
sIOPMP: Scalable and Efficient I/O Protection for
TEEs

Erhu Feng1†⋄, Dahu Feng1‡, Dong Du†⋄, Yubin Xia†∗⋄, Wenbin Zheng§, Siqi Zhao§, Haibo Chen†⋄
†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§Alibaba DAMO Academy
‡Department of Precision Instrument, Tsinghua University

∗Shanghai AI Laboratory
⋄Engineering Research Center for Domain-specific Operating Systems (MoE)

Abstract
Trusted Execution Environments (TEEs), like Intel SGX/TDX,
AMD SEV-SNP, ARM TrustZone/CCA, have been widely
adopted in prevailing architectures. However, these TEEs
typically do not consider I/O isolation (e.g., defending against
malicious DMA requests) as a first-class citizen, which may
degrade the I/O performance. Traditional methods like us-
ing IOMMU or software I/O can degrade throughput by at
least 20% for I/O intensive workloads. The main reason is
that the isolation requirements for I/O devices differ from
CPU ones. This paper proposes a novel I/O isolation mecha-
nism for TEEs, named sIOPMP (scalable I/O Physical Mem-
ory Protection), with three key features. First, we design a
Multi-stage-Tree-based checker, supporting more than 1,000
hardware regions. Second, we classify the devices into hot
and cold, and support unlimited devices with the mountable
entry. Third, we propose a remapping mechanism to switch
devices between hot and cold status for dynamic I/O work-
loads. Evaluation results show that sIOPMP introduces only
negligible performance overhead for both benchmarks and
real-world workloads, and improves 20% ∼ 38% network
throughput compared with IOMMU-based mechanisms or
software I/O adopted in TEEs.
ACM Reference Format:
Erhu Feng, Dahu Feng, Dong Du, Yubin Xia, Wenbin Zheng, Siqi
Zhao, Haibo Chen. 2024. sIOPMP: Scalable and Efficient I/O Protec-
tion for TEEs. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3620665.3640378

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640378

1 INTRODUCTION
Trusted Execution Environments (TEEs) represent a cur-
rent area of intense interest, with examples including In-
tel SGX/TDX [5, 29], AMD SEV [6, 49, 71], Arm Trust-
Zone/CCA [1, 12], and RISC-V Penglai [38] and Key-
stone [52]. TEEs aim to provide secure execution environ-
ments for applications and virtual machines, guarantee-
ing CPU and memory isolation. Meanwhile, the I/O re-
quirement becomes increasingly important, as the state-of-
the-art TEEs run distributed MapReduce [37, 69, 83], en-
crypted database [54, 65, 86] and confidential machine learn-
ing [48, 56, 88] applications, which heavily depend on the
I/O performance. A pressing demand is to support the Direct
Memory Access (DMA) in TEE systems, but it may allow
malicious devices to access secure memory [19, 21, 36, 75],
which bypasses the CPU side check. As a result, TEEs must
account for the isolation of device accessed memory and
expand the security check to the SoC level.
A common method to defend against malicious DMA

requests is to use an I/O Memory Management Unit
(IOMMU) [16, 43, 47, 81]. The IOMMU provides a virtual
address space for devices, which can only access the physi-
cal memory through the virtual address. This way, malicious
devices cannot access arbitrary physical addresses that are
restricted by the IOMMU.

However, traditional IOMMU is not designed for pure se-
curity consideration — it also supports address and interrupt
remapping. Therefore, it is not suitable to include the whole
IOMMU into the trusted computing base (TCB) of TEE sys-
tems because of its inherent shortcomings. First, IOMMU suf-
fers from performance issues in heavy workloads, due to the
costly IOTLB invalidation using the asynchronous command
queue. Previous work [59, 60, 64] has shown that IOTLB
flush can cause 20% ∼ 30% overhead for I/O throughput.
Second, IOMMU only supports page-level isolation, which is
not adequate for DMA scenarios where the memory buffer
can be an arbitrary size. In the network stack, there are many
sub-page packets that are hard to isolate by the IOMMU [61],
requiring an additional copying. Third, IOMMU requires

1The two authors contributed equally to this work and should be considered
co-first authors.

1061

https://doi.org/10.1145/3620665.3640378
https://doi.org/10.1145/3620665.3640378
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620665.3640378&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

complex configuration of page tables and I/O virtual ad-
dresses (IOVAs), which expose vulnerabilities for malicious
devices. For example, Theodore Markettos et al. [58] have
exploited vulnerabilities from a shared data structure, de-
scriptor ring, to bypass the IOMMU check. Finally, the poor
scalability of IOMMU design, such as IOVA allocation and
IOTLB, becomes a bottleneck [51] in the scenario of multiple
devices and tenants. Because of these limitations, current
TEEs do not use (or only use) traditional IOMMU as the basic
I/O protection mechanism due to performance degradation
concerns and the small TCB necessity.
TEEs prefer to use region-based I/O isolation, memory

encryption, or a combination of both to defend against the
DMA attack. In TrustZone [12], all hardware resources are
split into a secure world and a normal world, and only com-
ponents in the secure world can access secure hardware
resources. This prevents devices in the normal world from
accessing secure memory, even through DMA requests. How-
ever, this region-based isolation mechanism is limited by the
number of memory regions (up to 16 regions) and the differ-
ent roles of devices. Other TEE systems, such as SEV [49],
use encrypted memory to protect against malicious DMA
access. Since data in secure memory is encrypted, a device
cannot decrypt the ciphertext to plaintext without the en-
cryption key. However, using memory encryption alone (w/o
integrity tree) cannot defend against replay attacks, which
can roll back a stale memory region to the same address.
Some state-of-the-art TEEs adopt the memory encryption
and I/O isolation simultaneously, such as TDX [5], SGX [29],
SEV-SNP [71], and CCA [1]. SEV-SNP and CCA propose ad-
ditional page-based I/O isolation mechanisms: RMP (Reverse
Map Table) and GPC (Granule Protection Checker), which
are new components inside IOMMU or sMMU. However,
they still face same problems as the IOMMU: asynchronous
entry invalidation, page-level isolation, and lack of scala-
bility. Moreover, memory encryption also blocks legitimate
DMA requests, which require an additional memory copy-
ing that degrades the I/O performance (e.g., 23% overhead
introduced in bifrost [53]).

To address the above problems, TEE systems have further
proposed TEE-IO specifications: SEV-TIO [15], TDX-TEE-
IO [45]. TEE-IO formulates the procedure of device attes-
tation, secure data transferring between PCI-e stubs, etc.
With this enhancement, it allows a trusted PCI-e controller
to access the plaintext of the TEE data inside SoC, and per-
form the DMA request directly. Although TEE-IO proposes a
method to enable DMA capabilities for TEEs with encrypted
memory, it fails to address the performance issues associated
with I/O isolation (especially in the dynamic workload), as it
still relies on existing I/O isolation mechanisms like RMP. In
summary, TEE-IO is orthogonal to the I/O isolation we dis-
cussed in this paper, and an efficient I/O isolation mechanism
for TEEs is urgently needed but still missing.

After an in-depth study of existing I/O isolation mecha-
nisms, we observe that they are usually derived frommemory
isolation mechanisms used on the CPU side. For example,
modern TEEs adopt the same isolation mechanism (i.e., GPC
or RMP) for devices as the one used in the CPU. However, a
key insight is that the memory isolation requirement for DMA
is quite different from that on the CPU side. In the DMA sce-
narios, the device accesses memory must be contiguous or
be restricted to several contiguous ranges (in scatter-gather
mode). Therefore, paging is inefficient for the I/O isolation,
as it lacks the abstraction for sub-page or super-page re-
gions. However, the region-based isolation also has some
inherent challenges: (1) It is hard to support a large number
of memory regions, as the current powerful DMA controllers
can support 512 or 1024 scatter buffers [41, 44]. (2) It is un-
clear how to support an unlimited number of devices when
considering device virtualization and plug-in devices.
This paper presents a high-performance and scalable

I/O isolation mechanism called sIOPMP (scalable IOPMP).
sIOPMP uses novel and I/O-specific mechanisms to address
the following challenges. First, it is difficult to check more
than 1000 memory regions without compromising the link
rate for devices. To solve this problem, we observe that cur-
rent devices care more about I/O throughput than latency
(i.e., a few cycles increase can be ignored [79] even under
the CXL [2]), so we design a Multi-stage-Tree-based checker
to support more than 1000 hardware regions with only a
negligible latency overhead. Second, it is also challenging to
support unlimited devices with only limited resources on SoC.
We observe that although there may be many devices in the
whole system (virtual functions and plug-in devices), the hot
devices running concurrently at the same time are few, which
are usually limited by the capacity of CPU cores and bus sys-
tem. Based on this observation, we propose the mountable
regionmechanism that can support unlimited number of cold
devices and achieve line-rate performance for hot devices.
Third, it is impractical to assume that the workloads for de-
vices are immutable, thus the device status may change at
different times. To support dynamic workloads, we observe
that Content Addressable Memory (CAM) can be searched
by the content and return its address within one cycle. There-
fore, we design a zero-cost remapping mechanism based on
CAM to dynamically switch device status between cold and
hot, according to the different I/O workloads.

We have implemented a prototype of sIOPMP in the chip-
yard [13], which is a customized RISC-V SoC generator. Since
there is no existing IOPMP implementation in RISC-V SoC,
we first port the PMP implementation to IOPMP as our base-
line. Then, we extend the IOPMP implementation to sIOPMP
and evaluate it in the real system. Notably, the sIOPMP de-
sign is not tightly coupled with RISC-V, and it can be easily
ported to other ISAs. We choose RISC-V as our platform only

1062

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Entry 0
.
.
.

Entry x

Entry x+1
.
.
.

Entry x+y
.
.
.

MD0

MD1

MDm

High

Low

Pr
io

rit
y

MD[62:0]L

MD[62:0]L

MD[62:0]L

SRC0MD

SRC1MD

SRCnMD
. .

 .
MD0CFG.T

MD1CFG.T

MDm-1CFG.T

MDmCFG.T

IOPMP Entry Table

SRC2MD Table

TLMD0 Index

TLMDm Index

MDCFG Table

. .
 .

Figure 1. IOPMP Configuration.
because it is open-sourced. We also extend the secure moni-
tor in Penglai enclave [38] to support the sIOPMP configura-
tion, and provide the ownership-based interface for the upper
software. The evaluation results show that sIOPMP can sup-
port more than 1000 hardware regions without compromis-
ing the timing constraint (clock frequency), and does not sac-
rifice the I/O throughput both in the micro-benchmark and
real-world applications. Compared with state-of-the-art I/O
isolationmechanisms (e.g., IOMMU, SWIO, TEE-IO), sIOPMP
improves more than 20% network bandwidth (iperf [17]). As
for the hardware cost, sIOPMP only consumes extra 1.9% of
LUTs and FFs supporting more than 1024 entries.

2 BACKGROUND and MOTIVATION
2.1 DMA Attack
Direct Memory Access (DMA) [23, 73, 90] was proposed to
improve I/O performance by enabling devices to access phys-
ical memory directly, without involving the CPU. However,
DMA technology has also introduced another attack sur-
face from the device side. A malicious device can exploit the
DMA-supported protocol (e.g., PCI-e, thunderbolt) to steal se-
crets (e.g., passwords, disk encryption keys) stored in system
memory [19, 21, 25, 34, 36, 75]. Furthermore, with the devel-
opment of current TEE systems, DMA attacks have become
more severe as devices can breach the isolation boundary
that the secure CPU core has established.

2.2 IOPMP
The Input/Output Devices Physical Memory Protection Unit
(IOPMP) [4] is designed to regulate access issued from the
bus master and defend against malicious DMA attacks. In the
IOPMP design, each master or group of bus masters with the
same access permissions on the bus has a unique identifier
called the source ID (SID). Especially, if a master has multiple
channels with different permissions or can run in different
privilege modes (such as the processor), each channel or
privilege mode should have its own SID.

In addition to the SID, IOPMP uses memory domains (MD)
to organize the physical memory that each device can access.
A memory domain contains several contiguous memory re-
gions, and each memory region can have different access

permissions. For example, a NIC device can associate with
a memory domain, which contains three memory regions:
an RX region, a TX region, and a region of control registers.
The IOPMP entry array (right half in Figure 1) is the most
fundamental structure of an IOPMP. Each IOPMP entry is
indexed from zero and defines a rule when checking a trans-
action. The entry includes a memory region and read/write
permission for that region. Each IOPMP entry belongs to
exactly one memory domain, and a memory domain may
have multiple IOPMP entries. Any SID associated with an
MD also associates with all IOPMP entries belonging to that
memory domain. IOPMP entries have static priorities, where
the lowest-numbered entry has the highest priority. When
a transaction is issued, the IOPMP checks the transaction
against the IOPMP entries in order of their priorities. If the
transaction matches an IOPMP entry, the IOPMP checks the
read/write permission inside that IOPMP entry. For instance,
suppose memory domain 0 has two IOPMP entries: entry
0 and entry 1. Entry 0 has No_PERMISSION for memory
address A, while entry 1 has READ_PERMISSION. Accord-
ing to priority, a device associated with memory domain 0
ultimately lacks access permission to address A.

IOPMP has several tables of configuration registers to con-
trol its behavior, as shown in Figure 1. The SRC2MD table
(left top in Figure 1) identifies the memory domains associ-
ated with a given SID. This table has a register SRCsMD,
which has a 64-bit space and two fields: SRCsMD.L and
SRCsMD.MD. SRCsMD.L is a sticky lock to this register,
and SRCsMD.MD is a bitmapped field that shows whether
a memory domain m (index m in bitmap) is associated with
this SID. The MDCFG table (left bottom in Figure 1) defines
the relationship between IOPMP entries and memory do-
mains. This table has an array of configuration registers
where the register MDmCFG is for memory domain m. In
theMDmCFG register,MDmCFG .T indicates the last index
of IOPMP entries belonging to the memory domain m. More
specifically, an IOPMP entry with index j belongs to MD m
ifMDm−1CFG .T ≤ j < MDmCFG .T , wherem > 0. Memory
domain 0 owns IOPMP entries with index j < MD0CFG .T .
To summarize, the IOPMP design uses priority regions

with configuration tables to isolate memory domains from
devices. However, it still faces challenges such as limited
hardware region registers and priority check overhead.

2.3 Related Work: Other I/O Isolation Mechanisms
We summarize the I/O protection mechanisms for cur-
rent TEE systems in Table 1. IOMMU-strict and IOMMU-
defer [57, 64] are two configurations for IOMMU used in the
Linux kernel (after version 4.7). IOMMU-strict invalidates the
IOTLB for every unmapping operation, while IOMMU-defer
delays the IOTLB invalidation and batches the unmapping
operations. However, IOMMU-defer trades off security for
performance and creates a potential attack window for mali-
cious devices to access unmapped pages. To balance safety

1063

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

Table 1. TCB size: “large” TCBs typically include an untrusted kernel, while “small” TCBs only include trusted hardware and
firmware; Defended attack: The types of attacks that can be defended against, e.g., malicious DMA read/write/replay attacks;
Heavy load: The workload with multiple devices and frequent mapping operations; Light load: The workload with single
device and fixed memory mapping; # of device: The number of devices supported in the TEE; # of mem: The number of
protected memory region for devices; Granularity: The granularity of protected memory regions; Allocation: The protected
memory regions can be allocated dynamically or not.

Methods Security Performance Scalability Flexibility
TCB size Defended attack Heavy load Light load # of device # of mem Granularity Allocation

IOMMU

IOMMU-strict [64] Large read/write/replay Bad Good Unlimited Unlimited Page Dynamic
IOMMU-defer [57, 64] Large No Medium Good Unlimited Unlimited Page Dynamic
Shadow buffer [59] Large read/write/replay Medium Good Unlimited Unlimited Sub-page Static

DAMN [60] Large read/write/replay Good Good Unlimited Unlimited Sub-page Static

Region IOPMP [4] Small read/write/replay Good Good Limited Limited Sub-page Dynamic
TrustZone [12] Small read/write/replay Good Good Limited Limited Sub-page Static

Enc+Iso SGX [29] Small read/write/replay Bad Bad None Limited Page Dynamic
TDX,SEV [5, 71] Small read/write Bad Bad None Unlimited Page Dynamic

TEE-IO SEV-TIO [15],TDX-TEEIO [45] Small read/write/replay Bad Good Unlimited Unlimited Page Dynamic
sIOPMP Small read/write/replay Good Good Unlimited Unlimited Sub-page Dynamic

and performance, state-of-the-art solutions [59, 60] use fixed
mapping for devices to reduce the overhead of IOMMU un-
mappings, but lose the flexibility. Besides the performance
overhead, IOMMU-based designs also increase the TCB size,
as it handles the I/O address and interrupt remapping. There-
fore, current TEE systems [1, 5, 12, 29, 38, 71] do not use the
traditional IOMMU as the secure module for I/O isolation.
Instead, they introduce an additional component like RMP
and GPC solely for device access check.
Some TEE systems [4, 12, 20, 24, 30, 39, 70] use region-

based memory isolation for devices. However, this approach
has scalability issues — a limited number of isolated mem-
ory regions and device roles. For instance, TrustZone only
supports 16 memory regions with two device roles: secure
and normal. IOPMP only supports 64 source IDs for devices,
when considering the device virtualization, this limitation
becomes more severe. SEV and others [76, 80] rely on mem-
ory encryption to prevent malicious DMA access. However,
memory encryption causes both performance and hardware
resource overhead [37, 40, 42, 67, 68, 77, 78], and cannot pro-
tect fromDMA-based replay attacks (i.e., without an integrity
tree). Therefore, current TEE systems adopt both memory
encryption and additional I/O isolation to defend against
the malicious DMA attacks. For example, CCA needs a GPC
(Granule Protection Check) module on each master node
to translate the device’s physical address to the world tag
(Normal, Secure, Realm and Root). SEV-SNP needs a RMP
(Reverse Map Table) in the IOMMU to verify the integrity of
the page mapping and its ownership. However, these page-
based checks still face challenges similar to those faced by
the IOMMU, such as the high overhead of TLB invalidation,
poor scalability and lack of sub-page isolation. Moreover,
since the isolated device memory is still encrypted and can-
not be accessed by device currently, it requires additional
steps like copying the device’s data to a bounce buffer, and
leveraging the hypervisor to mediate the I/O operations.

To enable a trusted device to access its memory directly
inside TEE, future TEE systems (e.g., SEV-TIO [15] and TDX-
TEEIO [45]) have extended the TCB to include the PCI-e
controller and establish trusted I/O with authenticated de-
vices using the PCI TEE Device Interface Security Protocol
(TDISP). However, TEE-IO only solves the problem of how
to support legitimate device access inside TEE. For illegal
device operations (i.e., DMA replay attacks), it still relies on
the I/O isolation methods mentioned before (e.g., RMP and
GPC), which means it is inefficient during the dynamic I/O
workload with frequent DMA map/unmap operations (e.g.,
network). In summary, TEE-IO is orthogonal to I/O isolation,
and we need to consider both in future TEE designs.
We propose sIOPMP, an efficient and scalable I/O pro-

tection mechanism for TEE systems. sIOPMP overcomes
limitations of region-based isolation by supporting unlim-
ited devices and more than 1000 priority entries (matched
with the number of scatter-gather buffers in the DMA con-
troller), and introduces a negligible performance overhead
in both light and heavy workloads. Moreover, sIOPMP also
ensures a small TCB size by including only trusted hardware
and firmware components, and provides ownership-based
interfaces for the management.

3 DESIGN OVERVIEW
3.1 Design Goals
• Performance: Our I/O protection mechanism’s perfor-
mance should closely match the native I/O performance.
Specifically, our design should not sacrifice the link rate
for devices, and introduce a negligible overhead for device
throughput even in the heavy workload.

• Security: Our design should protect secure memory from
malicious devices issuing arbitrary DMA requests. Addi-
tionally, due to the large Trusted Computing Base (TCB)
with a significant amount of unauthenticated code in the

1064

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

operating system in the Rich Execution Environment (REE)
side, we cannot trust the OS to configure DMA correctly.

• Scalability: Our design should be flexible enough to sup-
port an unlimited number of devices, as well as to provide
sub-page memory isolation. Considering the virtualization
extension for devices that can provide a large number of
virtual functions (VF), hard-coding the maximum num-
ber of devices is not acceptable. Additionally, our design
should provide enough hardware regions when consider-
ing the scatter-gather mode in DMA requests.

3.2 Threat Model
Our system’s TCB only comprises in-SoC modules (i.e., CPU
cores, sIOPMP extension, etc.) and a lightweight firmware:
the secure monitor. We assume that any off-chip devices
such as GPU, accelerators, smartNIC can be compromised,
and we do not trust any software running in the REE.
Privilege software attacks:We do not trust any code in the
untrusted OS in the REE side. The untrusted OS may trigger
arbitrary DMA requests to access secure memory. What’s
worse, even if the kernel is not malicious, there is still a risk
of the OS being compromised through vulnerabilities in a
large number of device drivers that may not be properly
authenticated [31, 32, 62].
Malicious device attack: A device may be malicious and
issue arbitrary DMA requests. Some devices have their own
integrated DMA controllers and more programmable capa-
bilities [7–11] for their owners. Additionally, state-of-the-art
interconnection protocols like CXL [3] allow devices to ac-
cess data in a memory pool without notifying the host CPU.
As a result, a malicious device can steal or tamper with se-
crets in the system memory or TEE memory, breaking the
memory isolation assumptions.

Our system focuses on the DMA protection for TEEs, and
uses existing mechanisms [38, 66, 72] to protect the memory
isolation, secure interrupt, etc. However, we do not con-
sider physical attacks on DRAM, such as freezing memory,
memory snooping [14, 95], memory splicing [71], as well as
side-channel attacks [55, 84, 92, 93] inside the SoC. These
attacks are orthogonal to our design.

4 DETAILED DESIGN
We propose the sIOPMP, a novel I/O protection mechanism
for TEE systems that supports unlimited devices without
sacrificing I/O bandwidth. sIOPMP addresses two key issues
in prior work: First, it employs a Multi-stage-Tree-based
IOPMP checker (MT checker) to support more than 1000
priority regions without degrading the clock frequency. Sec-
ond, it leverages the extended IOPMP table with mountable
IOPMP to accommodate unlimited devices in the entire sys-
tem. Furthermore, sIOPMP also adopts a zero-cost remapping
mechanism to switch device status between hot and cold
under dynamic I/O workloads.

4.1 Multi-stage-Tree-based IOPMP

System Bus

Memory Bus

Control Bus

Front Bus

IOPMP
CHEKER

IOPMP
CHEKER

IOPMP
Table

SRCMD
Table

MDCFG
Table

DMA
Controller NIC SSD

HART PT
W

L1 Cache

L2 L2

HART PT
W

L1 Cache

PLICCLINTPeripheral
Bus

Figure 2. System architecture for the original IOPMP.
Challenges of nowadays IOPMP: Figure 2 illustrates the
system architecture of the IOPMP hardwaremodules [4]. The
IOPMP entry table stores priority memory regions which
are utilized to perform permission checks for each DMA
request starting from low priority to high priority (§2.2).
Priority regions provide more flexibility than non-priority
regions [46, 72], as they avoid permission conflicts among
different regions and use fewer region registers to isolate
more memory ranges. However, when dealing with a large
number of priority regions, a straightforward approach (e.g.,
linear check) might reduce the clock frequency (since prior-
ity region check is a combinational logic circuit), and thus
decrease the I/O bandwidth.

(a) IOPMP Pipeline

Auth

Addr

(b) Tree-based Arbitration

Linear Arbitration

Auth
Addr

4-level

4-level

High
Priority

High
Priority

Req

Req

REG

Stage-2 IOPMP

IOPMP
Checker

MT checkerStage-1

data data data

Addr

Auth

Addr

Monitor

Au
th

Ad
dr

D
at

a
St

ag
e

IOPMP TABLE

DMA
Request

Data

Data

Figure 3. Multi-stage-Tree-based IOPMP checker in
sIOPMP.

To address this problem, sIOPMP proposes theMulti-stage-
Tree-based IOPMP checker (MT checker): IOPMP pipeline
and tree-based arbitration.
IOPMP pipeline: Unlike PMP in the CPU core, IOPMP
checks DMA requests for devices which are usually
bandwidth-sensitive rather than latency-sensitive. Hence,
the pipeline design which is ignored for security check on
the CPU side can be applied on the device side. The IOPMP
checker takes the memory address, the requested data, and
the IOPMP entries as input, as shown in Figure 3 (a). A mask
filters the IOPMP entries to select the ones that are bound
with the current SID/DeviceID. Then the IOPMP checker ver-
ifies all the IOPMP entries in different pipelined stages and
stores the intermediate results in registers. After all pipeline
checks are passed, the IOPMP checker generates the final

1065

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

decision on whether this memory access is authorized or
not. The pipeline design on the device side also poses new
challenges. For instance, if we want to block the DMA trans-
action (see §5.3), the block state between the bus and the
IOPMP checker may be inconsistent (e.g., although we block
the DMA transaction in the bus, there may still be an existing
DMA transaction in the IOPMP checker due to the multi-
stage pipeline). Therefore, we add a monitor to maintain a
consistent view of the block state between the bus and the
IOPMP checker.
Tree-based arbitration: To check permissions according
to the priority regions, current designs (e.g., Rocket and
Boom) use linear logic to check permissions from low pri-
ority to high priority, as shown in the top part of Figure 3
(b). However, this method is not efficient when there are a
large number of priority regions, due to the high checking
latency. Moreover, it also requires more buffers to maintain
voltage drop (larger than threshold) and meet timing require-
ments due to its longer gate logic level count, therefore, it
needs more LUTs. In the MT checker, we propose a novel
checking scheme: tree-based arbitration, to reduce the check-
ing latency to the loд(N) level, as shown in the bottom part
of Figure 3 (b). With the tree-based arbitration, the IOPMP
checker compares permissions pair-by-pair according to the
priority and generates intermediate results. These intermedi-
ate results are then reduced in a tree structure circuit. Unlike
other works that may optimize the checking circuit using
the EDA tools in the backend, the tree-based arbitration is
implemented at the RTL level with more information and
human-involved optimization. For example, we can adopt
different tree structures to meet the different requirements
for timing (binary tree) and area (N-ary tree).
Indeed, the Multi-stage-Tree-based IOPMP checker com-

bines the benefits of both the IOPMP pipeline and tree-based
arbitration circuit to accelerate the IOPMP checking proce-
dure. The pipeline design faces a tradeoff between the num-
ber of cycles required for checking and the clock frequency
of the system. While, the tree-based arbitration circuit also
has an entry-number limitation. The MT checker combines
two designs that utilizes the tree-based arbitration as the
unit for the IOPMP pipeline. As a result, it can check a large
amount of IOPMP entries in a few IOPMP pipelines.
Summary: We analyze why the IOPMP checker becomes a
system bottleneck and optimize it with two key techniques.
The pipeline design divides a large IOPMP checker into
smaller ones, increasing the link rate for devices. Meanwhile,
the tree-based arbitration enables parallel verification of
IOPMP entries, processing more entries per cycle. By com-
bining these techniques, the MT checker expands the total
number of IOPMP entries without compromising clock fre-
quency and bandwidth.

4.2 Mountable IOPMP
Although the MT checker design can minimize the check-
ing overhead of IOPMP entries, the total number of IOPMP
entries cannot be increased indefinitely due to hardware
resource limitations. Moreover, the number of supported de-
vices is also limited, which is not suitable for virtual functions
and plug-in devices. When considering virtual functions, one
physical device can provide multiple virtual functions inter-
faces, so the maximum number of devices in use cannot be
determined. To address this problem, we propose the ex-
tended IOPMP table with mountable IOPMP entries. This
design comes from our observation that although the total
number of devices cannot be determined, the number of
simultaneous hot devices in the system is always limited.
Therefore, we can provide a fast path for these hot devices
but do not limit the number of total devices.
Figure 4 shows the design of the mountable IOPMP. Un-

like the IOPMP entry table or SRC2MD table, the extended
IOPMP table is reserved in protected memory and cannot
be accessed by unauthorized software or devices (In RISC-V
architecture, the extended IOPMP table can be protected by
the PMP [72]). Therefore, there is no hardware limitation
for the size of the extended IOPMP table, assuming that the
physical memory is sufficient.
The mountable IOPMP entry contains the extended

SID/DeviceID (eSID), index of associated memory domains,
and additional IOPMP entries. These are used when the de-
vice ID is not in the SRC2MD table, and sIOPMP will ini-
tiate a procedure called cold device switching. During this
procedure, the IOPMP checker generates a SID-missing in-
terrupt. The secure monitor handles this interrupt, fetches
the mountable IOPMP entries in the extended IOPMP table,
and loads eSID, memory domains, and IOPMP entries to real
hardware entries. Moreover, the cold device is always paired
with the last memory domain (MD62), and IOPMP entries
in this memory domain should be flushed during the cold
device switching. Since a cold device is rarely used, keeping
its IOPMP entries always in hardware is wasteful.

Once the eSID is loaded into the SRC2MD table, sIOPMP
can proceed with further checks on this DMA request for the
cold device. It first compares the eSID in the SRC2MD table
with the ID reserved in the DMA packet. If there is a match,
IOPMP checker masks the IOPMP entries that belong to this
cold device (the IOPMP entries in the last memory domain
and other memory domains associated with this device). Fi-
nally, the memory access permission is checked based on
these masked IOPMP entries. The mountable IOPMP intro-
duces an additional “mounting” overhead for the cold device
only in the first DMA request, and temporarily confers it a
fast path for I/O checks. Therefore, the mounting mechanism
is ideal if there is only one cold device running simultane-
ously.

1066

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

High

Low

MD[61:0]L

MD[61:0]L

MD[61:0]L

SRC0MD

SRC1MD

SRCnMD

. .
 .

SRC2MD Table

TLMD0 Index

TLMDm Index

MDCFG Table

MD[61:0] | MD62L

eSID

T=EndLMD62 Index

Extended IOPMP Table Format

eSID MD[61:0] Entry[0..n]
1024 0b00..01 rw|0x1000|64
1023 0b00..11 r|0x2000|64

513 0b10..01 rw|0x3000|16
512 0b11..01 rw|0x4000|32

Extended IOPMP Table

. .

. .
 .

L

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

eSRC1MD

Entry 0
.
.
.

Entry x

Entry x+1
.
.
.

Entry x+y
.
.
.

MD0

MD1

MDm

Pr
io

rit
y

MD0CFG.T

MD1CFG.T

MDm-1CFG.T

MDmCFG.T

IOPMP Entry Table

MD62

MD61CFG.T

MD62CFG.T

.

.

.

.

.

.

Figure 4. Mountable IOPMP supports unlimited number of devices.
Summary: The mountable IOPMP addresses the hardware
limitations of the number of IOPMP entries and SIDs for
devices. Unlike the original IOPMP design, the sIOPMP con-
siders both hot and cold devices and adopts different strate-
gies for them. The mountable IOPMP serves for cold devices
while supporting an unlimited number of devices. In contrast,
the original IOPMP design mistakenly considers all devices
as hot, leading to limitations in the number of devices.

4.3 IOPMP Remapping
Mountable IOPMP is capable of supporting an unlimited
number of devices with fixed hot devices in the entire system.
However, as hot devices may change in different workloads
and times, sIOPMP proposes a newmechanism called IOPMP
remapping, which can switch devices in sIOPMP between
hot and cold status.

DeviceID

DeviceID

DeviceID

DeviceID

DeviceID

Configure Module

MMIO

C
AM

DeviceID

MD[61:0]L

MD[61:0]L

MD[61:0]L

SRC0MD

SRC1MD

SRCnMD

. .
 .

SRC2MD Table

MD[61:0] | MD62L

eSID

. .
 .

L

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

eSRC1MD

Address Content

SID:1

SID:2

SID:3

SID:4

SID:5
Matched

Yes

No

Device2SID Table

DMA

1

0

1

1

0

LRU

Figure 5. IOPMP remapping: the CAM table records the
mapping between actual deviceID and SID.

By default, hot devices defined in sIOPMP are only associ-
ated with fixed SIDs (e.g., 0 to 62 in our implementation), and
any devices with an SID beyond these fixed values cannot be
treated as a hot device. This restriction is even more severe
in cloud computing, as hot devices are usually mutable and
bound with active VMs. If an active VM uses a device whose
SID is larger than the maximum SID, sIOPMP only treats it
as a cold device with performance degradation. To address
this limitation, we introduce the IOPMP remapping with an

additional table called DeviceID2SID, as shown in Figure 5.
DeviceID2SID records the mapping between the actual de-
vice ID and the SID used in sIOPMP. If a device is changed
from cold status to the hot status, we can reset the mapping
in the DeviceID2SID table and assign a new hot SID for it.

To ensure a fast and efficient SID lookup procedure (in the
critical path), we leverage the observation that although the
deviceIDmay have a large span, the number of SIDs is limited
(<63 in our implementation). Therefore, Content Addressable
Memory (CAM) is ideal for the DeviceID2SID table. CAM
compares input search data against a table of stored data and
returns the address of matching data. In the DeviceID2SID
table, the number of SIDs is fixed. Hence, the SID is seen as
the address, and the device ID is seen as the content, which
can be an arbitrary value. When receiving a DMA request,
the device ID will be searched in the DeviceID2SID table.
If there is a match, the retrieval SID will be used to index
the following SRC2MD table. Otherwise, we consider this
device ID as the eSID and match it with the value in the
eSID register. Currently, the CAM only has 63 entries (i.e.,
maximum SID is 62), which will not introduce any extra
cycles for I/O checks.
Besides, sIOPMP also adopts different strategies for hot

and cold device switching. In general, there are two main
methods: implicit switching and explicit switching. In ex-
plicit switching, an oracle knows which device is in the hot
status and which is not. Hence, it can explicitly set the device
ID to SID mapping. As for implicit switching, we implement
a clock algorithm (LRU approximation algorithm) in the De-
viceID2SID table with an extra LRU bit. When the secure
monitor frequently loads one device ID to the eSID register,
this device should be considered as a hot device. Secure mon-
itor will evict an inactive device in the DeviceID2SID table
according to the LRU bit, and map a hot SID for this device.
Thus, the cold-hot device switching is implicit according to
the device utilization. Thanks to these different strategies,
sIOPMP is well-suited for dynamic I/O workloads and can
adaptively adjust the hot and cold status of the device.

1067

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

Summary: IOPMP remapping provides a capability for dy-
namically switching a device in sIOPMP between cold status
and hot status. Without the IOPMP remapping mechanism,
the device status in sIOPMP is fixed and may be mismatched
with the real device status. In addition, IOPMP remapping
leverages an observation that although the device ID can
be a large number, the maximum SID is fixed. Therefore,
it adopts Content Addressable Memory (CAM) to store the
DeviceID2SID table, which will not introduce any additional
cycles for SID searching.

5 IMPLEMENTATION
5.1 Microarchitecture

MT
Checker

IOPMP Table

Mountable
IOPMP Entry

IOPMP Entry1
...

DeviceID2SID

MT
Checker

Fr
on

t B
us

Sy
st

em
 B

us

Pe
rip

he
ry

 B
us

Interrupt Bus

Info

PktsI
O

PM
P

MD
CFG

Master node

Slave node

SID
Block

eSID

Stage 1 Stage 2

IOPMP EntryN
SRC2MD

DMA

SID2Addr

MMIO

MMIOsIOPMP extension
Figure 6. The microarchitecture of sIOPMP design.
The microarchitecture of the sIOPMP design, as depicted

in Figure 6, consists of two major components: the MT
checker and several configuration tables. The MT checker
serves as the master node located before the front bus. Its pri-
mary role is to intercept all DMA requests originating from
the master devices and perform access permission checks
based on the rules specified in IOPMP entries. The configu-
ration tables, on the other hand, function as the slave nodes
within the periphery bus. There are several tables, including
the IOPMP Entry Table, SRC2MD Table, MDCFG Table, and
auxiliary tables such as SID2Addr andDeviceID2SID. Besides,
the sIOPMP module is also connected to the interrupt bus. It
allows the sIOPMP to trigger an interrupt and notify the CPU
core during various scenarios, including IOPMP violation or
other situations that necessitate CPU intervention.

5.2 sIOPMP Violation
sIOPMP uses two methods, namely packet masking and bus-
error handling, to handle IOPMP violations, as shown in
Figure 7. The packet masking uses write strobe [28] and read
clear signals to protect the messages sent by/to malicious
devices. If the packet address is outside the allowed range
checked by the IOPMP checker, the write strobe will mask
the data in the request packet, while the read clear signal

in1 in2 in3 in4

out1 out2 out3 out4sIOPMP

in1 in2 in3 in4

out1 out2 out3 out4sIOPMP Dummy
(a) Packet masking (b) Bus-error handling

M
as
k

Che
cker

Fi
lte
r

Che
cker

Figure 7. sIOPMP violation mechanism: The figure (a)
illustrates packet masking to handle the sIOPMP violation.
The figure (b) illustrates the process of bus-error handling.

will set the data in the response packet to zero. The write
strobe mechanism is already widely used in existing bus
protocols such as TileLink [74] and AXI [89]. However, these
protocols lack a read clear mechanism, so the IOPMP checker
must clear the data in the response packet when a sIOPMP
violation occurs. Moreover, to check the response packets,
IOPMP checker uses a new table called SID2Addr to record
the address and SID relationship. As for bus-error handling,
it requires an extra dummy node that immediately generates
a bus error message when it detects an IOPMP violation.

Compared with these two methods, packet masking needs
an additional table to translate the SID to address, which costs
extra cycles. Bus-error handling, on the other hand, requires
an extra dummy node which may aggravate bus traffic. Both
methods need to record the relevant error information, such
as the address, source ID, and authority type, and trigger an
IOPMP violation interrupt to the secure monitor.

5.3 Atomic Primitives for sIOPMP

entry1

entry2

entry1

entry2

entry1

entry2

Inconsistent state

m.2b

m.2a

m.1a

m.1b

m.2b

m.2a

m.1a

m.1b

m.2b

m.2a

m.1a

m.1b

Figure 8. Inconsistent state in IOPMP modification.
sIOPMP may suffer from the security vulnerabilities that

we call: entry inconsistency and device inconsistency. Firstly,
Figure 8 illustrates the potential occurrence of entry incon-
sistency in the IOPMP state when modifying IOPMP entries.
This inconsistency introduces a vulnerability by creating an
attack window that allows an attacker to access both the old
and new memory regions. To mitigate this issue, we propose
the SID block bitmap which effectively blocks DMA requests
from specific devices to ensure the consistency of IOPMP
entries. Secondly, device inconsistency arises during cold
device switching, where a cold device needs to set its SID
into the eSID register and load the mountable IOPMP entries
into hardware entries. Without an atomicity guarantee, a
cold device may inadvertently access the memory domain of

1068

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the previous device during this procedure. To overcome this
problem, we block any DMA requests for the cold device
until all sIOPMP modifications are completed. Notably, both
of these primitives adopt per-SID blocking, which means
they will not impact the I/O performance of other devices.

5.4 Software Implementation
The secure monitor for sIOPMP in our implementation is
built upon Penglai [38], a TEE system designed for RISC-V
architecture. Initially, Penglai TEE system did not account
for DMA protection due to the absence of hardware support.
We expand the secure monitor in Penglai to configure the
sIOPMP module and provide DMA protection for TEEs.

Create_TEE(TEE2,
cap_dev2,cap_mem2,...)

mem2

Secure monitor

mem1

dev0 dev1 dev2

Device Mem

Normal
World TEE2 TEE1

Device_map
(cap_dev2, cap_mem2)Grant(cap_dev1,cap_dev2)

Ownership chain

Figure 9. Ownership-based interface.
To securely manage the hardware resource for each TEE,

we employ a capability-based abstraction. Each capabil-
ity controls over a specific hardware resource, and only
the owner has the privilege to manipulate associated hard-
ware. There are two fundamental operations for capabilities:
derivation and transferring. The owner can derive a new
capability from an existing one, but with reduced privileges
or a smaller scope. For example, a memory capability can
be derived from an existing memory capability, but with a
narrower memory range or with restricted privileges. As
for capability transferring, the owner can send either the
ownership or a copy (i.e., only read permission) to another
entity.

At system boot, all capabilities are initially owned by the
secure monitor. The secure monitor can selectively transfer
the ownership of these capabilities to the boot system. When
a user intends to create a TEE, it utilizes ownership-based
interfaces likeCreate_TEE() to transfer the ownership of the
device and memory to the TEE. as shown in Figure 9. After
this, the TEE can invoke the Device_map() to map the mem-
ory regions for a particular device. Using ownership-based
interfaces, the secure monitor can easily validate device map-
ping operations for TEEs.
To improve modularity in the secure monitor, we divide

the functionalities into two parts: the hardware controller
and the capability layer. The hardware-related controller
includes the interrupt controller for interrupt isolation, the

sIOPMP controller for device isolation, and the PMP [72]
controller for memory isolation. While the capability layer
manages all hardware resources as capabilities. Only the
owner of a specific capability is granted access to the corre-
sponding hardware resource. The device manager and mem-
ory manager reserve an ownership chain for each device and
memory region, and the TEEmanager reserves the capability-
to-hardware mapping.

6 EVALUATION
6.1 Experimental Setup
We have implemented sIOPMP in chipyard [13], which is a
customized RISC-V SoC generator designed for evaluating
full-system hardware. Utilizing the chipyard configuration,
we can conveniently customize a RISC-V SoC by selecting
different CPU cores and devices. Table 2 presents overall con-
figurations for sIOPMP in the chipyard platform. We adopt
two types of CPU cores, Rocket [18] and Boom [22], along
with integrated devices such as IceNet [26], NVDLA [63], and
DMA devices [27]. We also explore different configurations
for sIOPMP, including its location, the number of pipelines,
the number of IOPMP entries, and different sIOPMP viola-
tion mechanisms. To evaluate the performance of the full-
system design featuring sIOPMP, we simulate the sIOPMP
in two platforms: Verilator [85] for microbenchmarks and
FireSim [50] for application benchmarks.
Regarding the software components, we modify the

Penglai [38] monitor to support for the sIOPMP hardware
and provide device isolation. The Penglai monitor has the
ability to partition all hardware resources into separate iso-
lated domains or TEEs. For the purpose of our evaluation,
we utilize Linux kernel 5.15 as operating system for both
normal world and TEE, to easily adapt device drivers in both
environments.

6.1.1 Experimental Systems.
• IOPMP: Since there is no existing implementation of
IOPMP in RISC-V SoC, we port the PMP [72] checker
from the Boom and Rocket core as the baseline, which
must check all IOPMP entries serialized in one cycle.

• IOMMU: IOMMU is a common method to protect kernel
from themalicious DMA.We evaluate the I/O performance
with IOMMU in a real Intel server (Intel Xeon Gold 5317
CPU), as there is no full-fledged IOMMU implementation
in RISC-V.

• SWIO: Current confidential VM like SEV-SNP utilizes
bounce buffer [94] to transfer the secret data between
devices and TEEs.

• sIOPMP/sIOPMP+IOMMU: Our solution, an enhanced
IOPMP module featuring the MT checker, mountable
IOPMP and IOPMP remapping. To better compare or work
with other methods, we implement a hardware proto-
type in RISC-V as well as a software implementation with
additional entry modification/checking costs in the X86

1069

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

platform. sIOPMP+IOMMU indicates both IOMMU and
sIOPMP are adopted in the system.

Table 2. Different configurations for sIOPMP in the chip-
yard.

Processor configuration
CPU1 Boom, 4 Out-of-order cores, simluated at 3.2GHz
CPU2 Rocket, 4 In-order cores, simluated at 3.2GHz
L1 I/D Cache 32KB, 64B line, 2/4 Associativity
L2 Cache 512KB, 64B line, 15 Associativity

Device Configuration
IceNet 100Gb/s NIC
DMA Device Dummy node for memory copy
NVDLA Deep learning accelerator

sIOPMP Configuration
Location Per-device, Centralized
Pipeline Number 1, 2, 3
In-SoC SID 64
sIOPMP Entry 32, 64, 128, 256, 512, 1024
sIOPMP Violation Bus-error handling, Packet Masking

6.2 Microbenchmarks

 0
 10
 20
 30
 40
 50
 60
 70
 80

16 32 64 128 256 512 1024C
lo

ck
 f

re
q

u
en

cy
 (

M
H

z)

Number of IOPMP entries

IOPMP
2pipe

2pipe−tree
3pipe−tree

Figure 10. Clock frequency. Achievable clock frequency
for different IOPMP checkers.

Clock frequency: We initially evaluate the clock frequency
of sIOPMP with various configurations, as depicted in
Figure 10. IOPMP represents the baseline design without
any optimization, npipe means using only pipeline design
for IOPMP checker, while npipe-tree incorporates the MT
checker utilizing pipeline and tree-based arbitration. We
increase the number of IOPMP entries and conduct clock
frequency analysis for different IOPMP checkers. The maxi-
mum achievable clock frequency on our FPGA platform is
60MHz (with NIC).
In the baseline IOPMP design, the clock frequency can

only be sustained at 60MHz up to 128 entries, and cannot
pass the clock frequency analysis with 1024 entries. If we
only adopt the pipeline design for the IOPMP checker, the
number of IOPMP entries will increase but is proportional to
pipelined stages. For instance, a 2-pipelines IOPMP checker
can only maintain the clock frequency for 256 entries and
achieve only 10MHz clock frequency under 1024 entries.
However, by employing it with tree-based arbitration, the
clock frequency can be maintained at 60MHz for up to 512
entries, and only a slight degradation when the number of
entries reaches 1024. If we utilize a 3-pipelines and tree-based
IOPMP checker, the clock frequency can be maintained for
more than 1024 entries.

 0

 500

 1000

 1500

 2000

 2500

Read Write Read−violation Write−violation

D
M

A
 b

u
rs

t
la

te
n

cy
 (

cy
cl

e)

Nopipe−BusError
2pipe−BusError

3pipe−BusError
Nopipe−Masking

2pipe−Masking
3pipe−Masking

Figure 11. The worst case pipeline latency: The latency
of DMA bursts transaction with different IOPMP pipeline
configurations.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Read−Write Read−Read Write−WriteD
M

A
 t

h
ro

u
g

h
p

u
t

(b
y

te
/c

y
cl

e)

Nopipe
2pipe−Masking
3pipe−Masking

2pipe−BusError
3pipe−BusError

Figure 12. The maximum throughput: The throughput
of two DMA nodes under different read/write scenarios.

Pipeline latency: As we adopt the pipeline design in the
MT checker, it may potentially impact DMA transaction la-
tency. We create a worst-case scenario where a DMA master
triggers burst [90] requests without any outstanding [74]
or out-of-order behavior, and the device responds DMA re-
quests immediately. In this scenario, each burst request con-
sists of 8 beats, and each beat can transfer 8 bytes of data.
In addition, all beats cannot be emitted alternately or in an
out-of-order manner. We also evaluate the sIOPMP with the
various configurations: different pipeline levels and sIOPMP
violation mechanisms. We use no-pipe, 2-pipe, and 3-pipe
MT checkers, and handle the sIOPMP violation with either
packet masking or bus-error handling(see §5.2 for details).

Figure 11 shows the DMA burst latency in different config-
urations. In this test, a DMA master triggers 64 consecutive
burst read/write requests, and we measure the latency be-
tween the first request and the last response. For DMA read
latency, the baseline (no-pipe) takes 1,510 cycles for 64 re-
quests. The 2-pipe MT checker with the bus-error handling
takes 1,575 cycles, as it adds one extra cycle per request.
The 2-pipe MT checker with the packet masking takes 1,634
cycles, as it interposes both sending and receiving transac-
tions. For DMA write latency, a write request can be early
validated, so the total latency is lower than that of the DMA
read. The baseline takes 1,081 cycles, and the 2-pipe MT
checker takes 1,175 and 1,189 cycles for the bus-error han-
dling and packet masking, respectively. In addition to the
normal DMA request, we also measure the error detection
latency for the sIOPMP violation (the right part in Figure 11).
For the bus-error handling, a dummy node can generate an
IOPMP error message and stop the burst request as soon as
IOPMP checker detects an illegal request. However, for the
packet masking, the IOPMP checker only masks the data in
the packets, and the device node has to process these masked
packets by itself after the burst is finished.

1070

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

sIOPMP bandwidth: We are more concerned about the im-
pact of the MT checker on DMA bandwidth than latency. In
this test case, we create two dummy DMA nodes to enable
the outstanding [74] or out-of-order behavior and saturate
the bus bandwidth. We evaluate the DMA bandwidth with
different IOPMP configurations and scenarios, as shown in
Figure 12. The y-axis represents the transferred data size
per cycle (each beat can transfer 8 bytes of data, and each
burst contains 8 beats). In the Read-Read scenario, two DMA
nodes both trigger 64 burst read. A burst request from one
node can be pipelined with a burst request from another
node. Therefore, there is only a negligible overhead when
adopting 2-pipe or 3-pipe MT checker (5.18 bytes/cycle for
no-pipe, and 5.08 bytes/cycle for 2-pipe), and this overhead
can be further reduced when considering more DMA nodes
in the system. In Write-Write and Read-Write scenarios, the
pipeline design does not introduce additional overhead for
DMA throughput, as a write request only needs a one-clock
response which can be easily pipelined with other requests.
In summary, the pipeline design does not sacrifice DMA
bandwidth, as DMA burst requests can be pipelined in out-
standing and out-of-order behaviors.

 0

 500

 1000

 1500

 2000

No-atomic Atomic-4 Atomic-8 Atomic-16 Atomic-32 Atomic-64 Atomic-128

49 84 144
248

466

909

1781

sI
O

P
M

P
 m

o
d
if

ic
at

io
n

 c

o
st

 (
cy

cl
es

)

The number of IOPMP entries

CPU-cycles

Figure 13. IOPMP modification latency: The blocking
time for modifying different number of IOPMP entries.
sIOPMP modification latency: Compared with IOMMU
or other page-based mechanisms that use an asynchronous
command queue to invalidate the IOTLB (up to millisecond
latency), the IOPMP can be configured by the MMIO inter-
face, which is more efficient and deterministic. Figure 13
shows the modification cost for different numbers of IOPMP
entries. As explained in §5.3, during the modification, we
need to block DMA requests from that device to ensure a
consistent view of memory. On our platform, the blocking
mechanism adds 35 CPU cycles, and each IOPMP entry mod-
ification takes only 14 CPU cycles, which is much faster
than DMA unmap with the IOTLB invalidation. Further-
more, when considering the multiple entries modification,
the total cost is still low and deterministic (e.g., less than
1000 CPU cycles for 64 IOPMP entries).
Hardware resource: We also evaluate the hardware re-
source consumption for sIOPMP with different numbers of
IOPMP entries. Figure 14 shows the additional LUTs and FFs
required by the sIOPMP module, while LUT-tree and FF-tree
mean using the tree-based arbitration to optimize resource
costs. For a 512 entries sIOPMP without tree-based arbitra-
tion, it requires an additional 17.3% of LUTs and 1.8% of FFs,
as the backend EDA tool will use lots of LUT as buffers to

 0

 5

 10

 15

 20

 25

32-iopmp 64-iopmp 128-iopmp 256-iopmp 512-iopmp
 0

 0.5

 1

 1.5

 2

 2.5

sI
O

P
M

P
 L

U
T

 (
%

)

sI
O

P
M

P
 F

F
 (

%
)

LUT
LUT-Tree

FF
FF-Tree

Figure 14. Hardware resource: The percentage of LUT
usage for different IOPMP entries is shown on the left y-axis.
The percentage of FF usage is shown on the right y-axis.

achieve the timing and voltage requirements. However, the
tree-based arbitration only needs an extra 1.21% of LUTs and
FFs, which reduces the resource cost for LUT by 93%.

6.3 Application Benchmarks
To evaluate the performance of sIOPMP on a real TEE sys-
tem, we extend the Penglai secure monitor to support the
sIOPMP. The secure monitor can provide several isolated
domains, each of which can run a whole Linux kernel and
control its own devices. By leveraging sIOPMP, we can pro-
tect the memory domain of each TEE from unauthorized
device access. Moreover, since IOPMP entries have prior-
ity and can be accessed through the MMIO interfaces, we
can delegate several low-priority sIOPMP entries to the S
mode (system mode). This allows the kernel to directly uti-
lize sIOPMP for fine-grained and dynamic device isolation
(e.g., used in DMA_unmap), but is regulated by high-priority
sIOPMP entries configured in the Mmode. sIOPMP can work
together with the IOMMU. In this setting, IOMMU is only
responsible for the I/O address mapping and offloads the
security guarantees to the sIOPMP.
Network bandwidth:Wemeasure the maximum TCP band-
width using iperf [17] benchmarks, and compare sIOPMP
with state of the arts: IOMMU, SWIO (used in SEV-SNP), and
a hybrid system with sIOPMP and IOMMU. The setup envi-
ronment for IOMMU and SEV-SNP is similar to the previous
work [53, 60] (i.e., Intel Xeon Gold 5317 CPU, AMD EPYC
7T83, 100Gbps NIC). IOMMU has two configurations in the
linux kernel, deferred and strict mode. The deferred mode
batches the DMA_unmap operations and delays IOTLB flush
operations, which exposes an attack window for malicious
devices. Although there are several works that try to solve
this problem (e.g., shadow buffer [59] and DAMN [60]), they
are co-designed with the linux kernel and have a large TCB.
The TEE system like SEV-SNP [71] requires an additional
copying to the bounce buffer [94] with hypervisor interven-
tion (SWIO). As for sIOPMP, we implement both a hardware
prototype and a software implementation, where the hard-
ware prototype is running on the FireSim platform, and the
software implementation is simulated on the Intel machine
which can work together with the IOMMU. The software
implementation of sIOPMP supports full functionalities and
adds the extra IOPMP entry modification/checking costs

1071

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

RX TX

sIOPMP IOMMU

sIOPMP

+IOMMU SWIO sIOPMP IOMMU

sIOPMP

+IOMMU SWIO

N
et

w
o
rk

 t
h
ro

u
g
h
p
u
t

(%
)

sIOPMP
sIOPMP−2pipe

IOMMU−deferred
IOMMU−strict

IOMMU−deferred−multi−core
IOMMU−strict−multi−core

sIOPMP+IOMMU
SWIO

Figure 15. Network bandwidth: The network bandwidth percentage of different I/O protection mechanisms compared with
the baseline without any protection.
according to the results shown in §6.2. We evaluate the per-
formance of sIOPMP with two configurations: no-pipe and
2-pipe.
Figure 15 shows the network bandwidth degradation un-

der different I/O protection mechanisms compared with the
baseline systemwithout any I/O protectionmechanism. Both
sIOPMP and sIOPMP-2pipe have a negligible impact on band-
width (less than 3%) compared with the baseline without any
I/O protection, thanks to the fast and deterministic IOPMP
entry modifications. Moreover, one more cycle for DMA re-
quests does not affect the network bandwidth, as the DMA
request can be pipelined with other requests. In contrast,
IOMMU-strict brings 25% ∼ 38% overhead on network band-
width for a single CPU core, and 20% ∼ 27% overhead for
multiple cores, due to IOTLB invalidation. IOMMU-deferred
has less overhead, but still leaves an attack window.
Furthermore, sIOPMP can balance the tradeoff between

security and performance for IOMMU. When sIOPMP and
IOMMU works together, the security check can be offloaded
to sIOPMP, and IOMMU is only responsible for the device
address translation. In this scenario, IOMMU can defer the
IOTLB invalidation, but sIOPMP will reset these entries im-
mediately in each dma_unmap operation without expos-
ing any attack windows. The evaluation result (Figure 15)
shows that sIOPMP+IOMMU has a similar performance to
IOMMU-deferred (19% improvement over IOMMU only), as
the IOPMP entry modification cost is minor and determinis-
tic compared with the IOTLB invalidation (asynchronous).
Moreover, to unmap a large size of contiguous device mem-
ory, sIOPMP can manipulate at the range-based level with-
out complicated operations like traversing the page table. In
summary, IOMMU can offload security checks to sIOPMP to
promote overall performance as well as the strict I/O isola-
tion.
While some TEE systems have proposed the TEE-IO [15,

45] mechanisms, which are still unavailable for off-the-shelf
machines. Current TEE systems like SEV still leverage the
SWIO, which requires an additional memory copy to the
bounce buffer (i.e., swiotlb) with the hypervisor interven-
tion. We compared the maximum network throughput in
the normal VM using the virtio and confidential VM using
the SWIO. As SWIO needs an additional memory copy (hy-
pervisor cannot access private memory in the confidential
VM directly), it sacrifices 23% ∼ 24% of network bandwidth.

Notably, the SWIO mechanism also has other shortcomings
such as spending more CPU resources due to the hypervisor
intervention and lacking the device pass-through support.
Even with TEE-IO mechanisms in the next generation

CVMmachines, it still faces the same problem as the IOMMU
in dynamic I/O isolation scenarios. Although TEE-IO sup-
ports direct memory access for encrypted memory in CVM,
it still relies on the RMP for I/O isolation. As RMP is part
of the IOMMU component, the RMP entry invalidation is
costly (using an asynchronous command). If we invalidate
the RMP entry for each dma_unmap, it encounters the same
performance degradation (>20%) as IOMMU-strict.

5000 10000 15000 20000 25000 30000 35000 40000 45000
Queries Per Second

0

5000

10000

15000

20000

25000

Re
qu

es
t L

at
en

cy
 (μ

s)

4 threads, 50th percentile, sIOPMP
4 threads, 50th percentile, w/o protection
4 threads, 99th percentile, sIOPMP
4 threads, 99th percentile, w/o protection

Figure 16. Memcached latency. The effect of sIOPMP on
Memcached request latency under different QPS.
Distributed memcached: To evaluate the performance of
sIOPMP in a realistic datacenter workload, we used mem-
cached with the distributed memcached load-generator [87].
This workload involves interactions among the CPU, mem-
ory, and network components. However, since sIOPMP is an
out-of-core module, it does not affect the execution on the
CPU side. Figure 16 shows that sIOPMP does not sacrifice
the memcached throughput (QPS) under the same 50th or
99th-percentile latency requirement. Moreover, when consid-
ering the pipeline latency, it does not increase both median
and tail latency for a real-world cloud application.
Cold device switching: We evaluate the overhead of cold
device switching with the mountable IOPMP as described in
§4.2. The secure monitor handles the sIOPMP interrupt and
loads the mountable IOPMP entries and eSID to hardware
registers. Thewhole procedure of cold device switching takes
341 CPU cycles on our platform (switching 8 IOPMP entries).

Figure 17 shows the effect of cold device switching on I/O
throughput in different configurations.We use two devices in
this test case: one is a hot device (long running) and another

1072

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

 0

 20

 40

 60

 80

 100

 120

 140

1:10000 1:1000 1:100 1:10

I/
O

 T
h

ro
u

g
h

p
u

t
(%

)

The ratio of DMA requests from two devices

cold−cold(mismatched)
hot−cold(matched)

Figure 17. Cold device switching overhead: The I/O
throughput of a hot device under different settings and work-
loads.
is a cold device (intermittently running). We vary the ratio
of DMA requests from these two devices. For example, 1:100
means one DMA request from the cold device for every 100
requests from the hot device. This way, we can measure how
cold device switching affects the I/O throughput for a hot
device in different workloads. If we set the device status
correctly in the sIOPMP, that means the hot device use the
SID which is fixed in the SRC2MD table, and cold device uses
eSID which will be swapped to the extended IOPMP table. In
this setting, the cold device switching will not impact the I/O
throughput for the hot device (no blocking). However, if we
set the device status incorrectly like both considering these
two devices as cold device in the sIOPMP, the I/O throughput
of the “hot” device will degrade due to the frequent switching
in and out. For instance, when the ratio of DMA requests
from two devices is 1:10, the cold device switching wastes
85% of I/O throughput for the “hot” device. The evaluation
result shows that to gain a better performance in sIOPMP,
we need to set the device status correctly (using the IOPMP
remapping) according to the different device workloads.

7 DISCUSSION
The number of IOPMP entries and hot devices: In our
implementation, sIOPMP supports 1000 IOPMP entries with
64 hot devices. This configuration is suitable for current
machines in data centers. Today, most CPUs have less than 64
cores; therefore, the number of hot devices in the same time
was usually less than 64. However, as for sIOPMP entries,
one device may use multiple I/O regions, as the current DMA
controller supports scatter-gather mode [41, 44]. The number
of I/O regions should be equal to the number of scatter buffers
in the DMA controller (less than 1024, currently). Using
these settings, sIOPMP can work well with current machines
in data centers. However, these settings are not fixed in
the sIOPMP design, and we can change settings according
to the evolution of machines. For example, modern CPUs
may support 128 cores and we may need 128 hot devices in
sIOPMP.
Limitation of other page-based I/O isolation mecha-
nisms: Current TEE systems have proposed additional I/O
check modules beside the traditional IOMMU. For example,
SEV-SNP adopts the Reverse Map Table (RMP) to guaran-
tee the integrity of page mapping, and CCA leverages the

Granule Protection Check (GPC) to verify the PAS tag of
device and accessed memory. However, these methods still
use the paging mechanism and are integrated into IOMMU.
They encounter problems similar to the traditional IOMMU,
such as high overhead of IOTLB invalidation, no sub-page
isolation, and an additional table walking [35]. Hence, the
page-based I/O isolation mechanisms are not inefficient in
the dynamic workload with frequent dma_unmap operations
(e.g., network). On the other hand, sIOPMP inherits from
the range-based isolation and does not need any asynchro-
nous operations like IOTLB invalidation. Therefore, it can
be well-fitted in both static and dynamic scenarios.
Comparison of sIOPMP with other permission check
works on the CPU side: There are other works like
MMP [91], raksha [33], RangeCache [82] also adopt the per-
mission check for the accessed memory address, and pro-
pose several different ways to construct ranges, sIOPMP
has three key improvements: First, sIOPMP leverages a
very lightweight region-based isolation mechanism specific
to the I/O scenario. The hardware cost and runtime over-
head are extremely low. In contrast, MMP and Range Cache
are mainly designed for the CPU, which needs to consider
more complex isolation scenarios and uses more complicated
structures (e.g., different types of trie table entries). Second,
only sIOPMP adopts priority region. The priority region of-
fers greater flexibility than the non-priority region. Third,
sIOPMP introduces several micro-architecture optimizations
like the tree-based pipeline checker, which is not explored
in prior systems.

8 CONCLUSION
This paper proposes sIOPMP, a scalable and efficient I/O pro-
tection mechanism for TEE systems. sIOPMP uses a Multi-
stage-Tree-based IOPMP checker that supports 1000 IOPMP
entries without compromising the clock frequency. It also
adopts the mountable IOPMP and IOPMP remapping mech-
anism that balance the performance and scalability between
cold and hot devices. Evaluation results demonstrate that
sIOPMP introduces negligible performance overhead in both
benchmarks and the real-world system.

9 ACKNOWLEDGMENTS
We sincerely thank our shepherd Mohit Tiwari and anony-
mous reviewers for their insightful suggestions, and we
also appreciate Yaodanjun Ren for the valuable advice to
paper refinement. This work is supported in part by Na-
tional Key Research and Development Program of China (No.
2020AAA0108500), China National Natural Science Founda-
tion (No. 62302300, 61925206, U19A2060), and Startup Fund
for Young Faculty at SJTU (SFYF at SJTU). Dong Du is the
corresponding author.

1073

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

References
[1] [n. d.]. Arm Confidential Compute Architecture. https:

//www.arm.com/architecture/security-features/arm-confidential-
compute-architecture. Referenced April 2022.

[2] [n. d.]. Compute Express Link. https://en.wikipedia.org/wiki/
Compute_Express_Link. Referenced April 2022.

[3] [n. d.]. Compute Express Link. https://www.computeexpresslink.org/.
Referenced Aug. 2021.

[4] [n. d.]. input/output physical memory protection. https://github.com/
riscv-admin/iopmp. Referenced April 2023.

[5] [n. d.]. Intel Trust Domain Extensions. https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-trust-
domain-extensions.html. Referenced April 2022.

[6] 2019. AMD Secure Encrypted Virtualization (SEV) - AMD. https:
//developer.amd.com/sev/.

[7] 2021. Mellanox Innova-2 Flex Open Programmable SmartNIC. https:
//www.mellanox.com/products/smartnics/innova-2-flex. Referenced
2021.

[8] 2021. Multi-Core Processors - LiquidIO Smart NICs | Network
adapter - Marvell. https://www.marvell.com/products/infrastructure-
processors/multi-core-processors/liquidio-smart-nics.html. Refer-
enced 2021.

[9] 2021. NetFPGA. https://netfpga.org. Referenced 2021.
[10] 2021. NVIDIA Mellanox BlueField DPU. https://www.mellanox.com/

products/bluefield-overview. Referenced 2021.
[11] 2021. Stingray SmartNIC Adapters and IC. https://www.broadcom.

com/products/ethernet-connectivity/network-adapters/smartnic. Ref-
erenced 2021.

[12] Tiago Alves. 2004. Trustzone: Integrated hardware and software secu-
rity. White paper (2004).

[13] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić.
2020. Chipyard: Integrated Design, Simulation, and Implementa-
tion Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[14] Nikolaos Athanasios Anagnostopoulos, Stefan Katzenbeisser, John
Chandy, and Fatemeh Tehranipoor. 2018. An overview of DRAM-
based security primitives. Cryptography 2, 2 (2018), 7.

[15] Arm. 2023. AMD SEV-TIO: Trusted I/O for Secure Encrypted Vir-
tualization. https://www.amd.com/system/files/documents/sev-tio-
whitepaper.pdf. Referenced April 2023.

[16] Arm. 2023. ARM Holdings. ARM system memory management unit
architecture specification âĂŤ SMMU architecture version 2.0. https:
//developer.arm.com/documentation/ihi0070/latest/. Referenced April
2023.

[17] Arm. 2023. iPerf3: a tool for active measurements of the maximum
achievable bandwidth on IP networks. https://iperf.fr/. Referenced
April 2023.

[18] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, et al. 2016. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17 (2016).

[19] Damien Aumaitre and Christophe Devine. 2018. Subverting Windows
7 x64 kernel with DMA attacks. http://esec-lab.sogeti.com/static/
publications/10-hitbamsterdam-dmaattacks.pdf. Referenced April
2023.

[20] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2021.
CURE: A Security Architecture with CUstomizable and Resilient En-
claves. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, 1073–1090. https://www.usenix.org/conference/

usenixsecurity21/presentation/bahmani
[21] Michael Becher, Maximillian Dornseif, and Christian Klein. 2005.

FireWire: all your memory are belong to us.
[22] UC Berkeley. 2023. Berkeley Out-of-Order Machine. https://boom-

core.org/. Referenced April 2023.
[23] James E.J. Bottomley. 2018. Dynamic DMA mapping using the generic

device. https://www.kernel.org/doc/Documentation/DMA-API.txt.
Referenced April 2023.

[24] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with
User-space Enclaves. Proceedings 2019 Network and Distributed System
Security Symposium (2019). https://api.semanticscholar.org/CorpusID:
86835387

[25] Rory Breuk and Albert Spruyt. 2012. Integrating DMA attacks in
exploitation frameworks.

[26] chipyard. 2023. IceNet: a library of Chisel designs related to network-
ing. https://chipyard.readthedocs.io/en/stable/Generators/IceNet.
html. Referenced April 2023.

[27] chipyard. 2023. Tilelink widgets DMA device in chipyard.
https://chipyard.readthedocs.io/en/stable/Customization/DMA-
Devices.html. Referenced April 2023.

[28] Arm community. 2023. AXI Protocol - Strobe Signal Value.
https://community.arm.com/support-forums/f/embedded-
forum/2848/axi-protocol---strobe-signal-value. Referenced
April 2023.

[29] V Costan and S Devadas. 2016. Intel sgx explained. Cryptology ePrint
Archive. Report 2016/086 (2016).

[30] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. 2016. Sanc-
tum: Minimal Hardware Extensions for Strong Software Isolation.. In
USENIX Security Symposium. 857–874.

[31] Linux CVE. 2019. K07357521: Intel Linux kernel driver vulnerabil-
ity CVE-2019-11165. https://my.f5.com/manage/s/article/K07357521.
Referenced April 2023.

[32] Linux CVE. 2023. Linux Linux Kernel : List of security vulner-
abilities. https://www.cvedetails.com/vulnerability-list/vendor_id-
33/product_id-47/Linux-Linux-Kernel.html. Referenced April 2023.

[33] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha:
a flexible information flow architecture for software security. ACM
SIGARCH Computer Architecture News 35, 2 (2007), 482–493.

[34] M. Dornseif. 2004. 0wn3d by an iPod: Firewire/1394 Issues. Proceedings
of PacSec Applied Security Conference (2004). https://pacsec.jp/psj04/
psj04-dornseif-e.ppt

[35] Dong Du, Bicheng Yang, Yubin Xia, and Haibo Chen. 2023. Accelerat-
ing Extra Dimensional Page Walks for Confidential Computing. In Pro-
ceedings of the 56th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (<conf-loc>, <city>Toronto</city>, <state>ON</state>,
<country>Canada</country>, </conf-loc>) (MICRO ’23). Association
for Computing Machinery, New York, NY, USA, 654âĂŞ669. https:
//doi.org/10.1145/3613424.3614293

[36] Loïc Duflot, Yves-Alexis Perez, and Benjamin Morin. 2011. What If
You Can’t Trust Your Network Card?. In Recent Advances in Intrusion
Detection, Robin Sommer, Davide Balzarotti, and Gregor Maier (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 378–397.

[37] Erhu Feng, Dong Du, Yubin Xia, and Haibo Chen. 2023. Efficient
Distributed Secure Memory with Migratable Merkle Tree. In 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 347–360. https://doi.org/10.1109/HPCA56546.2023.10071130

[38] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin
Xia, Binyu Zang, and Haibo Chen. 2021. Scalable Memory Protection
in the PENGLAI Enclave. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). 275–294.

[39] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using Verification to Disentangle Secure-
Enclave Hardware from Software. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).

1074

https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://en.wikipedia.org/wiki/Compute_Express_Link
https://en.wikipedia.org/wiki/Compute_Express_Link
https://www.computeexpresslink.org/
https://github.com/riscv-admin/iopmp
https://github.com/riscv-admin/iopmp
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.mellanox.com/products/smartnics/innova-2-flex
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://www.marvell.com/products/infrastructure-processors/multi-core-processors/liquidio-smart-nics.html
https://netfpga.org
https://www.mellanox.com/products/bluefield-overview
https://www.mellanox.com/products/bluefield-overview
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/smartnic
https://doi.org/10.1109/MM.2020.2996616
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://www.amd.com/system/files/documents/sev-tio-whitepaper.pdf
https://developer.arm.com/documentation/ihi0070/latest/
https://developer.arm.com/documentation/ihi0070/latest/
https://iperf.fr/
http://esec-lab.sogeti.com/static/publications/10-hitba msterdam-dmaattacks.pdf
http://esec-lab.sogeti.com/static/publications/10-hitba msterdam-dmaattacks.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://boom-core.org/
https://boom-core.org/
https://www.kernel.org/doc/Documentation/DMA-API.txt
https://api.semanticscholar.org/CorpusID:86835387
https://api.semanticscholar.org/CorpusID:86835387
https://chipyard.readthedocs.io/en/stable/Generators/IceNet.html
https://chipyard.readthedocs.io/en/stable/Generators/IceNet.html
https://chipyard.readthedocs.io/en/stable/Customization/DMA-Devices.html
https://chipyard.readthedocs.io/en/stable/Customization/DMA-Devices.html
https://community.arm.com/support-forums/f/embedded-forum/2848/axi-protocol---strobe-signal-value
https://community.arm.com/support-forums/f/embedded-forum/2848/axi-protocol---strobe-signal-value
https://my.f5.com/manage/s/article/K07357521
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/Linux-Linux-Kernel.html
https://pacsec.jp/psj04/psj04-dornseif-e.ppt
https://pacsec.jp/psj04/psj04-dornseif-e.ppt
https://doi.org/10.1145/3613424.3614293
https://doi.org/10.1145/3613424.3614293
https://doi.org/10.1109/HPCA56546.2023.10071130

sIOPMP: Scalable and Efficient I/O Protection for TEEs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Association for Computing Machinery, New York, NY, USA, 287–305.
https://doi.org/10.1145/3132747.3132782

[40] Alexander Freij, Huiyang Zhou, and Yan Solihin. 2021. Bonsai merkle
forests: Efficiently achieving crash consistency in secure persistent
memory. In MICRO-54: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. 1227–1240.

[41] SCO Group. 2018. Scatter/gather operations. http://osr600doc.sco.
com/en/HDK_concepts/ddT_scgth.html. Referenced April 2023.

[42] Yanan Guo, Andrew Zigerelli, Yueqiang Cheng, Youtao Zhang, and Jun
Yang. 2021. Performance-Enhanced Integrity Verification for Large
Memories. In 2021 International Symposium on Secure and Private Exe-
cution Environment Design (SEED). IEEE, 50–62.

[43] AMD Inc. 2018. AMD IOMMU architectural specification, rev 2.00.
http://developer.amd.com/wordpress/media/2012/10/488821.pdf. Ref-
erenced April 2023.

[44] Intel. 2018. Features of the DMA Controller. https://www.intel.com/
content/www/us/en/docs/programmable/683126/21-2/features-of-
the-dma-controller.html. Referenced April 2023.

[45] Intel. 2018. Intel TDX Connect TEE-IODevice Guide. https://cdrdv2-
public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf.
Referenced April 2023.

[46] Intel. 2018. Support for Intel Memory Protection Extensions (In-
tel MPX) Technology. https://www.intel.com/content/www/us/en/
support/articles/000059823/processors.html. Referenced April 2023.

[47] Intel. 2023. Intel Virtualization Technology for Directed I/O Architec-
ture Specification. https://cdrdv2-public.intel.com/671081/vt-directed-
io-spec.pdf. Referenced April 2023.

[48] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. 2019. Heterogeneous isolated execution for commodity
gpus. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems. 455–468.

[49] David Kaplan. 2017. Protecting vm register state with sev-es. White
paper, Feb (2017).

[50] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanović. 2018. FireSim:
FPGA-accelerated Cycle-exact Scale-out System Simulation in the Pub-
lic Cloud. In Proceedings of the 45th Annual International Symposium on
Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE Press,
Piscataway, NJ, USA, 29–42. https://doi.org/10.1109/ISCA.2018.00014

[51] Alexey Lavrov and David Wentzlaff. 2020. HyperTRIO: Hyper-Tenant
Translation of I/O Addresses. In 2020 ACM/IEEE 47th Annual In-
ternational Symposium on Computer Architecture (ISCA). 487–500.
https://doi.org/10.1109/ISCA45697.2020.00048

[52] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and
Dawn Song. 2020. Keystone: An open framework for architecting
trusted execution environments. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems. 1–16.

[53] Dingji Li, Zeyu Mi, Chenhui Ji, Yifan Tan, Binyu Zang, Haibing Guan,
and Haibo Chen. 2023. Bifrost: Analysis and Optimization of Network
I/O Tax in Confidential Virtual Machines. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23). USENIX Association, Boston,
MA, 1–15. https://www.usenix.org/conference/atc23/presentation/li-
dingji

[54] Mingyu Li, Xuyang Zhao, Le Chen, Cheng Tan, Huorong Li, Sheng
Wang, Zeyu Mi, Yubin Xia, Feifei Li, and Haibo Chen. 2023. Encrypted
Databases Made Secure Yet Maintainable. In 17th USENIX Symposium
on Operating Systems Design and Implementation.

[55] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
2015. Last-level cache side-channel attacks are practical. In 2015 IEEE
symposium on security and privacy. IEEE, 605–622.

[56] HaoHui Mai, Jiacheng Zhao, Hongren Zheng, Yiyang Zhao, Zibin Liu,
Mingyu Gao, Cong Wang, Huimin Cui, Xiaobing Feng, and Christos

Kozyrakis. 2023. Honeycomb: Secure and Efficient GPU Executions via
Static Validation. In 17th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 23). USENIX Association, Boston, MA,
155–172. https://www.usenix.org/conference/osdi23/presentation/
mai

[57] Moshe Malka, Nadav Amit, and Dan Tsafrir. 2015. Efficient Intra-
Operating System Protection Against Harmful DMAs. In 13th USENIX
Conference on File and Storage Technologies (FAST 15). USENIX Associ-
ation, Santa Clara, CA, 29–44. https://www.usenix.org/conference/
fast15/technical-sessions/presentation/malka

[58] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison
Pearce, Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson.
2019. Thunderclap: Exploring Vulnerabilities in Operating System
IOMMU Protection via DMA from Untrustworthy Peripherals. In Pro-
ceedings 2019 Network and Distributed System Security Symposium.
Internet Society. https://doi.org/10.14722/ndss.2019.23194

[59] Alex Markuze, Adam Morrison, and Dan Tsafrir. 2016. True IOMMU
Protection fromDMAAttacks:When Copy is Faster than Zero Copy. In
Proceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems (Atlanta,
Georgia, USA) (ASPLOS ’16). Association for Computing Machinery,
New York, NY, USA, 249–262. https://doi.org/10.1145/2872362.2872379

[60] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. 2018.
DAMN: Overhead-Free IOMMU Protection for Networking. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (Williams-
burg, VA, USA) (ASPLOS ’18). Association for Computing Machinery,
New York, NY, USA, 301–315. https://doi.org/10.1145/3173162.3173175

[61] AlexMarkuze, Shay Vargaftik, Gil Kupfer, Boris Pismenny, NadavAmit,
Adam Morrison, and Dan Tsafrir. 2021. Characterizing, exploiting, and
detecting DMA code injection vulnerabilities in the presence of an
IOMMU. In ACM European Conference on Computer Systems (EuroSys).
395–409.

[62] mdanilor. 2020. Hello, kernel: Exploiting an intentionally vulnerable
Linux driver. https://mdanilor.github.io/posts/hello-kernel/. Refer-
enced April 2023.

[63] NVIDIA. 2023. NVIDIA Deep Learning Accelerator (NVDLA). http:
//nvdla.org/. Referenced April 2023.

[64] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan Tsafrir.
2015. Utilizing the IOMMU Scalably. In 2015 USENIX Annual Technical
Conference (USENIX ATC 15). USENIX Association, Santa Clara, CA,
549–562. https://www.usenix.org/conference/atc15/technical-session/
presentation/peleg

[65] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:
A Secure Database Using SGX. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P).

[66] riscv. 2021. RISC-V Advanced Interrupt Architecture (AIA). https:
//github.com/riscv/riscv-aia. Referenced April 2023.

[67] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin.
2007. Using address independent seed encryption and bonsai merkle
trees to make secure processors os-and performance-friendly. In 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO 2007). IEEE, 183–196.

[68] Gururaj Saileshwar, Prashant J Nair, Prakash Ramrakhyani, Wendy
Elsasser, Jose A Joao, and Moinuddin K Qureshi. 2018. Morphable
counters: Enabling compact integrity trees for low-overhead secure
memories. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 416–427.

[69] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015.
VC3: Trustworthy data analytics in the cloud using SGX. In 2015 IEEE
symposium on security and privacy. IEEE, 38–54.

[70] Jinsoo Jang Seungkyun Han. 2023. MyTEE: Own the Trusted Execu-
tion Environment on Embedded Devices. In 31th Annual Network and

1075

https://doi.org/10.1145/3132747.3132782
http://osr600doc.sco.com/en/HDK_concepts/ddT_scgth.html
http://osr600doc.sco.com/en/HDK_concepts/ddT_scgth.html
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/features-of-the-dma-controller.html
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/features-of-the-dma-controller.html
https://www.intel.com/content/www/us/en/docs/programmable/683126/21-2/features-of-the-dma-controller.html
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf
https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf
https://cdrdv2-public.intel.com/671081/vt-directed-io-spec.pdf
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA45697.2020.00048
https://www.usenix.org/conference/atc23/presentation/li-dingji
https://www.usenix.org/conference/atc23/presentation/li-dingji
https://www.usenix.org/conference/osdi23/presentation/mai
https://www.usenix.org/conference/osdi23/presentation/mai
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
https://www.usenix.org/conference/fast15/technical-sessions/presentation/malka
https://doi.org/10.14722/ndss.2019.23194
https://doi.org/10.1145/2872362.2872379
https://doi.org/10.1145/3173162.3173175
https://mdanilor.github.io/posts/hello-kernel/
http://nvdla.org/
http://nvdla.org/
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://www.usenix.org/conference/atc15/technical-session/presentation/peleg
https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aia

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Feng et al.

Distributed System Security Symposium,(NDSS’24).
[71] AMD SEV-SNP. 2020. Strengthening VM isolation with integrity

protection and more. White Paper, January (2020).
[72] sifive. 2023. Physical Memory Protection. https://sifive.github.io/

freedom-metal-docs/devguide/pmps.html. Referenced April 2023.
[73] Igor Smolyar, Alex Markuze, Boris Pismenny, Haggai Eran, Gerd Zell-

weger, Austin Bolen, Liran Liss, Adam Morrison, and Dan Tsafrir.
2020. IOctopus: outsmarting nonuniform DMA. In ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Lausanne, Switzerland, 101–115.

[74] starfivetech. 2023. SiFive TileLink Speci version 1.8.1. https://
starfivetech.com/uploads/tilelink_spec_1.8.1.pdf. Referenced April
2023.

[75] Patrick Stewin and Iurii Bystrov. 2013. Understanding DMA Mal-
ware. In Detection of Intrusions and Malware, and Vulnerability Assess-
ment, Ulrich Flegel, Evangelos Markatos, andWilliam Robertson (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 21–41.

[76] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk,
and Srinivas Devadas. 2003. AEGIS: Architecture for tamper-evident
and tamper-resistant processing. In ACM International Conference on
Supercomputing 25th Anniversary Volume. 357–368.

[77] Meysam Taassori, Rajeev Balasubramonian, Siddhartha Chhabra,
Alaa R Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan
Stutsman. 2020. Compact leakage-free support for integrity and re-
liability. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 735–748.

[78] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018.
VAULT: Reducing paging overheads in SGX with efficient integrity
verification structures. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems. 665–678.

[79] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir. 2021. Optimiz-
ing storage I/O with calibrated interrupts. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 129–145.

[80] David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln,
Dan Boneh, John Mitchell, and Mark Horowitz. 2000. Architectural
Support for Copy and Tamper Resistant Software. SIGARCH Comput.
Archit. News 28, 5 (nov 2000), 168–177. https://doi.org/10.1145/378995.
379237

[81] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
CoIOMMU: A Virtual IOMMUwith Cooperative DMA Buffer Tracking
for Efficient Memory Management in Direct I/O. In Proceedings of
the 2020 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC’20). USENIX Association, USA, Article 32, 14 pages.

[82] Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan Valamehr,
and Timothy Sherwood. 2008. A small cache of large ranges: Hardware

methods for efficiently searching, storing, and updating big dataflow
tags. In 2008 41st IEEE/ACM International Symposium on Microarchitec-
ture. 94–105. https://doi.org/10.1109/MICRO.2008.4771782

[83] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, JohnMcAvey, Raluca Ada
Popa, and Donald E Porter. 2020. Civet: An efficient java partitioning
framework for hardware enclaves. In 29th USENIX Security Symposium
(USENIX Security 20). 505–522.

[84] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In 27th USENIX
Security Symposium (USENIX Security 18). 991–1008.

[85] veripool. 2023. Verilator converts Verilog and SystemVerilog hardware
description language (HDL) designs into a C++ or SystemC model.
https://www.veripool.org/verilator/. Referenced April 2023.

[86] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov.
2019. StealthDB: a Scalable Encrypted Database with Full SQL Query
Support. In Proceedings of the Privacy Enhancing Technologies Sympo-
sium (PETS).

[87] Stavros Volos, Djordje Jevdjic, Babak Falsafi, and Boris Grot. 2017.
Fat Caches for Scale-Out Servers. IEEE Micro 37, 2 (2017), 90–103.
https://doi.org/10.1109/MM.2017.32

[88] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:
Trusted Execution Environments on GPUs. In 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18). 681–696.

[89] wikipedia. 2023. Advanced eXtensible Interface. https://en.wikipedia.
org/wiki/Advanced_eXtensible_Interface. Referenced April 2023.

[90] wikipedia. 2023. Direct memory access - Burst mode. https://en.
wikipedia.org/wiki/Direct_memory_access. Referenced April 2023.

[91] Emmett Witchel, Josh Cates, and Krste Asanović. 2002. Mondrian
Memory Protection. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems (San Jose, California) (ASPLOS X). ACM, New York, NY, USA,
304–316. https://doi.org/10.1145/605397.605429

[92] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. 2019. Attack directo-
ries, not caches: Side channel attacks in a non-inclusive world. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 888–904.

[93] Yuval Yarom and Naomi Benger. 2014. Recovering OpenSSL ECDSA
nonces using the FLUSH+ RELOAD cache side-channel attack. Cryp-
tology ePrint Archive (2014).

[94] Dongli Zhang. 2021. swiotlb: 64-bit DMA buffer. https://lwn.net/
Articles/845096/. Referenced April 2023.

[95] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. 2004. HIDE: an
infrastructure for efficiently protecting information leakage on the
address bus. ACM SIGOPS Operating Systems Review 38, 5 (2004),
72–84.

1076

https://sifive.github.io/freedom-metal-docs/devguide/pmps.html
https://sifive.github.io/freedom-metal-docs/devguide/pmps.html
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://starfivetech.com/uploads/tilelink_spec_1.8.1.pdf
https://doi.org/10.1145/378995.379237
https://doi.org/10.1145/378995.379237
https://doi.org/10.1109/MICRO.2008.4771782
https://www.veripool.org/verilator/
https://doi.org/10.1109/MM.2017.32
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
https://en.wikipedia.org/wiki/Advanced_eXtensible_Interface
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Direct_memory_access
https://doi.org/10.1145/605397.605429
https://lwn.net/Articles/845096/
https://lwn.net/Articles/845096/

