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The Era of LLMs

LLMs: A Flourishing Ecosystem
The Tech Giants' Race 
in LLM Development
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Local LLMs Empower Billions Local Devices

AI Phone Embodied AI

Our Focus

AI PC

Smarter
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Cloud LLM v.s. Local SLM
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Cloud LLM v.s. Local SLM
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Can we achieve better by deploying Larger LM Locally?
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Prior Approaches: Offloading

GPU-Centric Offloading

FlexGen (ICML 2023)

• Computation：GPU

• Memory：CPU DRAM & GPU VRAM

GPU-CPU Hybrid Offloading

llama.cpp

• Computation：CPU and GPU

• Memory ： CPU DRAM & GPU VRAM
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Poor Generation Speed
Both offloading methods bring significant slow latency

0.41 t/s

1.6 t/s

Bottleneck on PCIe Bottleneck on CPU computing
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Locality Mismatch

GPU
High computational power

but low memory capacity

CPU

GPU

CPU

GPU

Ideal 
compute 
utilization

Existing 
compute 
utilization

CPU
Low computational power
but large memory capacity

Full-Parameter Activation Leads to Severe Locality Mismatch

Small, frequently 
accessed working set

Large, less frequently 
accessed working set

CPU handles heavy workload
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Opportunity: Predictable Sparsity
LLM exhibit predictable sparse activation

- A subset of neurons contributes to the output for a single token
- The activated neurons can be predicted with a lightweight predictor

Does neuron activation show a skewed distribution?
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Insight-1: Power-law Activation
Hot Neurons vs. Cold Neurons

26% neurons contributes to 
80% computation

Hot neurons consistently
frequently activated across 
different tasks 

Hot neurons should be placed on GPU due to their high locality
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Insight-2: Fast In-CPU Computation

When cold neurons are offloaded on DRAM, which 
offloading method is better for latency?

Direct execute computation on CPU (decode)
Load the weight to GPU VRAM then compute using GPU (prefill)
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PowerInfer: Combine Model Sparsity & System Locality
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Concrete Example
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Adaptive Predictor
Predictors occupy a considerable GPU memory

– Predictors needs another 7GB VRAM for 30B LLMs.        
(Occupy over 30% VRAM Capacity on NVIDIA RTX 4090)

Not every layer need the same size predictor
– Adaptive training method for predictors
– Save 50% VRAM

High sparsity => small predictor

Low sparsity => large predictor
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Neuron-aware Operator

Traditional Sparse Operator
– Significant overhead for converting input to sparse format
– Lack of support for CPU/GPU hybrid computation
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CPU

Neuron-aware Operator

The activation sparsity is rows structured
– Neuron granular computation without converting overhead
– Enables efficient hybrid computation across CPU and GPU for 

distinct neuron subsets following the neuron table
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Implementation & Experiments Setting
Implementation:

build based on llama.cpp
4200 LoC: C++ & CUDA & Python
Modify the loading、computing process and operator

Evaluation Setting:
PC-High: Intel i9-13900K (5.4GHz, 8 cores), 192GB Host Memory, NVIDIA RTX 4090 (24GB)
PC-Low: Intel i7-12700K (4.9GHz, 8 cores), 64GB Host Memory, NVIDIA RTX 2080Ti (11GB)

Models: OPT(7B-175B), ReLUFalcon-40B, LLaMA2(13B-70B), Bamboo-7B

Workloads: Chatbot arena prompt, ChatGPT prompts, Alpaca

Baseline: llama.cpp, SpecInfer

Metrics: Generation Speed (tokens/s)
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End-to-end Performance

Compared to llama.cpp, PowerInfer
achieves an average speedup of 7.23x and 
reaches up to 11.69x faster performance.

PowerInfer makes over 80% computation 
happens on GPU, significantly mitigating 
the locality mismatch problem

>80%

>11x
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End-to-end Performance for Quantization and Batch

Speedup: average 2.89x / Up to 8.00x
4x throughput 

8x

4x

ImplementationBackground Motivation Design 18Evaluation Conclusion



Accuracy

PowerInfer successfully maintains models’ accuracy
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LLM v.s. SLM

PowerInfer keeps SLM’s speed, but get LLM’s accuracy

Similar speed with 4B

Similar performance with 7B
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More Details in Our Paper

• Long Sequences

• Performance breakdown

• Comparison with A100

• Sensitvity Study to prompts

• Perdictors’ Overhead

• Operators’ evaluation

• Others...
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Conclusion

PowerInfer: Explore new possibilities for deploying large language 
models on personal computers

Mechanism: Locality-aware CPU-GPU hybrid computation

Significantly improves the inference speed: Up to 11.69x speedup!

Thanks!

https://github.com/SJTU-IPADS/PowerInfer
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