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Abstract
As a hardware mechanism for facilitating intra-process

memory isolation, Intel Memory Protection Keys (MPK) has
been leveraged to efficiently improve the isolation, security,
or performance of the software. However, it can only support
16 isolated memory domains, which significantly limits its
applicability in many scenarios.

In this paper, we present EPK which leverages off-the-
shelf virtualization hardware features to extend the number
of available protection domains in MPK. To demonstrate the
effectiveness of EPK, we apply it in three scenarios, including
better memory isolation for server applications as well as
Non-Volatile Memory (NVM) applications, and a fast Inter-
Process Communication (IPC) mechanism for microkernels.
The evaluation results show that EPK can scale to provide
hundreds of isolated domains. It can outperform the state-
of-the-art (libmpk) by up to two orders of magnitude and
usually achieve 95% of the performance of the system with
no memory isolation.

1 Introduction

Intel MPK [7] has attracted many researchers since intro-
duced in 2019 because it offers highly-efficient intra-process
memory isolation by supporting memory domains inside one
application. An application can switch between different do-
mains with a new instruction, WRPKRU, which can execute in
the user mode directly and takes only about 28 cycles. Com-
pared with traditional software isolation or page table based
isolation, MPK can achieve much lower performance over-
head, and has been adopted in many scenarios, including: 1)
enhancing the isolation between different threads of the same
process by giving them different domain views [13, 55, 57];
2) hardening the security of an application by separating dif-
ferent components, such as untrusted third-party libraries, into
different domains [24, 40, 44, 46, 50]; and 3) improving the
performance of software that uses multiple page tables for
isolation by substituting domains for page tables [22, 29].

However, the small number (16) of isolated memory do-
mains supported by MPK severely undermines its usability.
First, typical server applications usually serve for more than
16 clients concurrently, and it is preferable to store clients’
private data in isolated domains to prevent sensitive data leak-
age due to vulnerabilities like Heartbleed [5]. Second, there
is a growing interest in protecting persistent memory [6] data
from accidental or malicious accesses [56, 57]. Long-lived
persistent data is usually directly mapped into processes and
then accessed via load/store instructions. Isolating the data in
more domains can reduce the data exposure time and benefit
stray access protection. Third, both applications and system
software may contain more than 16 components that need to
be isolated. For example, popular applications use scores of
third-party libraries [2]; an OS consists of tens or hundreds
of modules like device drivers. Besides, prior studies also
indicate the performance of NVM applications (which desire
isolation) [57] and microkernel OSes [22] can boost by more
than 10× with more MPK domains.

To scale MPK beyond 16 memory domains, recent re-
searchers propose either software or hardware approaches
to support more MPK domains [38, 41, 57]. However, the
software approach suffers from a large overhead while the
hardware approaches are infeasible on commodity machines.

In this paper, we propose EPK, which extends the maxi-
mum number of memory domains supported by MPK on com-
modity hardware efficiently. MPK’s performance advantage
stems from the decoupling of domain configuration (in priv-
ilege mode) and domain switching (in non-privilege mode).
Our observation is that another hardware feature, named fast
EPT-switching (Extended Page Table switching, with VM-
FUNC), has a similar pattern, which decouples EPT config-
uration (in host mode) from EPT switching (in guest mode).
Thus, we propose extended protection keys by combining
MPK with fast EPT-switching, i.e., reusing the same MPK
protection keys in different extended page tables (EPT). Thus,
with 512 EPTs, EPK can support up to 7,680 domains.

However, there are two major challenges to the new system.
The first challenge is to provide a unified abstraction for appli-
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cations although combing two orthogonal hardware features.
EPK still retains the abstractions of memory domain and do-
main switching inherited from MPK while hiding the EPTs
from applications, by elaborately managing domain mappings
in multiple EPTs and developing a library to provide easy-
to-use APIs. The second challenge is to enable one thread
to simultaneously access memory domains across different
EPTs, as the original MPK allows to access multiple domains
together. To this end, EPK leverages another existing hard-
ware feature named virtualization exception (VE) to switch
the EPTs for the thread transparently when a domain access
causes EPT violations.

We implement EPK prototype and apply it in the above sce-
narios. On the one hand, EPK can work like the original MPK
for mitigating the memory errors and thus facilitates efficient
intra-process memory isolation (Section 5). On the other hand,
it can also isolate untrusted software components [46, 57]
(Section 4 and Section 6) by further preventing illegal domain
switching.

Experiments on server applications and persistent memory
applications show that EPK’s overhead is usually around or
below 5%. Compared with the state-of-the-art (libmpk) [38],
the performance improvement can be up to two orders of
magnitude. Furthermore, we incorporate EPK in a microker-
nel OS, a representative of large software. A microkernel OS
runs system components like file systems and device drivers
in user processes for embracing better isolation [20, 26, 30].
Nevertheless, costly inter-process communication (IPC) is
required for the interaction between different OS compo-
nents [22, 31, 37, 45]. EPK can provide enough isolated
domains for running different OS components and the fast
domain switch for IPCs. Thus, we propose a high-efficient
IPC mechanism named HyBridge that can improve the perfor-
mance of three well-known microkernels, seL4 [10], Google
Zircon [4], and Fiasco.OC [3], and outperform two state-of-
the-art IPC designs, SkyBridge [37] and UnderBridge [22].

In summary, this paper makes the following contributions:
1) a scalable and efficient intra-process memory isolation
mechanism named EPK; 2) a real implementation and eval-
uation on Linux; 3) a new IPC design based on EPK for
microkernel OSes with better performance.

2 Background and Motivation

2.1 Hardware Background
MPK. Intel MPK [7] can divide the virtual memory space of
one process into 16 memory domains. By leveraging previ-
ously unused bits of the page table entry, each memory page
is tagged with a four-bit protection key as the domain ID and
exclusively belongs to one of the 16 domains. A new 32-bit
register, PKRU, is introduced to specify the access permis-
sions (read-only, read-write, none) on the 16 domains (two
bits for one domain). Because the register is per-core, con-

current threads in the same process can have different access
permissions on different domains. During runtime, MMU
transparently checks the permissions. A non-privileged in-
struction called WRPKRU can update this register to change
the access permissions.

MPK in the VM. The hardware feature of MPK is also
usable in a VM. Protection keys are still tagged in the page
tables of applications instead of EPTs. From the perspective
of applications and the OS, the usage of of MPK is just the
same no matter in the VM or not.

Extended Page Table (EPT) and VMFUNC. Intel hard-
ware virtualization technology employs EPT for memory vir-
tualization. For a guest virtual machine (VM), the guest page
table maps guest virtual addresses (GVA) to guest physical
addresses (GPA) while the EPT maps GPAs to host physical
addresses (HPA) and thus aids in the seamless translation of
GVAs to HPAs. The guest VM’s OS (runs in non-root mode
ring zero) controls the guest page table, while the hypervisor
(runs in root mode) manages the VM’s EPT. VMFUNC is a
hardware virtualization extension that provides VM functions
for VMs. EPT pointer (EPTP) switching is currently the only
VM function provided, allowing the guest VM (both Ring-0
and Ring-3) to directly load a new EPTP. The loadable EPTP
can only be chosen from a list of EPTPs (up to 512) con-
figured by the hypervisor. Note that TLB entries are tagged
with the EPT base addresses to avoid flushing the TLB when
switching the EPT.

Virtualization Exceptions (VE). EPT violations usually
trigger VMExits, after which the hypervisor can fill the EPT
mappings. Yet, Intel virtualization technology also supports
converting EPT violations into VE without VMExits. With
VE enabled, the hypervisor can configure bit 63 of certain
EPT paging-structure entries to make EPT violations on some
GPAs to cause VE and others to cause VMExits as before.

2.2 Motivation
Software fault isolation (SFI) can enhance memory isolation
for applications [15, 19, 27, 36, 48, 58] by instrumenting and
restricting memory accesses. Nonetheless, it may result in
non-negligible runtime performance overhead and is inflex-
ible (e.g., hard to be fine-grained). Many studies can avoid
such disadvantages [25, 27, 32, 35, 39] using the MMU. They
isolate different memory partitions of a process in different
page tables or extended page tables and thus utilize MMU to
check memory accesses at the page granularity.

Instruction Cost (cycles)

Write CR3 (no TLB flush) 226
VMFUNC (switch EPT) 146
WRPKRU 28

(a)

Solution Overhead

LwC-simulate 70%
EPT-based 12%
ERIM 3%

(b)

Table 1: (a) Instruction cost. (b) The overhead of isolating
session keys in one isolated domain.
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However, constructing different memory domains with
page tables is not free. Switching between different domains
requires changing the page table through specialized hard-
ware instructions. Table 1(a) presents the direct cost of the
related instructions. We design an experiment to isolate each
client’s session key in separate domains in the NGINX web
server [9] to show the corresponding performance overhead.
ApacheBench (ab) [1] generates the workload: 300 concurrent
clients send requests to the server for a file. As presented in
Table 1(b), light-weight contexts (lwC) [32], as a representa-
tive of page-table-based solutions, will lead to approximately
70% overhead if we isolate all the session keys in a separate
context (i.e., a new page table) and switch to that context when
accessing those keys. Similarly, for the EPT-based solution,
we create a new EPT for isolating all the session keys and use
VMFUNC instruction to switch to that EPT when accessing
them. Although noticeably better than the page-table-based
solution, such an EPT-based solution still introduces around
12% performance overhead. In contrast, ERIM [46] only adds
about 3% overhead by utilizing MPK to construct an iso-
lated memory domain for storing the session keys, which can
demonstrate the efficiency of MPK.

Yet, MPK can only support at most 16 memory domains,
limiting its usage. Take the web server for example: it is prefer-
able to separate clients’ data in different memory domains,
guaranteeing the isolation between multiple clients. Recent
work [38, 41, 57] also identifies and addresses this limitation
of MPK. Two studies [41, 57] propose non-trivial hardware
extensions for efficiently supporting scalable domains, which
are not achievable on current platforms.

libmpk [38] gives the illusion of multiple memory domains
by exposing virtual keys to applications and maintaining the
mapping between virtual keys and the 16 real keys (one key
for one domain). When all 16 real keys are exhausted and a
new virtual key is required, libmpk will evict a mapped real
key and remap it to the new virtual key. But the key evic-
tion may incur a large overhead. For instance, if we protect
each client’s session key in a different memory domain (300
domains in total) provided by libmpk in the above NGINX
experiment (rather than storing all keys in one domain), the
overhead becomes about 20%. The overhead consists of both
direct costs, i.e., the expensive key eviction procedure involv-
ing modifying page table entries, flushing TLBs, etc., and
indirect costs, e.g., TLB misses due to flushing.

More seriously, libmpk’s domain switch cost increases as
domain memory gets larger, as shown in Table 2. The micro-
benchmark keeps switching to one domain randomly. When
the domain number increases from 32 to 64, more key eviction
occurs, resulting in higher overhead. As one domain contains
more memory pages, the switch cost gets more expensive
due to flushing more TLBs and updating more page table
entries. The cost turning point (from 33 to 34) is because
Linux flushes all TLBs together instead of one at a time when
the number of TLBs to flush exceeds 33.

Domains
Pages 16 33 34 64 1K 128K

15 185 184 188 188 187 185
32 6,576 11,173 4,090 5,270 42,912 5.1×106

64 9,959 16,573 6,308 8,068 79,012 9.6×106

Table 2: The CPU cycles of domain switches in libmpk. The
page size is 4k.

Memory

Access

Cost

Domain

Switch

Memory

Domain

Number

Multi

-domain

Access

Multi

-thread

Support

Hardware

Changes

SFI High Fast Many No Yes Zero

lwC Low Slow Many No Yes Zero

Donkey Low Fast 1,024 Yes Yes Heavy

libmpk Low Slow Many No No Zero

MPK Low Fast 16 Yes Yes Zero

EPK Low Fast 7,680 Yes Yes Zero

Table 3: Comparison of different approaches.

In brief, MPK-based intra-process memory isolation shows
attractive performance advantages but can only support a
limited number of isolated domains. Therefore, we intend
to overcome this limitation while retaining MPK’s perfor-
mance and flexibility advantages. As described in Table 3,
SFI-based and page-table-based approaches (e.g., lwC) have
performance issues and do not allow one thread to simultane-
ously access different domains. Existing hardware approaches
(e.g., Donkey [41]) are hard to be implemented on commercial
x86/ARM architectures due to intrusive hardware modifica-
tions. For example, to support 1024 domains, Donkey takes
10 bits in the page table entry as the domain ID, which is
at least incompatible with the upcoming 5-level page table.
libmpk makes several contributions like implementing fast
mprotect by using MPK. But, its extension on the MPK do-
main number has both performance and flexibility issues. It
cannot support multi-threading well, in particular, because it
is difficult to maintain a consistent view of active domains
across different threads.

3 The EPK Mechanism

According to prior studies on MPK-based intra-process iso-
lation, the common usage model of MPK is as follows. An
application (process) creates memory domains by binding dif-
ferent protection keys (pkey) to them as the domain IDs and
separates the memory data into different domains. An appli-
cation thread acquires/releases the access permission of one
specific domain before/after accessing the data in it, which
reduces the chances of the isolated memory being affected
by vulnerabilities (e.g., leakage caused by buffer overflow) or
faults (e.g., wild writes). Acquiring the domain access permis-
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sion is efficiently achieved by executing WRPKRU instruction,
which is referred to as switching to that domain. Releasing
the permission is a reverse procedure that also makes use
of WRPKRU. EPK still inherits such a usage model while
supporting more memory domains.
Extended Protection Keys. The root cause of why MPK can
only support 16 memory domains for one application is that
each domain needs to exclusively take one pkey while the
hardware only supports 16 pkeys. So, to extend the number
of memory domains, the high-level idea of EPK is allowing
multiple memory domains to use the same pkey at the same
time. However, simply reusing the same pkey for different do-
mains does not guarantee memory isolation. Therefore, EPK
proposes extended protection key, which extends a pkey with
different EPT indexes (get more keys), and then assigns dif-
ferent extended protection keys to different memory domains.

GPA-0: HPA-0

G
P

A
-0

G
P

A
-1

G
P

A
-2

G
P

A
-3

GPA-1: NULL

GPA-2: HPA-2

GPA-3: NULL

GPA-0: NULL

GPA-1: HPA-1

GPA-2: NULL

GPA-3: HPA-3Domain-31
pkey: 1 EPT: 2

Domain-16
pkey: 1 EPT: 1

Domain-2
pkey: 2 EPT: 0

Domain-1
pkey: 1 EPT: 0

GPA-0: NULL

GPA-1: NULL

GPA-2: NULL

GPA-3: NULL

EPT-0 EPT-1 EPT-2

An Application’s Virtual Address Space

Guest Physical 
Address Space

Domain-16
pkey: 1 EPT: 1

Figure 1: The memory mapping overview for an application.

As depicted in Figure 1, EPK allows an application to
partition its virtual address space into different memory do-
mains, with each domain containing discrete memory pages.
A domain exclusively takes one extended protection key as
its domain ID, which is composed of a pkey (1-15) and an
EPT index (0-N, 06N<512)1. EPK requires an application to
run within a VM where cloud applications usually run in, and
multiple EPTs need to be created for the VM. Each EPT can
hold 15 domains for an application (domain-0 is used as the
shared domain), and the 15 domain IDs (extended protection
keys) have the same EPT index but different pkeys. For exam-
ple, domain-1 and domain-2 are both in EPT-0 and use pkey-1
and pkey-2, respectively. The same pkey can be shared by do-
mains in different EPTs concurrently, e.g., domain-1, domain-
16, and domain-31 can all use pkey-1 because they will be
mapped in EPT-0, EPT-1, and EPT-2, separately. Memory
isolation between domains within the same EPT is achieved
through the use of distinct pkeys. To achieve memory isola-
tion between domains in different EPTs, EPK ensures that
each domain’s mappings only exist in one EPT. Specifically,
the memory pages belonging to one isolated memory domain

1Domain-ID (extended protection key) = EPT-index × 15 + pkey.

are tagged with the domain’s pkey in the application’s page
table and are only mapped in the domain’s EPT. Other mem-
ory pages, i.e., the global code and data of an application, are
tagged with pkey-0 and mapped in all the EPTs (domain-0).

Although all the 512 EPTs are shared among different
applications, it is worth mentioning that each application can
construct 7,680 domains (15 × 512) since it has an individual
guest page table.
Domain Switching. When an application thread needs to ac-
cess some domain, it retrieves the permission by setting the
PKRU value and choosing the corresponding EPT (switching
to the domain). Switching between domains within the same
EPT can be finished by executing one WRPKRU instruction.
Switching between domains in different EPTs involves one
additional VMFUNC instruction for EPT switching. Since
both these two instructions are non-privileged, the domain
switches are efficiently finished in user mode (one exception
case will be explained in Section 3.2). From the perspec-
tive of programming, EPK provides easy-to-use interfaces
(Section 3.3) through a user-level library for applications to
create/delete domains, add/remove memory pages to/from
domains, and switch domains. Applications can simply use
the interfaces similar as programming on the original MPK.
Challenges. Although the idea sounds simple, there are two
implementation challenges for combining the hardware fea-
tures. First, how to make a VM seamlessly run with different
EPTs, and how to differentiate a legal EPT violation caused
by on-demand domain paging with an illegal one due to an
unauthorized access? (Section 3.1). Second, given that MPK
allows one thread to access multiple domains simultaneously,
how to support such a flexible feature when multiple EPTs
are in use (access domains mapped in different EPTs simulta-
neously)? (Section 3.2).
Threat Model. We assume the guest OS, hypervisor, and
hardware are trusted, and EPK is correctly implemented. For
the case of reducing the memory exposure time (Section 4),
we assume the unreliable code may contain memory corrup-
tion bugs, which is similar to the existing work [38, 57]. For
the case of isolating mutual-distrusted software components
(Section 5 and (Section 6)), we assume the untrusted code
or mutual-distrusted code may contain exploitable vulnera-
bilities like memory corruption and even use ROP to abuse
WRPKRU/VMFUNC for illegal domain switches. So, EPK
further integrates the mechanism of secure switching from
previous systems [22, 46] (Section 6.1 explains how to avoid
illegal domain switches). Other attacks, like side-channel at-
tacks and rowhammer attacks, are not considered.

3.1 Extended Page Table Management

Traditionally, a VM has a single EPT that maps the GPAs of
both the guest OS and applications to HPAs. Differently, EPK
necessitates the creation of multiple EPTs for a VM based on
two principles. Principle-1: GPAs that are not allocated for
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memory domains should be mapped uniformly across EPTs.
Thus, the VM can always run normally in any EPT. Principle-
2: Each memory domain’s GPAs should be mapped in only
one EPT. As previously stated, this is for domain isolation.
GPA to Domain Association. Since the hypervisor is in
charge of constructing EPTs, the first problem is how it can
tell whether one GPA belongs to some memory domain or not.
A straightforward solution is letting the guest OS, the GPA
manager, share the information about which GPAs are allo-
cated for memory domains with the hypervisor. Nevertheless,
this entails non-trivial modifications to both the hypervisor
and the guest OS. An alternative solution is to divide the
whole GPA space into two halves and allocate GPAs for do-
main memory from one half, allowing the hypervisor to easily
determine whether a GPA belongs to a domain. This solu-
tion still adds a significant amount of complexity to GPA
allocation in the guest OS.

EPT-0 PML4

#0

#1

#511

EPT-1 PML4

#0

#1

#511

… …

Shared PDPTEPT-0 PDPT EPT-1 PDPT

Maps

Domain

16-30

Maps

Domain

1-15

Common

Mappings

Guest Physical Address Space Shadow Address Space 

SHADOW REGION OFFSET 

Figure 2: The EPT structures. PML4 is the top-level EPT
page, and PDPT is the second top-level page.

To address this problem, EPK proposes the following de-
sign. Instead of partitioning the GPA space, EPK creates the
illusion that there is a shadow address space (GPA) in the VM
by simply adding a fixed offset (SHADOW REGION OFF-
SET) to the GPAs allocated to memory domains, as illustrated
in the top half of Figure 2. As a result, the fixed offset be-
comes the boundary between the GPAs for memory domains
and other GPAs. Based on this boundary, EPK constructs
the EPTs, as shown in Figure 2. It sets the offset to 512 GB
since an EPT PML4 entry can point to 512 GB GPA range.
The entire GPA space is pointed by the first entry of each
EPT PML42, and the shadow address space is pointed by the
second entry of each EPT PML4. The first PML4 entry of
different EPTs points to a shared PDPT, implying that the
non-domain GPA mappings are always the same in different
EPTs and thus satisfies Principle-1. By sharing this PDPT, the
hypervisor can reduce the space overhead of multiple EPTs.
More importantly, it does not need to explicitly synchronize
an EPT update (e.g., adding a new mapping for the guest OS)
across all EPTs, which is expensive. The second PML4 entry

2For simplicity, we assume the size of the GPA space is smaller than 512
GB. The fixed offset can be adjusted to support larger GPA space.

of different EPTs points to different PDPTs for adding the
GPA mappings for memory domains, which is a prerequisite
of Principle-2.
Illegal EPT Violations. The second problem is the hypervi-
sor cannot determine if an EPT violation (EPT fault) within
the shadow address space is legal or not. Assume an applica-
tion thread executes in EPT-1 while accessing Domain-1 in
EPT-0, resulting in an EPT violation. The hypervisor cannot
decide whether to add the mapping because it does not know
which domain the faulting address belongs to, i.e., whether
the GPA should be mapped in the current EPT. Simply adding
the mapping regardless of semantics will violate Principle-2.
Instead, EPK chooses to avoid any legal EPT violation within
the shadow address space (except accessing domains across
EPTs which will be explained in Section 3.2). Specifically,
the guest OS is required to invoke one new hypercall (a hyper-
visor interface provided to the VM) to fill the EPT mapping
when a legal domain page fault happens, which eliminates
the following EPT violation. The guest OS can check the
legality of a domain page fault because applications tell it
the semantics of domain mappings via the corresponding in-
terfaces (explained in Section 3.3). As such, the hypervisor
only needs to add a simple hypercall to add the EPT map-
ping, and EPT violations within the shadow address space
must be illegal. Together with the carefully designed EPT
structure, Principle-2 can be met now. Furthermore, because
it avoids original VMExits caused by EPT violations, this
hypercall-based solution incurs no additional overhead.
EPT-ID Access. When a domain page fault occurs, the guest
OS needs to check whether the faulting thread has the access
permission according to the current PKRU value and EPT-ID.
However, because the domain switches are performed in user
mode, the guest OS is unaware of the changes of PKRU and
EPT-ID. The guest OS can directly read the PKRU register but
cannot get EPT-ID (the third problem). EPK enables the guest
OS to efficiently retrieve the EPT-ID by subtly mapping one
special guest physical page (named EPT-ID-Page) across dif-
ferent EPTs. During VM initialization, the guest OS allocates
the EPT-ID-Page and passes its address to the hypervisor. The
hypervisor maps the EPT-ID-Page to different host physical
pages in different EPTs (in different PDPTs) and stores the
corresponding EPT-ID in each physical page. Therefore, the
guest OS can always obtain the current EPT-ID by simply
reading the EPT-ID-Page (first four bytes).

3.2 Multi-Domain Access Support

MPK supports 16 domains and allows one thread to access
any of them by configuring the PKRU register. Nevertheless,
it is non-trivial to support this flexible feature in EPK since
there are domains across different EPTs.

Accessing multiple domains in the same EPT can still be
accomplished simply by configuring PKRU. To transparently
support accessing multiple domains in different EPTs, EPK
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further employs another hardware feature named VE (virtual-
ization exception). The hypervisor converts EPT violations
in the shadow address space into VEs which will be handled
in the guest OS. The VE handler in the OS can switch the
EPTs for one thread and thus help it to seamlessly access
multiple EPTs. Specifically, when a thread needs to acquire
the access permission of domains across multiple EPTs si-
multaneously, it needs to inform the kernel of the domain
information. Suppose the thread needs to access domain-A
in EPT-1 and domain-B in EPT-2 and first runs in EPT-1. As
running in EPT-1, it can directly access domain-A but will
trigger an EPT violation when attempting to access domain-B.
Because domain-B is in the shadow address space, the cor-
responding EPT violation will be caught by the VE handler
instead of causing expensive VMExits. Since the OS knows
that the thread can access domain-B, the VE handler will
switch to EPT-2 by using VMFUNC and setting PKRU to the
required value. After that, the thread can be restored and con-
tinue to access domain-B. A similar procedure happens when
it later accesses domain-A in EPT-2. Thereby, EPK gives an
illusion that one thread can access domains in multiple EPTs
at the same time.

Two points are worth mentioning. First, EPK only con-
verts EPT violations to VEs within the shadow address space,
which has no interference on the VM’s original execution.
Second, different from getting access to domains in the same
EPT or a specific domain in other EPTs (fast path), getting
access to multiple domains in different EPTs requires the
kernel involvement (slow path).

3.3 System Components in Linux/KVM
EPK’s prototype implementation on Linux/KVM mainly con-
sists of three components: a user library, a kernel module in
the guest OS (Linux), and a hypercall handler in the hypervi-
sor (KVM).

Figure 3 lists the main library interfaces available to ap-
plications. The first two functions invoke the kernel module
through ioctl to allocate and free domain IDs. alloc_domains
can get multiple domain IDs, and the kernel module will try

  /* Allocate domain IDs with affinity */
  int alloc_domains(int num, int dom_ids[]);

  /* Free domain IDs */
  int free_domains(int num, int dom_ids[]);

  /* Allocate a virtual memory range for a domain */
  void *domain_mmap(int dom_id, void *addr, size_t len,
                   int prot, int flags);

  /* Remove some mappings */
  int domain_munmap(void *addr, size_t len);

  /* Retrieve the access permission of a domain */
  int domain_begin(int id, int prot);

  /* Release the domain permission */
  int domain_end(int id);

Figure 3: The APIs provided by the user library of EPK.

to return the domains that are located in the same EPT. This is
because some domains may have affinities, i.e., they are likely
to be traversed together. Properly utilizing affinity in the appli-
cations can benefit the performance. Although it is non-trivial
in general, achieving locality is straight forward in some cases.
For example, in Section 4.2, a simple locality-aware request
dispatching scheme can make Memcached embrace the affin-
ity benefits; in Section 5.2, simply letting one thread work on
the warehouses within the same EPT is enough.

domain_mmap first invokes mmap and then informs the
kernel module about the domain mapping information. The
kernel module records the information by using Linux’s rbtree
and validates domain page faults based on it. Huge page
mapping is also supported through setting the flag argument.
The last two interfaces are responsible for switching memory
domains and are purely implemented in user mode except
for accessing multiple domains in different EPTs. It is also
necessary to know the current EPT-ID in user mode. For
example, switching domains in the same EPT requires no
VMFUNC. EPK does this by reusing the EPT-ID-Page During
its initialization, the library asks the kernel module to map
the EPT-ID-Page as read-only into the application. Besides, a
domain memory allocator based on [34] is also provided.

Since servicing invocations from applications and record-
ing the domain-related information, the kernel module pro-
vides a routine that aids in handling domain page faults. We
insert a hook in the Linux page fault handler for invoking this
routine. When a page fault occurs, the page fault handler still
executes as before (e.g., allocates a free page) but invokes
this routine just before setting the GPA of the newly allo-
cated page in the page table entry. The routine then checks
whether the page fault occurred within the domain regions
and whether it was legal. If it is a legal domain page fault,
the routine updates the GPA by adding SHADOW REGION
OFFSET to it and invokes the hypercall to fill the mapping
for the updated GPA in the EPT (as described in Section 3.1).
Finally, the routine returns and the page fault handler sets the
updated GPA in the page table entry. Another simple hook
is added to the OS schedule function (i.e., __schedule). It
saves/restores the EPT-ID for threads of applications that use
EPK. Specifically, it saves the current EPT-ID in the thread’s
task_struct when scheduling out such a thread and restores
the EPT-ID with VMFUNC (if necessary) when scheduling in
the thread. Moreover, we add the VE handler for transparently
supporting flexible multi-domain access.

In KVM, besides enabling VE and VMFUNC, we extend
the hypercall handler to provide two additional functions for
the guest kernel module. The first is to map the EPT-ID-Page,
and the second is to add the EPT mapping for the VM’s
shadow address space. Furthermore, to support reclaiming the
pages mapped in the shadow address space, the hypervisor
needs to first disable VE on the pages to reclaim and record
the reclaim information When swapping back the pages, the
hypervisor needs to re-enable VE on the pages. Besides these,

614    2022 USENIX Annual Technical Conference USENIX Association



the hypervisor can reclaim the pages as before. Yet, this re-
claiming mechanism is not supported in the current imple-
mentation of EPK.

EPK only requires minor modifications on Linux/KVM.
Our prototype only adds 250 lines of code (LOC) in KVM,
13 LOC in guest OS, and 600 LOC in guest kernel module.

4 Case Study: Protecting Server Applications

Experiment Setup. All the experiments in this paper are
conducted on a Dell PowerEdge R640 server with Intel Xeon
Gold 6138 CPU. Hyper-threading is disabled, and the CPU
frequency is fixed to 2.0GHz. The L2 TLB has 1536 entries. In
Section 4 and Section 5, we implement and evaluate EPK on
Linux/KVM-4.19.88 (both the guest OS and the hypervisor).
The experiments are conducted in a VM (20 CPUs and 80GB
memory), and the loopback network is used. All experiments
use 4k memory pages without explicit statements.
Comparison Systems. Besides the native performance (run
benchmarks with no isolation), we compare the performance
of EPK with libmpk [38], lwC [32], and a VMFUNC-only
solution. We evaluate libmpk in single-thread experiments
since it does not support multi-threading. Since lwC is imple-
mented on FreeBSD, we simulate its performance on Linux.
Specifically, we first measure its switch cost (around 6,000
cycles, which corresponds to the reported data in Table 2
in ERIM [46] and Table 2 in lwC [32]) and then add such
switch cost in the benchmarks (i.e., waiting for 6,000 cycles
when switching context is needed). Note that the simulated
performance will be better than the actual performance be-
cause the indirect cost of switching address space is ignored.
We also implement a VMFUNC-only solution that provides
one memory domain in one EPT and leverages VMFUNC for
domain switches. The experiment of libmpk is conducted in
host, while all the other systems run in the VM.

4.1 Micro-benchmarks

Domain Num 3 4 8 15 16 32 64

libmpk(128 pages) 184 184 186 188 12,991 13,148 13,048
VMFUNC 350 831 830 836 834 849 830
EPK 97 97 100 101 111 115 162

Table 4: The average cost (in cycles) of domain switches.

We leverage different solutions to create multiple memory
domains and evaluate the domain switching cost (shown in
Table 4). The test program initially runs in domain-0 (not
counted in the domain number) and switches between the
created domains in order (sequential access). The number
of iterations is 100,000 and we measure the average cost.
libmpk’s switch cost gets much higher when the domain num-
ber is above 15 (domain-0 takes one protection key). Besides,

its switch cost is severely influenced by the size of protected
memory. When each domain contains 128 pages, its switch
cost becomes more than 10,000 cycles if the domain number
exceeds 16, which is even 100× slower than EPK. With the
domain size increasing, its switch cost will enlarge due to
more page table updates during key eviction, as shown in Ta-
ble 2. In contrast, the switch time of the other two approaches
is immune to the domain size.

The VMFUNC-only solution uses one EPT for domain-0,
and its switch cost is about 350 cycles which mainly comes
from two VMFUNC instructions when the domain number
is no more than 3 (the total EPT number is no more than
4). However, its cost increases to around 830 cycles when
the domain number exceeds 3. This is because TLB entries
are tagged with EPT base addresses, and the involvement
of more EPTs may decrease the TLB hit rate. Specifically,
accessing the same memory page in different EPTs generates
different TLB entries and then may exceed the capacity of the
corresponding TLB set. EPK shows the lowest average switch
cost since most switches are based on WRPKRU. When the
domain number is less than 16, it outperforms libmpk because
the latter one involves virtual protection key management
(although no key eviction). When the domain number exceeds
60, the average cost of EPK increases since there are more
than 4 EPTs.

Yet, in the worst case, EPK needs both WRPKRU and VM-
FUNC for switching to one domain, and takes around 860
cycles for traversing domains like the above, which means the
performance of EPK may converge with the VMFUNC-only
solution with random switches.

4.2 Macro-benchmarks

NGINX. Introducing intra-process memory isolation to
server applications brings the potential to achieve higher
security or reliability. We first apply different solutions to
a widely-used web server, NGINX [9] v1.12.1, to evaluate
the performance overhead. We isolate SSL session keys as
ERIM [46] does (including preventing the abuse of domain
switching), except that we store per-client session keys in
different domains rather than in one domain. We leverage
ab [1] to generate the workload: 300 clients keep sending
file requests one by one. The server thread is fully loaded.
The total domain number is 300 and each domain contains 5
memory pages.

Figure 4a shows the evaluation results. The throughput is
normalized because libmpk is implemented on Linux 4.14.2
and the native throughput differs on Linux 4.14.2 and 4.19.88
(EPK) (while KPTI is disabled on both, other mitigations on
CPU vulnerabilities are key factors). EPK imposes overhead
from 4.3% to 5.8% compared with native and outperforms
other solutions. The overhead of the VMFUNC-only solution
varies from 11.0% to 12.4%. Notice that the NGINX serving
thread handles client requests in order. Thus, most domain
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(b) Memcached SET. X-axis: the number of users.
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(c) Memcached GET. X-axis: the number of users.

Figure 4: (a) shows the performance of protecting session keys in NGINX web server. (b) and (c) show the performance of
isolating different users in Memcached (omit libmpk since it lacks the support of multi-threading).

switches in EPK need no EPT changing, making EPK outper-
form the VMFUNC-only solution. When storing each session
key in an individual context in lwC, the overhead is 37.1% on
average merely due to the explicit cost of domain switches.
The overhead incurred by libmpk ranges from 14.5%-18.9%
(23.4% to 33.2% if in the virtualization environment) due to
the involvement of page table modifying and TLB flushing.
In the cases of infrequent switching and small domain size (5
pages), libmpk will not lead to too much overhead.

Memcached. We evaluate Memcached [8] 1.6.9 and use lib-
Memcached as the client library in this experiment. Mem-
cached is a well-known key-value store and usually runs as a
multi-thread server application. Arbiter [49] suggests that it is
preferred to isolate data from different clients in Memcached
for security-sensitive cases. Like Arbiter, we enable Simple
Authentication and Security Layer (the SASL configuration)
in Memcached and then isolate data stored by different clients.
Besides, we slightly modify the request dispatching scheme
of Memcached so that the requests from one client are always
dispatched to the same worker thread for leveraging the do-
main affinity provided by EPK. The worker thread switches
to the client’s corresponding domain before handling a re-
quest and exits that domain before sending back the reply.
We create a different number of client threads, and each of
them uses libMemcached for sending SET/GET requests. The
sizes of key and value are 32 bytes and 256 bytes, separately.
There are four worker threads (default configuration) on the
server-side, and the clients will be evenly partitioned to them.
In this experiment, the max domain number is 70 and each
domain contains about 2,000 memory pages.

Figure 4b and 4c show the throughput of Memcached. As
before, lwC leads to the highest overhead due to its expensive
switch cost. When the client number is no more than 60, EPK
incurs at most 0.7% overhead on the throughput of SET op-
erations. The overhead on the throughput of GET operations
is slightly higher (up to 2.9%) because the GET operations
are lighter than the SET ones. The extremely low overhead is
because no EPT switches happen on the critical path. EPK al-
lows each worker thread to create 15 domains in one EPT, and
thus four worker threads can handle 60 clients (60 domains)

without switching EPTs. When the number of clients exceeds
60, the overhead of EPK becomes larger because some worker
threads need to handle requests from more than 15 clients,
and then EPT switches happen.

In contrast, the VMFUNC-only solution incurs a much
larger overhead, i.e., up to 17.9% and 34.0% overhead for
the throughput of GET and SET operations, separately. The
overhead mainly comes from TLB misses, as explained in
Section 4.1. For validation, we further carry out two exper-
iments marked as VMFUNC-test-1 and VMFUNC-test-2 in
Table 5. The former one is that the worker thread switches
to the target EPT and immediately switches back before han-
dling a request. So, all the requests are handled in EPT-0. The
latter one is that each worker thread always switches to EPT-
1 for handling requests. So, all the requests are handled in
EPT-1. Both of them show close-to-native performance, and
the TLB miss number is not significantly enlarged. However,
the VMFUNC-only solution causes many more TLB misses
and then leads to the highest overhead. The overhead of TLB
miss in NGINX is not obvious because the worker thread of
NGINX only switches to other EPTs when accessing session
keys while the worker thread of Memcached executes most
logic in different EPTs.

Throughput (×10K req/s) dTLB/iTLB misses

Native 24.5 1 / 1
VMFUNC-test-1 24.4 1.1 / 2.4
VMFUNC-test-2 24.0 1.2 / 2.4
VMFUNC 20.1 9.5 / 29.1

Table 5: The throughput and TLB misses (normalized) when
evaluating Memcached SET operation with 60 clients.

Since libmpk does not support multi-thread, we evaluate
libmpk in Memcached with a single worker thread. When
there are 60 domains, the overhead of the above test exceeds
80%, which is significantly higher than that in NGINX be-
cause each domain contains about 2,000 pages.
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(c) B+-tree test-3.
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Figure 5: B+-tree (a) Single-thread and random access, (b) Multi-thread and each thread operates on 15 domains, (c) Time
breakdown when single-thread and sequential access. (d) Linked List (low switch frequency). (e) Hashtable benchmark (different
domain memory size). (f) TATP benchmark. Omit libmpk (single-thread support) in the multi-threaded cases.

5 Case Study: Isolating NVM Data

To embrace the low access latency of NVM, applications usu-
ally map NVM into the address space and access it through
load/store instructions. Bringing intra-process memory isola-
tion to protect NVM data (e.g., reducing the data exposure
time) has also been investigated by recent work [56, 57]. In
this section, we evaluate the benchmarks similar to existing
NVM studies [23, 33, 56, 57], using DRAM as NVM.

5.1 Data Structure Benchmarks
We first experiment on B+-tree. We map each B+-tree in an
individual domain and create different numbers of threads to
do lookup or insert operations (the ratio is 1:1 and other ratios
show similar performance trends). Domain switches occur
before and after an operation. Each tree initially has 500,000
key-value pairs, and each tree node has up to 32 child nodes.
In this experiment, the max domain number is 128 and the
size of each domain is about 128MB.

The overhead of lwC in the above benchmarks is always
around 80% because one B+-tree operation takes just about
2,100 cycles.

Figure 5a shows the throughput when a single thread op-
erates on a randomly selected tree (i.e., randomly switching
to a domain). If the domain number is less than 16, EPK
and libmpk bring about 7% and 11% overhead, individually.
When the domain number exceeds 15, libmpk introduces un-
acceptable overhead (throughput drops by 99.8%) due to the
substantial cost of key eviction (as the domain size is not
small), and EPK can outperform it by two orders of magni-

tude. Note that the kernel version has minor effects on the
native performance since this benchmark rarely issues sys-
tem calls. The VMFUNC-only solution incurs 27% overhead
when the domain number is 4. Compared to EPK, its higher
overhead comes from two sources: one is VMFUNC is slower
than WRPKRU; the other is more TLB misses (its dTLB and
iTLB misses are 1.34× and 3.34× of EPK’s, respectively).
When the domain number increases to 64 and 128, EPK’s
overhead also increases to 32% and 44% because more EPTs
and EPT switches are required. Specifically, when there are
64 domains, 78% of domain switches in EPK involve EPT
switches. If accessing different domains sequentially instead
of randomly, EPK’s overhead is below 10% (3% for huge
page) when the domain number is no over 60.

Figure 5b shows the performance when there are multiple
threads on different cores and each thread accesses 15 differ-
ent domains. EPK’s overhead remains below 5% as the thread
number increases, which is significantly lower than that of
the VMFUNC-only solution (41% to 51%).

We further analyze the overhead of the three approaches in
terms of the time cost (the part that exceeds the native time):
the switching time (direct cost) and the rest time overhead
incurred by the pollution on CPU internal structures including
TLBs and caches (indirect cost). The experiment is one thread
operates on the tree in each domain sequentially to complete a
fixed amount of operations. Figure 5c presents the breakdown.
The VMFUNC-only solution brings about 1.2× time overhead
when the domain number exceeds 8. Its indirect cost remains
around 0.8× because the TLB miss rate is almost stable. The
page table updating operations of libmpk leads to both high
direct cost and indirect cost (not only incurs TLB misses
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but also leads to intensive cacheline pollution). EPK causes
0.23× (0.13× for huge page) indirect cost when there are 64
domains due to more than 4 EPTs, which is still better than
others, and causes much lower cost for fewer domains.

Note that the domain switch frequency is proportional to
the throughput in the presented benchmarks. We also con-
duct an experiment on Linked List (Figure 5d): each list is
separated into one domain, and one thread performs 10 oper-
ations (search, insert, delete) in a random list for each time.
The switch frequency is less than 1,400 times per second.
libmpk still introduces 65.1% performance overhead when
there are 32 domains and each domain is 256 MB. The other
two approaches cause unnoticeable overhead.

Last, Figure 5e shows the overhead (in terms of the time
cost) of different approaches as the domain size increases. In
this experiment, each hash table resides in one domain (32 do-
mains), and one thread keeps performing an operation (search
or insert) in one random domain. We gradually increase the
domain size by adding more buckets/key-value pairs in each
hash table. The overhead of libmpk increases as the domain
size grows, as expected, whereas the overhead of EPK and the
VMFUNC-only solution decreases because the native perfor-
mance decreases when more memory involves. Specifically,
when each domain is 256 MB, the overhead of the latter two
are 1.3% and 4.7%, respectively.

Virtualization Cost. Virtualization brings performance
overhead to applications, especially when the working set is
large and TLB misses are frequent. For example, when the
domain size in hash table is configured as 16KB or 128MB,
the virtualization overheads are 2.1% and 9.0%, respectively.
When a VM application uses EPK, the virtualization cost is
not accounted on EPK. Otherwise (in bare metal), the virtual-
ization cost should be included in the overhead of EPK. Nev-
ertheless, a thin virtualization layer instead of a full-fledged
hypervisor can minimize the virtualization cost [22].

5.2 OLTP Benchmarks

TATP [43] is an online transaction processing (OLTP) bench-
mark. In the experiment, we use the above B+-tree as the data
store and create four threads to execute transactions (three
read-only and three read-write ones). We store a fixed amount
of initial data in different domains, and each thread switches
to the corresponding domain before executing one transaction.
The max domain number is 80 and the size of each domain
is 512MB. Figure 5f presents the throughput as the domain
number for each thread increases from 1 to 20. The native
throughput is in a decreasing trend along with the increase of
domain number because more data weakens the cache local-
ity. EPK’s overhead is within 7%, while the VMFUNC-only
solution incurs up to 32% overhead. We also run single-thread
TATP with libmpk. Similar to B+-tree test-1, the overhead of
libmpk is over 99% when the domain number exceeds 15.

TPC-C [18] is another OLTP benchmark in which there

are multiple warehouses. We isolate different warehouses as
well as their associated data in different domains. The max
domain number is 128 and the size of each domain is 400MB.
According to its specification, 7.2% of the transactions up-
date multiple warehouses simultaneously. There are also four
threads executing the transactions. When each thread oper-
ates on less than 16 domains, EPK achieves almost the same
throughput as the native (0.6% overhead). The overhead is
lower than that in TATP because the transactions in TPC-
C are more heavyweight. When each thread operates on 32
domains, the overhead of EPK becomes 3.2% as VEs are trig-
gered for supporting transparent multi-domain access. The
other approaches are infeasible in this experiment due to the
lack of the support of multi-domain access.

6 Case Study: Boosting IPCs in Microkernels

6.1 HyBridge

Different from monolithic OSes which run all the OS modules
in the kernel-level, microkernels leave minimal functionalities
in the kernel while running all other OS modules (referred to
as system servers below) such as file systems, network stacks,
and device drivers into separated user-level processes. Inher-
ently, microkernels embrace better security and fault isolation,
but leads to non-negligible communication cost at runtime.
Specifically, since system servers are user-level processes, the
interactions between two servers or between an application
and a server require inter-process communication (IPC). In
contrast, on monolithic OSes (e.g., Linux), the interaction
between two OS modules only requires function calls, and
the interaction between applications and the OS can be as fast
as about 150 cycles (syscall and sysret). So there has been a
long line of research to reduce the cost of IPC to bridge the
performance gap between microkernels and monolithic OSes.

Server0 Server1APP

Server0 Server1

APPUser

Kernel

(sqlite) (xv6fs) (ramdisk)

Figure 6: Traditional IPC flow on microkernels is shown on
the left, and IPC with UnderBridge is shown on the right.

A most recent IPC design called UnderBridge [22] retrofits
Intel MPK to optimize (synchronous) IPC. For reducing the
cost of IPC between an application and a server, it pulls sys-
tem servers from user-level processes into the kernel address
space as shown in Figure 6. Besides, it leverages Intel MPK
to ensure the isolation between system servers in the kernel,
and the IPCs between them are based on WRPKRU and thus
greatly optimized. However, due to the limitation of MPK
memory domains, it can only run limited system servers in the
kernel and accelerate IPCs to them (issue-1). Also, although
it can reduce the privilege switches during IPCs between ap-
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plications and servers, the page table switches are still needed
because it requires a separate kernel page table (issue-2).

Since EPK can construct even thousands of isolated mem-
ory domains efficiently and enable fast domain switch at user-
level, we propose EPK-based HyBridge for boosting IPCs for
microkernels, which is inspired by UnderBridge while fixing
the two issues of UnderBridge. As shown in Figure 7, system
servers run at user-level, and each one exclusively takes one
or more memory domains for holding its own memory, in-
cluding code, data, stack, and heap. Thus, one system server
cannot access others’ private memory, just like when they
are isolated in different processes while IPCs are based on
domain switches.

Cross-server IPC. The cross-server IPCs only happen be-
tween system servers that need to interact with each other.
For example, a file system communicates with a disk driver
while a network stack does not. This also matches the domain
affinity in EPK. Therefore, the microkernel can run the related
system servers in the same EPT. When two servers establish
an IPC connection, the microkernel will map an IPC gate,
i.e., a piece of code, for them. During an IPC invocation, the
gate will transfer the control flow from the caller to the callee.
Specifically, it saves the caller’s execution states, then exe-
cutes WRPKRU to switch to the callee’s domain, and restores
the callee’s execution states. Similarly, it does the reverse
procedure when the IPC returns. HyBridge also allows two
servers to share memory for exchanging data by assigning a
free memory domain to them, e.g., shared memory domain 4
in Figure 7.

Trampo-
line Servers Trampoline

APP Server0 Server1 Server2

Microkernel

dom: 1

shm: 4

dom: 2

shm: 4

dom: 3

shm: -

EPT-0 EPT-1 EPT-n

Other

Servers

Figure 7: The overview of HyBridge. The numbers after
colons are domain IDs. Shared memory is short as shm.

Application-to-server IPC. Applications execute in differ-
ent processes (in EPT-0) just like before while several system
servers can run in one process (across one or more EPTs),
which means each application has a unique guest CR3 (GPA)
while multiple servers share one. Since an application and a
server run in different EPTs, the IPCs between them need EPT
switching. HyBridge attaches a trampoline in the EPTs for
running servers and maps the trampoline into an application
when it asks for establishing an IPC connection with some
server. The trampoline plays the role of the IPC gate and uses
VMFUNC to switch between the caller and the callee. Though
VMFUNC can directly switch EPT, it does not change guest
CR3. However, for an application-to-server IPC, the caller
and callee use different CR3 (CR3-App and CR3-Server). So,

besides mapping the trampoline, HyBridge also maps CR3-
App (GPA) to the HPA of CR3-Server in the server’s EPT
during the IPC establishment. In this way, the HPA mapping
for the guest CR3 is transparently changed after executing
VMFUNC, i.e., the guest page table is switched from the ap-
plication to the server. When an application invokes an IPC,
the trampoline saves the caller’s execution states (executes in
EPT-0), executes VMFUNC (switches the EPT), and restores
the callee’s execution states (executes in server’s EPT).

Security Enforcement. Besides memory isolation, Hy-
Bridge employs additional security mechanisms to achieve
the same security guarantee as original microkernels. Com-
pared with original IPC designs, HyBridge makes an untrusted
system server have two more potential attack vectors. One is
that a server may bypass the memory isolation by maliciously
executing WRPKRU or VMFUNC and then access others’
memory. The other is that a server may issue arbitrary IPCs
to other servers by maliciously executing the trampoline code
without the corresponding capabilities.

HyBridge eliminates the two attack vectors as follows.
First, it utilizes binary scanning and rewriting to ensure that
each server contains no WRPKRU or VMFUNC instructions
during binary loading. Meanwhile, it adds sanity checks in
the IPC gates for ensuring the argument of WRPKRU is le-
gal, which is similar as ERIM [46]. So, a compromised or
malicious server cannot illegally execute these two instruc-
tions to retrieve unauthorized memory permissions even with
return-oriented programming (ROP). Second, HyBridge uses
a token-based mechanism to authenticate IPC invocations
as SkyBridge [37] does. Considering control flow hijacking,
trampolines can be executed arbitrarily or it is even possible to
jump into the middle of the trampoline, i.e., using VMFUNC
to switch to any EPT. Although they cannot be misused to
break the memory isolation, an untrusted server may issue
arbitrary IPCs by invoking them. To prevent this, HyBridge
lets a server generate a random 64-bit token for a registered
client (another server or an application) when building the
IPC connection, and a client needs to pass the token during
IPCs for authentication. The server only serves the IPC re-
quests with legal tokens, so the problem of arbitrary IPCs can
be avoided. Moreover, HyBridge also prevents the occurrence
of VMFUNC in applications by scanning and rewriting the
binary code. Thus, an application can only switch to system
servers through the mapped trampoline.

6.2 Experiments

We implement HyBridge on three well-known microkernels,
Zircon [4], seL4 [10], and Fiasco.OC [3], to assess its effec-
tiveness. Besides, we also compare it with SkyBridge [37]
which runs system servers in different EPTs and imple-
ments kernel-bypass IPCs based on VMFUNC, and Under-
Bridge [22]. We deploy the thin virtualization layer from
SkyBridge while applying extensions needed by three IPC de-
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Figure 8: Normalized throughput of SQLite3 on different microkernels. KPTI is short for kernel-page-table-isolation.

signs. We evaluate the performance of SQLite3 v3.23.0 [11],
a database application, after applying different IPC mecha-
nisms on different microkernels. For severing SQLite3, we
run two system servers, a file system named xv6fs [16] and a
RAMdisk. When SQLite3 operates a storage file, it will first
invoke the xv6fs server by an application-to-server IPC; then,
the xv6fs will access RAMdisk through cross-server IPCs.
We also simulate the performance of a monolithic kernel by
running system servers in the kernel and connecting them
with function calls.

Figure 8a, 8b and 8c present the normalized throughput
on the three microkernels. The native performance of each
microkernel is set as the baseline. Because Zircon has the
slowest native IPC among the three microkernels since it in-
cludes scheduling overhead in IPCs, HyBridge can provide
the highest speedup for it, i.e., more than 9× speedup for three
database operations. The performance improvement of query
operations is relatively small because SQLite3 has an inter-
nal cache of recent data and may handle the queries without
issuing IPC requests. For seL4 which optimizes IPC perfor-
mance extensively, HyBridge can also improve the throughput
(except query) to more than 2.5× of the native.

Besides, HyBridge can outperform SkyBridge by up to 66%
because most IPCs issued from SQLite3 to xv6fs involve
multiple cross-server IPCs between xv6fs and RAMdisk,
whereas the cross-server IPCs are more lightweight in Hy-
Bridge. Specifically, an cross-server IPC takes 110 and 437
CPU cycles in HyBridge (WRPKRU-based) and SkyBridge
(VMFUNC-based), respectively. In this benchmark, HyBridge
only shows slightly higher performance than UnderBridge
since cross-server IPCs dominate, while it has more advan-
tage over UnderBridge in the application-to-server IPC (e.g.,
527 vs. 723 CPU cycles when implemented on our research
microkernel, ChCore [22]) owing to no CR3 changing.

7 Other Related Work

Many studies [15, 19, 27, 36, 42, 48, 58] leverage instruction
instrumenting to achieve memory isolation, which may incur
non-trivial overhead. Many other studies [25, 27, 32, 35, 39]
utilize the memory management unit (MMU) to check mem-
ory accesses efficiently. Specifically, they divide a process
into different compartments and assign each one an individual
(extended) page table. However, switching between compart-

ments requires (extended) page table switching, which can
be costly when the cross-boundary invocation is frequent.
Twizzler [14] is a pioneer data-centric OS for NVM and uses
EPT/VMFUNC to create different memory domains for NVM
isolation. Differently, EPK focuses on solving the challenges
of combining MPK and EPT/VMFUNC and outperforms a
VMFUNC-only solution. Besides, recent work [28, 51] har-
nesses hardware features like Supervisor-Mode Access Pre-
vention (SMAP) or underused intermediate privilege levels
(Ring1 and Ring2 on x86) to achieve efficient intra-process
memory isolation. Yet, they can only provide two isolated
memory domains.

Prior work [21, 47, 52, 54] also proposes architecture de-
signs to facilitate efficient intra-process memory isolation,
which, however, is not achievable on commodity machines.
PLB [53] proposes architecture changes which differs from
Intel MPK for supporting scalable domains but requires vir-
tually indexed cache which may cause performance issues.
Besides Intel, both ARM (ARMv7) and AMD propose similar
features of memory domains and face the same scalability
problem of the domain number. The basic idea of EPK is
feasible to be extended to them as they also support 2-stage
address translation. Yet, for efficiency, hardware-assisted fast
switching (currently commercially unavailable) of stage-2
page table is needed on the two architectures.

An orthogonal study [17] shows that some system calls can
be used to break the MPK isolation, so the OS may need to
be aware of MPK in the future or the applications needs to
incorporate other mechanisms like system call filtering [12].

8 Summary

This paper presents EPK which first combines the usage of
MPK and hardware virtualization features to achieve scalable
and efficient intra-process memory isolation. The case studies
demonstrate various potential usages of EPK.
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