PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs

Rong Chen, Jiaxin Shi, Yanzhe Chen and Haibo Chen

Background and Motivation

Existing graph-parallel systems usually use a "ONE size fits ALL" design that uniformly processes all vertices. However, this leads to high contention and load imbalance.

Hybrid

- **Low-degree Vertex**
 - Locality
 - `G` (all in-edges)
- **High-degree Vertex**
 - Parallelism
 - `H` (combined)

Computation

- Netflix Movie Recommendation [32]
- Replication Factor

Graph Partitioning

- Low-master
 - 4
- Low-mirror
 - 2
- High-master
 - 3
- High-mirror
 - 5

Evaluation

(Code and Instruction: http://ipads.se.sjtu.edu.cn/projects/powerlyra.html)

Performance

- PageRank (VM-based 48-node Cluster)
- Replication Factor

Communication

- PR + Power-law
- Time (Sec)
- Memory Usage (GB)

Scalability

- 6-node Cluster (24 pCore, 64G RAM)
- 48-node Cluster (4 vCore, 12G RAM)

Others

- 6-node Cluster (24 pCore, 64G RAM)
- PR (10 iterations, 6-node Cluster)
- ALS (d=50)

Institute of Parallel and Distributed Systems

MLDM

- Big data processing
- IPADS, China

GraphLab

- Load Imbalance
- High Contention

Pregel

- make resource locally accessible
- evenly parallelize workload

PowerGraph

- Excessive Msgs
- Mem. Pressure