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Abstract
Non-volatile memory (NVM) can be directly accessed in user
space without going through the kernel. This encourages sev-
eral recent studies on building user-space NVM file systems.
However, for the sake of file system protection, none of the
existing file systems grant user-space file system libraries
with direct control over both metadata and data of the NVM,
leaving fast NVM resources underexploited.

Based on the observation that applications tend to group
files with similar access permissions within the same direc-
tory and permission changes are rare operations, this paper
proposes a new abstraction called coffer, which is a collection
of isolated NVM resources, and show its merits on building a
performant and protected NVM file system in user space. The
key idea is to separate NVM protection from management
via coffers so that user-space libraries can take full control of
NVM within a coffer while the kernel guarantees strict isola-
tion among coffers. Based on coffers, we build an NVM file
system architecture to bring the high performance of NVM to
unmodified dynamically linked applications and facilitate the
development of performant and flexible user-space NVM file
system libraries. With an example file system called ZoFS,
we show that user-space file systems built upon coffers can
outperform existing NVM file systems in both benchmarks
and real-world applications.

CCS Concepts • Information systems → Phase change
memory; • Software and its engineering → File systems
management.
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1 Introduction
NVM such as phase-change memory (PCM) [32, 45], STT-
MRAM [20, 30], PRAM, Memristor [50], and Intel/Micron’s
3D-XPoint [46] promise to combine the best of both memory
and storage. Intel Optane DC persistent memory, which was
announced in 2015 [46] and has been released recently [22,
23, 25], is the first commercially available NVM product that
may be widely deployed.

By combining memory’s low latency, high throughput, and
byte-addressability features into a high-capacity, persistent
storage, NVM has attracted many research efforts on explor-
ing new programming models [1, 57, 59], designing data
structures and key/value stores [19, 21, 27, 29, 55, 60, 64],
implementing file systems [5, 8, 9, 31, 33, 56, 61–63, 66],
etc. NVM file systems, such as PMFS [9], NOVA [61, 62],
and SoupFS [8], are proposed to leverage NVM to provide
high-performance file abstractions.

Byte-addressability allows CPU to access NVM via load
and store instructions. This feature has raised research inter-
est in deploying file system libraries in user space1 to access
NVM [5, 31, 56]. However, none of the existing NVM file
systems gives direct control over both data and metadata to
user-space libraries. For example, file system (FS) libraries in
Aerie [56] cannot directly modify the metadata stored in the
file system. Instead, it needs to send expensive inter-process
communications (IPCs) to a trusted process that has the au-
thority to update metadata. Strata [31], as another example,
only allows its user-space libraries to record updates in NVM
logs, which requires applying the updates one more time
during digestion in the kernel. Such limitations hinder fully
unleashing the performance of NVM. For example, when two
applications access the same file concurrently, log digestion
needs to be frequently invoked, and the performance can be
more than 19× slower (see §2.2).

However, several challenges prevent user-space FS libraries
from gaining full control of both metadata and data. First, a

1We call these file systems user-space file systems although they all require
kernel-side cooperation.
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file system needs to enforce permissions on each file. Since
the user-space FS library and the applications share the same
runtime context, applications can easily bypass permission
checks and conduct attacks if user-space FS libraries are given
full control of the metadata. Second, applications are usually
bug-prone. If user-space FS libraries are allowed to modify
metadata directly, bugs in applications can easily corrupt the
metadata, leaving the whole file system corrupted.

In this paper, we aim to provide direct updates in user-space
file system libraries to fully exploit the NVM performance
while providing sufficient protection and isolation for applica-
tions. The basic observation is that applications tend to store
their files with the same permission2 together and changes to
permissions are infrequent. This indicates that it is feasible
to group files with the same permission to a single container.
To this end, we propose coffer, a new abstraction which is a
collection of NVM pages that can store files with the same
permission. Each coffer has a single permission shared by all
pages within it.

With coffers, we build an NVM file system architecture,
Treasury, to separate NVM protection from management so
that user-space libraries can manage NVM within a coffer
with full control and cross-coffer protection is guaranteed by
the kernel. The kernel part of Treasury records the metadata
of all coffers and is responsible for checking permissions for
coffer-level requests from the user-space file system libraries.
User-space libraries are responsible for managing file system
structures within the coffers, including the modification of
metadata. NVM resources are mapped to user space at cof-
fer granularity, which avoids mapping the whole NVM to
processes such as that in Strata [31].

Treasury relaxes the protection granularity from a file to a
coffer. Although it retains protection under normal execution,
Treasury may still be subject to corruption by application
bugs. Besides the paging mechanism enforced by the hard-
ware memory management unit (MMU), Treasury leverages
Intel memory protection keys (MPK) to efficiently prevent
application bugs from corrupting the file system data and
metadata and prevent corruptions from being spread across
processes and coffers.

Treasury provides general file system functionalities like
user-space file descriptor (FD) mapping tables and symbolic
links so that unmodified real-world applications can run on
Treasury without recompilation. We implement a synchro-
nous file system called ZoFS using Treasury and evaluate
ZoFS with file system benchmarks and real-world applica-
tions. The evaluation results show that ZoFS outperforms
existing NVM file systems in most cases for both FxMark
and Filebench. For real-world applications, ZoFS reduces
LevelDB latency by up to 82% and improves SQLite through-
put by up to 31%.

2For brevity, we use the word “permission” to indicate a combination of the
read-write permission and the owner user and group in the paper.

Table 1. DRAM and Optane DC PM latency and bandwidth.

Memory Operation Bandwidth Latency
DRAM read 115 GB/s 81 ns

write 79 GB/s 86 ns
Optane DC PM read 39 GB/s 305 ns

write 14 GB/s 94 ns

Table 2. Latency (ns) of operations on a file/directory shared
by multiple processes.

Operation # Processes Strata NOVA ZoFS
append 1 1,653 2,172 1,147

2 34,551 3,882 1,703
create 1 4,195 3,534 2,494

2 283,972 6,167 3,459

In summary, the contributions of this paper include:
∙ The insight on file permissions and permission opera-

tions through typical file system traces (§2);
∙ A new abstraction, coffer, and a user-space NVM file

system architecture called Treasury that allows direct
management over NVM resources in user space while
providing protection and isolation (§3 and §4);
∙ An example file system, ZoFS, using Treasury (§5);
∙ A detailed comparative evaluation of ZoFS and existing

NVM file systems on Intel Optane DC PM (§6).
2 Background and Motivation
2.1 NVM and NVMFS
The recent release of Intel Optane DC persistent memory [46]
marks the transition of NVM from concept exploration to
large-scale commercial deployment [22, 23]. Table 1 shows
the basic performance characteristics of Intel Optane DC per-
sistent memory, compared with DDR4 DRAM [25]. Beyond
the significant speed improvement over traditional storage
such as HDD or SSD, NVM can be directly attached to the
memory bus and be accessed at byte-granularity via CPU
load/store instructions, giving much more potential of its us-
age, blurring the boundary of storage and runtime memory.

The promising characteristics of NVM have encouraged
designs of numerous NVM file systems. Ext4-DAX [4, 6,
58] and XFS-DAX [3] are two examples of mature file sys-
tems modified to support NVM with page cache bypassing.
BPFS [5] is a B-tree NVM file system optimized via short-
circuit shadow paging. PMFS [9] is a journal-based file sys-
tem designed for NVM. NOVA [61, 62] brings the idea of
log-structured file systems on NVM, and SoupFS [8] revisits
the soft updates technology on NVM to build an NVMFS that
is simple and fast.
2.2 User-space NVMFS and the deficiency
NVM’s byte-addressability also inspires researchers to design
NVM file systems in user space.

Aerie [56] is a flexible file system architecture for NVM
applications. The goal of Aerie is to expose NVM to user-
space applications so that they can access file data without
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Table 3. File permissions in databases and web servers.

System Type Perm. Uid/Gid # Files Size
Directory 750 970/970 6 32KB

MySQL Regular 640 970/970 358 399MB
Regular 644 0/0 1 0B

PostgreSQL Directory 700 969/969 28 128KB
Regular 600 969/969 1,807 99MB

DokuWiki Directory 755 33/33 1,035 5MB
Regular 644 33/33 19,941 452MB

the interaction with the kernel. FS libraries in Aerie can read
the metadata stored in NVM to find files, and then they can
read and modify the file data directly. However, when FS
libraries want to update metadata, they need to send requests
to a trusted file system service via IPCs, which are expensive.

Strata [31] is a cross-media file system designed for mul-
tiple layers of storage media. All reads to data and metadata
are directly processed in user space. For updates, Strata uses
a separate NVM device as a log device and logs all updates
in user space. The logs are gradually digested to lower lay-
ers, which can be NVM, SSD, or HDD. The log-then-digest
updates cause the double-write problem and are inefficient
when multiple processes share the same file.

Since user-space NVM file systems can perform most reads
in user space, they reduce the number of system calls and usu-
ally run faster than the kernel-space counterparts. However,
existing user-space file systems also impose limitations on
user-space libraries: direct updates, especially direct metadata
updates, are strictly forbidden.

We illustrate the impact of indirect updates by measuring
the average latency of appending 4KB data in a shared file
and creating an empty file in a shared directory. The results
are shown in Table 2, where we can observe the append and
create latency of Strata is considerably higher when two
processes share the same file or directory. For reference, we
also conducted the same test on NOVA and the file system
(ZoFS) that we will introduce in §5. Strata’s append per-
formance is better than NOVA, while create is relatively
slower because Strata has to write two logs for each create
to ensure the metadata consistency.

The deficiency of indirect updates motivates us to think:
how can we design a user-space FS that can have full control
over both data and metadata on NVM to exploit NVM perfor-
mance while guaranteeing sufficient protection and isolation?

2.3 Permissions and isolation
File systems use permissions to restrict specific files an ap-
plication can access, and this practice protects data stored in
the file systems. To enforce the permissions, file systems are
isolated from applications and provide services via limited
interfaces such as system calls. To exploit NVM performance
by giving user-space file systems full control over both data
and metadata, we need to reconsider the isolation between
applications and file systems. Thus, we conducted a survey
on file permissions of application data.

First, we surveyed file permissions in the data directory of
two databases, MySQL and PostgreSQL, and a long-running
DokuWiki website3. For each database system, we initialized
a new data directory and imported example databases (em-
ployee, world, and sakila for MySQL [39]; and World, dell-
store2, and Pagila for PostgreSQL [44]). DokuWiki uses files
to store information about our laboratories, such as projects,
members, and publications, so we directly use these files for
analysis. Table 3 shows the results. For both database systems,
the permissions of files are highly concentrated to 640 and
600 for regular files. The only exception for MySQL is an
empty “debian-5.7.flag” file owned by the root user with 644
permission, which indicates the database binary format ver-
sion for upgrade [12]. For our DokuWiki website, all regular
files have 644 permissions. We also found that permissions of
these database files are never changed during the process of
database requests. As for DokuWiki, the only operation that
may change the file permission is a chmod system call upon
file uploads. But this chmod operation only changes the file
permission when the permission does not match DokuWiki’s
PHP mask, which never happens in our setup. These find-
ings show that applications tend to store files with similar
permissions that are rarely changed. Thus, it seems feasible
to group different files with the same permissions to reduce
context switches for permission checks and give user-space
FS libraries more flexibility when managing these files.

To confirm our findings, we further analyzed FSL Homes
Traces [47], which are a collection of daily snapshots of
students’ home directories from a shared network file sys-
tem [52]. We chose to analyze the latest snapshot, which is
taken on April 10th, 2015 and includes 15 home directories.
The summary is given in Table 4, where we only show file
statistics aggregated by permission bits due to space limita-
tions. There are 726,751 files in total, and 89% of them are
regular files. 644 is the most popular permission for regular
files, followed by 600. Since no detailed information about
directories is given in the trace, we assumed the directory
ownership and permission to be the same as the first file we
analyzed in the trace. We ignored the execution bit in file
permissions since it is hard to restrict such permissions after
mapping NVM to user space.

We attempted to group files with the same permission and
owners by the following rules. If a file has the same permis-
sion as its parent, then it stays in the same group as its parent.
Otherwise, a new group is created, and the file is put into the
new group. We started from a single group containing the FS
root directory and grouped files top-down. As a result, 4,449
groups are formed, with the largest group containing about
1/3 of all files. We also compute the min/average/max sizes of
file groups for different permissions. The largest group con-
tains files of 52.0 GB while the average group size is about
79.7 MB. This proves that if we give full control of one group

3https://ipads.se.sjtu.edu.cn
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to user-space FS libraries, the user-space FS libraries can
manage files in the group internally without suffering from
the context switches to/from the kernel. It is worth noting that
there are also 3,795 single-file groups. However, the sum of
file numbers in these groups only takes 0.6% of the total file
number.

We investigated further for permission changes during ap-
plication executions since FSL Homes Traces only contain
the static state of a file system. MobiGen Traces [26, 48]
contain 2 minutes worth of I/O system call traces collected
on a Samsung Galaxy smartphone, and two traces are given.
In the Facebook trace, we found no chmod or chown system
calls among 64,282 system calls. In the Twitter trace, there
are 16 chmod and no chown system calls in 25,306 system
calls. The 16 chmod system calls are used regularly in a fixed
pattern, where a shadow file is created with 600, written with
new data, and then changed to 660 before being renamed to
replace the actual file.

The survey results support our findings and encourage us
to group files with the same permissions and give user-space
FS libraries full control when managing these files.
2.4 Memory protection keys
Intel memory protection keys (MPK) [7, 24, 40] is a new
hardware feature that allows user-space applications to restrict
their memory accesses. MPK allows the kernel to store a four-
bit region number in each page table entry. Thus, the memory
space of a process can be separated into at most 16 regions.

In addition, MPK provides a CPU register called PKRU,
which contains 16 pairs of two-bit permissions indicating
whether each region is read-only, read-write, or inaccessible.
Each thread has its own PKRU register value, and each thread
can change its accessibility to each region by manipulating
its PKRU via a non-privileged instruction WRPKRU.

On each memory access, the MMU will read the region
number in the page table entry and check the correspond-
ing permissions in the PKRU register. If the memory access
violates the permission, a page fault will be triggered and de-
livered to the user-space application. MPK is supplementary
to the existing page permission bits in the page table entry,
and both permissions will be checked during memory access.

In summary, MPK allows the kernel to divide the memory
space of a process to multiple regions and allows each thread
to restrict its own access to each region by writing to a non-
privileged CPU register.

3 Design
Given the observation that we can group files with the same
permission, it is possible to give user-space FS libraries full
control to manage these files if they have the permission. In
this section, we first introduce the coffer abstraction (§3.1),
which can contain a group of files with the same permission.
Then we use coffers to design the Treasury architecture (§3.2)
and show how user-space FS libraries communicate with
the kernel part using coffer interfaces (§3.3). We show how

Coffer

Coffer
/

Coffer
data

src

Coffer mysql

a.frm a.MDY a.MDI dbb

b.frm b.MDIb.MDY

Coffer dbc

c.frm c.MDY c.MDI

Coffer
linux

privkey

Figure 1. An example of using coffers in the file system hier-
archy. Each coffer contains a single regular file or a directory
with some of its children.

protection and isolation can be further enforced (§3.4) and
then discuss crash recovery (§3.5).

3.1 The coffer abstraction
We introduce coffer, a collection of NVM pages that share the
same permission, to store files. Each coffer owns a root page,
which contains metadata about the coffer. The root page is
managed by the kernel and can be mapped as read-only to
user-space libraries.

Figure 1 shows an example of using coffers in the file
system hierarchy. In the example, besides a root page, each
coffer has a root file, which is the entry of the coffer. If the
root file is a file other than a directory (e.g., a regular file or a
symbolic link), the coffer stores only the root file. If the root
file is a directory, its child files can be stored within the same
coffer, so that they can be managed together by user-space FS
libraries without the involvement of kernel. When the child
files are not stored in the same coffer of the parent, cross-
coffer reference is recorded in the dentry so that user-space
FS libraries know in which coffer they will find the target file.

The coffer abstraction is the key enabler for direct man-
agement of files in user-space FS libraries. Since files in a
coffer have the same permission, we only need to check the
permission when the coffer is first requested by a process.
Once the access is granted to the process, all NVM pages in
the coffer are mapped to the process so that FS libraries in
the process can read/write these pages directly. By dividing
NVM spaces into multiple coffers, the permission of the file
system can be enforced at coffer granularity, and FS libraries
can access data and metadata in coffers directly as long as
they are mapped.

3.2 Treasury
Based on coffers, we build Treasury, a user-space NVM FS
architecture, to fully exploit the performance advantages of
NVM while providing sufficient protection and isolation.



Performance and Protection in the ZoFS User-space NVM File System SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Table 4. File statistics in an FSL Homes Trace snapshot. The left side categorizes files according to the type. The right side
breakdowns the number of files according to the permission. The bottom rows show the number of groups we classify files into
and the group sizes.

Type # Files 644 600 666 444 660 640 664 440
Regular 648,691 538,538 105,226 233 3,313 342 921 110 8
Symlink 6,486 18 0 6,468 0 0 0 0 0
Directory 71,574 65,127 4,021 927 1,099 276 33 91 0
All Files 726,751 603,683 109,247 7,628 4,412 618 954 201 8
# Groups 4,449 1,935 1,174 365 48 15 853 51 8
Min Size 0B 0B 0B 7B 660B 23.5KB 0B 28.7KB 455B
Avg Size 79.7MB 46.1MB 222.2MB 474.2KB 92.5MB 118.2KB 31.9KB 348.2KB 26.5KB
Max Size 52.0GB 23.4GB 52.0GB 106.7MB 995.1MB 211.1KB 10.5MB 5.4MB 98.3KB

KernFS

Pages for Coffers to store 

data and metadata
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block

Page 
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Coffer 2 

pages

Coffer 1 

pages Coffer 3 

pages

Allocator

Leases
Per-thread 

information

FSLibs information

NVM DRAM

uFS1 uFS2

Figure 2. Treasury consists of a kernel module (KernFS)
and a user-space library (FSLibs). KernFS maintains page
allocation information and path-coffer mappings in the file
system. FSLibs contains a collection of FS libraries (µFSs)
and some auxiliary tools. The internal structure of a coffer
is maintained by a corresponding µFS. A µFS to a coffer is
similar to a file system to a device partition.

Figure 2 shows the architecture of Treasury. Treasury is
comprised of two components: a kernel module (KernFS) in
kernel space and a library (FSLibs) in user space.

KernFS is responsible for global space management. It
uses an allocation table to record whether a page on NVM
is allocated to a coffer or not. It also manages all coffers in
a path-coffer mapping table. KernFS treats coffers as black
boxes. It only knows metadata about a coffer, such as the
coffer path, the coffer type, and which pages belong to the
coffer. It does not need to know what is stored in the coffer
and how the data is organized.

FSLibs, on the other hand, is a collection of FS libraries,
which we call µFSs, and tools that help µFSs manage data and
structures within coffers and interact with applications. There
can be multiple µFSs in FSLibs, and each of the µFSs can
manage a certain type of coffer. A µFS to a coffer is similar
to a file system to a device partition. Different µFSs can take
different approaches to organizing file data and metadata in

the coffer. Different types of coffers are distinguished by the
coffer type in the coffer metadata.

3.3 Interfaces
A µFS needs to communicate with KernFS for some coffer-
level requests. Communication is done via the ioctl system
calls in the implementation. Requests are classified into three
categories, as listed in Table 5.
Coffer operations. Coffer operations are used to modify the
coffer metadata recorded in KernFS. When a µFS needs to
create or delete a coffer, it explicitly sends coffer_new or
coffer_delete requests to KernFS who will check the va-
lidity and process the request. The same procedure also goes
for coffer_enlarge, which requests free NVM pages in
batch from KernFS, and coffer_shrink, which releases
free pages back to KernFS. On each coffer_map operation,
KernFS will first check whether the process has the permis-
sions to access the coffer. Once the check passes, KernFS will
map the corresponding pages to the process’s memory space,
so that a µFS can access the coffer directly in user space. The
mapping is removed when the coffer_unmap is requested
or when the process’s user and group identifiers are changed
by system calls such as setuid. A coffer_split operation
splits a coffer to two coffers, which is used to modify the per-
mission of some part of the original coffer. A coffer_merge
operation does the opposite; it merges two coffers into a single
one. The coffer_recover operation is invoked during the
recovery of a coffer, which will be discussed in §3.5. By us-
ing these coffer operations, µFSs can manage the coffer-level
metadata under the supervision of KernFS.
FS operations. Two operations are used by FSLibs to register
or deregister itself from KernFS. In an fs_mount operation,
KernFS allocates structures to track the information for the
new FSLibs instance. These structures are released in an
fs_umount operation or when the process is terminated.
File operations. Two operations, mmap and execve, are treated
specially in Treasury because they cannot be done in user
space. Both calls require a knowledge of file internal struc-
tures and need higher privileges to modify the page table for
the process. By introducing file_mmap and file_execve
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Table 5. Protocols between KernFS and FSLibs. These op-
erations are requested by µFSs in FSLibs and validated and
processed by KernFS.

Operation Description

coffer_new Create a new coffer under the given coffer.
coffer_delete Delete an existing coffer.
coffer_enlarge Allocate and assign more pages to a coffer.
coffer_shrink Free some pages from the coffer.
coffer_map Map a coffer into the process’ memory space.
coffer_unmap Unmap a mapped coffer.
coffer_split Split a coffer into two.
coffer_merge Merge two coffers into a single one.
coffer_recover Recover a coffer.

fs_mount Register a new FSLibs instance.
fs_umount Deregister the FSLibs instance.

file_mmap Map a file.
file_execve Execute a file.

interfaces, µFSs can provide the data locations to KernFS, so
that KernFS can update the page table with the data addresses.

3.4 Isolation and protection
Treasury relaxes the isolation boundary from a file to a coffer
and allows the user-space FS libraries to manage a coffer
directly once it is mapped. However, user-space direct man-
agement also incurs several issues in isolation and protection,
which we address in this subsection.

3.4.1 Stray writes
Stray writes [9] happen when the control flow is messed up
because of bugs. Since NVM can be modified by simple CPU
store instructions, stray writes can easily corrupt existing
data and structures stored on NVM. In prior work such as
PMFS [9], stray writes are protected using a combination of
page table isolation and the CR0.WP bit. Buggy processes
cannot modify the state of NVM mapped in other processes or
the kernel because of the isolation provided by the page table
and the privileged mode. On the other hand, buggy writes
in other parts of the kernel (e.g., drivers) are prevented from
modifying NVM state by a write window mechanism. When
NVM is read-only mapped in kernel space, the NVM is only
modifiable when the CR0.WP bit is cleared. Thus, PMFS
clears the CR0.WP before it modifies NVM and sets the bit
right after the modification. This temporarily opens a write
window in which the NVM can be modified while leaving
NVM read-only most of the time.

Stray write protection is much harder for Treasury because
NVM coffers can be directly modified in user space. One
straightforward solution is to map the coffer as read-only and
makes it writable only when a µFS wants to update the NVM.
However, this solution requires lots of page table permission
updates and cannot prevent stray writes by other concurrent
threads in the same process.

Protection from stray writes. In Treasury, we extend the idea
of write windows from PMFS by using Intel MPK to protect
file systems from stray writes.

When KernFS maps a coffer to a process, KernFS will
mark the coffer pages in a different MPK region from the
process’s runtime memory. KernFS will also disable access to
the coffer’s MPK region in the thread’s PKRU register, before
returning to user space. To protect NVM from stray writes,
µFSs should obey the following guideline:

G1. A coffer can be accessible only when the µFS is access-
ing the coffer.

When a µFS wants to access a coffer, it first enables the
access permission to the coffer’s region by updating the PKRU
register. This permission is disabled right after µFS finishes
the access. As a result, no coffers are accessible when the
application code is running, and since the µFS code is trusted,
no stray writes can corrupt coffers.

This protection is efficient because updating the PKRU reg-
ister requires a single WRPKRU instruction, which has little
overhead (about 16 cycles on our platform). Since the register
is per-thread, stray writes in other concurrent threads cannot
leverage the access window opened by the normal thread,
which further enforces the integrity of the protection.

3.4.2 Graceful error return and fault isolation
Although software bugs in applications can be effectively
prevented from corrupting coffers, there can still be data and
metadata corruptions caused by malicious attacks or hardware
faults. Data corruptions can do limited harm to a running pro-
cess, since user-space FS libraries simply return the wrong
data. Metadata corruptions, however, can either cause abnor-
mal termination of the whole process or lead user-space FS
libraries to spread the corruption to other coffers that the pro-
cess has mapped. For such situations, we again leverage Intel
MPK to minimize the interference to normal processes and
isolate the fault within a coffer.
Graceful error return. Kernel file systems return an error
code when there is something wrong during the system call.
However, if some coffer is corrupted while FSLibs is access-
ing the coffer, FSLibs is likely to access invalid memory
areas, which will cause the whole process to be terminated
by segmentation faults.

A feasible solution to the problem is to check the validity
of the address before each access in FSLibs. But this solution
requires too many address checks on the critical path.

We, instead, hook the segmentation fault handler, so that
the handler could translate the cause of the fault into a file
system error and report it to the application. Specifically, we
invoke sigsetjump at the beginning of FSLibs file system
functions and call siglongjump in the SIGSEGV signal han-
dler to jump back to the beginning of the FSLibs function
and return corresponding errors. This approach protects the
application from being terminated due to invalid memory ref-
erences in a coffer. As a result, errors in FSLibs can always
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be converted into a file system error and gracefully returned
to the application.
Fault isolation. To prevent corruptions in one coffer from
spreading to other coffers, KernFS maps different coffers to
different MPK regions. A µFS should obey the following
guideline.

G2. At any time, at most one coffer is accessible in user
space for each thread.

A µFS should keep track of which MPK group each coffer
belongs to and enable the access permission only to that
region before access. As a result, metadata and data accesses
in unintended coffers will be prevented by MPK and faults
cannot propagate across coffers.

Note that even if only one coffer is accessible, there can
be multiple coffers mapped in the process, and switching the
accessible coffer among the mapped coffers only requires
a WRPKRU instruction. There are at most 15 coffers simulta-
neously mapped to a process, since only 15 MPK regions
are available. If a coffer_map operation is requested and
KernFS finds no more available regions, KernFS will return
an error, and the µFS should call coffer_unmap to release
MPK regions before mapping new coffers.

3.4.3 Metadata security
In traditional file systems, a malicious process can only attack
other processes by modifying a file shared by other processes.
In Treasury, however, since metadata can be directly modified
in user space, a malicious process may also attack others by
manipulating the metadata in shared coffers.

If the manipulated metadata does not involve other coffers,
the victim may read the wrong data or receive file system
errors for corrupted coffer structures. For the former situation,
the attacker can also achieve the same effect via normal FS
operations since it has permission to write all files within the
coffer. For the latter situation, the victim will neither leak data
nor do wrong modifications.

For manipulated metadata involving other coffers, Treasury
prevents the effect of manipulated metadata from spreading to
other coffers to defend from such metadata attacks. Assume
two processes share the same coffers, and the malicious pro-
cess (the attacker) tries to compromise the other (the victim)
by manipulating shared metadata in coffer A. Supposing the
victim obeys G1 and G2, when the victim accesses coffer A,
it will make coffer A accessible and all other coffers inacces-
sible. Thus, if the victim follows the manipulated metadata
and accesses other unexpected coffers, MPK violations are
triggered, and the victim can stop its file access.

On the other hand, when the victim meets an expected
cross-coffer reference, it will proactively disable the current
coffer’s accessibility and make the target coffer accessible.
In case an attacker manipulates a cross-coffer reference, we
have the last guideline for µFSs to enforce the integrity of
cross-coffer references:

G3. For each cross-coffer reference, µFSs should check the
validity of the target coffer before making it accessible.

In the example µFS ZoFS in §5, the dentry is the only
structure that may contain cross-coffer references, as it may
point to the root inode of another coffer. The only chance
for the attacker to bypass MPK protection and propagate
manipulated metadata to other coffers is to modify these cross-
coffer references in coffer A’s dentries. However, when ZoFS
in the victim process accesses a dentry containing cross-coffer
references, it will check the source dentry’s path against the
target coffer’s path to ensure that the coffer to be accessed is
indeed expected. The cross-coffer reference is also validated
to ensure that it points to the root inode of the target coffer. As
a result, no matter how the attacker manipulates the metadata
within a coffer, the victim, who shares the manipulated coffer,
can prevent manipulated metadata from being spread to other
coffers.

Metadata in coffers can be manipulated and become in-
valid. Thus, if applications directly read and use metadata
in their own way, they should check the metadata to prevent
attacks such as buffer overflows. Note that all coffers are
mapped to user space as non-executable; thus, Treasury does
not facilitate attacks that inject malicious code.

3.5 Recovery
A coffer needs recovery when it is corrupted. The recovery
can be initiated by any µFS. The µFS, which is the initia-
tor, invokes coffer_recover to notify KernFS the recovery
request. KernFS marks the coffer as “in-recovery” with a
recovery lease in the coffer root page, and then unmaps the
coffer from all processes other than the initiator, and returns
to the initiator. The initiator starts recovery within the coffer
and sends the addresses of in-use pages to KernFS, who will
compare them to pages allocated to the coffer and reclaim
pages that are not used.

4 Implementation
In this section, we focus on the issues and solutions in the
implementation of Treasury to support modern real-world
applications.

4.1 KernFS
Coffer management. KernFS maintains all coffers informa-
tion in the whole file system. As defined in §3.1, each coffer
has a root page that stores the metadata of the coffer. Treasury
uses the relative address of the root page (i.e., the coffer-ID)
to identify each coffer. Treasury also introduces a persistent
hash table (the path-coffer mappings in Figure 2) to store all
coffers. The key of the hash table is the path of the coffer,
and the value is the coffer-ID. We use paths to index all
coffers to boost file lookup. When a µFS wants to access a
file, KernFS can find and map the coffer containing the file
by comparing the file path and paths stored in the hash table.
Coffers can also be directly located by calculating the address
using the coffer-ID.
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Space management. Treasury adopts two-level allocations:
KernFS allocates NVM pages in batch to coffers, and each
coffer further allocates its pages to store data and metadata.

KernFS manages all NVM space globally at page granu-
larity. It leverages a persistent allocation table (as shown in
Figure 3) to track the allocation state of each page. In the
allocation table, each page’s allocation state is indicated by
a 32-bit integer (the coffer-ID), which records to which
coffer the page is allocated. A zero coffer-ID indicates free
pages, i.e., pages that have not been allocated to any coffer.

To speed up allocation of a large number of consecutive
pages, adjacent allocation slots with the same coffer-ID are
merged. As a result, a new 32-bit integer is added for each
page, indicating how many consecutive pages, starting from
this page, share the same coffer-ID.

We also use some volatile data structures to track and
boost allocation. For example, we use a global volatile red-
black tree to track all free space in the allocation table, and
another red-black tree to track all allocated space and the
corresponding coffer-ID.
4.2 FSLibs
The goal of FSLibs is to transparently run dynamically linked
applications on user-space NVM FS libraries. By preloading
FSLibs, the applications can access files managed by user-
space NVM FS libraries (i.e., µFSs) without recompilation.
Figure 4 shows the architecture of the FSLibs in Treasury,
where there is a dispatcher and one or multiple µFSs.
System call interception. We add shim functions in glibc to
intercept all file system related system calls.

FSLibs is compiled to a dynamic library named libfs.so
and loaded by the LD_PRELOAD environment variable dur-
ing the boot of applications. Afterwards, file system related
system calls invoked by the applications are redirected to
the dispatcher, which will dispatch the system calls to the
corresponding µFS according to the coffer type.

We need to distinguish files in FSLibs and files stored in
kernel file systems. For a filename, if it is an absolute path,
we compare it with FSLibs’s mount path, to see whether
the file is stored in FSLibs. For a relative path, we prepend
the maintained current working directory path to the relative
path before comparing it to the FSLibs mount path. For file
descriptors (i.e., FD), we maintain a user-space FD mapping
table and look up the table each time when we get an FD.
FD mapping table. Prior work [31] differentiates FDs of user-
space FS libraries and kernel file systems by comparing them
with a threshold. For example, FDs larger than 5000 are re-
served for user-space FS libraries, and the rest are used by
kernel file systems. This is simple, but it causes problems
when applications, such as bash, depend on system calls such
as dup. dup duplicates an existing FD and returns the new FD.
Additionally, the returned FD should be the lowest available
FD number [35], which cannot be satisfied by separating the
range of user-space and kernel FDs.

To solve the problem, we choose to maintain a user-space
FD mapping table, in which FDs used by applications are
mapped to FDs used by kernel or file structures in µFSs.

As a result, each system call that involves FDs is inter-
cepted, and FDs are translated by the user-space FD mapping
table. With the table, we can make sure the dup call will
always return the lowest available FD the application can
observe, which satisfies the requirement of applications.

As a side effect, we need to maintain the user-space FD
mapping table across system calls such as exec, clone and
vfork. For example, we serialize the FD mapping table con-
tent using base64 and pass it across exec calls using a dedi-
cated environment variable.
Symbolic links. Implementing the symbolic link (i.e., sym-
link) file is easy, but following symlinks is complex during
the path walk. We use a clumsy method to handle symlinks
in the page walk: whenever one symlink is expanded in a
µFS, the new path will be returned to the dispatcher, which
will re-dispatch the file request. Such an implementation can
correctly handle most of the symlink cases. One exception is
a symlink in kernel file systems that points to FSLibs files,
which we will consider as future work.

4.3 Limitation and discussion
Although Treasury tries to provide the same functionality as
kernel file systems, there are limitations that Treasury cannot
bypass easily.
Permissions. Treasury takes page permissions enforced by
the page table to restrict whether a process can read or write
a coffer. However, each page table entry stores a single bit to
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The coffer root page is required by Treasury, while the rest of
the structures are designed by ZoFS.

indicate the page is read-only or read-write; thus, file permis-
sions such as write-only cannot be easily implemented. For
the execution permission of a file, Treasury always maps the
coffer pages as non-executable; and the execution permission
is maintained by µFSs without kernel enforcement. Treasury
also cannot support complex permission mechanisms such as
POSIX access control lists (ACLs).

Permissions of directories have different meanings from
those of regular files. For simplicity and efficiency, Treasury
ignores the difference and treats directory permissions as
inaccessible, read-only, and read-write, which is the same as
regular files.
Access time. Treasury cannot support atime easily for read-
only files since the atime metadata cannot be updated in user
space for read-only coffers.
Denial-of-service attacks. In Treasury, FSLibs are given full
control over data and metadata with mapped coffers, which
makes FSLibs capable of imposing denial-of-service (DoS)
attacks such as holding a lease lock and never releasing it.
Applications using MPK. Treasury heavily relies on the MPK
mechanism. If the applications also need to use MPK, the
applications and Treasury will compete for the limited MPK
regions in the same virtual memory space.

5 ZoFS: An example user-space NVM FS
The internal structures of coffers are defined by a specific µFS
implementation. In this section, we introduce an example µFS
called ZoFS that uses coffers and is implemented in FSLibs.

As described in §3.1, ZoFS manages files in a tree hier-
archy (Figure 1): a file can be stored in its parent’s coffer
only when it has the same permission as its parent. This is a
design decision of ZoFS, and other µFSs can choose different
approaches. For example, a µFS can use a flat hierarchy to
organize all descendant files of a directory. It can divide these
files in different coffers only by their permissions, ignoring
their hierarchical relations.

Figure 5 shows the architecture of a ZoFS coffer. Each
coffer is allocated by KernFS with three pages. The first page
is used as the coffer root page, which is the entrance of the
coffer and contains metadata about the coffer, such as the
coffer path and type. The other two pages are a page for root
file inode and a custom page for per-coffer data. The addresses
of these two pages are stored in the coffer root page, which is
read-only for ZoFS.

5.1 Data and metadata organization
ZoFS only supports 4KB-sized allocation for simplicity, so
structures used to organize files and directories are 4KB-
aligned. Techniques, such as embedding file data in the inode
page, can be used to improve the space efficiency, which we
leave as future work.
Directories. ZoFS uses adaptive two-level hash tables to or-
ganize directory entries. The first-level hash table has 512
pointers, each of which points to a second-level page. The
second-level page consists of two parts. The first half of the
page stores some directory entries (e.g., dentries) and the
second half stores a second-level hash table with 256 buckets.
Each bucket of the second-level hash table stores a linked list
of pages containing dentries. ZoFS tries to put new dentries
in the second-level page first, and only when the second-level
page is full, the dentries are inserted into the second-level
hash tables. Pages in a directory are allocated on demand to
reduce unnecessary storage overhead.

Each dentry contains a hash value of the filename for fast
checks, the filename itself, the coffer-ID and the inode
pointer. A zero-value coffer-ID indicates the inode is within
the same coffer as the directory. Accessing an inode with
non-zero coffer-ID requires switching the MPK region or
mapping a new coffer via coffer_map.
Regular Files. ZoFS manages regular files in a way similar to
Ext4. The file inode contains pointers to data pages, indirect
pages, and double indirect pages.
Special Files. An inode in ZoFS consumes a 4KB page. Thus
there is sufficient space to store data of special files, for ex-
ample, the target of a symbolic link.

5.2 Leases and allocation
Multiple threads, both intra- and inter-process, can manage
the same data structures in a coffer at the same time. ZoFS
uses lease locks in case some processes are terminated unex-
pectedly while holding the locks.

Lease locks require globally synchronized timestamps across
all CPUs. ZoFS uses the clock_gettime call to get times-
tamps for leases. Thanks to the virtual dynamic shared object
(vDSO) feature [36], clock_gettime is efficient since it can
be processed in user space without invoking system calls to
the kernel.

Lease locks can protect concurrent accesses to shared ob-
jects. However, it does not help scalability on high-contention
structures such as allocators. In ZoFS, we combine lease locks
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Figure 6. Leased per-thread allocator.
and thread-local storage (i.e., per-thread variables [13]) to im-
prove the scalability of allocators. Figure 6 shows the leased
per-thread free list in allocators. The leased per-thread free
list structure contains a thread ID (TID), a lease and the free
list header.

ZoFS pre-allocates sufficient leased per-thread free list
structures in a shared pool. When a thread wants to allocate
NVM pages, it first checks whether it has already held a
leased per-thread free list structure4 and whether the lease
is still valid. If both are true, it renews the lease and directly
allocates from the free list stored in the structure. Otherwise,
it needs to find a free leased per-thread free list structure from
the shared pool and update the TID and lease information
before using the free list. If the free pages in one free list are
insufficient, ZoFS sends a coffer_enlarge request to the
kernel to acquire more NVM pages.

The leased per-thread allocator improves the scalability
of ZoFS’s allocation. Also, even if a thread is terminated
unexpectedly, its per-thread free list can be reused by others
when the lease expires.
5.3 Consistency and recovery
To ensure consistency, ZoFS issues atomic instructions with
proactive cache line flushes to ensure atomic metadata up-
dates. Each metadata update is divided into multiple steps.
ZoFS follows a carefully-decided order of these steps, so that
after crashes, partially processed metadata updates can be roll-
backed by the recovery code. This is similar to the approach
used in SoupFS [8]. ZoFS does not implement atomic data
updates for simplicity.

ZoFS’s consistency relies on the recovery phase. Although
Treasury provides an approach for online recovery, ZoFS only
implements an offline recovery.

For recovery, ZoFS first scans all coffers in the whole file
system and recovers in-coffer metadata for each coffer as
follows. It starts with the coffer root page to traverse the
whole coffer and records in-use NVM pages and cross-coffer
metadata. When a corrupted file or dentry is found during the
traversal, ZoFS first tries to recognize and recover it. If the
recovery is not possible, ZoFS skips the corrupted content. At
the end of traversal, ZoFS sends all in-use pages in the coffer
to KernFS, which will reclaim the rest of the pages. After all
in-coffer metadata are checked, ZoFS continues to validate
cross-coffer metadata according to the information recorded
during coffer traversals.

4The information is recorded in a normal per-thread variable.

ZoFS is a simple example of a µFS in Treasury. It is pos-
sible to implement other kinds of µFSs in Treasury with the
coffer abstraction. For example, one can implement a jour-
naled µFS or a log-structured µFS in Treasury as well.

6 Evaluation
We present evaluation results for ZoFS in this section. To
present the characteristics of ZoFS comprehensively, we first
evaluate and analyze the basic performance of ZoFS using a
set of micro-benchmarks. Then we use macro-benchmarks
to show how ZoFS performs under synthesized workloads,
and finally run real-world applications on ZoFS to reveal its
advantages and disadvantages.
Experiment setup. Experiments are conducted on a server
platform with two ten-core Intel(R) Xeon(R) Gold 5215M
CPUs. Hyper-threading is disabled, and the CPU frequencies
are set to 2.50GHz to get stable results during the evaluation.
The machine is equipped with 384GB DDR4 DRAM and
1.5TB Optane DC persistent memory that is distributed on
two NUMA nodes. We perform all experiments on the 750GB
Optane DC persistent memory residing on NUMA 0 to ensure
stable results.

We evaluate Ext4-DAX [4, 6, 58], PMFS [9], Strata [31],
and NOVA [61, 62] and compare the performance of ZoFS
to them. We tried to build and run Strata but only succeeded in
some benchmarks. We failed to build ZuFS [10] and Aerie [56]
using their provided kernel configurations.
6.1 Micro benchmarks
We use FxMark [38] to evaluate the performance of basic
operations and stretch the scalability of tested file systems.

Figure 7 shows the throughput of tested file systems as
the number of threads increases. ZoFS achieves the best
throughput in most workloads, including data reads (Fig-
ure 7(a)(b)(c)), data writes (Figure 7(d)(e)(f)) and metadata
operations (Figure 7(g)(h)(i)). ZoFS manages data and meta-
data in user space and prevents context switches and cacheline
pollution caused by system calls, which is the major reason
for the performance differences.

In the data read workloads, all file systems scale well re-
gardless of the contention level, thanks to the readers-writer
lock. For data appends (DWAL, Figure 7(d)), the allocator
also affects the performance. ZoFS uses leased per-thread
allocator, which scales until 12 threads. After 12 threads the
throughput is limited by the coffer_enlarge processing
in the kernel, which will be further explained later. NOVA
uses a per-core allocator, which scales well in this workloads.
PMFS, however, uses a global allocator that stops to scale
after 4 threads.

Figure 7(e) shows the performance when different threads
overwrite the first 4KB block of different files (DWOL), ZoFS
hits the write bandwidth ceiling of the NVM we use when the
thread number is 12. With the increase of the thread count,
the write bandwidth of NVM decreases [25], which reduces
the throughput of ZoFS.
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Figure 7(f) shows the performance when different threads
overwrite different blocks in a shared file (DWOM). Since all
tested file systems use per-file locks, the throughput drops as
the number of threads increases. ZoFS still presents the best
performance under this scenario.

However, when different threads create files in different
directories (MWCL, Figure 7(g)), ZoFS stops to scale after 4
threads and is outperformed by NOVA. This is caused by the
contention of the coffer_enlarge operation. Even if each
thread has its private allocator, when it runs out of free space,
it will call coffer_enlarge. When space allocation is ex-
tremely frequent, different threads calling coffer_enlarge
contend in the kernel and yield non-scalable performance.
This is also the reason for the flattened throughput of ZoFS
after 12 threads in Figure 7(d). In NOVA, however, each per-
core allocator will get an equal share of the whole NVM free
space; thus, it will take much longer time to exhaust a per-
core allocator in NOVA. So NOVA continues to scale even
after 4 threads.

To better illustrate the source of performance gains, we
breakdown the throughput of DWOL by modifying the evalu-
ated file systems and show the results in Figure 8. ZoFS-
sysempty is a ZoFS variant that issues an empty system
call before each file write. ZoFS-kwrite is another ZoFS
variant whose file write operation is implemented in kernel
space. NOVAi indicates the in-place version of NOVA. The
“-noindex” suffix indicates NOVA implementations that do
not update indexing structures for file writes. These two “-
noindex” NOVA variants are not correct for operations other
than file overwrites, and we show them here to illustrate the
influence of indexing structure updates. PMFS, by default,
uses normal writes followed by clwb instructions when clwb
is available. We force PMFS to use non-temporal writes in
the PMFS-nocache variant.

In Figure 8, all systems fall into three groups according
to their performance. ZoFS performs the best, followed by
ZoFS-sysempty in the fastest group. NOVA-noindex, PMFS-
nocache, ZoFS-kwrite, and NOVAi-noindex perform similarly
in the second group. PMFS, NOVA, and NOVAi are in the
slowest group. The throughput difference between ZoFS and
ZoFS-kwrite shows the benefit of implementing file systems
in user space. For NOVA implementations, the updates of
the indexing structure significantly affect performance. Since
all writes in the test are 4KB and aligned, NOVAi has no ad-
vantage over NOVA and suffers from its journaled metadata
operation. For PMFS, it is surprising that the non-temporal
writes are much faster than normal writes followed by clwbs.
To ensure fairness, we checked the implementation and con-
firmed that both NOVA and ZoFS use non-temporal writes
for all experiments in the paper.

In summary, ZoFS outperforms existing NVM file sys-
tems, scales well in almost all workloads, and the user-space
implementation contributes to ZoFS’s high performance.

Table 6. Filebench workload characteristics.

Workload # Files Dir Width File Size R/W Ratio

Fileserver 10,000 20 128KB 1:2
Webserver 1,000 20 16KB 10:1
Webproxy 10,000 1,000,000 16KB 5:1
Varmail 1,000 1,000,000 16KB 1:1

6.2 Macro benchmarks
We also evaluate synthesized workloads using Filebench. The
characteristics of these workloads are listed in Table 6, and
the results are shown in Figure 9.

Generally, ZoFS performs the best in all four workloads.
In the single-threaded fileserver workload (also shown in Fig-
ure 10(a)), ZoFS outperforms NOVA by 30%, PMFS by 16%,
and Strata by 5%. As the thread number increases, ZoFS and
NOVA continue scaling, and the performance gap between
them shrinks. PMFS scales until 12 threads and falls behind
ZoFS and NOVA in throughput. The performance of Strata
slightly drops at 2 threads and then stays flat.

In the webserver workload, ZoFS achieves 17% higher
throughput than NOVA and 11% higher throughput than
PMFS, when there is only one thread. All file systems, except
Strata, scale until 12 threads.

In the webproxy and varmail workloads, ZoFS always
performs the best. The performance gaps between ZoFS and
other file systems enlarge as the number of threads increase.
The reason is that the large directory widths (dir-width in
Table 6) in the webproxy and varmail workloads cause all
files to be stored in a single directory. ZoFS scales well until
12 threads, thanks to its directory design (§5.1). PMFS and
NOVA stop to scale earlier, and their performance slightly
drops afterwards, due to the inefficiency of finding files in a
large directory. To illustrate the impact of the directory width,
we also measure the varmail workload with its dir-width set
to 20. The result is shown in Figure 10(b). All file systems
scale and ZoFS still outperforms PMFS and NOVA by up to
13% and 46%, respectively.

It is worth noting that compared with the performance
under the default varmail configuration, the performance of
ZoFS drops when the dir-width is reduced to 20. The small dir-
width causes deep directory structures. Thus, files accessed
in the workload often have long paths. However, ZoFS parses
file paths backwards to get the nearest coffer. In other words,
starting from the longest prefix, all prefixes of the path are
checked until a coffer root is found. This incurs considerable
time for files with long paths and slows down the performance
of ZoFS. Lines indicated by “ZoFS-20dirwidth” in Figure 9(c)
and Figure 9(d) show the performance when the dir-width
is set to 20. In comparison with the performance under the
default configuration, the throughput of ZoFS decreases by
10% to 30%.



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada M. Dong, H. Bu, J. Yi, B. Dong, H. Chen

1 2 4 8 12 16 20
# Threads

0

20

40

60

80

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

Ext4-DAX

PMFS

NOVA

ZoFS

(a) Data read, low contention

1 2 4 8 12 16 20
# Threads

10

20

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(b) Data read, medium contention

1 2 4 8 12 16 20
# Threads

10

20

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(c) Data read, high contention

1 2 4 8 12 16 20
# Threads

0

1

2

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(d) Data append, low contention

1 2 4 8 12 16 20
# Threads

0

2

4

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(e) Data overwrite, low contention

1 2 4 8 12 16 20
# Threads

0.2

0.4

0.6

0.8

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(f) Data overwrite, medium contention

1 2 4 8 12 16 20
# Threads

0.00

0.25

0.50

0.75

1.00

T
h
ro

u
g
h
p
u
t 

(M
o
p
s
/s

)

(g) Metadata create, low contention
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(h) Metadata create, medium contention
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Figure 7. Results of FxMark workloads. Each data operation accesses files in 4 KB units.

0 200 400 600
Throughput (Kops/s)

NOVAi

NOVA

PMFS

NOVAi-noindex

ZoFS-kwrite

PMFS-nocache

NOVA-noindex

ZoFS-sysempty

ZoFS

Figure 8. Throughput breakdown of DWOL.
6.3 Real-world applications
In this section, we evaluate the performance of ZoFS and other
file systems using two real-world applications: LevelDB and
TPC-C SQLite.
LevelDB. LevelDB [14] is a fast key-value storage library
that is widely used in cloud environments. We run LevelDB’s
db_bench benchmarks on different file systems and report
the results in Table 7. ZoFS has the lowest latency across all
file systems and all operations. In some operations such as
write seq. and delete rand., ZoFS halves the latency compared
with PMFS, which presents the second-best latency in the
experiment. NOVA adopts the copy-on-write approach and
performs worse than PMFS in the test.
TPC-C SQLite. SQLite [49] is a widely used lightweight yet
full-featured SQL database engine. We drive SQLite with
TPC-C [53], which is an online transaction processing bench-
mark that simulates an order processing application.

Table 7. Latency of LevelDB.

Latency/μs Ext4-DAX PMFS NOVA ZoFS
Write sync. 58.115 23.490 29.055 21.080
Write seq. 7.630 5.019 10.063 3.705
Write rand. 20.052 11.553 19.949 10.296
Overwrite. 30.536 18.223 30.336 16.835
Read seq. 1.389 1.079 1.220 1.071
Read rand. 4.472 3.553 3.990 3.523
Read hot. 1.192 1.164 1.187 1.146
Delete rand. 3.907 2.810 9.418 1.719

TPC-C involves five types of transactions: New-Order
(NEW), Payment (PAY), Order-Status (OS), Delivery (DLY), and
Stock-Level (SL). We use four workloads in the experiment.
The first workload is the mixed workload, in which all types
of transactions are executed with the ratios given in Table 8.
In the other three workloads, we solely execute NEW, OS, and
PAY transactions, respectively. We build secondary indexes
on the customer and orders tables and enable foreign keys
as required in the specification. We run each workload with a
single thread that hosts 1 warehouse and 10 districts.

Figure 11 shows the results. ZoFS achieves the highest
throughput in the mixed workload and outperforms PMFS and
NOVA by 9% and 31%, respectively. Again, PMFS outper-
forms NOVA due to the copy-on-write mechanism in NOVA.
The performance differences are similar in the other three
workloads. The PAY workload results in considerably higher
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Figure 9. Filebench.

Ext4-DAX PMFS NOVA ZoFS Strata
0

20

40

60

T
h
ro

u
g
h
p
u
t 

(K
 o

p
s
/s

)

(a) Fileserver with one thread

1 2 4 8 12 16 20
# Threads

250

500

750

1000

T
h
ro

u
g
h
p
u
t 

(K
o
p
s
/s

)

Ext4-DAX

PMFS

NOVA

ZoFS

(b) Varmail with dir-width=20
Figure 10. Filebench with customized configurations.

Table 8. TPC-C transaction mix.

Transaction NEW PAY OS DLY SL
Ratio 44% 44% 4% 4% 4%

Mixed NEW OS PAY
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Figure 11. TPC-C SQLite.

Table 9. Worst case performance tests.

Latency/ns NOVA ZoFS ZoFS-1coffer
chmod 1,830 23,342 675
rename 6,261 28,264 1,681

throughput than the NEW workload, because the PAY transac-
tion is much simpler and faster. However, the NEW transactions
limit the overall throughput of the mixed workload, although
both NEW and PAY account for more than 40% of all transac-
tions. The performance of the OS workload, which is read-
only, is even higher than the PAY workload, and ZoFS still
outperforms PMFS and NOVA by 7% and 11%, respectively.

6.4 Worst case performance tests
In this subsection, we perform some hand-crafted tests to
study how Treasury performs under some worst use cases.
Treasury is not good at handling operations across coffers,
because these operations must call kernel routines to manipu-
late coffer’s metadata. We write two microbenchmarks, which
change the file permission and path, to demonstrate how bad
Treasury’s performance is in these scenarios. We compare
the performance of NOVA, ZoFS, and ZoFS-1coffer (a ZoFS
variant that stores all files in one single coffer even if they
have different permissions.). Results are shown in Table 9.

In the first microbenchmark, files are stored within one cof-
fer initially. Then we change the permission or ownership of
random files. As the results show, ZoFS-1coffer has the low-
est latency because it handles all permission updates in user
space. NOVA is slower than ZoFS-1coffer because it calls the
kernel to change file permissions. ZoFS is about 12× slower
than NOVA and 33× slower than ZoFS-1coffer, respectively.
This is because it splits its coffer into more and more cof-
fers as the file permissions change. The split procedure will
change the coffer of all file pages, which takes a long time. In
the other microbenchmark, we have lots of files evenly stored
in two coffers5. We then randomly pick files and rename
them to the other coffer. The result is similar to the chmod
microbenchmark for the same reason. Both microbenchmarks
confirm the high cost of cross-coffer operations in ZoFS.

6.5 Safety and recovery tests
To verify the protection in the Treasury design, we design
some tests, including buggy code and malicious applications
to stress the safety of Treasury. We also evaluate the time and
effect of recovery in this subsection.

For safety tests, we set up two processes P1 and P2 with
two coffers C1 and C2. P1 maps C1 as read-write, and P2
maps both C1 and C2 as read-write.

The first test is about buggy code. P2 regularly accesses
files stored in C1 while P1 randomly overwrites its memory
space until it is terminated by the kernel. When P1 starts to
overwrite outside ZoFS, which simulates the stray writes in
application code, file accesses in P2 are never affected since
all stray writes in P1 are caught by MPK. When P1 starts to
overwrite in ZoFS’s code, which can corrupt metadata in C1,
P2 receives errors returned by ZoFS during the normal access
of files and never terminates unexpectedly. The test presents
the effectiveness of MPK protection and graceful error return.

In the second test, P1 acts as an attacker and tries to access
the data in C2 by manipulating C1. However, all these ac-
cesses are prevented by the kernel. P1 then tries to manipulate
C1 to induce P2, which is regularly accessing files in C1, to
access files in C2 by mistake. But P2 never accesses files
in C2. Instead, it is aware of the manipulated metadata in
C1 and reports it as an error. These results show that ZoFS
can successfully defend against manipulated metadata from a
malicious process.

5For ZoFS-1coffer, all files are stored in two directories in a single coffer.
For NOVA, the files are stored in two directories.



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada M. Dong, H. Bu, J. Yi, B. Dong, H. Chen

In the third test, we measure the time and effect of recov-
ering a coffer. When accessing a corrupted file system, the
process successfully detected the corruption. We then start
the recovery procedure and measure the time. Recovering a
coffer with 1,000 2MB-sized files takes 20,748 microseconds
in total, with 5,386 microseconds in user space and 15,362
microseconds in the kernel, respectively.

7 Other Related Work
Container-based file systems. The idea of organizing files in
a container has been adopted for different purposes in file
systems. Chunkfs [18] divides a file system into chunks to im-
prove file system reliability and repair. IceFS [37] introduces
cubes, which are used for disentanglement of physical struc-
tures. SpanFS [28] proposes domains to improve file system
scalability on SSDs. Each domain is a micro file system that
manages part of the file system. A similar concept, zoning,
is used in BetrFS 0.4 [65] to support fast renaming of full-
path indexing. The coffers abstraction in this paper appears
as a similar idea. However, it is used to separate protection
from management in user-space NVM file systems. Coffers
make it possible to directly manage NVM file system data
and metadata in user-space libraries while providing sufficient
protection and isolation.
User-space file systems and storage management. There are
a dozen user-space file systems [15, 16, 34] built on FUSE [51].
These file systems usually suffer from the high overhead of
FUSE. ZuFS [10] is a new user-space file system architecture
branded with zero-copy. In ZuFS, data will not be copied
back-and-forth between user space and kernel space, which
significantly reduces the overhead in FUSE. However, file
systems using ZuFS still suffer from system calls and context
switch overheads that can be prevented in Treasury.

Arrakis [41–43] separates file system naming from file
system implementation and lets applications directly man-
age traditional storage hardware with the help of virtualiza-
tion. The idea behind Treasury is similar. However, Trea-
sury targets byte-addressable NVM, which is significantly
different from traditional storage in both performance and
byte-addressability characteristics.
Exokernel. The exokernel architecture separates protection
from management to give untrusted applications as much
control over resources as possible [2, 11]. Treasury, in some
sense, is more like an exo-filesystem architecture, which sepa-
rates the protection of NVM resources from management and
gives user-space libraries full control over NVM. As a result,
the untrusted applications can fully exploit the performance
of NVM with sufficient protection and isolation.
User-space library protection. Hodor [17] proposes an ap-
proach to protecting user-space libraries with Intel MPK. It
relies on hardware watchpoints and trust loaders to guaran-
tee safety. ERIM [54] also leverages Intel MPK to provide
hardware-enforced in-process isolation and adopts binary in-
spection to prevent circumvention. Treasury divides the file

system into coffers and protects each coffer with the paging
mechanism. Treasury adopts Intel MPK and kernel-user co-
operation to enforce the isolation and protection of the file
system further.

8 Conclusions
This paper introduces a new abstraction, coffers, and a new
user-space NVM file system architecture, Treasury. With cof-
fers, Treasury separates NVM protection from management
so that NVM performance can be fully exploited with suffi-
cient isolation of NVM resources enforced. Our evaluation
shows that an example file system, ZoFS, outperforms ex-
isting NVM file systems in both benchmarks and real-world
applications.
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