syn-
chronization round trips become even more complex. With
current research demonstrating sub-millisecond instance
initialization times during cold start (as seen in works like
Catalyzer [33] and Faasm [59]), the declarative tax has the
potential to become the newest performance constraint.
The declarative method also leads to serious uncertainty

andmakes real-time operations or microsecond-scale latency
difficult. Taking OpenFaaS as an example (Figure 4), Open-
FaaS has no idea which component in the cluster will handle
the scaling request and how fast they can handle it. This
makes it challenging for the system to provide deterministic
performance guarantees.

Furthermore, programming the controller is difficult. Trac-
ing each invocation chain requires understanding the corre-
spondence between various events and operations of multi-
ple components.

In conclusion, the declarative tax could be the bottleneck
when the cloud application has the requirements of low or
real-time latencies. It could be increasingly influential as
the complexity of applications enhances, involving more
cloud/K8s resources, states and controllers.
Opportunities & suggestions. Solving the challenge brings
new opportunities for optimizing low-level infrastructure

system design. It requires achieving the goals simultaneously:
achieving great performance while providing an easy-to-use
interface (such as declarative APIs) with highly modular in-
frastructure to simplify development for both application and
infrastructure developers. The suggestion is that, researchers
can explore optimizing individual components, for example,
speeding up the synchronization via API server/etcd, or ad-
justing the queuing mechanism within controllers to reduce
the latency variation caused by them, etc. Moreover, with
modularity carefully ensured, optimizing multiple compo-
nents jointly can also be effective in improving performance,
for example, providing fast paths for state synchronization,
or exploring hardware-software co-design, etc. By address-
ing these challenges and pursuing these opportunities, we
can improve the performance and usability of serverless plat-
forms, making them more efficient and effective for a broad
range of applications and use cases.
Insight II

Existing infrastructure systems used by serverless plat-
forms, such as K8s, often use a declarative approach, which
can result in higher and uncertain end-to-end latency. De-
signing a new mechanism to optimize the costs of the declar-
ative approach without losing the benefits is an important
challenge in the field.

4 CHALLENGE III: SCHEDULING COST
The scheduling cost is part of cold start latency. Server-
less schedulers in modern cloud platforms generally refer
to control plane components that select a node for a new
instance to run, as shown in Figure 5. For every instance’s
cold start, the scheduler must first determine where the in-
stance can be deployed using a series of scheduling policies
before the instance can be initialized on the target node. The
costs involved in a serverless scheduler making a scheduling
decision are known as scheduling costs.
Gaps & challenges.Although the scheduling costs are often
treated as minor, we observe that they can be critical in
large-scale clusters. The problem can be illustrated with a
quantitative analysis, evaluating the scheduling overhead of
K8s scheduler [15] on a large scale cluster using Kwok [17].
K8s scheduler is widely used by serverless platforms such as
Knative [13], OpenFaaS [19], and OpenWhisk [1], making it
a representative model for serverless schedulers.
Figure 6 presents the average costs to schedule each Pod

with various numbers of concurrently created Pods. As the
number of Pods increases from 2,000, the average scheduling
cost or latency increases to ∼14.5 seconds. Comparing these
scheduling costs to the instance start cost (usually 10ms∼3s),
scheduling overhead (measured in seconds or tens of sec-
onds) is orders of magnitude higher than start-up overhead
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(∼100x). Furthermore, when the number of Pods grows from
1,000 to 10,000, the memory cost of the scheduler can in-
crease significantly from about 1 to 10 GB. The memory cost
mostly comes from the cache of the scheduler, which caches
detailed information about nodes and Pods in memory.

According to the analysis, the gaps can be exhibited in sev-
eral ways. To begin with, existing scheduling works mostly
consider scheduling costs on a small scale, leading to a failure
to recognize the unacceptable growth of scheduling over-
heads in large-scale situations, as shown in Table 2. Based
on our evaluation (Figure 6), scheduling costs are negligible
when the number of concurrent Pods is less than 200, taking
less than 10 milliseconds. However, scheduling costs grow
proportionally with the number of concurrent Pods. In view
of modern serverless platforms [28] (like clusters that can
support up to 2,000 nodes and deploy up to 250 Pods per
node in our public serverless platform), large-scale scenarios
are increasingly critical considering scheduling costs.

Moreover, it shows that prior scheduling policies with com-
plex calculations [47, 48, 69, 71, 77] are often infeasible for
real-world platforms. These policies utilize machine learn-
ing models to quantify resource interference and achieve
targets like maximizing resource utilization, as in the case
of Gsight [77]. Here, a Random Forest Regression model
predicts the performance of serverless functions to opti-
mize function density while guaranteeing QoS. However,
according to its evaluation, it requires costly model infer-
ence (additional tens of milliseconds) when scheduling every
instance. When numerous concurrent Pods are waiting to
be scheduled, Gsight scheduler predicts their performance
one-by-one, making it unacceptable in large-scale scenarios.

In a nutshell, the analysis shows that scheduling costs play
an important role, especially in large-scale scenarios with
numerous concurrently scheduled instances, for applications
that are sensitive to cold start latencies.
Opportunities & suggestions. Firstly, the gap shows the
value of research in designing scalable scheduling policies.
Moreover, it also motivates optimizing the scalability of
scheduling systems. For example, even though the sched-
uling policy used in our evaluation (Figure 6) has relatively
low computational cost [11] (around 4.55ms in our evalu-
ation), it still results in high scheduling overhead as the

Table 2: The scale (number of nodes) of prior server-
less scheduler researches.

Schedulers Gsight [77] Hermod [41] Fifer [37] Owl [63]
Scale 8 9–100 80 120
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scale of the cluster increases. So, rather than the policy, the
unscalable design of K8s, i.e., the binding process in this
example, can also become the bottleneck. Thus, eliminating
the unscalable design in K8s and its scheduler, and applying
mechanisms such as parallel binding, becomes essential to
avoid non-trivial costs at large scales.
In addition, since large-scale cluster testing can be cost-

prohibitive, we recommend using simulation tools such as
Kwok [17] as an alternative, which can model thousands of
virtual nodes and Pods using only a few real nodes. Industry
professionals have used Kwok for large-scale evaluations. Ad-
ditionally, innovative simulation techniques offer promising
avenues for advancing our understanding and capabilities
of serverless and cloud-native systems. These techniques
can provide valuable insights into system behaviors under
different conditions and help develop robust and efficient
scheduling policies. Therefore, we encourage further explo-
ration of simulation techniques, which is a cost-effective
mean of advancing research in this area.
In conclusion, both scheduling policies and frameworks

cannot ignore scalability requirements. Addressing the chal-
lenge requires innovative solutions that can provide efficient
and scalable scheduling mechanisms for serverless platforms.
Insight III

Scheduling costs are often overlooked but can be non-
trivial, particularly in large-scale scenarios. It is critical
to consider the costs associated with scheduling decisions,
as they can significantly impact system performance and
overall efficiency.

5 CHALLENGE IV: BALANCING
SCHEDULING POLICIES

We observe that real-world serverless platforms typically
deploy multiple serverless policies. For instance, K8s-based
serverless platforms (such as Knative [13], OpenFaaS [19],
Kubeless [14], and vHive [64]) comewith 20 different policies
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(implemented as plugins) by default [16, 22]. This fact illus-
trates the significant challenge of balancing different policies
within a serverless system, which is crucial for the effective
management and optimal utilization of such systems.
Supports for multiple policies by serverless schedulers.
As many serverless platforms directly reuse K8s scheduler,
we take it as a representative example. The K8s scheduler
provides native extensibility, with the scheduling process
consisting of several stages that include extension points, as
shown in Figure 7 (a). This flexibility allows developers to
implement plugins that can support customized scheduling
policies. The most critical stages of the scheduling process
are the filter and scoring stages. During the filter stage, each
enabled filter plugin filters out improper nodes, finally leav-
ing nodes that satisfy all filter policies. The scheduler then
proceeds to the scoring stage, where each score plugin as-
signs a score to each node. Ultimately, the scheduler selects
the most suitable node based on the weighted average of the
scores.
For example, one of the default score plugins, “Image-

Locality”, prioritizes nodes based on the readiness of their
container images, effectively mitigating the costs of image
pulling, which can take between 3∼80 seconds [65, 72]. As
cloud vendors often require customized scheduling policies
to meet their specific needs, it is common practice for them
to design their own customized schedulers. Therefore, we
believe that an extensible serverless scheduler that can sup-
port great customizability is essential for both the research
community and industry.
Gaps & challenges. While K8s scheduler plugins provide
extensibility, making proper use of this feature can be chal-
lenging. One significant challenge is balancing the multiple

plugins properly. Scheduler plugins [16] are diverse, repre-
senting various scheduling requirements. Each stage of the
K8s scheduler’s scheduling process can simultaneously apply
multiple plugins, enabling the selection of nodes that result
from comprehensive consideration of the scheduling require-
ments. However, there is currently no reasonable approach
to balance the requirements.

As an example, consider the scoring step. The weights of
multiple scoring plugins are uniform and fixed for various
Pods. This approach can lead to suboptimal scheduling re-
sults when the results of different plugins contradict each
other. Figure 7 (b) shows an example where the scheduler
adopts two plugins during the scoring stage, “ImageLocal-
ity” and “QoS”. The ImageLocality plugin prefers to deploy
a new instance on Node-A because the required container
images of the instance are ready there, while the QoS plu-
gin prefers Node-B because it has fewer running instances
and less interference, making it better for QoS guarantee.
In this case, the two plugins have conflicting results, so the
final choice between Node A and Node B requires balancing
these two results properly based on the characteristics of
the Pod. Based on our production experience, similar phe-
nomena, i.e., different plugins causing different scheduling
results, are quite common. However, there is currently a lack
of appropriate systematic approaches to analyze and balance
multiple policies, without which the final scheduling result
may be suboptimal.

Current methods (e.g., scoring mechanisms) cannot prop-
erly balance the policies for at least the following reasons.
Firstly and fundamentally, there is a lack of specific criteria
to define and assess optimal scheduling. Hence, the sched-
uler lacks knowledge regarding “what is optimal”, let alone
the ways to achieve optimal results. Secondly, there is a defi-
ciency in efficient weight configuration methods, and cur-
rently the weights are manually configured by engineers in
production environments. Furthermore, the plugin weights
are fixed and cannot be customized based on specific scenar-
ios or Pod/Node configurations.
Although existing scheduler works [24, 30, 31, 34–36, 46,

50, 51, 54–57, 63, 67, 70, 73–75, 77, 78] can achieve great re-
sults in the specific problem they address, such as resource
interference or QoS violation, they often ignore the existence
of other policies, making the designs infeasible in real-world
platforms. For example, Gsight [77] and Owl [63] use pre-
diction methods to quantify the risk of QoS violation caused
by resource interference between co-located instances on a
node. They attempt to deploy more instances without vio-
lating QoS for better resource utilization. However, besides
resource interference, QoS violation may be caused by other
factors such as long image pulling latency, which can be
addressed by the ImageLocality policy. Since these ignored
factors may have already been considered by other existing
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plugins or policies, balancing the cutting-edge scheduling
policies with existing ones in a reasonable way can poten-
tially improve the adaptation of scheduler policies to complex
real-world cloud environments.
In conclusion, the intent of K8s scheduler’s support for

multiple plugins is to be able to take into account multiple
scheduling requirements and thusmake comprehensive, fully
considered optimal scheduling decisions. However, due to
the lack of proper balancing approaches, such a mechanism
may instead lead to suboptimal results. It could have an
increasingly significant impact on every Pod as the number
of plugins increases.
Opportunities & suggestions. Addressing this challenge
presents an opportunity for further research on how to bal-
ance these requirements effectively to enable an optimized
scheduling process. Designing a balancing mechanism re-
quires joint efforts of industry and academia, since the former
is familiar with the requirements and workloads, while the
latter is knowledgeable about specific methodologies. Indus-
try opening their data as traces could be helpful for academia
to do simulations, analysis and optimizations. The compre-
hensive definition of optimal scheduling is also preferably
defined by industry and academia collaboratively. Several
methods can be applied for reaching the optimal, e.g, using
reinforcement learning to dynamically adjust the weights of
various plugins.
Insight IV

Real-world serverless platformswill deploymultiple sched-
uling policies simultaneously. Designing effective mecha-
nisms for balancing multiple scheduler policies is crucial for
the management and utilization of serverless platforms.

6 CHALLENGE V: COSTS OF SIDECAR
On the implementation of function instances, people often
embark on a misunderstanding — one function instance
means one container. However, modern cloud-native plat-
forms tend to utilize a higher level of abstraction, such as
K8s Pod, to represent serverless instances that may consist
of one or multiple containers. For example, each Knative Pod
includes a function container and a queue container. The
sidecar is widely adopted by real-world serverless platforms,
especially by public cloud serverless platforms such as our
platform. A comparison between simplified serverless sys-
tems (no sidecars) and real-world serverless systems (with
sidecars) is shown in Figure 8.
Benefits of Sidecar. Sidecar containers have become increas-
ingly popular in serverless computing due to their ability
to provide additional features, such as logging, monitoring,
security, and proxying, for serverless functions. For instance,
Knative’s queue container, when used as a sidecar, can queue
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Figure 9: Costs of sidecar. (a) About 25% CPU and 33%
memory resources are allocated for sidecar containers.
(b) Sidecar containers may use more memory resources
when request per second (RPS) is low. (c) Sidecar brings
higher end-to-end latency.

all incoming requests and deliver them to the function con-
tainer when it becomes available to handle new requests.
This simplifies the implementation of function containers
and enables independent management of both containers,
avoiding any interference between them. Furthermore, the
sidecar design allows developers to add or remove function-
ality as required, minimizing the chances of introducing bugs
or other issues into the function’s core code.

The separation of the function and sidecar containers also
facilitates dynamic CPU resource allocation by the cloud
platform based on the load of both containers. This means
that the resources can be scaled independently, leading to
better resource utilization overall. Additionally, the modular
design of sidecar containers makes it easier to manage and
update them independently, without having to modify the
function’s core code. This provides greater flexibility and
agility in managing serverless systems, reducing the time
and effort required to update and maintain the system.
Gaps & challenges. Despite the benefits of using a sidecar
container in serverless computing environments, it can also
cause non-trivial costs. Firstly, sidecar containers can oc-
cupy significant resources as shown in Figure 9 (a) and (b),
which may affect function density. For example, our public
serverless platform uses a worker as a sidecar to handle op-
erations such as pulling source code. Depending on the size
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of the instance, the sidecar may consume 0.3∼1 vCPU and
300∼800MB memory resources. We also conduct another
experiment using Envoy as the sidecar, where a sidecar con-
tainer can use up to 25% CPU and 33% memory resources.
Moreover, the runtime costs associated with managing side-
car containers can also increase as compared to managing
function instances, particularly when the RPS is low.
Another significant cost of using sidecar containers is

longer communication latency, which arises due to the longer
communication path illustrated in Figure 8 (b). In our exper-
imental environment (Figure 9 (c)), we have observed that
the end-to-end latency can increase by 9.5x (RPS=20) and up
to 49.8x (RPS=3,000). These costs underscore the importance
of carefully considering the deployment and management of
sidecar containers and optimizing the resource allocation to
reduce the overall costs of the system.
While sidecar containers can offer benefits, they also in-

troduce non-trivial costs that researchers must evaluate and
optimize. Firstly, many existing research works [25, 39, 42, 45,
59, 61] have optimized DAG communication, most of which
utilize local bus or IPC to optimize communication within the
same machine. However, few of them consider the sidecar
containers. As shown in Figure 8 (b) (latency breakdown on
the samemachine), sidecars introduce non-trivial cost, which
is contributed by more context switches, network protocol
cost, the sidecar processing logic, and even the microarchi-
tecture states. It also encounters a contradiction between
performance and resource allocation, as sidecar resources
are usually limited. Thus, it remains an open question of how
to reduce communication latency when sidecar containers
are present. Secondly, prior works have explored optimiz-
ing the cold start latency using fork or checkpoint-restore
techniques [29, 32, 33, 52, 64, 66]. However, they typically as-
sume a single container instance based on Linux containers
or VMs and do not account for the complexities introduced
by multiple container instances with sidecars. This is one
reason why fork-based optimizations have not been widely
adopted by the industry. Lastly, sidecar containers can lead
to serious resource interference in addition to increased re-
source consumption. For example, cache and TLB may need
to be frequently switched for network-intensive applications,
which are common in serverless systems. This raises ques-
tions on how to design system software, such as OS kernels
and hardware, including new architecture extensions, to ef-
fectively support serverless with sidecars.
In summary, as deploying the sidecar with each applica-

tion instance becomes the norm, the resource and perfor-
mance overheads it imposes will affect all scenarios.
Opportunities & suggestions. Addressing these challenges
presents opportunities for further research on how to opti-
mize and design serverless systems with sidecar containers

more efficiently. Several ways may be helpful for optimiza-
tions. For example, new hardware can be utilized for offload-
ing sidecar logic, e.g., smartNICs (DPUs). Moreover, since
sidecars are usually applied by multiple Pods on a node, de-
coupling the processing logics and sharing some of them can
be helpful for reducing resource consumption.

Furthermore, we do not recommend utilizing the wrapper
of the function, which is compiled with the function code
during deployment, to support all functionalities of the side-
car pattern, such as proxying and queuing. Besides worse
modularity, there is another important reason why this ap-
proach may not be feasible. Modern serverless platforms
often support deploying functions using container images,
which means the platform cannot inject code into the binary
of serverless functions. For example, AWS began support-
ing the packaging and deployment of Lambda functions as
Docker container images in 2020, and about 20% of Lambda
users have chosen this method to deploy functions as of
2022 [10]. This trend makes the use of the sidecar pattern
more necessary, as it enables the deployment of platform-
level functionalities without modifying the application code
(which may be closed-source).
Insight V

The sidecar pattern, running one or more sidecar con-
tainers alongside an application container, is becoming a
standard in serverless computing systems. However, few of
the existing works or optimizations consider the impact of
sidecar containers. As a result, the question of how to design
efficient and lightweight sidecar containers for serverless
remains an open challenge.

7 CONCLUSION
This paper has outlined five open challenges to bridge the
gap between existing research and real-world issues faced
by the industry. We believe that the presented observations,
challenges, opportunities, and insights can aid in addressing
these discrepancies, (hopefully) creating momentum towards
improved serverless platforms.
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