
Confidential Serverless Made Efficient with Plug-In Enclaves

Mingyu Li, Yubin Xia, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Shanghai AI Laboratory

Abstract—Serverless computing has become a fact of life on
modern clouds. A serverless function may process sensitive data
from clients. Protecting such a function against untrusted clouds
using hardware enclave is attractive for user privacy. In this
work, we run existing serverless applications in SGX enclave, and
observe that the performance degradation can be as high as 5.6×
to even 422.6×. Our investigation identifies these slowdowns are
related to architectural features, mainly from page-wise enclave
initialization. Leveraging insights from our overhead analysis, we
revisit SGX hardware design and make minimal modification to
its enclave model. We extend SGX with a new primitive—region-
wise plugin enclaves that can be mapped into existing enclaves to
reuse attested common states amongst functions. By remapping
plugin enclaves, an enclave allows in-situ processing to avoid
expensive data movement in a function chain. Experiments show
that our design reduces the enclave function latency by 94.74-
99.57%, and boosts the autoscaling throughput by 19-179×.

Index Terms—Intel SGX, Serverless, Confidential Computing

I. INTRODUCTION

Serverless computing is becoming the next generation of
cloud computing, including Amazon AWS Lambda [1], Mi-
crosoft Azure Functions [2], Google Cloud Functions [3], etc.
Serverless computing enables developers to concentrate on the
business logic by writing fine-grained, simple and standalone
functions, with minimal concerns on the deployment, manage-
ment, scalability issues, etc. That is why serverless gains its
another popular name—–Function-as-a-Service (FaaS). Typi-
cally, a serverless function is event-driven, either via a user
request, or another function’s invocation—in a chained way.
Real-world serverless characterization [4] reported that 54% of
the serverless applications contain only one function, and 50%
of the functions execute less than 1 second; hence serverless
applications are extremely sensitive to the service latency. Both
industry and academia have been improving the performance
of serverless computing [5]–[10].

Serverless applications might process privacy-sensitive
workloads. According to use cases from Amazon AWS [11]
and Google Functions [12], serverless computing can be
used for security-critical or privacy-sensitive applications such
as Auth0 (authentication) [13], Alexa chatbot (users inten-
tions) [14], face recognition (bioinformation) [15], etc. There
is a demanding need to protect user privacy in such a complex
cloud environment, from vulnerable cloud software, malicious
co-located tenants or even possibly a suspicious cloud insider.
Architectural support for trusted execution environment (TEE),
e.g., Intel SGX [16], [17], can provide secure enclaves which
are fully isolated from the rest of the system, while allowing
a remote user to attest the enclave’s identity. Thus, TEE
is considered as a promising technology to realize practical
privacy-preserving serverless applications [10], [18]–[20].

However, existing TEE designs cannot well fit the server-
less workloads. We first port five real-world privacy-critical
serverless workloads (Table I) into an in-house enclave li-
brary OS (similar to Graphene-SGX [21] but supports SGX2
features), and observe a significant performance degradation
from 5.6× to 422.6×. Using detailed performance profiling,
our investigation shows that the majority of the overhead
stems from the enclave initialization: both hardware enclave
creation and attestation measurement generation dominate an
enclave function’s startup, ranging from 92.3% to 99.6%. The
results also indicate another performance degradation factor,
which arises from the secret data transfer between functions,
occupying 4.4% to 29.8% of the end-to-end execution time; it
becomes even worse for long-chain function invocations. Al-
though we apply software optimization proposed by previous
studies [10], [22]–[24], the end-to-end latency of invoking an
enclave function is still far from satisfactory. We further revisit
Intel SGX hardware design, and conclude that the root cause
for the inefficient enclave-based serverless is that current SGX
design (both SGX1 [16] and SGX2 [17]) disables memory
sharing between enclave instances. This share-nothing design
offers a strong security guarantee, but incurs significant startup
latency which is unsuitable for today’s serverless computing.

This paper presents a novel and flexible enclave model,
called PIE, to make confidential serverless computing efficient
and practical. PIE proposes a new hardware memory primitive:
shared enclave region, which can be immutably mapped
into different isolated enclaves to achieve secure sharing.
Taking advantage of this hardware primitive, the enclave-
based serverless platform can create two types of logical
enclaves: plugin enclaves and host enclaves. A plugin enclave
fully consists of shared enclave region(s), and can accommo-
date non-sensitive common environments, such as language
runtimes (e.g., Python), frameworks (e.g., Tensorflow), third-
party libraries (e.g., OpenSSL) and initial states (e.g., machine
learning models). Host enclaves, as with the current SGX
design, are strictly isolated from each other, but can map
plugin enclaves into their own enclave address space, in order
to reuse plugin enclaves’ loaded contents as well as their
readily generated measurements. A host enclave can further
remap plugin enclaves to adapt to different application logics
without migrating its secret data. PIE’s key improvement to
efficiency is that PIE-based mapping is region-wise instead
of page-wise, and host enclaves can invoke plugin enclaves’
procedures via lightweight function calls (5∼8 cycles).

PIE design is fully compatible with SGX1 and SGX2
semantics, and reuses most of the existing hardware design
to minimize its implementation complexity. PIE’s architectural



extension to SGX includes a new page type to indicate shared
enclave memory, and two new instructions EMAP and EUNMAP
to map/unmap a plugin enclave to/from a host enclave. To
ensure the consistency between the content and measurement
of a plugin enclave, PIE reuses SGX2 dynamic resizing to
implement a hardware-enforced copy-on-write mechanism.

To show how PIE improves serverless workloads, we use a
real SGX-enabled cloud machine, and emulate PIE instructions
by adding cycle-accurate latency to EMAP/EUNMAP opera-
tions. We partition the common serverless infrastructure such
as language runtimes, third-party libraries, and user functions
in plugin enclaves, and secret data in host enclaves. For
input/output dataflow amongst serverless functions, we remap
plugin enclaves to avoid secret data movement. Evaluation
results show that PIE can reduce 94.74-99.57% function
startup latency, achieve 19-179× throughput boost in function
autoscaling, and 16.6-20.7× speedup in data transfer of func-
tion chaining. Moreover, PIE-based serverless can scale up to
4-22× enclave instances density than current SGX hardware.

The contributions of this paper are summarized as follows:

• We present the first quantitative study on the perfor-
mance of real-world serverless applications protected in
SGX enclaves, and identify the root cause of performance
degradation mainly lies in the current SGX design.

• We describe PIE design and its minimal extension to SGX,
which is feasible for real hardware implementation.

• We show that enclave serverless workloads can benefit
from PIE which reduces 94.74-99.57% startup latency and
improves throughput by a factor of 19×-179×.

II. BACKGROUND

A. Intel Software Guard Extension (SGX)

Since the 6th generation of Intel processors, Intel introduces
a novel security extension, named Software Guard Extension
(SGX), which allows to create a user-level enclave embedded
in a process. SGX CPU isolates an enclave from a wide
range of threats, including (1) direct memory access (DMA)
from peripheral devices, (2) privileged system software like
firmware, hypervisor and operating system, (3) the application
that co-locates with the enclave in the same address space, (4)
enclaves that share the same hosted application where one’s
faults or bugs cannot compromise the other.
Enclave Access Control Model. Enclave memory is named
Enclave Page Cache (EPC). EPCs are allocated from a phys-
ically contiguous region of DRAM, called processor reserved
memory (PRM). SGX has a strict access control model on
EPC: an EPC only belongs to one enclave instance. Each
enclave instance has a unique Enclave Identifier (EID) stored
in its SGX Enclave Control Structure (SECS). When an EPC
page is added to an enclave, SGX CPU associates this EPC
page with a metadata named EPC Map (EPCM). An EPCM
entry indicates the page type, permission, virtual address (VA)
in addition to the owner EID for an EPC page, as shown in
Figure 1. When an executing enclave tries to access a particular
EPC page, CPU will check whether its SECS.EID matches the

!"#$

%"$

%"$

&%'

&%'

4KB  EPC

4KB  EPC

4KB  EPC

4KB  EPC

(

EPCM Entry

EPCM Entry

EPCM Entry

EPCM Entry

&%'$

Valid

Permission

Page Type

Enclave ID

Linear Addr.

&%'$)&*+,-

Enclave ID

(

Reserved
EPC State

.&'.

Fig. 1: SGX memory access control model. An enclave
instance can only access an EPC page whose EPCM.EID
equals to its own SECS.EID.

corresponding EPCM.EID to this EPC page. Enclave metadata
such as SECS and EPCM is inaccessible to any software.
Remote and Local Attestation. To prove that an enclave is
correctly established, SGX provides a hardware mechanism for
a remote enclave user to attest its identity. During the launch
process, CPU computes a SHA-256 hash by measuring each
EPC page, and finalizes this measurement value in a hardware-
protected register. Any tampering with this process will result
in a different measurement. SGX provides another efficient
local attestation for enclaves on the same CPU to identify
each other, thus establishing mutual trust.

B. Serverless Computing

Serverless computing is a rapidly growing cloud application
model [1]–[3], [25]. Serverless computing offers developers
the advantage of writing fine-grained, simple and standalone
functions to compose complex business logic. Functions can
be organized into a chain for processing composition. A
serverless application is an event-driven, request-oriented in-
teractive service, and desires low latency and high throughput.
To match the invocation rate, the cloud serverless platform
automatically scales the function instances to be executed in
parallel on available resources.
Serverless Latency Optimization. Since a function only han-
dles a specific piece of logic, users expect low latency for these
services. According to real-world serverless characterization
on Azure Functions [4], 54% of the serverless applications
only contain one function, and 50% of the functions take
less than 1 second execution time on average. Prior work has
explored optimizing the latency of the serverless startup in a
traditional cloud environment [5]–[7], [9].

III. MOTIVATION

Traditional serverless platforms leverage containers [26],
[27] or virtual machines [7], [28] to confine a function into
a sandbox. Their threat model is to protect the cloud from
untrusted function executions and protect a function from co-
locating tenants. Quite the opposite, SGX enclave adopts a
reverse sandbox, which uses hardware to prevent the cloud
from inspecting or interfering the sensitive computation. As
Intel SGX can protect a user-level workload from an untrusted
environment, it is a good fit to protect cloud sensitive process-
ing, especially confidential serverless computation workloads.
In our test, we modify the entry point of a function to invoke



TABLE I: The list of privacy-critical serverless applications we used or repurposed as benchmarks.

Application Description Language
Runtime Major Libraries Used Total

Libs.

App. Code +
Read-Only
Data Size

App.
Data
Size

App.
Heap
Size

auth login authentication Node.js14.15 basic-auth, tsscmp, passport 6 67.72MB 0.23MB 1.85MB
enc-file cloud storage encryption Node.js14.15 libicuata, libicui18n, crypto 13 68.62MB 0.23MB 1.90MB
face-detector facial image recognition Python3.5 Tensorflow, Numpy, OpenCV 53 66.96MB 2.38MB 122.21MB
sentiment textual sentiment analysis Python3.5 Numpy, Scipy, NLTK, Textblob 152 113.89MB 5.61MB 19.34MB
chatbot personal voice assistant Python3.5 Tensorflow, Pandas, llvmlite, sklearn 204 247.08MB 9.53MB 55.90MB

a function image protected within an enclave. The workflow
of an enclave serverless instance is depicted in Figure 2.

Protecting serverless functions with SGX enclaves raises
several concerns with respect to performance:
• What is the overhead introduced to a serverless in-
stance startup? As the creation time of an enclave is now
accounted in a function startup latency, it is important to
understand its impact since serverless workloads typically
require low latency. Figure 3b describes the startup break-
down of real-world serverless workloads we evaluated.

• How does serverless autoscaling perform when being
secured in enclaves? A promising feature of serverless
computing is that the cloud vendor offers instance autoscal-
ing which is corresponding to the invocation rate. For the
purpose of high resource utilization, cloud vendors desire
high throughput. Figure 4 measures the latency distribution
of enclaves functions when serving 100 concurrent requests.

• What is the overhead of an enclave-protected function
chain? In the function chain mode, data must be trans-
ferred between each function. Figure 3c shows the cost of
transferring secret data between enclave instances.

A. Quantitative Evaluation

Experimental Setup. We run all experiments on an Intel
NUC7PJYH PC1, with Pentium Silver J5005 at 1.50GHz with
2 hyper-threaded cores (totally 4 logical cores), 16GB DDR4,
and 128MB processor reserved memory (≈ 94MB EPC) on
Ubuntu Server 18.04 LTS, Linux kernel 5.4.0, Intel SGX
SDK 2.12, SGX driver 2.8 and microcode version 0xd6. CPU
frequency scaling governor was set to the “performance” mode
(running at the maximum frequency), and dynamic frequency
and voltage scaling were disabled during experiments.
Measuring Methodology. We access the CPU timestamp
counter via RDTSCP to estimate the elapsed time in CPU clock
cycles. On SGX2, RDTSCP can be executed within the enclave
for accurate measurement. To best eliminate measurement
errors, we run each group of tests for 1,000 runs. To minimize
the context switches overhead such as Asynchronous Exit
(AEX), we set CPU affinity to SGX threads and route I/O
interrupts to non-SGX threads.
Measuring SGX Instructions and Enclave Startup Latency.
SGX instructions cannot be measured using a loop; they must
be executed by following the specification and a legitimate

1Until Nov. 2020, NUC7PJYH and NUC7CJYH are the only two commer-
cially available machines we can find that support SGX2 instructions.

TABLE II: SGX instructions latency (in cycles) on our testbed.

SGX1
Creation

Instruction

Median
Latency

SGX2
Creation

Instruction

Median
Latency

Other
Instruction

Median
Latency

ECREATE 28.5K EAUG 10K EREMOVE 4.5K
EADD 12.5K EMODT 6K EGETKET 40K
EEXTEND 5.5K EMODPR 8K EREPORT 34K
EINIT 88K EMODPE 9K EENTER 14K

EACCEPT 10K EEXIT 6K

HW Enclave

Initialization

Software

Initialization

Secret 

Sending

Function

Execution

Tear

down

Environment Setup Attestation

Fig. 2: The workflow of an SGX enclave serverless instance.
A user must attest the enclave’s environment before sending
the secret data to the enclave for secure processing. Software
initialization includes the loading time of language runtime,
framework, and third-party libraries. The function execution
may involve dynamic module/package loading. The end-to-
end latency only comprises solid arrows.

order. We record the duration of each instruction in a memory
buffer, and calculate their median cycles as shown in Table II.

In SGX1, we observe two main performance factors during
enclave creation: (1) hardware enclave creation and (2) enclave
measurement generation. For (1), CPU must use EADD to
add every page with specified permission and virtual address
(VA). This not only allocates an EPC page for the target
enclave, but also requires updating the corresponding EPCM
entry to track this EPC. From Intel Software Developer
Manual (SDM) [29], EADD disallows concurrent addition
to the same enclave instance, since a concurrency model
increases the hardware formal verification complexity [17]. For
(2), CPU needs to generate a SHA-256 based measurement,
initialized from ECREATE, to EADD and EEXTEND on each
EPC page, and finalized by EINIT. During this process, the
most expensive one is EEXTEND, which takes 5.5K cycles
to measure a 256-byte chunk of EPC data at one time. To
measure a whole EPC page, it takes around 88K cycles in
total. Our experiments show that software-based SHA-256
measurement from OpenSSL is much more efficient, only 9K
cycles for an EPC. Due to the lack of CPU implementation
detail, a possible reason is that EEXTEND performs intensive
validation on each update. Advanced vector extensions (AVX)



16M 64M 256M 512M 1G
Enclave Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ti
m
e 
C
os
t (
s)

0.1 0.5

4.8

10.0

20.1

SG
X1

0.2 0.6

7.1

14.7

21.4

SG
X2

0.1 0.4

6.0

12.5

16.7

SG
X1

+S
W
 O
pt
.

SGX1 EADD + EEXTEND
SGX2 EAUG + EACCEPT
SGX1 EADD
SW SHA-256

(a) Enclave instance startup time breakdown.

enc-file auth face-detect. sentiment chatbot
Serverless Applications

0

5

10

15

20

25

30

35

40

Ti
m
e 
C
os
t (
s)

N
at
iv
e

3.2
1.5

3.5

0.03 0.05

SG
X1

18.4 18.7 17.8

24.7

36.7

SG
X2

12.7 12.8

16.2

23.8

39.1
SW Init.
Lib. Load
Secret Load
Func Exec.

HW EADD
HW EAUG
SW Copy
SW Hash

(b) Startup breakdown of enclave functions.

4M 16M 32M 64M
Data Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m
e 
C
os
t (
s)

0.2

0.6

1.0

2.0

0.3

0.9

1.6

3.0

0.4

1.2

2.1

3.9
Enclave Heap Allocation
SSL Transfer

2-func chain
3-func chain
4-func chain

(c) Data transfer cost between enclaves.

Fig. 3: Measuring serverless functions in SGX enclaves. In (a), the first two columns shows the latency breakdown of pure
SGX1 EADD and pure SGX2 EAUG enclave creation, respectively. The third column leverages optimization of combining
SGX1 EADD and software-based SHA-256. In (c), the data transfer cost becomes dominant when the function length increases.

or streaming SIMD extensions (SSE) may be of benefit to
accelerate EEXTEND.

In SGX2, an enclave allows to dynamically grow its size
using the EAUG → EACCEPT flow. This flow is particularly
efficient for heap-intensive workloads, as demonstrated in [10].
For code-intensive workloads, it further requires software-
based measurement and modifying the EPC page permissions
from "rw-" to "r-x" via EMODPE (extending ‘x’ right) and
EMODPR (restricting ‘w’). SGX2 does not offer an efficient
way to modify the permissions arbitrarily. EMODPR requires
one more EACCEPT to verify the modified EPC permissions.

The startup latency of SGX1 and SGX2 enclaves is depicted
in Figure 3a. Although SDM [29] does not explicitly state
the concurrent restrictions on EAUG, our test shows that it is
also impossible to expand an enclave using concurrent EAUG,
because EAUG needs to update the same SECS page and
therefore forbids concurrent modifications.
Measuring SGX Serverless Startup. We select five represen-
tative real-world serverless examples from Amazon AWS [11].
The first two consider login authentication and cloud en-
cryption, which protect client’s credentials and encryption
keys. The rest involve machine learning inferences on either
human text, image, or voice that can also be sensitive. These
applications are typically user-facing, and thus require low
latency. We observe that today’s serverless developers tend
to use high-level languages, and library OS (LibOS) is a good
choice to ease the porting. Hence we implement an in-house
enclave LibOS, which is akin to state-of-the-art Graphene-
SGX [21] but supports SGX2 features (e.g., dynamic loading
and permission modification). We further use this LibOS
to build an enclave-based serverless platform to run these
applications. In particular, we focus on two popular serverless
language runtimes, namely, Node.js and Python [30], [31].

Figure 3b shows the startup latency breakdown of a server-
less function in (1) a native (unprotected) environment, (2)
SGX1 enclave environment, and (3) SGX2 enclave environ-
ment. We observe a significant performance overhead intro-
duced by enclave protection, varying from 5.6× to 422.6×.

Both enc-file and auth applications are heap-intensive work-
loads (Node.js runtime expects around 1.7GB heap memory
on startup), in which we discovered that SGX2 EAUG is more
efficient than SGX1 EADD, and saves 31.9% startup cost.
For code-intensive workloads (e.g., chatbot), we observed that
SGX2 might perform worse than SGX1 because SGX2 en-
claves have to initialize the code sections and update their EPC
page permissions using kernel-mode EMODPR and enclave-
mode EACCEPT. The EMODPR and EACCEPT flow includes
exiting the enclave, TLB flushes, user/kernel context switches,
and re-entering the enclave. Another dominant performance
degradation factor is the process of third-party library loading,
which is 5× to 13× slower than the native environment, and
can even occupy more than 55% startup time. The main reason
is that loading tens to hundreds of libraries requires frequent
context switches (namely ocalls), as studied in [22], [23].

Surprisingly, we found that 4 out of all 5 enclave functions
execution time were still below 1s. The only exception is
chatbot (3.02s), which incurs 19, 431 ocalls to read the external
files when generating the echo speech. After applying the
fast interface optimization from HotCalls [23], the function
execution time can be optimized to 0.24s.

0 100000 200000 300000
End-to-end Invocation Time Cost (ms)

0.0

0.5

1.0

C
D
F 
of
 R
eq

ue
st
s Native Environment

SGX1 Environment
SGX2 Environment

Fig. 4: End-to-end latency (ms) of chatbot. This test mea-
sures the latency distribution of 100 concurrent requests.

Measuring SGX Serverless Autoscaling. Serverless plat-
forms offer function autoscaling when serving concurrent re-
quests. For locality purposes, it is possible to scale up the same
function instances on a single machine if resources permit. For
all five functions, we increase the invocation rate per minute
to test the autoscaling. Unfortunately, it is impossible to run



Func A

Execution Invocation Creation 

Func B

Mutual

Attestation 

Heap

Allocation

SSL

Transfer

Func A

Func B Func B

Execution

Func A Func A

Func BFunc B

Fig. 5: The steps of secret data transfer between two
serverless enclave functions. The SSL transfer includes data
marshalling and unmarshalling, two data copies, in addition to
AES-128-GCM encryption and decryption.

more than 30 enclave functions on our testbed, which is limited
to the capacity of physical memory (16GB). In contrast, a
container-based serverless platform (e.g., Fn [27]) can serve
more than 100 requests concurrently on a single machine.

When setting the hard limit of enclave instances to 30,
we observed prolonged tail latencies of enclave functions, as
shown in Figure 4 (we show the chatbot application, and the
latency distributions of other serverless applications are alike).
Since there are only 94MB physical EPCs available, concur-
rent enclave startups lead to extremely high EPC contention,
which even degrades the performance of other concurrently
running enclaves. The performance penalty can be as high as
8.2× (from the original 39.1s to 322.07s).
Measuring SGX Serverless Function Chain. In a function
chain, secrets need to be transferred across enclave boundaries.
We conduct a microbenchmark where we vary the data transfer
size between functions. These procedures include (i) mutual
attestation between function A and function B, (ii) SSL hand-
shake between A and B, (iii) function B allocates a heap big
enough to accommodate the secret data, (iv) transferring secret
data between A and B (double copy and data en/decryption).
We illustrate this procedure in Figure 5 (step (ii) omitted). We
deem the sub-step (i) and (ii) to be constant-time (less than
25ms on our testbed), and show the cost of (iii) and (iv) in
Figure 3c. The overhead of in-enclave heap allocation exceeds
SSL transfer when the data size reaches 94MB because of the
expensive EPC eviction overhead [22], [24], [32].

For small message passing between functions, the cost
of secret transfer can be negligible (almost within 100ms),
compared with enclave initialization time (varying between
12s and 29s). For large message passing (>32MB) between
enclaves, the data movement can be a bottleneck. Figure 3c
shows that two massive data communication scenarios: (1)
the secret data that requires transferring between functions
is massive; (2) the secret data needs to travel across many
serverless functions in a chained model. In both cases, moving
secrets is quite expensive. Industrial statistics [4] reported that
a real-world chain could be as long as 10 functions, which
dramatically amplifies the impact of secret data transfer.

B. Software Optimization

To optimize these serverless applications, we have thought
of the following solutions:
Template-based Start. Since the startup involves multiple
rounds of loading shared library files, which inevitably incurs
significant EENTER/EEXIT overhead, we can construct a

template image containing all needed states, and set the entry
point to the first line of user logic, as explored in [7], [8].
Using this technique, the library loading time for sentiment’s
152 libraries (114MB in total) can be optimized from 13.53s
to 1.99s (6.8×). However, the hardware enclave creation
(between 4.2s and 18.2s) still dominates the startup latency.
Reuse-based Start. A conventional startup latency optimiza-
tion technique is to reuse an existing instance instead of
creating a new one from scratch. This is called warm-start in
serverless [4]. In the context of enclave, an environment reset
is a must in case of information leakage of the last function, or
environment damage that compromises the next function, as
discussed in [33]. Despite being a feasible optimization, reuse-
based start does not solve the latency issue of autoscaling
when concurrent requests exceed the pre-warmed instances,
and inevitably occupy considerable resources.
Sharing-based Start. As discussed in [7], [9], sharing is
key to efficient serverless computing. Unfortunately, this is
impossible since SGX hardware design disables sharing EPC
between enclaves. Another optimization idea is to run multiple
functions sharing the same language runtime in a single
address space. Because different users are mutually distrusted,
using the same address space requires in-enclave isolation.
Prior studies [33], [34] achieved software-based in-enclave
isolation relying on either compiler-based instrumentation or
runtime-based confinement, introducing a substantial amount
of code into the trusted computing base (TCB). Software-based
isolation can be a suboptimal solution since an enclave user
would prefer only trusting hardware for security guarantees.

C. Lessons Learned

Insight 1: Hardware EADD and software hashing achieve
the fastest enclave startup. Our microbenchmark results
show that SGX2 EAUG is no better than SGX1 EADD for
code-intensive workloads. To initialize a code page, SGX2
EAUG’ed pages require extensive EMODPE, EMODPR and
EACCEPT procedures for EPC page permission modifcation,
introducing 97∼103K cycles overhead. A more efficient way
is to use SGX1 EADD (enforcing in-place "r-x" permission)
and hardware/software combined measurement, as shown in
the third column of Figure 3a. We also found that Intel SGX
SDK uses expensive EEXTEND to measure the initial heap
pages allocated by EADD, which can be securely optimized
via software zeroing before use (e.g., C library calloc()), which
saves 78.8K cycles for an EPC page.
Insight 2: Common serverless states are non-sensitive and
can be shared between functions. SGX assumes all EPC
contents belonging to an enclave are private. However, in the
context of serverless computing, we found that the function
environment, including the language runtimes, third-party li-
braries, and even the function itself are quite often open-source
and therefore contain no secrets. Typically, functions written
in high-level languages such as Python, Go, Java, JavaScript,
etc., bring a relatively heavyweight runtime, and sharing this
runtime helps release a lot of memory pressure. Unfortunately,
sharing EPC amongst enclave instances is not supported in



current SGX hardware; an enclave function must always ini-
tialize its language runtime from scratch. With software-based
optimization, enclave initialization and template-based library
loading still incur 12.25s latency for an 800 MB enclave.
Insight 3: Transferring secret data between enclave func-
tions is expensive. From our benchmarks, we found that
enclave function chains involve abundant heap allocation and
expensive data communication. Particularly, the data copying
and SSL en/decryption dominate when the data size is smaller
than physical EPC capacity (94MB on our testbed), whereas
in-enclave heap allocation becomes influential for >94MB
secret data because of additional EPC evictions. EPC evictions
involve hardware re-encryption of paging-out contents and
incur inter-processor interrupts (IPIs) for inter-thread synchro-
nization. An ideal solution is to share the same secret data
amongst different functions in a chain in order to remove this
data transfer expense, so-called in-situ processing. This is also
not possible in current SGX hardware.

Leveraging these insights, we conclude that enclave-
protected serverless functions can benefit from secure sharing.
Current SGX hardware does not support this. This motivates
us to extend current SGX design to PIE for better efficiency.

IV. PIE DESIGN

A. Overview

PIE extends SGX design to support an efficient and flexible
enclave model. Current SGX provides private EPC which can
only be accessed by one enclave instance. PIE introduces
another hardware primitive: shared EPC. This primitive allows
an enclave developer to build two kinds of logical enclaves:
a plugin enclave made of shared EPCs that can run language
runtimes, frameworks, shared libraries, or accommodate initial
common states that can be reused by other enclaves, and a host
enclave made of private EPCs runs a secure sandbox that pro-
cesses the user secret (usually from a cryptographic channel),
and carefully protects the processing and its final results. It
is intuitive that many host enclaves can share common plugin
enclaves for both spatial and temporal efficiency, by reusing
the readily loaded contents and avoiding costly measurement
generation. To this end, a PIE plugin enclave can be mapped
into multiple host enclaves, as long as its measurement is
verified by the recipient host enclave.

To support efficient mapping, PIE introduces a new in-
struction: EMAP. Unlike existing page-wise SGX instructions,
which manipulate only one EPC page at a time, EMAP is a
region-wise instruction that allows the recipient host enclave
to access the whole virtual address space of the plugin
enclave. To selectively unmap unnecessary plugin enclaves,
PIE offers EUNMAP to reclaim the region of allocated virtual
address space. This also offers an opportunity to eliminate
the expensive data transfer bottleneck through remapping plu-
gin enclaves of different application logics, while preserving
the secret data to be processed in place, so-called in-situ
processing. To retain security properties, PIE blocks write
attempts to plugin enclaves, and uses a hardware-enforced
copy-on-write mechanism to ensure the consistency between

the measurement and contents of a plugin enclave. Copy-on-
write is desired when sharing initial states of plugin enclaves
can help improve the performance. In essence, PIE enables en-
clave memory with normal DRAM operations (i.e., dynamic-
mapping and copy-on-write). PIE proves that this extension
is practical to real-world applications, and can benefit low
latency of enclave applications.

Particularly, in this paper, we apply the PIE enclave model
to confidential serverless computing. We discuss more opti-
mization opportunities for other workloads in § VIII-B.

B. Threat Model

PIE follows the threat model of current SGX: all in-enclave
code and data are trusted, including those in plugin enclaves.
PIE’s goal is not to reduce trusted computing base (TCB), but
to improve performance. Indeed, we have considered another
threat model that plugin enclaves are untrusted and able to
isolate heavyweight runtimes and third-party libraries, but this
requires extensive software modification. Prior proposals of in-
enclave isolation (e.g., [35]) are incompatible with interpreted
languages (e.g., Node.js) which are widely used in serverless
computing (see discussion in § VIII-A)). In contrast, PIE aims
to achieve better compatibility and practicability.

PIE’s root of trust is provided by hardware vendors using
a verifiable measurement. Users must remotely attest the state
(code and data included) of a host enclave before sending their
secret data. PIE leverages a trust chain model (see Figure 7),
where a host enclave is responsible to locally attest all the
used plugin enclaves to provide the whole-enclave security
guarantee. Any incorrect interference with plugin enclave
management by privilege software can be detected or aborted.

Architectural side-channels (e.g., Spectre [36], L1TF [37])
and CPU bugs (e.g., power-based fault injection [38]) are
out of scope. They can be addressed by improving the pro-
cessor’s internal circuit design, or mitigated by updating the
corresponding microcode, which are orthogonal to this work.
Denial-of-service is not considered because remote users can
easily detect the unavailability of cloud services.

C. New Metadata and New Instructions

As aforementioned (§ II), the SGX enclave access control
model is determined by SECS and EPCM: an enclave that
holds an 8-byte enclave identifier (EID) in SECS can access
an EPC page whose EPCM has the same EID. We hence
extend the SECS of a host enclave to store the additional
EIDs of plugin enclaves. To interact with the plugin enclaves,
PIE introduces two new instructions: EMAP and EUNMAP.
PIE’s ISA extension is fully compatible with SGX1 and SGX2
semantics; an SGX1 or SGX2 enclave image can run on the
PIE CPU without modification.
EMAP. EMAP adds an initialized plugin enclave EID to the
SECS structure of the current host enclave. CPU checks if the
intended virtual address range conflicts with the used address
range. If virtual address range conflicts, EMAP will fail.
EUNMAP. As a reversed operation to EMAP, EUNMAP removes
the specified plugin enclave EID from the SECS structure.



TABLE III: PIE’s EPC page types. PT_SREG is added to
support shared EPCs that compose plugin enclaves.

Page Type Allocated By Contents

PT_SECS ECREATE Enclave Control Structure
PT_VA EPA Version Array
PT_TRIM EREMOVE Trimmed State
PT_TCS EADD/EAUG Thread Local Storage
PT_REG EADD/EAUG Private Regular Page

PT_SREG EADD Shared Immutable Page

After all intended EUNMAPs, the enclave software should
invoke EEXIT to flush the stale TLB mappings.
Concurrency Restrictions. As with EADD and EAUG, PIE
forbids concurrent execution of EMAP/EUNMAP in case of
race condition on updating the same SECS data structure. PIE
strictly follows the SGX linearizability model [39].
Instruction Privilege Considerations. Intel SGX instructions
can be categorized into two groups: supervisor-mode (ENCLS)
and user-mode (ENCLU). We choose EMAP/EUNMAP as user-
mode for the following reasons: (1) Only the host enclave
knows which plugin enclave should be mapped after attesta-
tion. If we grant this right to the kernel, an untrusted kernel
can map a malicious plugin enclave which may dump secret
data to the unprotected memory. (2) To guard against kernel’s
unintended mapping if supervisor-mode EMAP/EUNMAP were
allowed, the CPU should introduce two more instructions, e.g.,
EMAP_ACK/EUNMAP_ACK, to verify whether the kernel has
performed the correct mapping as expected. More instructions
as well as user/kernel interactions may add more complexity
to both hardware and software implementations.

Hence, in PIE, EMAP/EUNMAP are designed to be user-mode
instructions. An optimization opportunity is that a host enclave
can batch all EMAP operations to include all wanted plugin
enclaves without exiting the enclave mode, and switches to
OS once, and then the OS updates all required page table
entries (PTEs) also in a batch to improve efficiency.

D. New EPC Page Types

Shared EPC and Plugin Enclave. Each EPCM entry has
an 8-bit PAGE_TYPE field, so we add a PT_SREG page type
to indicate a shared EPC. CPU automatically masks the write
permission bit for shared EPC pages. A shared EPC can be
added to form a plugin enclave via EADD. EINIT must be
used to complete the creation process because it finalizes the
measurement of the plugin enclave. Once being EINIT’ed, a
plugin enclave can be mapped to a host enclave via EMAP.
SGX2 instructions are prevented from being applied to a
plugin enclave, because these instructions will change its con-
tents (EAUG), permissions (EMODPE/EMODPR) and page type
(EMODT) after initialization. In a sense, a plugin enclave can
be considered as an immutable enclave region. PIE considers
this design choice for two security reasons: (1) Both SGX1
and SGX2 do not update the measurement once the enclave is
initialized. PIE aims to remain backward compatible with this
semantic. It is insecure for a user to attest an enclave using

!"#$%&'(&)"*+,

Non

Existing
Uninitialized Initialized

-./0'(&)"*+,

Non

Existing
Uninitialized Initialized

ECREATE

EADD, EEXTEND

EINIT

EREMOVE

ECREATE EINIT

EADD, EEXTEND EAUG, EMAP, EUNMAP

EREMOVE, EUNMAP

Fig. 6: Lifecycles of plugin enclave and host enclave in PIE.

a stale measurement. (2) Since a plugin enclave might have
been mapped to multiple host enclaves, modifying its contents
may compromise the security guarantees of host enclaves.
Private EPC and Host Enclave. The property of a private
mutable EPC is the same as that of current SGX design. A
private EPC only belongs to an enclave instance at any time.
A host enclave can be composed of both private EPCs and
shared EPCs, the latter of which are from mapped-in plugin
enclaves. Any enclave that contains a private EPC is deemed
a host enclave and cannot be mapped to other host enclaves.

When a host enclave attempts to write the contents of a
shared EPC from its plugin enclave, CPU will trigger a page
fault, and require OS to insert a private EPC at the faulting
address via SGX2 EAUG. The host enclave then issues SGX2
EACCEPTCOPY to atomically copy the contents and permis-
sions from the shared EPC to the newly EAUG’ed private EPC.
Such a hardware-enforced copy-on-write mechanism protects
the integrity of shared plugin enclaves.

E. Lifecycle

Plugin Enclave. The creation of a plugin enclave is identical
to current enclave creation procedure: the enclave control
structure (SECS) is created via ECREATE, and its memory
contents are loaded via EADD. Both EADD and EEXTEND
measures each shared EPC page, and EINIT finalizes the
measurement generation as well as the plugin enclave creation.
After performing EINIT, a plugin enclave is ready to be
mapped to other host enclaves via EMAP.

A plugin enclave rejects further EAUG operations since this
will result in an inconsistency between its contents and its
measurement. Likewise, EREMOVE to a plugin enclave is only
allowed when no host enclaves are using it (an EUNMAP from
host enclaves must be executed). If an EREMOVE is success-
fully executed on the plugin enclave, CPU then disallows
any EMAP to this plugin enclave for the same inconsistent
measurement reason.
Host Enclave. Creating a host enclave is also the same as
the current enclave. To enable mapping plugin enclaves into
its address space, the host enclave must finish its initialization
using EINIT, because since EINIT the enclaves can start to



User
Host

Enclave

PIE

LAS

Enclave

Plugin

Enclave V1

!"#$%" &'$()

Plugin

Enclave V2

Plugin

Enclave V3

Fig. 7: PIE provides a long-running local attestation service
(LAS) for host enclaves to quickly attest different versions of
plugin enclaves. The arrows denote the attestation directions.
Multi-version plugin enclaves allows for address space layout
randomization and minimizing VA conflicts when EMAP’ing.

attest one another. To reuse a readily initialized plugin enclave,
a host enclave uses EMAP to map an immutable enclave
region into its private address space, and requires the OS
to update the corresponding page table entries (PTEs). EAUG
and EMAP can be used commutatively, and CPU will check
whether a particular virtual address (VA) has been occupied,
therefore rejecting conflicted operations. Likewise, EREMOVE
and EUNMAP can be used commutatively to tear down a host
enclave. As with current SGX design, all private EPCs must be
removed and all plugin enclaves must be unmapped to remove
the SECS page of a host enclave eventually.

The lifecycle of PIE enclaves are depicted in Figure 6.
Other lifecycles such as thread management, interrupt handling
(asynchronous exit), and context switches (ecalls/ocalls) are all
identical to current SGX design.

F. Hardware/Software Update Summary

Hardware Modification. PIE’s design includes two new in-
structions (EMAP and EUNMAP), a new page type (PT_SREG),
and extends the SECS field to maintain the mapping relation-
ship. EPC access control validation and page eviction mech-
anism should be extended to support PIE. The copy-on-write
mechanism for shared EPC reuses SGX2 EACCEPTCOPY. PIE
does not change memory encryption engine (MEE). Because
all EPC pages are encrypted by MEE using a global key, plugin
enclaves can be directly accessed by permissible host enclaves.

It is known that the majority of Intel SGX was implemented
using CPU microcode [40] and SDM describes that the CPU
microcode can be updated [29]. Hence, PIE’s extension can
be applied using SGX microcode update without modifying
Intel CPU hardware logic.
Building a PIE Enclave. PIE is fully compatible with the
existing SGX toolchain, where a developer writes Enclave
Definition Functions (EDL) to declare o/ecalls, applies the
edger8r tool to generate glue code for application/enclave
transitions, and finally signs an enclave report within Signature
Structure (SIGSTRUCT). PIE has a slight modification to the
final step: the developer should enumerate a list of hashes
of valid plugin enclaves in a manifest, in order for the host
enclave to check against them via local attestation (see below).
PIE Remote/Local Attestation. To speed up the remote
attestation process between a remote user and a PIE enclave,

TABLE IV: Emulation cycles of PIE instructions.

Instruction Cycles Semantics

EMAP 9K Add Plugin EID into Host’s SECS
EUNMAP 9K Remove Plugin EID from Host’s SECS

we use a long-running host enclave that provisions efficient
local attestation service (LAS) for PIE. Specifically, the LAS
enclave maintains the source code and the enclave image cor-
respondence, which allows a host enclave to quickly identify
different versions of needed plugin enclaves. As a result, users
only need one remote attestation (RA) instead of multiple RAs,
and the remainder consists of multiple local attestations (LA),
which is extremely efficient (merely 0.8ms on our testbed).
Multi-version enables PIE address layout re-randomization
(see § VII) and can minimize VA conflicts of plugin enclaves.

V. EVALUATION METHODOLOGY

According to our microbenchmark (§ III), we found that
code-intensive applications do not benefit from SGX2’s new
feature (i.e., EAUG-based dynamic loading). Since released
SGX1-capable Intel machines have higher frequencies, we
evaluate PIE using a cloud bare-metal server with 8-core Intel
Xeon E3-1270 CPU at 3.80GHz and 64GB DDR4 running
CentOS 7.6 with kernel 4.1.0. This is reasonable because cloud
server are normally equipped with high-end processors.
Instruction Emulation. We extend our LibOS to emulate
PIE’s new instructions for plugin enclave (un)mappings. As
PIE does use SGX2 instructions (e.g., EACCEPTCOPY), we
use the measured cycles from SGX2 machines and add
this latency to PIE-based copy-on-write mechanism. Because
EMAP/EUNMAP only updates the SECS metadata, we use
the latency of SGX2 EMODPE instruction, which is the only
user-level instruction that also updates the metadata (EPCM).
Table IV presents the emulated latency of PIE.
Performance Model. We use the POSIX multi-threading
model inside one real SGX enclave to emulate multiple host
enclaves sharing plugin enclaves. To emulate EMAP process,
we use the ioctl() system call to instruct the modified SGX
driver to map a memory region into the enclave address space
by updating the corresponding page table entries. To emulate
the copy-on-write (COW) mechanism, we set the permissions
of the shared pages to be read-only; when the host enclave
writes a shared page for the first time, the driver will add the
COW latency measured from kernel-space EAUG to in-enclave
EACCEPTCOPY (74K cycles in total). To emulate EUNMAP
process, the host enclave needs to explicitly zero private pages
caused by the runtime COW. We add the latency measured
from EREMOVE (4.5K cycles) for each page zeroing.

PIE’s access control model for plugin and host enclaves (see
§ IV-C) requires additional EID checks on each TLB miss. We
use Linux Perf Tool based on Intel Performance Monitoring
Unit (PMU) to collect the end-to-end TLB miss occurrences
(both dTLB and iTLB misses included), and add the EID
validation overhead (4∼8 cycles per TLB miss) accordingly.



Host/Plugin Partitioning. In principle, all the data and code
deemed non-secret can be mapped to plugin enclaves. Our
evaluation places runtimes (e.g., Python and Node.js), official
packages (e.g., Tensorflow and OpenSSL), public ML datasets
(e.g., nltk_data [41]) and open-source serverless functions into
plugin enclaves, and private user data (i.e., secrets) into host
enclaves. Because the real-world serverless applications we
benchmarked (see Table I) did not use private shared objects,
we mapped all used libraries into shareable plugin enclaves.

VI. EVALUATION

This section evaluates the performance improvement of
applying PIE to the serverless workloads we studied in § III.

We compare three scenarios:
1) SGX-based cold start: a software-optimized environ-

ment (using software-based measurement and template-
based techniques proposed in § III-B) where each en-
clave is created on demand upon a new request.

2) SGX-based warm start: a “smart” environment which
speculatively pre-warms a number of enclaves ready to
serve concurrent requests within a capacity (30 instances
on our testbed); a software reset must be performed
between invocations for privacy reason.

3) PIE-based cold start: a PIE-optimized environment
(as demonstrated in Figure 8a and Figure 8b) where
a number of plugin enclaves are created in advance,
but host enclaves for serverless functions are created on
demand which is similar to 1).

We evaluate these scenarios in terms of function startup
(§ VI-A), autoscaling (§ VI-B) and function chaining (§ VI-C).
We also compare EPC eviction counts because PIE’s secure
sharing design reduces EPC duplication (§ VI-D).

A. Single Function Statup Improvement

As depicted in Figure 9a, SGX-based warm start achieves
the shortest end-to-end latency as it preserves multiple enclave
instances ready to use ahead of time. Utilizing PIE-based
cold start for on-demand startup (which respects the spirit of
serverless computing) incurs no more than 200ms on average
to the response latency, but saves 28GB memory than SGX-
based warm start. The only exception is the face-detector
application, which requires around 122MB EPC heap for each
request and incurs 618ms latency. The copy-on-write pages
introduce about 0.7-32.3ms runtime overhead.

In terms of startup latency (excluding the execution time),
PIE-based cold start is 3.2× to 319.2× faster than SGX-based
cold start, as PIE avoids code page initialization and attestation
measurement generation. For end-to-end latency, PIE-based
cold start is 3.0× to 196.0× faster than SGX-based cold start,
while it only preserves around 2GB memory, compared with
60GB memory of SGX-based warm start.

B. Autoscaling Improvement

As discussed in § III, current SGX design cannot well sup-
port enclave autoscaling, because concurrent enclave startup
incurs significant EPC contention. As shown in Figure 9c,

Language

Runtimes

Function

Secret 1

Language

Runtimes

Function

Secret 2

Language

Runtimes

Function

Secret N!"#$%"&'()
!"#$%"&'(*

!"#$%"&'(+

!

!

!

(a) Using EMAP to reuse the common states when serving
autoscaling. To create a new function instance, the cloud platform
creates a new host enclave to contain the secret data, and EMAPs the
common states such as the language runtime and serverless function.

Python

Runtime

Func 1

Secrets

Private EPC

!"#

Secrets

Private EPC Node.js

Runtime

Func 2

Secrets

Phase I Phase II Phase III

EUNMAP EMAP

requires
EREMOVE

(b) Using PIE instructions to remap functions to achieve in-situ
processing in a chain. In phase I, any writes to shared EPC will
trigger copy-on-write and insert a private EPC. To remap another
function, the host enclave should EUNMAP the old function and its
runtime, and EREMOVE private EPC pages (otherwise the virtual
address range might conflict), as shown in phase II. In phase III,
the host enclave EMAPs a new function to proceed with the service.

Fig. 8: PIE-based serverless optimizations. The gray box
represents the private EPC region of a host enclave, and the
white box represents a plugin enclave.

the throughput of SGX-based cold start is less than 0.22
requests/second, and its latency is more than 71s on average,
which is impractical at all. PIE-based cold start achieves
94.75% to 99.5% reduction in latency, and 19.4× to 179.2×
increase in throughput. However, the absolute throughput of
PIE-based cold start is relatively low because concurrent host
enclave creations still lead to relatively high EPC contention.
For heap-intensive enclave functions, we suggest the serverless
platform to leverage PIE-based warm start, which pre-warms
a number of host enclaves ready to serve. PIE-based warm start
saves more memory resources than SGX-based warm start.
As shown in Figure 9b, PIE-based serverless allows much
higher enclave function density (4-22× than current SGX).
It is the platform’s choice to trade off between resource usage
and quality-of-service (service latency and throughput).

C. Function Chaining Improvement

We use an image resizing function and a real-world personal
photo (10MB) as the secret data to test the data transfer cost
while increasing the length of the enclave function chain.
Figure 9d shows the data transfer cost between functions.



enc-file auth face-detect. sentiment chatbot
Serverless Applications

0

2000

4000

6000

8000

10000

12000
La

te
nc

y 
(m

s)

6177 6077

2354

6674

12561

54 15
900

152
719

144 33
828

395
1153

Func Exec.

SGX-based Cold Start
SGX-based Warm Start
PIE-based Cold Start

(a) Enclave-based function end-to-end latency.

16GB 32GB 64GB
Physical DRAM Size Limit

0

200

400

600

800

1000

N
um

be
r o

f I
ns
ta
nc
es

28
60

126

11 25 52

114

248 245

465
507

961

face detector
chatbot

SGX-based Cold Start, Warm Start
PIE-based Cold Start, Warm Start

(b) Concurrent enclave-based function instance density.

enc-file auth face-detect. sentiment chatbot
Serverless Applications

0

50

100

150

200

250

300

350

Th
ro
ug

hp
ut
 (r
eq

/s
)

0.2 0.2 0.1 0.1 0.1

126.6

337.6

8.8

49.5

11.0
36.9 39.4

2.9
19.0

6.1

SGX-based Cold Start
SGX-based Warm Start
PIE-based Cold Start

(c) Enclave-based function autoscaling throughput.

2 3 4 5 6 7 8 9 10
Number of Function Chain

0

200

400

600

800

1000

1200

1400

Ti
m

e 
C

os
t (
m
s)

218

364

560

767
879

1024

1174

1368

1502

130
188

296

414 438
494

557
662 708

11 20 30 40 50 51 69 79 90

SGX-based Cold Start
SGX-based Warm Start
PIE-based Cold Start

(d) Data transfer cost in an enclave-function chain.

Fig. 9: Performance comparison amongst SGX-based cold-start, SGX-based warm-start and PIE-based cold-start serverless.

Both SGX-based cold start and SGX-based warm start need
to copy secret data across enclave boundaries. SGX-based
warm start saves the cost of enclave heap allocation thanks to
pre-allocation, and is 2.1× faster than SGX-based cold start.
PIE-based cold start outperforms the other two (16.6-20.7×
over SGX-based cold start and 7.8-12.3× over SGX-based
warm start) because its remapping-based in-situ processing
avoids redundant copy/(un)marshalling and removes additional
en/decryption overhead. More importantly, it saves expensive
EADD-based or EAUG-based heap allocation for functions that
processes the same copy of data in succession. Since all the
functions are written in Python, PIE only needs to EUNMAP
function logic and the corresponding package plugin enclaves.
Note that PIE-based remapping is more suitable for data-
transfer-intensive workloads. For small message passing (e.g.,
∼100KB), in-situ processing may not be effective.

D. EPC Eviction Reduction

Current SGX is known to suffer from the EPC eviction pro-
cess which significantly slows down enclave performance [24],
[32]. Since PIE’s EMAP instruction reuses content-ready EPC

pages, it avoids the host enclaves to occupy more EPC pages
(either via SGX1 EADD or SGX2 EAUG) from the physical
EPC pool. Allocating a number of available EPC pages is
likely to trigger an EPC eviction process.

Table V shows that both SGX-based warm start and PIE-
based cold start reduces 88.9-99.8% of EPC evictions com-
pared with SGX-based cold start. In the case of face-detector,
SGX-based warm start and PIE-based cold start incur relatively
higher evictions, attributed to the software reset or heap alloca-
tion activities. Because of the limited size of the physical EPC
pool, intensive use of EPCs may incur very high overhead. It
turns out that PIE design effectively mitigates this.

TABLE V: Counting EPC evictions during autoscaling.

Application SGX-based
Cold Start

SGX-based
Warm Start

PIE-based
Cold Start

auth 43.5M 78.0K (-99.8%) 98.6K (-99.8%)
enc-file 42.9M 78.0K (-99.8%) 98.6K (-99.8%)

face-detector 47.8M 5.0M (-89.5%) 5.3M (-88.9%)
sentiment 107.2M 468K (-99.6%) 468K (-99.6%)

chatbot 166.9M 1.2M (-99.3%) 1.7M (-99.0%)



VII. SECURITY ANALYSIS

This section assesses the security implications of PIE,
concerning its architectural extension for enclave sharing and
mapping semantics.
Sharing Plugin Enclaves: PIE’s plugin enclaves contain
non-sensitive environments such as language runtimes and
frameworks, and therefore are safe to be shared amongst
different functions. The CPU guarantees the correctness of
these shared states, proves their identities via CPU-generated
measurements, and allows them to be attested anytime when
they are mapped into the host enclaves.
Attacking Plugin Enclaves’ Measurement: A plugin enclave
must finalize its measurement to be shared via EMAP. Once
being initialized, both measurement and content of a plugin
enclave are locked down. CPU disallows SGX2 instructions
such as EAUG to change its content. Any writes from host
enclaves will trigger hardware-enforced copy-on-write that
updates private EPCs of the host enclave. Moreover, EPC
pages reclaim such as EREMOVE on a plugin enclave always
terminates the possibility of further sharing. This strict model
establishes the trustworthiness of using a plugin enclave.
Stale Mapping After EUNMAP: A host enclave is still able
to access an EUNMAP’ed plugin enclave if its TLB has not
been flushed. For a multi-threaded host enclave, it can either
use an in-enclave flag to make sure all threads have reached
a quiescent point before EUNMAP’ing a particular plugin [42],
or define EUNMAP to automatically trigger an enclave exit on
all CPU cores. To optimize the latter, we may use a cache-
coherence-alike mechanism to only shoot down TLBs of the
related CPU cores of the same host enclave EID.
Malicious Mapping From OS: Even if the OS configures
wrong page tables for a host enclave, an enclave cannot access
the shared EPCs that are not explicitly EMAP’ed. Private EPCs
are already forbidden to be shared in current SGX hardware.
Malicious Plugin Enclaves: As PIE’s threat model assumes
all in-enclave code is trusted, a PIE developer should only
include the hashes of trusted plugin images in the manifest of
a host enclave. A host enclave must verify their measurements
before EMAPing plugin enclaves, hence excluding malicious
plugin enclaves during runtime.
Address Space Layout Randomization (ASLR): Because
PIE’s design allows multiple host enclaves to reuse the same
plugin enclave, a nefarious attacker may combine brute force
and memory disclosure to bypass ASLR within enclaves. In
fact, supporting ASLR is challenging for systems that apply
memory sharing for better performance. A practical mitigation
approach is batching: e.g., applying ASLR for every 1,000
enclave creations, instead of every enclave. This approach is
effective since real attacks usually require thousands of test-
and-trials with the same memory layout [43]. Techniques like
runtime ASLR [44] can also be applied to further raise the
bar of successful attacks, which are orthogonal to our work.
This randomization frequency should be adjustable for PIE
developers to make the security-performance tradeoff.
Side-channel Analysis: In contrast to SGX share-nothing
model, PIE brings a page-sharing side-channel to its neighbors.

Consider two enclaves using the same library. In SGX, each
enclave has its own copy of the library; in PIE, two host
enclaves share one library plugin enclave with copy-on-write.
As a result, the host enclave can learn: (1) how the library
memory pages are mapped, and (2) whether a library page of
the other host enclave is in memory or not (through a timing
channel). A malicious OS can also see both information. Prior
mitigations against the malicious OS [45], [46] can thwart
attacks from both OS and neighboring host enclaves.

VIII. DISCUSSION

A. Compared with other solutions

Microkernel-like Sharing. Conclave [47] proposes using
multiple server enclaves to be shared between application en-
claves. However, the low-latency property required by server-
less computing is hard to achieve due to the unshared nature
of multiple enclave address spaces. Secret data must be re-
encrypted across enclave boundaries using an SSL-like secure
channel, which inevitably incurs high overhead, especially for
data-intensive workloads (as evaluated in Figure 3c). Even
worse, this solution cannot deal with a heavyweight language
runtime (LR) shared across many function enclaves, where
each function enclave has to contain an independent LR.
Unikernel-like Sharing. Occlum [34] allows efficient multi-
tasking within a single enclave address space, by sharing
a library OS between many software-based isolated tasks.
Occlum enables fast spawn() system call, which is suitable
for serverless autoscaling. We deem Occlum as a software
alternative to PIE. The major difference is that Occlum’s in-
enclave isolation is guaranteed by software, which requires
comprehensive code instrumentation and complicated integrity
checks (e.g., control-flow integrity), while PIE only puts trust
in hardware to isolate different host enclaves. It is rather hard
to prove Occlum’s software-based isolation is adequate given
prevailing software memory bugs [48].
Nested-library Sharing. Nested Enclave [35] introduces
hardware-based hierarchical isolation within an enclave.
Nested Enclave places shared libraries in a shareable outer
enclave, while running each user logic in an independent
inner enclave. While being shared, the outer cannot access
the inner. Both PIE and Nested Enclave can benefit serverless
autoscaling with rapid instantiation. PIE differs from Nested
Enclave in that PIE provides N:M mappings between host and
plugin enclaves, whereas Nested Enclave only supports N:1
mapping between inner and outer enclave. Nested Enclave
may not be a good fit for serverless computing in the fol-
lowing aspects: (1) It is impossible to share interpreted LR
(e.g., Node.js, Python) in the outer enclave, because these
runtimes must access user scripts in the inner enclaves. (2)
Nested Enclave replaces library calls with enclave calls, which
requires code modification and incurs runtime context-switch
overhead (6K∼15K cycles). By contrast, PIE allows a host
enclave to invoke a plugin enclave via fast function calls (5∼8
cycles). Nevertheless, Nested Enclave’s asymmetric access
model isolates library bugs from user logics, whereas PIE
remains the same monolithic model as the current SGX design.



Library OS

App. App. App.App. App. App.

Microservice

Inner

Outer

Inner Inner

Microkernel-like Sharing Unikernel-like Sharing

Nested Enclave Sharing

Host

Plugin Plugin Plugin

PIE Enclave Sharing

Plugin Plugin

Host

Plugin Plugin

SSL SSL SSL

Fig. 10: Comparison between PIE and other options. The
darker border represents hardware-based enclave isolation.

B. Optimizing other workloads

PIE can be used to optimize more enclave applications
other than serverless workloads. For enclave programs written
in high-level languages [49], PIE reduces both the creation
time and memory footprints when the user launches multiple
program instances. Moreover, PIE enables lightweight POSIX
fork() system call via its copy-on-write mechanism, whereas
in current SGX design, the enclave fork() has to copy the
whole in-enclave content [21]. Another opportunity is that
PIE can boost privacy-preserving AI training because these
workloads require massive data communication between each
executors [9]. The secret data transfer between enclave execu-
tors can benefit from PIE’s remapping technique.

IX. RELATED WORK

SGX Enclave Optimization and Enhancement. A line of
previous work has focused on optimizing SGX performance.
VAULT [32] introduces a variable arity tree to protect 16 GB
physical memory. InvisiPage [50] proposes using page-level
protection instead of cache-block level to expand EPC size.
Eleos [24] provides software-based MEE, while CoSMIX [51]
leverages compiler-based MEE. All these efforts aim to reduce
EPC eviction overhead. Asynchronous message queues are
proposed in HotCalls [23] and SCONE [22] to avoid e/ocall
context switches. All the above optimizations are orthogonal
to PIE, and can be combined with PIE to make enclave
applications more efficient and practical. Nested Enclave [35]
proposes a single outer enclave to be shared by multiple
inner enclaves, while PIE allows more enclaves to be shared
and enables cheap function calls. A more comprehensive
comparison is explained in § VIII-A.
Enclave-based Serverless Frameworks. Recently, some
system work has utilized trusted hardware to protect server-
less applications. Se-Lambda [18] leverages a WebAssembly
sandboxed environment as a two-way function for serverless
functions. S-FaaS [19] combines hardware transaction (namely
Intel TSX) and SGX for trusted serverless resource account.

T-FaaS [20] ports JavaScript engines into SGX to build a
secure serverless platform. Clemmys [10] batches SGX2 EAUG
operations for fast creation of a large-heap serverless enclave.
Clemmys’ technique cannot optimize the latency introduced
by large-code enclave initialization and measurement, which
PIE solves by securely reusing immutable plugin enclaves.
Serverless Startup Latency Optimization. There is in-
creasing attention paid to the latency issue of serverless
computing in research academia. Shahrad et al. [52] investigate
architectural implications of serverless applications on modern
processors. Liang Wang et al. [53] measure the cold-start
latency on commercial serverless platforms. To reduce the
function startup cost, SAND [5] exploits fine-grained sandbox-
ing and a high-locality message bus, while SOCK [6] suggests
using lean containers. Catalyzer [7] achieves sub-millisecond
functions startup with copy-on-write and in-memory snapshot
sharing. FAASM [9] leverages shared memory to avoid expen-
sive data movement between functions. With PIE extension,
the optimization techniques of Catalyzer and FAASM can be
directly and securely applied to enclave-protected functions.

X. CONCLUSION

Intel SGX is designed for confidential cloud computing. Our
benchmarks show that existing enclave hardware cannot retain
low latency when serving serverless workloads. PIE extends
Intel SGX with shareable plugin enclaves to reuse non-secret
heavyweight state, and removes the data transfer bottleneck
by remapping enclave functions. Benefited from PIE, enclave
functions can reduce 94.74-99.57% startup latency, 19-179×
speedup in autoscaling throughput, 16.6-20.7× improvement
in secret data transfer, and achieve 4-22× function density.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers and our
shepherd for their valuable feedback and constructive
comments. This work is supported in part by Key-
Area Research and Development Program of Guangdong
Province (NO.2020B010164003), China National Natural
Science Foundation (No. 61972244, U19A2060, 61925206,
61732010). Yubin Xia is the corresponding author.

REFERENCES

[1] “AWS Lambda.” https://aws.amazon.com/lambda/.
[2] “Azure Functions.” https://azure.microsoft.com/en-us/services/

functions/.
[3] “Google Cloud Functions.” https://cloud.google.com/functions/.
[4] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,

E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, “Serverless
in the Wild: Characterizing and Optimizing the Serverless Workload at
a Large Cloud Provider,” in Proc. of the USENIX Annual Technical
Conference (ATC), 2020.

[5] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “SAND: Towards High-Performance Serverless Computing,”
in Proc. of the USENIX Annual Technical Conference (ATC), 2018.

[6] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers,” in Proc. of the USENIX Annual
Technical Conference (ATC), 2018.

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/


[7] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and H. Chen,
“Catalyzer: Sub-millisecond Startup for Serverless Computing with
Initialization-less Booting,” in Proc. of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2020.

[8] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo,
“SEUSS: skip redundant paths to make serverless fast,” in Proc. of the
ACM European Conference on Computer Systems (EuroSys), 2020.

[9] S. Shillaker and P. R. Pietzuch, “Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing,” in Proc. of the USENIX Annual
Technical Conference (ATC), 2020.

[10] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer, “Clem-
mys: towards secure remote execution in FaaS,” in Proc. of the ACM
International Conference on Systems and Storage (SYSTOR), 2019.

[11] “Serverless Examples.” https://github.com/aws-samples.
[12] “Cloud Functions for Firebase Sample Library.” https://github.com/

firebase/functions-samples.
[13] “API Gateway Custom Authorizer Function + Auth0.”

https://github.com/serverless/examples/tree/master/aws-python-auth0-
custom-authorizers-api.

[14] “Serverless Alexa Skill.” https://github.com/serverless/examples/tree/
master/aws-node-alexa-skill.

[15] “Serverless Aws Rekognition Finpics.” https://github.com/rgfindl/finpics.
[16] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del Cuvillo,

“Using innovative instructions to create trustworthy software solutions,”
in Proc. of the Hardware and Architectural Support for Security and
Privacy (HASP), 2013.

[17] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. V. Rozas, “Intel® Software Guard Extensions (Intel®
SGX) Support for Dynamic Memory Management Inside an Enclave,”
in Proc. of the Hardware and Architectural Support for Security and
Privacy (HASP), 2016.

[18] W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Securing Privacy-Sensitive
Serverless Applications Using SGX Enclave,” in Proc. of the Interna-
tional Conference on Security and Privacy in Communication Networks
(SecureComm), 2018.

[19] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-FaaS:
Trustworthy and Accountable Function-as-a-Service using Intel SGX,”
in Proc. of the ACM Cloud Computing Security Workshop (CCSW),
2019.

[20] S. Brenner and R. Kapitza, “Trust more, serverless,” in Proc. of the ACM
International Conference on Systems and Storage (SYSTOR), 2019.

[21] C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library
OS for Unmodified Applications on SGX,” in Proc. of the USENIX
Annual Technical Conference (ATC), 2017.

[22] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE: Secure
Linux Containers with Intel SGX,” in Proc. of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2016.

[23] O. Weisse, V. Bertacco, and T. M. Austin, “Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves,” in Proc. of the
International Symposium on Computer Architecture (ISCA), 2017.

[24] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
ExitLess OS Services for SGX Enclaves,” in Proc. of the ACM European
Conference on Computer Systems (EuroSys), 2017.

[25] “IBM Cloud Functions.” https://www.ibm.com/cloud/functions.
[26] “Apache OpenWhisk is a serverless, open source cloud platform.” https:

//openwhisk.apache.org/.
[27] “Fn Project - The Container Native Serverless Framework.” https:

//fnproject.io/.
[28] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,

P. Piwonka, and D. Popa, “Firecracker: Lightweight Virtualization
for Serverless Applications,” in Proc. of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2020.

[29] Intel, “Intel® 64 and IA-32 Architectures Software Developer Manuals.”
https://software.intel.com/content/www/us/en/develop/articles/intel-
sdm.html.

[30] dashbird, “Serverless Most Popular Programming Languages.” https://
dashbird.io/blog/serverless-most-popular-programming-languages/. Ac-
cess time: 10/11/2020.

[31] F. M. Corey, “The State of AWS Lambda Supported Lan-
guages and Runtimes.” https://www.serverless.com/blog/aws-lambda-
supported-languages-and-runtimes/. Access time: 10/11/2020.

[32] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
Paging Overheads in SGX with Efficient Integrity Verification Struc-
tures,” in Proc. of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2018.

[33] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data,” in Proc. of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2016.

[34] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and Efficient Multitasking Inside a Single Enclave of
Intel SGX,” in Proc. of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2020.

[35] J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh, “Nested Enclave:
Supporting Fine-grained Hierarchical Isolation with SGX,” in Proc. of
the International Symposium on Computer Architecture (ISCA), 2020.

[36] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2019.

[37] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in Proc. of the USENIX Annual Technical Conference
(ATC), 2018.

[38] J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection,” in Proc. of
the IEEE Symposium on Security and Privacy (S&P), 2020.

[39] R. Leslie-Hurd, D. Caspi, and M. Fernandez, “Verifying Linearizability
of Intel® Software Guard Extensions,” in Proc. of the International
Conference on Computer Aided Verification (CAV), 2015.

[40] V. Costan and S. Devadas, “Intel SGX Explained,” IACR Cryptol. ePrint
Arch., 2016.

[41] “Natural Language Toolkit.” https://www.nltk.org/.
[42] J. Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure

Live Migration of SGX Enclaves on Untrusted Cloud,” in Proc. of
the IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2017.

[43] A. Bittau, A. Belay, A. J. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking Blind,” in Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2014.

[44] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to Make ASLR Win
the Clone Wars: Runtime Re-Randomization,” in Proc. of the Network
and Distributed System Security Symposium (NDSS), 2016.

[45] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in Proc. of the USENIX
Security Symposium, 2016.

[46] M. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2017.

[47] S. Herwig, C. Garman, and D. Levin, “Achieving Keyless CDNs with
Conclaves,” in Proc. of the USENIX Security Symposium, 2020.

[48] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2013.

[49] F. Shaon, M. Kantarcioglu, Z. Lin, and L. Khan, “SGX-BigMatrix: A
Practical Encrypted Data Analytic Framework With Trusted Processors,”
in Proc. of the ACM Conference on Computer and Communications
Security (CCS), 2017.

[50] S. Aga and S. Narayanasamy, “InvisiPage: oblivious demand paging for
secure enclaves,” in Proc. of the International Symposium on Computer
Architecture (ISCA), 2019.

[51] M. Orenbach, Y. Michalevsky, C. Fetzer, and M. Silberstein, “CoSMIX:
A Compiler-based System for Secure Memory Instrumentation and
Execution in Enclaves,” in Proc. of the USENIX Annual Technical
Conference (ATC), 2019.

[52] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural Implications of
Function-as-a-Service Computing,” in Proc. of IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019.

[53] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking
Behind the Curtains of Serverless Platforms,” in Proc. of the USENIX
Annual Technical Conference (ATC), 2018.

https://github.com/aws-samples
https://github.com/firebase/functions-samples
https://github.com/firebase/functions-samples
https://github.com/serverless/examples/tree/master/aws-python-auth0-custom-authorizers-api
https://github.com/serverless/examples/tree/master/aws-python-auth0-custom-authorizers-api
https://github.com/serverless/examples/tree/master/aws-node-alexa-skill
https://github.com/serverless/examples/tree/master/aws-node-alexa-skill
https://github.com/rgfindl/finpics
https://www.ibm.com/cloud/functions
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://fnproject.io/
https://fnproject.io/
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://dashbird.io/blog/serverless-most-popular-programming-languages/
https://dashbird.io/blog/serverless-most-popular-programming-languages/
https://www.serverless.com/blog/aws-lambda-supported-languages-and-runtimes/
https://www.serverless.com/blog/aws-lambda-supported-languages-and-runtimes/
https://www.nltk.org/

	Introduction
	Background
	Intel Software Guard Extension (SGX)
	Serverless Computing

	Motivation
	Quantitative Evaluation
	Software Optimization
	Lessons Learned

	Pie Design
	Overview
	Threat Model
	New Metadata and New Instructions
	New EPC Page Types
	Lifecycle
	Hardware/Software Update Summary

	Evaluation Methodology
	Evaluation
	Single Function Statup Improvement
	Autoscaling Improvement
	Function Chaining Improvement
	EPC Eviction Reduction

	Security Analysis
	Discussion
	Compared with other solutions
	Optimizing other workloads

	Related Work
	Conclusion
	References

