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Abstract Many machine learning and data mining (MLDM) problems like recommendation, topic modeling, and medical

diagnosis can be modeled as computing on bipartite graphs. However, most distributed graph-parallel systems are oblivious

to the unique characteristics in such graphs and existing online graph partitioning algorithms usually cause excessive repli-

cation of vertices as well as significant pressure on network communication. This article identifies the challenges and oppor-

tunities of partitioning bipartite graphs for distributed MLDM processing and proposes BiGraph, a set of bipartite-oriented

graph partitioning algorithms. BiGraph leverages observations such as the skewed distribution of vertices, discriminated

computation load and imbalanced data sizes between the two subsets of vertices to derive a set of optimal graph partition-

ing algorithms that result in minimal vertex replication and network communication. BiGraph has been implemented on

PowerGraph and is shown to have a performance boost up to 17.75X (from 1.16X) for four typical MLDM algorithms, due

to reducing up to 80% vertex replication, and up to 96% network traffic.
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1 Introduction

As the concept of “Big Data” gains more and more

momentum, running many MLDM problems in a clus-

ter of machines has become a norm. This also stimu-

lates a new research area called big learning, which

leverages a set of networked machines for parallel and

distributed processing of more complex algorithms and

larger problem sizes. This, however, creates new chal-

lenges to efficiently partition a set of input data across

multiple machines to balance load and reduce network

traffic.

Currently, many MLDM problems concern large

graphs such as social and web graphs. These prob-

lems are usually coded as vertex-centric programs by

following the “think as a vertex” philosophy[1], where

vertices are processed in parallel and communicate with

their neighbors through edges. For the distributed pro-

cessing of such graph-structured programs, graph par-

titioning plays a central role to distribute vertices and

their edges across multiple machines, as well as to crea-

te replicated vertices and/or edges to form a locally-

consistent sub-graph states in each machine.

Though graphs can be arbitrarily formed, real world

graphs usually have some specific properties to re-

flect their application domains. Among them, many

MLDM algorithms model their input graphs as bipar-
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tite graphs, whose vertices can be separated into two

disjoint sets U and V and every edge connects a ver-

tex in U and V . Example bipartite graphs include

the customers/goods graph in recommendation systems

and the topics/documents graph in topic modeling al-

gorithms. Due to the wide existence and importance of

bipartite graphs, there have been a number of popular

MLDM algorithms that operate on such graphs, includ-

ing Singular Value Decomposition (SVD), Alternat-

ing Least Squares (ALS), Stochastic Gradient Descent

(SGD), Belief Propagation (BP), and Latent Dirichlet

Allocation (LDA), with the application domains rang-

ing from recommendation systems to medical diagnosis

and text analysis.

Despite the popularity of bipartite graph, there is

little study on how to efficiently partition bipartite

graphs in large-scale graph computation systems. Most

existing systems simply apply general graph partition-

ing algorithms that are oblivious to the unique features

of bipartite graphs. This results in suboptimal graph

partitioning with significant replicas of vertices and/or

edges, leading to not only redundant computation, but

also excessive network communication to synchronize

graph states. Though there are some graph partition-

ing algorithms for bipartite graphs, none of them satis-

fies the requirement of large-scale graph computation.

Many of them[2-3] are offline partitioning algorithms

that require full information of graphs, and thus are

very time-consuming and not scalable to large graph

dataset. Some others[4-5] only work on a special type

of graphs or algorithms, making them hard to be gene-

ralized to a wide range of MLDM problems.

In this paper, we make a systematic study on the

characteristics of real world bipartite graphs and the

related MLDM algorithms, and describe why exist-

ing online distributed graph partitioning algorithms

fail to produce an optimal graph partition for bipar-

tite graphs. Based on the study, we argue that the

unique properties of bipartite graphs and the special

requirement of bipartite algorithms demand differenti-

ated partitioning[6] of the two disjoint sets of vertices.

Based on our analysis, we introduce BiGraph, a set

of distributed graph partitioning algorithms designed

for bipartite applications. The key of BiGraph is to

partition graphs in a differentiated way and load data

according to the data affinity.

We have implemented BiGraph 1○ as separate graph

partitioning modules of GraphLab[7-8], a state-of-the-

art graph-parallel framework. Our experiment using

three typical MLDM algorithms on an in-house 6-

machine multicore cluster with 144 CPU cores and an

EC2-like 48-machine multicore cluster with 192 CPU

cores shows that BiGraph reduces up to 81% vertex

replication and saves up to 96% network traffic. This

transforms to a speedup up to 17.75X (from 1.16X)

compared with the state-of-the-art Grid[9] partition-

ing algorithm (the default partitioning algorithm in

GraphLab).

In the next section (Section 2), we introduce graph-

parallel systems and existing graph partitioning algo-

rithms. The observation to motivate bipartite-oriented

graph partitioning is then discussed in Section 3. Next,

the detailed design and implementations are described

in Section 4. Then we provide our experimental set-

ting, workload characteristics, and results analysis in

Section 5. Finally, we conclude this paper in Section 6.

It is worth noting that a preliminary version of

this paper was published in the Proceedings of the 5th

Asia-Pacific Workshop on Systems[10]. This version in-

cludes a detailed analysis and comparison on the greedy

heuristic vertex-cut, evaluates the performance on a

new EC2-like 48-machine cluster, and provides experi-

ments on greedy heuristic vertex-cut.

2 Background and Related Work

This section provides the background information

and related work on distributed graph-parallel systems

and graph partitioning algorithms.

2.1 Graph-Parallel Systems

Many distributed graph-parallel systems, including

Pregel[1], Giraph 2○, Cyclops[11] and GraphLab[7-8], fol-

low the “think as a vertex” philosophy and abstract a

graph algorithm as a vertex-centric program P . The

program is executed in parallel on each vertex v ∈ V

in a sparse graph G = {V,E,D}. The scope of com-

putation and communication in each P (v) is restricted

to neighboring vertices through edges where (s, t) ∈ E.

Programmers can also associate arbitrary data Dv and

D(s,t) with vertex v ∈ V and edge (s, t) ∈ E respec-

tively.

Fig.1(b) illustrates the overall execution flow for the

sample graph on PowerGraph[8], the latest version of

1○ The source code and a brief instruction of how to use BiGraph are at http://ipads.se.sjtu.edu.cn/projects/powerlyra.html, Nov.
2014.

2○ http://giraph.apache.org/, Nov. 2014.
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Fig.1. (a) Pseudo-code of PageRank algorithm using GAS model. (b) Execution flow of graph-parallel system for a sample graph.

the GraphLab framework. To exploit distributed com-

puting resources of a cluster, the runtime splits an input

graph into multiple partitions and iteratively executes

user-defined programs on each vertex in parallel.

First, the runtime loads graph topology and data

files from a secondary storage (e.g., Hadoop distributed

file system (HDFS) or network file system (NFS)), and

distributes vertices and edges to target machines ac-

cording to a graph partitioning algorithm. Then, the

replicas for vertices are created for each edge span-

ning machines to finalize in-memory local graphs such

that each machine has a locally-consistent sub-graph.

PowerGraph adopts the GAS (Gather, Apply, Scatter)

model to abstract graph algorithms and employs a loop

to express iterative computation in many MLDM algo-

rithms. The pseudo-code in Fig.1(a) illustrates an exa-

mple implementation of the PageRank[12] algorithm im-

plemented by the GAS model. In the Gather phase, the

gather and the accum functions accumulate the rank

of neighboring vertices through in-edges; and then the

apply function calculates and updates a new rank to

vertex using accumulated values in the Apply phase;

finally the scatter function sends messages and ac-

tivates neighboring vertices through out-edges in the

scatter phase.

2.2 Distributed Graph Partitioning

A key to efficient big learning on graph-parallel

systems is optimally placing graph-structured data in-

cluding vertices and edges across multiple machines.

As graph computation highly relies on the distributed

graph structures to store graph computation states and

encode interactions among vertices, an optimal graph

partitioning algorithm can minimize communication

cost and ensure the load balance of vertex computa-

tion.

There are two main types of approaches: offline

and online (streaming) graph partitioning. Offline

graph partitioning algorithms (e.g., Metis[13], spectral

clustering[14] and k-partitioning[15]) require that full

graph information has been known by all workers (e.g.,

machines), which requires frequent coordination among

workers in a distributed environment. Though it may

produce a distributed graph with optimal graph place-

ment, it causes not only significant resources consump-

tion, but also lengthy execution time even for a small-

scale graph. Consequently, offline partitioning algo-

rithms are rarely adopted by large-scale graph-parallel

systems for big learning. In contrast, online graph par-

titioning algorithms[8-9,16-17] aim to find a near-optimal

graph placement by distributing vertices and edges with

only limited graphs information. Due to the significant

less partitioning time yet still-good graph placement,

they have been widely adopted by almost all large-scale

graph-parallel systems.

There are usually two mechanisms in online graph

partitioning: edge-cut[16-17], which divides a graph by

cutting cross-partition edges among sub-graphs; and

vertex-cut[6,8-9], which partitions cross-partition ver-

tices among sub-graphs. Generally speaking, edge-cut

can evenly distribute vertices among multiple parti-

tions, but may result in imbalanced computation and

communication as well as high replication factor for

skewed graphs[18-19]. In contrast, vertex-cut can evenly

distribute edges, but may incur high communication

cost among partitioned vertices.

PowerGraph employs several vertex-cut algorit-

hms[8-9] to provide edge balanced partitions, because

the workload of graph algorithms mainly depends on
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the number of edges. Fig.2 illustrates the hash-based

(random) vertex-cut to evenly assign edges to ma-

chines, which has a high replication factor (i.e., λ =

#replicas/#vertices) but very simple implementation;

to reduce replication factor, the greedy heuristic[8] is

used to accumulate edges with a shared endpoint ver-

tex on the same machine 3○; and currently the default

graph partitioning algorithm in PowerGraph, Grid[9]

vertex-cut, uses a 2-dimensional (2D) grid-based heuris-

tic to reduce replication factor by constraining the lo-

cation of edges. It should be noted that all heuristic

vertex-cut algorithms must also maintain the load bal-

ance of partitions during assignment. In this case, ran-

dom partitioning simply assigns edges by hashing the

sum of source and target vertex-IDs, while Grid vertex-

cut further specifies the location to only an intersection

of shards of the source and target vertices. Further,

the Oblivious greedy vertex-cut prioritizes the machine

holding the endpoint vertices for placing edges.
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Fig.2. Comparison of various vertex-cut algorithms on a sample
bipartite graph.

For example, in random vertex-cut (i.e., hash), the

edge (1, 8) is assigned to partition 1 as the sum of 1

and 8 divided by 4 (the total partition number) is 1. In

Oblivious greedy vertex-cut, the edge (1, 7) is assigned

to partition 1 as the prior edge (1, 6) has been assigned

to partition 1. In Grid vertex-cut, the edge (1, 8) is

randomly assigned by Grid to one of the intersected

partitions (2 and 3) according to the partitioning grid

(Fig.2(b)). This is because vertex 1 is hashed to parti-

tion 1, which constrains the shards of vertex 1 to row

1 and column 1, while vertex 8 is hashed to partition

4, which constrains the shards of vertex 8 to row 2 and

column 2. Thus, the resulting shards of the intersection

are 2 and 3.

Unfortunately, all of partitioning algorithms result

in suboptimal graph placement and the replication fac-

tor is high (2.00, 1.67 and 1.83 accordingly), due to

the lack of awareness of the unique features in bipar-

tite graphs. Our prior work, PowerLyra[6], also uses

differentiated graph partitioning for skewed power-law

graphs. However, it does not consider the special pro-

perties of bipartite graphs as well as data affinity during

partitioning.

3 Challenges and Opportunities

All vertices in a bipartite graph can be partitioned

into two disjoint subsets U and V , and each edge con-

nects a vertex from U to one from V , as shown in

Fig.2(a). Such special properties of bipartite graphs

and the special requirement of MLDM algorithms im-

pede existing graph partitioning algorithms to obtain a

proper graph cut and performance. Here, we describe

several observations from real world bipartite graphs

and the characteristics of MLDM algorithms.

First, real world bipartite graphs for MLDM are

usually imbalanced. This means that the size of two

subsets in a bipartite graph is significantly skewed, even

in the scale of several orders of magnitude. For exam-

ple, there are only ten thousands of terms in Wikipedia,

while the number of articles has exceeded four mil-

lions. The number of grades from students may be

dozen times of the number of courses. As a concrete

example, the SLS dataset, 10 years of grade points at a

large state university, has 62 729 objects (e.g., students,

instructors, and departments) and 1 748 122 scores (ra-

tio: 27.87). This implies that a graph partitioning al-

gorithm needs to employ differentiated mechanisms on

vertices from different subsets.

Second, the computation load of many MLDM algo-

rithms for bipartite graphs may also be skewed among

vertices from the two subsets. For example, Stochas-

tic Gradient Descent (SGD)[20], a collaborative filter-

ing algorithm for recommendation systems, only cal-

culates new cumulative sums of gradient updates for

user vertices in each iteration, but none for item ver-

tices. Therefore, an ideal graph partitioning algorithm

should be able to discriminate the computation to one

set of vertices and exploit the locality of computation

3○ Currently, PowerGraph only retains Oblivious greedy vertex-cut, and coordinated greedy vertex-cut has been deprecated due
to its excessive graph ingress time and buggy.
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by avoiding an excessive replication of vertices.

Finally, the size of data associated with vertices

from the two subsets can be significantly skewed. For

example, to use the probabilistic inference on large as-

tronomical images, the data of an observation vertex

can reach several terabytes, while the latent stellar ver-

tex has only very little data. If a graph partitioning al-

gorithm distributes these vertices to random machines

without awareness of data location, it may lead to ex-

cessive network traffic and significant delay in graph

partitioning time. Further, the replication of these ver-

tices and the synchronization among them may also

cause significant memory and network pressure during

computation. Consequently, it is critical for a graph

partitioning algorithm to be built with data affinity

support.

4 Bipartite-Oriented Graph Partitioning

The unique features of real world bipartite graphs

and the associated MLDM algorithms demand a

bipartite-aware online graph partitioning algorithm.

BiCut is a new heuristic algorithm to partition bipartite

graphs, by leveraging our observations. Based on the

algorithm, we describe a refinement to further reduce

replications and improve load balance, and show how

BiCut supports data affinity for bipartite graphs with

skewed data distribution to reduce network traffic.

4.1 Randomized Bipartite-Cut

Existing distributed graph partitioning algorithms

use the same strategy to distribute all vertices of a

bipartite graph, which cannot fully take advantage of

the graph structures in bipartite graphs, especially for

skewed graphs.

In a bipartite graph, two vertices connected by an

edge must be from different disjointed subsets. This

implies that arbitrarily partitioning vertices belonging

to the same subset may not introduce any replicas of

vertices, as there is no edge connecting them. Based

on above observation, the new bipartite-cut algorithm

applies a differentiated partitioning strategy to avoid

the replication for vertices in one favorite subset and

provide fully local access to adjacent edges. First, the

vertices in this set are first-class citizens during parti-

tioning, and are evenly assigned to machines with all

adjacent edges at first. Such vertices contain no repli-

cas. Then, the replicas of vertices in the other subset

are created to construct a local graph on each machine.

One replica of the vertex is randomly nominated as the

master vertex, which coordinates the execution of all

remaining replicas.

As shown in Fig.3(a), since the favorite subset is V ,

its vertices (from 5 to 12) with all edges are evenly as-

signed to four partitions without replication. The ver-

tices in subset U (from 1 to 4) are replicated on demand

in each partition. All edges of vertices in the favorite

set can be accessed locally. By contrast, the vertex in

the subset U has to rely on its mirrors for accessing its

edges (e.g., vertex 1). Hence, BiCut only results in a

replication factor of 1.5.

By default, BiCut will use the subset with more

vertices as the favorite subset to reduce the replication

factor. However, if the computation on one subset is

extremely sensitive to locality, this subset can also be

designated as the favorite subset to avoid network traf-

fic in computation, since the edges are always from one

subset to the other. As there is no extra step with high

cost, the performance of BiCut should be comparable

to random vertex-cut.

4.2 Greedy Bipartite-Cut

Our experiences show that the workload of graph-

parallel system highly depends on the balance of edges.

Unfortunately, randomized bipartite-cut only naturally

provides the balance of favorite vertices. To remedy

this issue, we propose a new greedy heuristic algorithm,

namely Aweto, inspired by Ginger[6], a greedy heuristic

hybrid-cut for natural graphs.

Aweto uses an additional round of edge exchange to

exploit the similarity of neighbors between vertices in

the favorite subset and the balance of edges in parti-

tions. After the random assignment of the first round,

each worker greedily re-assigns a favorite vertex v with

all edges to partition i such that δg(v, Si) > δg(v, Sj),

for all j ∈ {1, 2, . . . , p}, where Si is the current ver-

tex set on partition i (P = (S1, S2, . . . , Sp)). Here,

δg(v, Si) = |N(v) ∩ Si| − B(|Si|), where N(v) denotes

the set of neighbors of vertex v, |Si| denotes the cur-

rent number of edges on partition i and B(x) = |Si|1/2.
B(x) is used to balance the edges re-assigned from cur-

rent partition.

Because each partition maintains its own current

vertex set Si, the greedy-heuristic algorithm can inde-

pendently execute on all machines without any commu-

nication. Further, the balance of edges re-assigned by

each partition implies a global edge balance of parti-

tions.
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4.3 Data Affinity

A large amount of graph data may be stored on each

machine of a cluster. For example, the output files of

a MapReduce job will not be merged and stored to the

local secondary storage. The modern distributed file

system (e.g., HDFS) also splits files into multiple blocks

and stores on multiple machines to improve availability

and fault tolerance. Without data affinity, existing data

partitioning only considers the affinity within the graph

to reduce replication, which results in a large amount

of data movement from the secondary storage of one

machine to the main memory of other machines.

To reduce the movement of a huge amount of data

and avoid the replication of favorite vertices, bipartite-

cut is further extended to support data affinity. The

favorite vertex with a huge amount of data is fixedly

placed on machines holding their vertex data, and its

edges are also re-assigned to those machines. In this

way, the computation on favorite vertex is restricted to

local machine without network traffic.

Fig.3(b) illustrates the execution flow of BiCut with

data affinity. First, all topology information and the

data of graph are loaded from local secondary storage to

memory, and a local mapping table (MT) from favorite

vertices to the current machine is generated on each

machine. Then the local mapping table on each ma-

chine is broadcast to other machines to create a global

mapping table on each machine. The edge distribution

originally in graph loading is delayed to the end of ex-

changing mapping tables. Finally, the local graph is

constructed as before by replicating vertices.

5 Performance Benefit of BiGraph

We have implemented BiGraph based on the lat-

est GraphLab 2.2 (released in March 2014), which runs

the PowerGraph engine 4○. BiCut and Aweto are im-

plemented as separate graph-cut modules for GraphLab

and thus can transparently run all existing toolkits in

GraphLab.

We evaluate BiGraph against the default graph par-

titioning algorithms, Grid[9], and Oblivious greedy[8],

on GraphLab framework using three typical bipar-

tite graph algorithms: Singular Value Decomposition

(SVD), Alternating Least Squares (ALS), and Stochas-

tic Gradient Descent (SGD).

5.1 Experimental Setup

We use two clusters with different configurations

in our experiments. An in-house 6-machine multicore

cluster has a total of 144 CPU cores, in which each ma-

chine has a 24-core AMD processor, 64GB RAM and 1

GigE network port. An EC2-like 48-machine multicore

cluster has a total of 192 CPU cores, in which each ma-

chine has a 4-core AMD processor, 10GB RAM and 1

GigE network ports. We run NFS on the same cluster

as the underlying storage layer.

Table 1 lists a collection of bipartite graphs used

in our experiments. They are from Stanford Large

Network Dataset Collection 5○ and The University of

Florida Sparse Matrix Collection 6○. The former three

bipartite graphs are balanced, and the ratios of |U |/|V |
are from 1.03 to 1.75. These can be regarded as the

4○ GraphLab prior to 2.1 runs the distributed GraphLab engine.
5○ http://snap.stanford.edu/data/, Nov. 2014.
6○ http://www.cise.ufl.edu/research/sparse/matrices/index.html, Nov. 2014.
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worst case for bipartite-cut due to their balanced dis-

tribution. On the contrary, the latter three bipartite

graphs are relative skewed, and the ratios of |U |/|V |
are from 8.65 to 27.87. These are more suitable for

bipartite-cut. The last Netflix prize dataset 7○ is used

as a building block to simulate large datasets with vari-

ous sizes for the weak scalability experiment (in Sub-

section 5.4). All vertices in the subset U and edges are

duplicated to scale the dataset[21].

Table 1. Collection of Real World Bipartite Graphs

Graphs |U |(K) |V |(K) |E|(M) |U |/|V |
LJournal (LJ) 4 489 4 308 69.0 1.04

AS-skitter (AS) 1 696 967 11.1 1.75

GWeb (GW) 739 715 5.1 1.03

RUCCI (RUC) 1 978 110 7.8 18.00

SLS 1 748 63 6.8 27.87

ESOC (ESO) 327 38 6.0 8.65

Netflix 480 17 100.0 27.02

In Fig.4, we first compare the replication factor us-

ing various vertex-cut algorithms for real world bipar-

tite graphs. Grid and Oblivious present close replica-

tion factor in such cases. For skewed bipartite graphs,

BiCut and Aweto can significantly reduce up to 63%

(from 59%) and 67% (from 59%) vertex replication on

6 partitions respectively, and up to 73% (from 40%)

and 80% (from 54%) vertex replication on 48 partitions

respectively. For balanced bipartite graphs, BiCut and

Aweto still show notable improvement against Grid and

Oblivious, especially for 48 partitions reducing up to

56% vertex replication.
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5.2 Overall Performance

Fig.5 summarizes the normalized speedup of BiCut

and Aweto compared to Grid and Oblivious graph par-

titioning algorithms on the computation phase with dif-

ferent algorithms and graphs on two clusters. Since all

partitioning algorithms use the same execution engine

in the computation phase, the speedup highly depends

on the reduction of replication factors, which dominates

the communication cost. On the in-house 6-machine

cluster, BiCut significantly outperforms Grid partition-

ing by up to 15.65X (from 5.28X) and 3.73X (from

2.33X) for ALS and SGD accordingly for skewed bi-

partite graphs. For balanced bipartite graphs, BiCut

still provides a notable speedup by 1.24X, 1.39X and

1.17X for LJ, AS and GW graphs on SVD respectively.

Aweto can further reduce replication factor and provide

up to 38% additional improvement. On the EC2-like

48-machine cluster, though the improvement is weaken

due to sequential operations in MLDM algorithms and

message batching, BiCut and Aweto still provide mode-

rate speedup by up to 3.67X and 5.43X accordingly.
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Fig.5. Comparison of overall graph computation performance
using various partitioning algorithms for SVD, ALS and SGD
with real world graphs on the (a) 6-machine cluster and (b) 48-
machine cluster.

Fig.6 illustrates the graph partitioning performance

of BiCut and Aweto against Grid and Oblivious, in-

cluding loading and finalizing time. BiCut outperforms

Grid by up to 2.63X and 2.47X for two clusters respec-

tively due to lower replication factor, which reduces the

7○ http://www.netflixprize.com/, Nov. 2014.
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cost for data movement and replication construction.

In the worst cases (i.e., for balanced bipartite graphs),

Aweto is lightly slower than Grid because of additional

edge exchange. However, the increase of ingress time

is trivial compared to the improvement of computation

time, just ranging from 1.8% to 10.8% and from 3.8%

to 5.1% for 6 and 48 machines respectively.
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Fig.6. Comparison of overall graph partitioning performance
using various partitioning algorithms for SVD, ALS and SGD
with real world graphs on the (a) 6-machine cluster and (b) 48-
machine cluster.

5.3 Network Traffic Reduction

Since the major source of speedup is from reduc-

ing network traffic in the partitioning and computa-

tion phases, we compare the total network traffic of

BiCut and Aweto against Grid. As shown in Fig.7,

the percent of network traffic reduction can perfectly

match the performance improvement. On the in-house

6-machine cluster, BiCut and Aweto can reduce up to

96% (from 78%) and 45% (from 22%) network traffic

against Grid for skewed and balanced bipartite graphs

accordingly. On the EC2-like 48-machine cluster, Bi-

Cut and Aweto still can reduce up to 90% (from 33%)

and 43% (from 11%) network traffic in such cases.

5.4 Scalability

Fig.8 shows that BiCut has better weak scalabili-

ty than Grid and Oblivious on our in-house 6-machine

cluster, and keeps the improvement with increasing

graph size. For the increase of graph size from 100 to

400 million edges, BiCut and Aweto outperform Grid

partitioning by up to 2.27X (from 1.89X). Note that us-

ing Grid partitioning even cannot scale past 400 million

edges on a 6-machine cluster with 144 CPU cores and

384GB memory due to exhausting memory. Oblivious

can run on 800 million edges due to relative better repli-

cation factor, but just provides a close performance to

Grid and also fails in larger input. While using BiCut

and Aweto partitioning can scale well with even more

than 1.6 billion edges.
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Fig.7. Percent of network traffic reduction over Grid on the (a)
6-machine cluster and (b) 48-machine cluster.
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5.5 Benefit of Data Affinity Support

To demonstrate the effectiveness of data affinity ex-

tension, we use an algorithm to calculate the occur-
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rences of a user-defined keyword touched by users on

a collection of web pages at fixed intervals. The appli-

cation models users and web pages as two subsets of

vertices, and the access operations as the edges from

users to web pages. In our experiment, the input graph

has 4 000 users and 84 000 web pages, and the vertex

data of the users and web pages are the occurrences of

the keywords (4-byte integer) and the content of a page

(dozens to several hundreds of kilobytes) respectively.

All web pages are from Wikipedia (about 4.82GB) and

separately stored on the local disk of each machine of

cluster.

For this graph, Grid and Oblivious result in a repli-

cation factor of 3.55 and 3.06, and cause about 4.23GB

and 3.97GB network traffic respectively, due to a large

amount of data movement for web page vertices. How-

ever, BiCut has only a replication factor of 1.23 and

causes unbelievable 1.43MB network traffic only from

exchanging mapping table and dispatching of user ver-

tices. This transforms to a performance speedup of

8.35X and 6.51X (6.7s vs 55.7s and 43.4s respectively)

over Grid and Oblivious partitioning algorithms respec-

tively. It should be noted that, without data affinity

support, the graph computation phase may also result

in a large amount of data movement if the vertex data

is modified.

6 Conclusions

In this paper, we identified the main issues with exi-

sting graph partitioning algorithms in large-scale graph

analytics framework for bipartite graphs and the related

MLDM algorithms. A new set of graph partitioning al-

gorithms, called BiGraph, leveraged three key observa-

tions from bipartite graphs. BiCut employs a differen-

tiated partitioning strategy to minimize the replication

of vertices, and also exploits the locality for all vertices

from the favorite subset of a bipartite graphs. Based on

BiCut, a new greedy heuristic algorithm, called Aweto,

was provided to optimize partition by exploiting the

similarity of neighbors and load balance. In addition,

based on the observation of skewed distribution of data

size between two subsets, BiGraph was further refined

with the support of data affinity to minimize network

traffic. Our evaluation showed that BiGraph is effec-

tive in not only significantly reducing network traffic,

but also resulting in a notable performance boost of

graph processing.
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