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ABSTRACT

Copy-on-write virtual disks (e.g., qcow2 images) pro-

vide many useful features like snapshot, de-duplication,

and full-disk encryption. However, our study uncovers

that they introduce additional metadata for block orga-

nization and notably more disk sync operations (e.g.,

more than 3X for qcow2 and 4X for VMDK images).

To mitigate such sync amplification, we propose three

optimizations, namely per virtual disk internal journal-

ing, dual-mode journaling, and adaptive-preallocation,

which eliminate the extra sync operations while preserv-

ing those features in a consistent way. Our evaluation

shows that the three optimizations result in up to 110%

performance speedup for varmail and 50% for TPCC.

1 INTRODUCTION

One major benefit of virtualization in the cloud environ-

ment is the convenience of using image files as virtual

disks for virtual machines. For example, by using the

copy-on-write (CoW) feature provided by virtual disks

in the qcow2 format, a cloud administrator can provide

an image file as a read-only base file, and then overlay

small files atop the base file for virtual machines [16].

This can significantly ease tasks like VM deployment,

backup, and snapshot, and bring features such as image

size growing, data de-duplication [7, 9], and full-disk en-

cryption. Thus, CoW virtual disks have been widely used

in major cloud infrastructures like OpenStack.

However, the convenience also comes at a cost. We

observe that with such features being enabled, the per-

formance of some I/O intensive workloads may degrade

notably. For example, running varmail on virtual disks

with the qcow2 format only gets half the throughput of

running on the raw formats. Our analysis reveals that the

major reason is a dramatic increase of sync operations

(i.e., sync amplification ) under qcow2, which is more

than 3X compared to the raw format.

The extra sync operations are used to keep the consis-

tency of the virtual disk. A CoW image (e.g., qcow2)

contains much additional metadata for block organiza-

tion, such as the mapping from virtual block numbers to

physical block numbers, which should be kept consistent

∗‡Corresponding authors

to prevent data loss or even disk corruption. Thus, the

qcow2 manager heavily uses the fdatasync system call to

ensure the order of disk writes. This, however, causes

notable performance slowdown as a sync operation is

expensive [17, 1]. Further, since a sync operation trig-

gers disk flushes that force all data in the write cache to

be written to the disk [25], it reduces the effectiveness

of the write cache in I/O scheduling and write absorp-

tion. For SSD, sync operations can result in additional

writes and subsequent garbage collection. Our evalua-

tion shows that SSD has a 76% performance speedup for

random write workload after disabling write cache flush-

ing. A workload with frequent syncs may also interfere

with other concurrent tasks. Our experiment shows that

sequential writes suffer from 54.5% performance slow-

down if another application calls fdatasync every 10 mil-

liseconds. Besides, we found that other virtual disk for-

mats like VMDK share similar sync amplification issues.

One way to mitigate the sync amplification problem is

disabling the sync operations. For example, the Virtual-

Box (version 4.3.10) just ignores the guest sync requests

for high performance [23]. Besides, VMware Work-

station (version 11) provides an option to enable write

cache [24], which ignores guest sync operations as well.

This, however, is at the risk of data inconsistency or even

corruption upon crashes [6].

To enjoy the rich features of CoW virtual disks with

low overhead, this paper describes three optimizations,

per virtual disk internal journaling, dual-mode journal-

ing and adaptive preallocation, to mitigate sync amplifi-

cation while preserving metadata consistency.

Per virtual disk journaling leverages the journaling

mechanism to guarantee the consistency of virtual disks.

Qcow2 requires multiple syncs to enforce ordering,

which is too strong according to our observation. To

address this issue, we implement an internal journal for

each virtual disk, where metadata/data updates are first

logged in a transaction, which needs only one sync oper-

ation to put them to disk consistently. Such a journaling

mechanism, however, requires data to be written twice,

which is a waste of disk bandwidth. We further introduce

dual-mode journaling which monitors each modification

to the virtual disk and only logs metadata (i.e., reference

table, lookup table) when there is no data overwriting.
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Adaptive preallocation allocates extra blocks for a vir-

tual disk image when the disk is growing. The preallo-

cated blocks can be used directly in the following expan-

sion of virtual disks. This saves the image manager from

requesting the host file system for more free blocks, and

thus avoids extra flush operations.

We have implemented the optimizations for qcow2 in

QEMU-2.1.2. Our optimizations result in up to 50% per-

formance speedup for varmail and 30% speedup for tpcc

for a mixture of different workloads. When we run var-

mail and tpcc with a random workload, they can achieve

110% and 50% speedup, respectively.

2 BACKGROUND AND MOTIVATION

We use the qcow2 format as an example to describe the

organization of a VM image and the causes of sync am-

plification.

2.1 The qcow2 Format

A qcow2 virtual disk contains an image header, a two-

level lookup table, a reference table, and data clusters, as

shown in Figure 1. The image header resembles the su-

perblock of a file system, which contains the basic infor-

mation of the image file such as the base address of the

lookup table and the reference table. The image file is

organized at the granularity of cluster, and the size of the

cluster is stored in the image header. The lookup table

is used for address translation. A virtual block address

(VBA) a in the guest VM is split into three parts, i.e.,

a=(a1, a2, a3): a1 is used as the L1 table’s index to locate

the corresponding L2 table; a2 is used as the L2 table’s

index to locate the corresponding data cluster; a3 is the

offset in the data cluster. The reference table is used to

track each cluster used by snapshots. The refcount in ref-

erence table is set to 1 for a newly allocated cluster, and

its value grows when more snapshots use the cluster.

Data 
Cluster

Data 
Cluster

L2 Table Addr
Cluster Addr

L1 Table L2 Table

L2 Table

Reference 
Table

a1 a2 a3

Image Header

Guest (Virtual) Block Address

Figure 1: The orginization of qcow2 disk format.

The process of writing some new data to a virtual disk

includes following steps:

1© Look up the L1 table to get the offset of the L2

table. 2© If the L2 table is not allocated, then set the cor-

responding reference table entry to allocate a cluster for

the L2 table, and initialize the new L2 table. 3© Update

the L1 table entry to point to the new L2 table if a new

L2 table is allocated. 4© Set the reference table to allo-

cate a cluster for data. 5© Write the data to the new data

cluster. 6© Update the L2 table entry to point to the new

data cluster.

Note that, each step in the whole appending process

should not be reordered; otherwise, it may cause meta-

data inconsistency.

2.2 Sync Amplification

The organization of qcow2 format requires extra efforts

to retain crash consistency such that the dependencies be-

tween the metadata and data are respected. For example,

a data cluster should be flushed to disk before updating

the lookup table; otherwise, the entry in the lookup ta-

ble may point to some garbage data. The reference table

should be updated before updating the lookup table; oth-

erwise, the lookup table may point to some unallocated

data cluster.

We use two simple benchmarks in QEMU-2.1.2 to

compare the number of sync operations in the guest VM

and the host: 1) “overwrite benchmark”, which allocates

blocks in advance in the disk image (i.e., the qcow2 im-

age size remains the same before and after the test); 2)

“append benchmark”, which allocates new blocks in the

disk image during the test (i.e., the image size increases

after the test). The test writes 64KB data and calls fdata-

sync every 50 iterations. We find that the virtual disks

introduce more than 3X sync operations for qcow2 and

4X for VMDK images, as shown in Figure 2.
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Figure 2: #sync operations observed from inside/outside of the VM.

As shown in Figure 3, a fdatasync of the user appli-

cation can cause a transaction commit in the file system.

This requires two flushes (in guest VM) to preserve its

atomicity, which are then translated into two set of writes

in QEMU. The first write puts the data and the journal

metadata of the VM to the virtual disk, which in the worst

case, causes its size to grow.

To grow the virtual disk in QEMU, a data block must

be allocated, and the corresponding reference table block

should be set strictly before other operations. This neces-

sitates the first flush. After that, the L2 data block must

be updated strictly before the remaining operations. This

necessitates the second flush. (In some extreme cases

where the L1 data block should be updated as well, it in-

troduces even more flushes). The third flush is used to

update the base image’s reference table. When creating
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a new image based on the base image, the refcount in the

reference table of the base image will be increased by

one to indicate that another image uses the base image’s

data. When updating the new image, qcow2 will copy

data from the base image to a new place and do updates.

The new image will use the COW data and will not ac-

cess the old data in the base image, so the refcount in the

base image should be decreased by one. The third flush

is used to make the reference table of the base image

durable. The fourth flush is introduced solely because

of the suboptimal implementation in QEMU. The sec-

ond write is the same as the first one, which needs four

flushes. Consequently, we need around eight flushes for

one guest fdatasync at most.
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Figure 3: Illustration of sync amplification: it shows how the number

of sync operations increases after the user issues fdatasync. The fdata-

sync with red color is necessary to impose the write ordering, while

fdatasync with gray color are solely because of the flawed implemen-

tation of qcow2. JM is for journal of metadata, JC is for journal of

commit block, Re f is for reference table, L2 is for L2 lookup table.

2.3 Other Virtual Disk Formats

Other virtual disks have a similar structure to qcow2 vir-

tual disk. They have an image header to describe the

basic information of the virtual disk, a block map ta-

ble to translate virtual block address to physical block

address, and many data blocks to store the guest VM’s

data. For example, the grain directory and grain table

in the VMDK consist of a two-level table to do address

translation. The VMDK also keeps two copies of the

grain directories and grain tables on disk to improve the

virtual disk’s resilience. FVD [22] even has a bitmap

for the copy-on-read feature. In summary, the organiza-

tion of virtual disks will translate one update operation

in the guest into several update operations in the host.

Besides, the virtual disks should carefully schedule the

update order to preserve crash consistency, which intro-

duces more sync operations. Actually, our evaluation

shows that VMDK has more severe sync amplification

than qcow2, as shown in Figure 2.

3 OPTIMIZATIONS

3.1 Per Virtual Disk Internal Journaling

According to our analysis, we found that the cause of the

extra sync operations is the overly-constrained semantics

imposed during the modification of virtual disks. This is

because the underlying file system cannot preserve the

internal consistency of a virtual disk, in which certain

data serves as metadata to support the rich features. As

a result, the virtual disk has to impose strong ordering

while being updated for the sake of crash consistency.

Based on this observation, we designed a per virtual

disk internal journaling mechanism. As the name sug-

gests, each virtual disk maintains an independent and

internal journal, residing in a preallocated space of the

virtual disk to which the journal belongs. The per vir-

tual disk internal journal works in a manner similar to

the normal file system journal, with the exception that

it only logs the modification of the content of a single

virtual disk.

On a virtual disk update, the metadata (e.g., reference

table and lookup table) as well as the changed data are

first logged into the preallocated virtual disk journaling

area, which is treated as a transaction. At the end of

this update, the journal commit block of a virtual disk

is appended to the end of the transaction, indicating this

transaction is committed. If any failures occur before the

commit block is made durable, the whole transaction is

canceled, and the virtual disk is still in a consistent state.

We also leverage the checksum mechanism: by calculat-

ing a checksum of all the blocks in the transaction, we

reduce the number of flushes to one per transaction.

Like other journaling mechanisms, we should install

the modifications logged in the journal to their home

place, i.e., checkpoint. To improve the performance of

checkpoint, we delay the checkpoint process for batch-

ing and write absorbing. After a checkpoint, the area

took up by this transaction can be reclaimed and reused

in the future.

The per virtual disk journaling relaxes the original

overly-constrained ordering requirement to an all-or-

nothing manner, which reduces the number of flushes

while retaining crash consistency.
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Dual-Mode Journaling: Journaling mechanism re-

quires logged data to be written twice. This, under cer-

tain circumstances, severely degrades performance due

to wasted disk bandwidth. To this end, we apply an op-

timization similar to Prabhakaran et al. [18] and Shen

et al. [21]. This optimization, namely dual-mode jour-

naling, drives the per virtual disk internal journaling to

dynamically adapt between two modes according to the

virtual disk’s access pattern. Specifically, it only logs all

the data when there is an overwriting of the original data;

otherwise, only metadata (reference table and lookup ta-

ble) is journaled.

It should be noted that dual-mode journaling differs

from prior work [21, 18] in that it leverages different

journaling mode for a single file, and thus it does not

cause any inconsistency issues discussed in [21]. This

is because our journaling mechanism only deals with a

single file while prior work [21, 18] needs to deal with a

complete file system. The two modes used are described

as follows.

No-data Journaling Mode: Instead of writing the

data into the journaling, the no-data journaling mode

simply calculates a checksum of the data and puts only

the checksum into the journal. The data is written to the

“home” place. The process is shown in Figure 4-b.

The Overwriting Problem and Full Journaling

Mode: The no-data journaling mode, however, can ren-

der the recovery process inconsistent upon data overwrit-

ing. This is because the correctness of recovery relies

on the checksum of the blocks in the transaction, which

does not necessarily reside in the journaling area since

no-data mode journaling does not log data blocks. The

content of those data blocks can be arbitrarily affected by

the following overwriting operations; the whose check-

sum, of course, can be different from the time when it

was committed.

Consequently, if a transaction is not fully check-

pointed when its following transaction aborts, and at the

same time the data of the previous transaction is partially

overwritten, the recovery process will erroneously con-

sider the already committed transaction as a broken one.

Therefore, if a disk write transaction needs to overwrite

the data which has not been checkpointed, the system

will switch to full-mode journaling and put the entire

data into the journal, as shown in Figure 4-c.

Crash Recovery: During crash recovery, we scan

the journal to find the first transaction that has not been

checkpointed. Then, we calculate the checksum of the

journal data and other related data in this transaction.

If the calculated checksum is the same as the checksum

recorded in the current journal transaction, we apply the

logged modifications for the data and metadata to their

home place and do recovery for the next transaction. It

the two checksums are not equal, it means that the trans-

action is not completely written, and we reach the end

of the journal. We abort the transaction and finish crash

recovery.

Other Implementation Issues: The current subop-

timal implementation of qcow2 image format involves

some unnecessary sync operations (as shown in grey

boxes in Figure 3). We just remove these sync operations

without affecting the consistency.

With the above operations, we can reduce the number

of syncs to one for each flush request from the guest VM.

In another word, if the guest OS issues a flush operation,

there will be only one sync on the host.

3.2 Adaptive Preallocation

We further diagnose the behavior of the host file system

when handling guest VM’s sync requests, and find that

the actual number of disk flushes are usually more than

the number of sync requests. This is because, if a write

from the guest VM increases the size of its image file,

the host file system will trigger a journal commit, which

flushes the disk twice, the first for the data and the second

for the journal commit block.

More specifically, Linux provides three syscalls

(msync, fsync, fdatasync) for the sync operations. The

fsync transfers all modified in-memory data in the file re-

ferred to by the file descriptor (fd) to the disk. The fdata-

sync is similar to fsync, but it does not flush metadata

unless that metadata is needed in order to allow a sub-

sequent data retrieval to be correctly handled (i.e., the

file size). The msync is used for memory-mapped I/O. In

qcow2, it uses fdatasync to make data persistent on the

disk. Thus, if a guest VM’s sync request does not in-

crease the disk image’s size, there will be only one flush

operation for the data; but if the image size changes, the

host file system will commit a transaction and cause an

extra disk flush.

We leverage an adaptive preallocation approach to re-

ducing the number of journal commits in the host. When

the size of the image file needs to grow, we append more

blocks than those actually required. A future virtual disk

write operation which originally extends the image file

can now be transformed into an “overwrite” operation.

In this case, fdatasync will not force a journal commit in

the host, which can reduce the latency of sync operation.

Specifically, we compare the position of the write op-

eration with the image size. If the position of the write

operation exceeds the image size, we will do the preallo-

cation. Currently, the size of preallocated space is 1MB.

4 EVALUATION

We implemented the optimizations in QEMU-2.1.2,

which comprise 1300 LoC. This section presents our

evaluation of the optimized qcow2 from two aspects:

consistency and performance.
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We conducted the experiments on a machine with a

4-core Intel Xeon E3-1230 V2 CPU (3.3GHz) and 8GB

memory. We use 1 TB WDC HDD and 120G Samsung

850 EVO SSD as the underlying storage devices. The

host OS is Ubuntu 14.04; the guest OS is Ubuntu 12.04.

Both guest and host use the ext4 file system. We use

KVM [10] and configure each VM with 1 VCPU, 2GB

memory, and 10GB disk. The cache mode of each VM

is writeback, which is the default setting. It has good

performance while being safe as long as the guest VM

correctly flushes necessary disk caches [20].

4.1 Consistency

To validate the consistency properties, we implement a

trace record and replay framework. We run a test work-

load in the guest and record the write operations and sync

operations in the host. Then, we randomly choose a sync

operation in the trace and replay all the I/O operations

above this sync operation on a backup image (the im-

age is a copy of the guest image before running the test

workload). After that, we choose some write operations

between this sync and the next sync operation, and ap-

ply these writes to the backup image Finally, we use the

qemu-img tool to check the consistency of virtual disk

image.

We record two traces, one for the append workload

and the other for append + overwrite workload. In the

append workload, we append 64k data and then call

fdatasync in the VM. In the append + overwrite work-

load, we append 64k data, call fdatasync, overwrite the

64k data and then call fdatasync. We simulated 200 crash

scenarios for each workload. We divide data in the vir-

tual disk image into four types: guest data, metadata

(i.e., Lookup table), journal data (i.e., the journal record

for metadata’s modification) and journal commit block.

The 200 crash scenarios for each workload contain all

four types of data loss. The result shows that optimized

qcow2 can recover correctly and get a consistent state for

all test cases.

4.2 Performance

We first present the performance of synchronous over-

write and append workloads. For overwrite workload,

we generate a base image and allocate space in advance,

then overlay a small image atop the base image. For ap-

pend workload, we do the experiment directly on a newly

allocated image. We also run the Filebench [15] and

TPCC [4] workload. Filebench’s varmail simulates a

mail server workload and will frequently call sync oper-

ations. TPCC simulates a complete environment where

a population of terminal operators executes against a

database. We run the experiments under three configu-

rations. For the first configuration (raw), we only boot

one VM and run the tests. For the second configuration

(seq), we boot two VMs, one for the experiments and the

other is doing sequential I/O all the time. For the third

configuration (ran), we also have two VMs, one for the

experiments and the other is doing random I/O all the

time.
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Figure 5: Micro-benchmark result on 2 storage media. Each separate

optimization as well as the overall result is showed. “ori” refers to the

original system; “flaw” refers to the system which removes unneces-

sary sync operations caused by qcow2 flawed implementation; “pre”

refers to the adaptive prealloacation; “jou” refers to the per virtual

disk internal journal; “opt” refers to the overall result.
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Figure 6: Macro-benchmark on 2 storage media.

Figure 5 and Figure 6 show the performance results

on both HDD (hard disk driver) and SSD. For overwrite

workload, our system improves the throughput by 200%

for disk and 100% for SSD. For varmail, our system

achieves 110% speedup when running varmail together

with a random workload on HDD. The performance gain

for varmail on SSD is about 50% when running varmail

together with a sequential workload.

Figure 7 compares the TPCC transaction latency be-

tween our system and the original system. The results

show that our system has lower latency, and the latency

even decreased by 40% when TPCC is running together

with a random workload.
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Figure 7: Latency for TPCC.
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Figure 8: Evaluation for multiple VMs.

We also evaluate the multiple VM configurations. We

run four VMs with varmail, TPCC, fileserver and web-

server workloads respectively. Varmail and TPCC work-

loads issue syncs frequently, while fileserver and web-

server have fewer sync operations.

Figure 8 shows the evaluation results for multiple VMs

test. On HDD, the performance of varmail and tpcc im-

proves 50% and 34%, respectively. On SSD, the per-

formance gain is 30% and 20%, respectively. Besides,

fileserver and webserver on the optimized system have

similar performance to those on the original system. This

is because fileserver and webserver have few sync oper-

ations and do not update qcow2 metadata frequently.
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Figure 9: ”Sync write” means calling fdatasync after each write op-
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and ”opt” is 64k.

Qcow2, VMDK and VDI support big clusters (1MB

or more). Big clusters decrease the frequency of meta-

data operations and can mitigate the sync amplification.

Figure 9 shows using big clusters may mitigate sync am-

plification as our approach for the sync write workload.

However, it results in 50% performance degradation for

the direct write workload. This is because bigger clusters

increase the cost of allocating a new cluster [8]. Besides,

bigger clusters reduce the compactness of sparse files. In

contrast, our optimizations mitigate sync amplification

without such side effects.

5 RELATED WORK

Reducing sync operations has been intensively studied

[1, 2, 21, 18, 12, 17]. For example, adaptive journal-

ing [21, 18] is a common approach to reducing journal-

ing incurred sync operations. OptFS [1] advocates sepa-

ration of durability and ordering and split the sync oper-

ation into dsync and osync for file systems accordingly.

However, it requires the underlying device to provide

asynchronous durability notification interface. Our work

focuses on the virtual disk image format and is transpar-

ent to the guest VM. NoFS [2] eliminates all the ordering

points and uses the backpointer to maintain crash consis-

tency; but it is hard to implement atomic operations, such

as rename. Xsyncfs [17] also aimed to improve sync per-

formance. It delays sync operations until an external ob-

server reads corresponding data. By delaying the sync

operations, there is more space for I/O scheduler to batch

and absorb write operations.

Improving file system performance for the virtual ma-

chine is also a hot research topic [11, 14, 22, 19]. Le [11]

analyzed the performance of nested file systems in vir-

tual machines. Li [14] proposed to accelerate guest

VM’s sync operation by saving the syncing data in host

memory and returning directly without writing to disk.

FVD [22] is a high-performance virtual disk format.

It supports many features, such as copy-on-read and

prefetching. QED [19] is designed to avoid some of the

pitfalls of qcow2 and is expected to be more performant

than qcow2. All these work did not address the sync am-

plification problem.

Our work leverages several prior techniques such as

checksum [3, 5] and pre-allocation [13], but applies them

to solve a new problem.

6 CONCLUSION

This paper uncovered the sync amplification problem of

copy-on-write virtual disks. It then described three opti-

mizations to minimize sync operations while preserving

crash consistency. The evaluation showed that the opti-

mizations notably boost some I/O intensive workloads.
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