
RONG CHEN
IPADS, Shanghai Jiao Tong University

IPADS Workshop, 2018

Building In-memory Graph Store
for Fast and Concurrent Querying
with Advanced Hardware Features

Joint work w/ Haibo, Jiaxin, Youyang, Yunhao, Youyang, Siyuan, Chang,
Ning, Jiaqi, Xiating, Xuehan, Wenhao, and Zhenhan @IPDADS

2

Research in DS Group @IPADS

2014 2015 2016 2017 20182013

WUKONG

OSDI’16
SOSP’17

USENIX ATC’18

DrTMEuroSys’14
SOSP’15

EuroSys’16
USENIX ATC’17

OSDI’18

EuroSys’15

DSN’14

HPDC’14

POWERLYRA

PPoPP’15x2

3

WUKONG Project

2015 2016 2017 2018

WUKONG

OSDI’16
SOSP’17

USENIX ATC’18

ACTIVE:
#Prof=1, #Students=8+

Alumnus

Website: http://ipads.se.sjtu.edu.cn/projects/wukong
GitHub: https://github.com/SJTU-IPADS/wukong

http://ipads.se.sjtu.edu.cn/projects/wukong
https://github.com/SJTU-IPADS/wukong

4

Graphs are Everywhere

Online graph query plays a vital role for
searching, mining and reasoning linked data

Unicorn
TAO

5

Knowledge Graphs and Querying

6

RDF and SPARQL
RDF: Resource Description Framework
► Public: DBpedia, PubChemRDF, Bio2RDF
► Google’s Knowledge Graph, Bing’s Satori,

Facebook’s, LinkedIn's, Yahoo’s, . . .

SPARQL
► SPARQL Protocol and RDF Query Language

to OS

ad

Rong
to

Siyuan

DS tc

mo

tc
Haibo

IPADS

Jiaxin

ad
Changmo

tc

7

RDF and SPARQL
RDF is a graph composed by a set of
⟨Subject, Predicate, Object⟩ triples

Rong to DS
Rong mo IPADS
Siyuan ad Rong
Siyuan tc OS
Haibo to OS
Haibo mo IPADS
Jiaxin ad Haibo
. . .

mo: MemberOf
ad: ADvisor
to: TeacherOf
tc: TakeCourse

triple
Rong DS

to

Triple Pattern

8

RDF and SPARQL
SPARQL is standard query language for RDF

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X .
}

Professor (?X) advises (ad) student (?Z) who also
takes (tc) a course (?Y) taught by (tc) the professor

TP1
TP2
TP3

Variable

to OS

ad

Rong
to

Siyuan

DS tc

mo

tc
Haibo

IPADS

Jiaxin

ad
Changmo

to OS

ad
tc

Haibo

Jiaxin

tc
?Y

?Z
tc

to

ad

?X

to OS

ad

Rong
to

Siyuan

DS tc

mo

tc
Haibo

IPADS

Jiaxin

ad
Changmo

tc

Queries are Heterogeneous

Heavy Query (QH)
► Non-selective query
► Start from a set of vertices
► Explore a large part of graph

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

to
DSRong

to OS
Haibo

ad

Siyuan

tc

tc
Jiaxin

ad
Chang

tc

9

Queries are Heterogeneous

Heavy Query (QH)
► Non-selective query
► Start from a set of vertices
► Explore a large part of graph

Light Query (QL)
► Selective query
► Start from a given vertex
► Explore a small part of graph

SELECT ?Y WHERE {
?X memberOf IPADS
?X teachOf DS .
?Y advisor ?X . }

to OS

ad

Rong
to

Siyuan

DS tc

mo

tc
Haibo

IPADS

Jiaxin

ad
Changmo

tc

10

IPADS

Rong
to

Siyuan

DS

ad
mo

QL = { , , }

11

State of the Art
Triple Store and Scan-Join
► Store RDF data as a set of triples in RDBMS

OPS OPS

SELECT ?Y WHERE {
?X memberOf IPADS
?X teachOf DS .
?Y advisor ?X . }

POS

X X X Y

?X mo IPADS ?X to DS ?Y ad ?X

Y

TP1 TP2 TP3
?Y

Join Join

Scan Scan Scan

TP3
TP2
TP1

QL = { , , }

12

State of the Art
Triple Store and Scan-Join
► Store RDF data as a set of triples in RDBMS

OPS OPS

SELECT ?Y WHERE {
?X memberOf IPADS
?X teachOf DS .
?Y advisor ?X . }

POS

X X X Y

?X mo IPADS ?X to DS ?Y ad ?X

Y

TP1 TP2 TP3
?Y

Join Join

Scan Scan Scan

TP3
TP2
TP1

► Costly distributed join
► Large intermediate results

13

State of the Art
Graph Store and Graph Exploration
► Store RDF data in a native graph model

TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

QL = { , , }

X Y

?X to ?Y ?Z tc ?Y ?Z ad ?X

Y

TP1 TP2 TP3
?X ?Y ?Z

partial
history

G-Exp

Y Z

G-Exp

Z X

G-Exp

X

Z

partial
history Final

Joinone-hop
pruning

14

State of the Art
Graph Store and Graph Exploration
► Store RDF data in a native graph model

TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

QL = { , , }

X Y

?X to ?Y ?Z tc ?Y ?Z ad ?X

Y

TP1 TP2 TP3
?X ?Y ?Z

partial
history

G-Exp

Y Z

G-Exp

Z X

G-Exp

X

Z

partial
history Final

Joinone-hop
pruning

► Costly final join (90%)
► Synchronized execution

15

Performance

[Wukong, OSDI 2016]

LUBM
#T=1.41T

CONF CORES
Latency (ms)

HEAVY LIGHT

Trinity.RDF VLDB 144 12,034 5.65

TriAD SIGMOD 96 1,920 8.72

Graph Store

Triple Store

RDMA: Remote Direct Memory Access

High speed, low latency,
and low CPU overhead
► Interface: IPoIB, SEND/RECV Verbs,

READ/WRITE (one-sided primitive)

► Bypass OS kernel: zero copy

► Round-trip time: one-sided/~1-3µs,
verb msg/~7µs, IPoIB/~100 µs

17

Performance

[Wukong, OSDI 2016]

LUBM
#T=1.41T

CONF CORES
Latency (m)

HEAVY LIGHT

Trinity.RDF VLDB 144 12,034 5.65

TriAD SIGMOD 96 1,920 8.72

+RDMA 40G IB 96 +4% +137%

Graph Store

Triple Store

: A distributed in-memory graph store

18

System Overview
Wukong

RDMA

SPARQL
queries worker-thread

model

19

Systematic Approaches

RDMA-friendly in-memory graph store

RDMA-enable graph exploration
1. Full-history Pruning 2. Data/Exec Migration 3. Worker-obliger Strategy

1. Model & Indexing 2. Differentiate Partitioning 3. Vertex Decomposition

20

Graph Model and Indexing

to

ad

to

Siyuan

tc

mo

tc

IPADS

Jiaxin

ad
Changmo

OS

Rong DS

Haibo

tc

TP1
SELECT ?X ?Y WHERE {
?X type Course .
?Y teacherOf ?X . }TP2

TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

TP1

21

Graph Model and Indexing

to OS

Rong
to

DS

Haibo

to
Predicate

Index

C Type
Index

SELECT ?X ?Y WHERE {
?X type Course .
?Y teacherOf ?X . }TP2

TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

ty

ty

Differentiated (Graph) Partitioning

22

to OS

ad

Rong
to

Siyuan

DS tc

mo

tc
Haibo

IPADS

Jiaxin

ad
Changmo

tc

23

Differentiated (Graph) Partitioning

► Start from normal vertex
► Exploit locality

TP1
SELECT ?Y WHERE {
?X memberOf IPADS
?X teachOf DS .
?Y advisor ?X . } TP3

TP2

OS

Haibo

DS

Rong

Siyuan

mo

CS GP

ad tcto mo ad tcto

Jiaxin

CSP

IPADS

SERVER 0 SERVER 1

► Start from index vertex
► Exploit parallelism

TP1
SELECT ?X ?Y WHERE {
?X teacherOf ?Y .
?Z takerCourse ?Y .
?Z advisor ?X . } TP3

TP2

Chang

Vertex Decomposition

24

to OS

ad

Rong
to tc

mo

tc
Haibo

Jiaxin

ad
Changmo

Siyuan

DS

IPADS
tc

Vertex Decomposition

25

Rong
to

Siyuan

DS

IPADS
ad

mo

► Inefficient lookup
► Unnecessary data transfer

TP1
SELECT ?Y WHERE {
RONG teacherOf ?X .
?Y takerCourse ?X . } TP2

IN=ad:Siyuan;OUT=mo:IPADS,to:DS,..Rong

key value
Traditional (e.g., Trinity.RDF)

Vertex Decomposition

26

Rong
to

Siyuan

DS

IPADS
ad

mo

► Inefficient lookup
► Unnecessary data transfer

TP1
SELECT ?Y WHERE {
RONG teacherOf ?X .
?Y takerCourse ?X . } TP2

IN=ad:Siyuan;OUT=mo:IPADS,to:DS,..Rong

key value

Siyuanad

key value
Rong IN

IPADSmoRong OUT

DStoRong OUT

Traditional (e.g., Trinity.RDF)

Decomposition

Efficient for both
local and remote
(RDMA) accesses

27

Systematic Approaches

RDMA-enable graph exploration
1. Full-history Pruning 2. Data/Exec Migration 3. Worker-obliger Strategy

RDMA-friendly in-memory graph store
1. Model & Indexing 2. Differentiate Partitioning 3. Vertex Decomposition

28

Prior Graph Exploration
TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

?Y

?Z
tc

to

ad

?X

► Partial history transfer
► Costly final join (90%)
► Synchronized execution

Graph exploration w/
full-history pruning

The latency of RDMA is relatively
insensitive to payload sizes (~2K)

e.g. 8B/1.56µs
vs. 2KB/2.25µs

Siyuan

29

Full-History Pruning
to

Rong
to

DS

H:Rong

H:Rong DS

H:Rong DS Youyang

to

to

OS

Haibo

tc

ad

H:Haibo

H:Haibo OS

H:Haibo OS Jiaxin
Haibo OS Xingda

Haibo OS Xingda Haibo

Haibo

Jiaxin

Rong

ad

Haibo OS Jiaxin Rong

H:Haibo OS Jiaxin

Full-history

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

Haibo
to

Jiaxin

OS

ad

Rong
to

Siyuan

DS

ad
Chang

tc

IPADS

mo

mo

tc

tc

Siyuan

Chang

tc

ad

30

Migrate Execution or Data

► Fetch data by RDMA READ
► Bypass remote CPU & OS

Exploit low latency

In-place
(migrate data)

► Send sub-query by RDMA WRITE
► Async exploration w/ full-History

Exploit high parallelism

Fork-join
(migrate exec)

31

Worker-obliger Strategy

busy

oblige

RING

► Latency-centric work-stealing algorithm
► Ring policy: practical, effective, and easy to impl.

32

Performance

[Wukong, OSDI 2016]* using only 1 core

LUBM
#T=1.41T

CONF CORES
Latency (m)

HEAVY LIGHT

Trinity.RDF VLDB 144 12,034 5.65

TriAD SIGMOD 96 1,920 8.72

+RDMA 40G IB 96 +4% +137%*

33

Performance

[Wukong, OSDI 2016]* using only 1 core

LUBM
#T=1.41T

CONF CORES
Latency (m)

HEAVY LIGHT

Trinity.RDF VLDB 144 12,034 5.65

TriAD SIGMOD 96 1,920 8.72

+RDMA 40G IB 96 +4% +137%*

WUKONG OSDI 96 248 0.40*

7.4X 21.8X

34

Performance

[Wukong, OSDI 2016]* using only 1 core

LUBM
#T=1.41T

CONF CORES
Latency (m) THPT

(q/s)HEAVY LIGHT

Trinity.RDF VLDB 144 12,034 5.65 ≈ 400

TriAD SIGMOD 96 1,920 8.72 250

+RDMA 40G IB 96 +4% +137%*

WUKONG OSDI 96 248 0.40* 269K

7.4X 21.8X 1,076X

Conclusion: Wukong@OSDI16

: a distributed in-memory RDF store that
leverages RDMA-based graph exploration to
support fast and concurrent RDF queries

Achieving orders-of-magnitude lower latency & higher
throughput than prior state-of-the-art systems

35

Wukong

New hardware technologies open opportunities

Website: http://ipads.se.sjtu.edu.cn/projects/wukong
GitHub: https://github.com/SJTU-IPADS/wukong

http://ipads.se.sjtu.edu.cn/projects/wukong
https://github.com/SJTU-IPADS/wukong

Fast and Concurrent RDF Queries
using RDMA-assisted
GPU Graph Exploration

Queries are Heterogeneous

Heavy Query (QH)
► Start from a set of vertices
► Explore a large part of graph

Light Query (QL)
► Start from a given vertex
► Explore a small part of graph

Q7*
390 ms

Q5*
0.13 ms

3000X

* Wukong on a 10-server cluster for LUBM-10240 dataset

.. ..1

10 10

...
.1

1.7M 14M

...
.

...
.

16M 451K

...
.

37

38

Concurrent Workload

Thpt: 398K q/s

Throughput

La
te

nc
y

PURE light query workload

Lat: 0.10 ms

HYBRID light & heavy
query workload

Thpt: 40 q/s
Lat: 100 ms

Thpt: 10 q/s
Lat: 8,600 ms

logarithmic
scale

39

General Idea
Heterogeneous

Workload

CPU

GPU

Heterogeneous
Hardware

.. ..1

10 10

Light
Query

...
.1

1.7M 14M

...
.

...
.

16M 451K

...
.Heavy
Query

Hi
st

or
y

Ta
bl

e Key Value

Ca
ch

e

GP
U

DR
AM

GPU

?X ?Y?Z

TP-1
TP-2
...

Hi
st

or
y

Ta
bl

e

Query

St
or

eKey Value

CPU CP
U

DR
AM

?X ?Y?Z

TP-2

40

Query Execution on GPU
TP3
TP2
TP1

SELECT ?X ?Y ?Z WHERE {
?X teacherof ?Y .
?Z takecourse ?Y .
?Z adivsor ?X . }

Work
Thread

Agent
Thread

Prefecthing

41

Challenges 1. Small GPU memory

2. Limited PCIe bw.

3. Long comm. path
CPU (16)GPU (2880)

256GB
DRAM16GB DRAM

68GB/s

288GB/s
10GB/s

256GB
DRAM 16GB DRAM

10GB/s

NE
TW
O
RK

42

Systematic Approaches

1. Smart data prefetching

3. Heterogeneous RDMA comm.

2. GPU-friendly key/value store

43

Performance
LUBM

#T=1.41T
CONF CORES

Latency (ms) THPT (q/s)
HEAVY LIGHT HEAVY LIGHT

TriAD SIGMOD 100 3,094 7.04

WUKONG OSDI 100 215 0.34* 7.7 40

[Wukong+G, ATC 2018]* using only 1 core

44

Performance
LUBM

#T=1.41T
CONF CORES

Latency (ms) THPT (q/s)
HEAVY LIGHT HEAVY LIGHT

TriAD SIGMOD 100 3,094 7.04

WUKONG OSDI 100 215 0.34* 7.7 40

WUK+G ATC
100

10 GPU 47 0.38* 45.4 346K

[Wukong+G, ATC 2018]* using only 1 core

7.4X 5.9X 8,650X-11%

Conclusion: Wukong+G@ATC18

: a distributed RDF query system supports
heterogeneous CPU/GPU processing
for hybrid queries on graph data

Outperform prior state-of-the-art systems by more than
one order of magnitude when facing hybrid workloads

45

Wukong+G

Hardware heterogeneity opens opportunities
for hybrid workloads on graph data

Website: http://ipads.se.sjtu.edu.cn/projects/wukong
GitHub: https://github.com/SJTU-IPADS/wukong

http://ipads.se.sjtu.edu.cn/projects/wukong
https://github.com/SJTU-IPADS/wukong

Sub-millisecond Stateful
Stream Querying over
Fast-evolving Linked Data

Streaming Data and Querying
Multiple data sources are continuously

generating streaming data in high velocity

47

Example: Social Networking

IPADS

System
@Cornell

<Rong, creates, Feed>. 12:30
<Feed, hash_tag, SOSP>. 12:30
<Yunhao, likes, Feed>. 12:31
<Haibo, likes, Feed>. 12:40

48
Streaming DataStored Data

Example: Social Networking
Feed

12:30

Like
12:31

12:40

Rong

Feed
create

#SOSP#

hash tag

Yunhao like

Haibo
like

member_of

member_of

Haibo

IPADS

Rong

Yunhao
member_of

Cornell

Stored Data Streaming Data
49

Example: Social Networking

member_of

mem
ber_

of
?Y

IPADS

?X

?Feed

crea
te

like

time

Registered by user
Triggered by system
Triggered by system

Triggered by system
Canceled by user

…

Last 30 minutes, which IPADS members created
feeds that are liked by other IPADS members?

50

Stateful Streaming Query
A stateful streaming query needs to integrate

streaming data with stored data

Real-time User Activity Durable Social Graph

High Velocity Large Volume

Evolving!

51

Conventional Approach

52

Conventional Approach
1. Cross-system Cost

~40% execution time waste on data transformation
and transmission

2. Inefficient Query Plan
Semantic gaps between the two systems impair query
optimizations

3. Limited Scalability
Stream processing systems dedicate all resources to
improve the performance of a single job

53

Integrated Design

54

55

Systematic Approaches

1. Hybrid store: timed & timing

3. Bounded snapshot scalarization

2. Stream index & partitioning

56

Performance

[Wukong+S, SOSP 2017]

LSBENCH
#T=118M
R=133K/s

CORES
WUKONG CSPARQL-

engineSTORM

GEO. M 24 x1 5.91 757

LSBENCH
#T=3.75B
R=133K/s

CORES WUKONG SPARK
STREAMINGSTORM HERON

GEO. M 24 x8 6.29 5.85 679

57

Performance

[Wukong+S, SOSP 2017]

LSBENCH
#T=118M
R=133K/s

CORES
WUKONG CSPARQL-

engine WUKONG+S
STORM

GEO. M 24 x1 5.91 757 0.48ms

LSBENCH
#T=3.75B
R=133K/s

CORES WUKONG SPARK
STREAMING WUKONG+S

STORM HERON
GEO. M 24 x8 6.29 5.85 679 0.46ms

13.7X 12.7X 1,476X

12.3X 1,577X

Conclusion: Wukong+S@SOSP17
: distributed querying engine adopting

integrated design for stateful stream
queries over fast-evolving linked data

Achieving sub-millisecond latency and exceeding one
million queries per second

58

Wukong+S

Website: http://ipads.se.sjtu.edu.cn/projects/wukong
GitHub: https://github.com/SJTU-IPADS/wukong

http://ipads.se.sjtu.edu.cn/projects/wukong
https://github.com/SJTU-IPADS/wukong

59

Current Projects on Wukong

► Lightweight, non-invasive migration for graph store

► Fast and accurate optimizer for graph query

► Supporting pipeline workload on linked data

60

Shard-based Migration

► Graph data: poor locality
► Additional metadata (POS)
► Conflict with READ & WRITE operations

Dataset: Graph500
Workload: 2-hop queries

61

Split Live Migration

62

Integrate with Location Cache

63

Lightweight & Non-invasive Migration

19X

95%
99th
50th

97%

64

Fast and Accurate Optimizer

1. Cardinality Estimation: Type-centric
2. Cost model: Mimic-based
3. Plan enumeration: budget-aware

65

Pipeline Graph Processing

Questions

Thanks

Wukong, short for Sun Wukong, who is known as the
Monkey King and is a main character in the Chinese
classical novel “Journey to the West”. Since Wukong is
known for his extremely fast speed (21,675 kilometers
in one somersault) and the ability to fork himself to do
massive multi-tasking, we term our system as Wukong.

Website: http://ipads.se.sjtu.edu.cn/projects/wukong
GitHub: https://github.com/SJTU-IPADS/wukong

http://ipads.se.sjtu.edu.cn/projects/wukong
https://github.com/SJTU-IPADS/wukong

