
PowerInfer: Fast Large Language Model
Serving with a Consumer-grade GPU

Yixin Song, Zeyu Mi, Haotong Xie, Haibo Chen
Shanghai Jiao Tong University

The Era of LLMs

LLMs: A Flourishing Ecosystem
The Tech Giants' Race
in LLM Development

Background: The Era of LLMs Motivation Design 1Evaluation ConclusionImplementation

Local LLMs Empower Billions Local Devices

AI Phone Embodied AI

Our Focus

AI PC

Smarter

Background: Our Foucs: PC Motivation Design 2Evaluation ConclusionImplementation

Human-like

Cloud LLM v.s. Local SLM

Speed Cost-efficiency

Customizable

QualityAvailability

Privacy

Local SLMCloud LLM

Speed Cost-efficiency

Customizable

QualityAvailability

Privacy

Background: Cloud vs Local Motivation Design 3Evaluation ConclusionImplementation

Cloud LLM v.s. Local SLM

Speed Cost-efficiency

Customizable

QualityAvailability

Privacy

Local SLMCloud LLM

Speed Cost-efficiency

Customizable

QualityAvailability

Privacy

Can we achieve better by deploying Larger LM Locally?

Background: Cloud vs Local Motivation Design 4Evaluation ConclusionImplementation

L4
L5
L6
…
Ln

CPU Mem

GPU Mem

CPU GPU
L3
L2
L1

PCIe

L4

Prior Approaches: Offloading

GPU-Centric Offloading

FlexGen (ICML 2023)

• Computation：GPU

• Memory：CPU DRAM & GPU VRAM

GPU-CPU Hybrid Offloading

llama.cpp

• Computation：CPU and GPU

• Memory ： CPU DRAM & GPU VRAM

1

2

CPU
Results

L1
L2
L3
…

Ln-3

CPU Mem

GPU Mem

CPU GPU
Ln-2
Ln-1
Ln

PCIe

CPU
Results

1

2

3
3

Background Motivation Design 5Evaluation ConclusionImplementation

Poor Generation Speed
Both offloading methods bring significant slow latency

0.41 t/s

1.6 t/s

Bottleneck on PCIe Bottleneck on CPU computing

Background Motivation Design 6Evaluation ConclusionImplementation

Locality Mismatch

GPU
High computational power

but low memory capacity

CPU

GPU

CPU

GPU

Ideal
compute
utilization

Existing
compute
utilization

CPU
Low computational power
but large memory capacity

Full-Parameter Activation Leads to Severe Locality Mismatch

Small, frequently
accessed working set

Large, less frequently
accessed working set

CPU handles heavy workload

Background Motivation Design 7Evaluation ConclusionImplementation

Opportunity: Predictable Sparsity
LLM exhibit predictable sparse activation

- A subset of neurons contributes to the output for a single token
- The activated neurons can be predicted with a lightweight predictor

Does neuron activation show a skewed distribution?

1

1

0

0.7

0.5

0

Up
Projection ReLU

Sigmoid
> 0.5

Low Rank
Predictor

Background Motivation Design 8Evaluation ConclusionImplementation

Insight-1: Power-law Activation
Hot Neurons vs. Cold Neurons

26% neurons contributes to
80% computation

Hot neurons consistently
frequently activated across
different tasks

Hot neurons should be placed on GPU due to their high locality

Background Motivation Design 9Evaluation ConclusionImplementation

Insight-2: Fast In-CPU Computation

When cold neurons are offloaded on DRAM, which
offloading method is better for latency?

Direct execute computation on CPU (decode)
Load the weight to GPU VRAM then compute using GPU (prefill)

Background Motivation Design 10Evaluation ConclusionImplementation

PowerInfer: Combine Model Sparsity & System Locality

ColdHot CPU
Core

GPU
SM

Predicated
Activation

Calculation
Loading

Design

GPU
load and compute
small hot neurons

CPU
load and compute
large cold neurons

GPU Mem

GPU

CPU Mem

4

4

Online

PCIe

GPU
Executor

CPU
Executor

CPU…

1

LLM

Profiler & Solver

Offline

2

3

3

GPU Mem

GPU

CPU Mem

Online

PCIe

GPU
Executor

CPU
Executor

CPU

4

4

Background Motivation Design 11Evaluation ConclusionImplementation

1 2 4 6 3 5 7

CPU Mem GPU Mem

Concrete Example

1
2

6

4
5

3

7

Layer i

Offline
Split

Layer Input

Online Predictor

Layer Output

Calculate & Merge

Activate

2 3 5

Background Motivation Design 12Evaluation ConclusionImplementation

Adaptive Predictor
Predictors occupy a considerable GPU memory

– Predictors needs another 7GB VRAM for 30B LLMs.
(Occupy over 30% VRAM Capacity on NVIDIA RTX 4090)

Not every layer need the same size predictor
– Adaptive training method for predictors
– Save 50% VRAM

High sparsity => small predictor

Low sparsity => large predictor

Background Motivation Design 13Evaluation ConclusionImplementation

Neuron-aware Operator

Traditional Sparse Operator
– Significant overhead for converting input to sparse format
– Lack of support for CPU/GPU hybrid computation

a b c

d

e f

g

Row
Pointers

Column
Indices

Data
Values

0 2 3 1 2 3 3

a b c d e f g

0 3 4 6 7 GPU

output

Dense Tensor CSR Tensor

Background Motivation Design 14Evaluation ConclusionImplementation

CPU

Neuron-aware Operator

The activation sparsity is rows structured
– Neuron granular computation without converting overhead
– Enables efficient hybrid computation across CPU and GPU for

distinct neuron subsets following the neuron table

a b c d

e f g h

1

0

1

0

State Vector Weight Matrix OutputInput Vector

x

y

z

m

GPU

Background Motivation Design 15Evaluation ConclusionImplementation

Implementation & Experiments Setting
Implementation:

build based on llama.cpp
4200 LoC: C++ & CUDA & Python
Modify the loading、computing process and operator

Evaluation Setting:
PC-High: Intel i9-13900K (5.4GHz, 8 cores), 192GB Host Memory, NVIDIA RTX 4090 (24GB)
PC-Low: Intel i7-12700K (4.9GHz, 8 cores), 64GB Host Memory, NVIDIA RTX 2080Ti (11GB)

Models: OPT(7B-175B), ReLUFalcon-40B, LLaMA2(13B-70B), Bamboo-7B

Workloads: Chatbot arena prompt, ChatGPT prompts, Alpaca

Baseline: llama.cpp, SpecInfer

Metrics: Generation Speed (tokens/s)

ImplementationBackground Motivation Design 16Evaluation Conclusion

1.6 0.6 1.1

16

2.2

13

0
4
8
12
16
20

OPT-30B OPT-66B Falcon-40B

llama.cpp PowerInfer

End-to-end Performance

Compared to llama.cpp, PowerInfer
achieves an average speedup of 7.23x and
reaches up to 11.69x faster performance.

PowerInfer makes over 80% computation
happens on GPU, significantly mitigating
the locality mismatch problem

>80%

>11x

ImplementationBackground Motivation Design 17Evaluation Conclusion

G
en

er
at

io
n

Sp
ee

d

End-to-end Performance for Quantization and Batch

Speedup: average 2.89x / Up to 8.00x
4x throughput

8x

4x

ImplementationBackground Motivation Design 18Evaluation Conclusion

Accuracy

PowerInfer successfully maintains models’ accuracy

ImplementationBackground Motivation Design 19Evaluation Conclusion

LLM v.s. SLM

PowerInfer keeps SLM’s speed, but get LLM’s accuracy

Similar speed with 4B

Similar performance with 7B

ImplementationBackground Motivation Design 20Evaluation Conclusion

More Details in Our Paper

• Long Sequences

• Performance breakdown

• Comparison with A100

• Sensitvity Study to prompts

• Perdictors’ Overhead

• Operators’ evaluation

• Others...

ImplementationBackground Motivation Design 21Evaluation Conclusion

Conclusion

PowerInfer: Explore new possibilities for deploying large language
models on personal computers

Mechanism: Locality-aware CPU-GPU hybrid computation

Significantly improves the inference speed: Up to 11.69x speedup!

Thanks!

https://github.com/SJTU-IPADS/PowerInfer

ImplementationBackground Motivation Design 22Evaluation Conclusion

https://github.com/SJTU-IPADS/PowerInfer

