
Towards “Intelligence, Storage, Network”:

Characterizing, Optimizing, and Outlooking
— A Systems Researcher’s Perspective

Rong Chen
Institute of Parallel and Distributed Systems, SJTU

Huawei STW, 2023

Joint work with Xingda, Xiating, Rongxin, Yuhan, Haibo, Binyu, and members of IPADS

Who AM I
2

Rong Chen (!") / IPADS, SJTU
https://ipads.se.sjtu.edu.cn/rong_chen

► Research Interest: Building efficient, scalable, and reliable distributed systems

► Publications and awards in systems conferences (OSDI, SOSP, EuroSys)

► Huawei OlympusMons Pioneer Award, 2020
“Efficient Data Processing System based on New Heterogeneous Hardware”

Disclaimers:
I am a Systems person, not a Network/Storage/AI expert J

This Talk
3

My view:
How to (re)build high-performance system software stack

by exploiting new hardware of “Intelligence, Storage, Network”

Application

Systems

Hardware
GPU / TPU / NPU Nvidia Jetson SmartNIC / DPU SmartSSDNVM RDMA

kernel, compiler, toolkit, framework . . .

Application Demands
4

Storage
Power

Network
Power

Compute
Power

Compute Power

Application Demands
5

GPT-3:
310 ZFLOPs

Moore’s Law

Source: “AI and Memory Wall”, 2021. https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Compute Power

Application Demands
6

GPT-3:
310 ZFLOPs

Moore’s Law

Source: “AI and Memory Wall”, 2021. https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Storage Power

Accelerator Memory

RecSys:
10 T Params

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Compute Power

Application Demands
7

GPT-3:
310 ZFLOPs

Moore’s Law

Source: “AI and Memory Wall”, 2021. https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Storage Power

Accelerator Memory

RecSys:
10 T Params

Network Power

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

This Talk
8

My view:
How to (re)build high-performance system software stack

by exploiting new hardware of “Intelligence, Storage, Network”

GPU / TPU / NPU Nvidia
Jetson

DPU /
SmartNIC

SmartSSDNVM RDMA

Our Approach
9

Systems

Hardware
GPU / TPU / NPU Nvidia Jetson SmartNIC / DPU SmartSSDNVM RDMA

Findings
Insights

Vision
Thought

Characterizing AdvisingOptimizing

.

kernel, compiler, toolkit, framework . . .

Outline

Case #1: Collaborative offloading

Case #2: Cooperative offloading

Outlooking systems research for DPU
Application

Systems

Hardware

Outline

Case #1: Collaborative offloading

Case #2: Cooperative offloading

Outlooking systems research for DPU
Application

Systems

Hardware

Hardware in DC
12

Ethernet
NICs:

10 Gbps

1 GB/s each

0.1 GB/s

each

HDDs: 2-40TBDRAM: 32-128 GB SSDs: 0.25-1TB

10
 G

B/
s

CPUs:
SMP, NUMA
Hyper-T

1 GB/s

each

Datacenter
Server

Hardware in DC
13

10 GB/s

InfiniBand NICs:
200 Gbps
w/ RDMA

NVRAM: 64-256 GB
w/ Persistency

each
CPUs:
16-32 cores
w/ HTM, SGX

DRAM: 64-256 GB SSDs: 0.5-2 TB

10-50 GB/s1 GB/s

each

50
 G

B/
s

Datacenter
Server

Common Practice: Offloading
14

Multicore
Kernel/OS

2008

Corey
OSDI’08

Multikernel
SOSP’09

RDMA
Distributed TX

DrTM
SOSP’15

FaRM
SOSP’15

FaSST
OSDI’16

NVM
File System

ZoFS
SOSP’19

NOVA-Fortis
SOSP’17

SplitFS
SOSP’19

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

SGX
SecuritySCONE

OSDI’16
Haven
OSDI’14

Systems
Community

Opportunity: Collaboration
15

Different hardware devices can work together

► Case: RDMA NIC (RNIC) can directly access NVM

à “Remote Persistent Memory”

► Scenarios: distributed logging in FS, TX, ..

logs

Octopus [ATC’17]

Orion [FAST’19]

DrTM+R [EuroSys’16]

FaRMv2 [SIGMOD’19]

Distributed Filesystems Distributed Transactions

+DUGZDUH�/LPLW

5'0$�ZULWH�190

5'0$�ZULWH�SD\ORDG

3
HU
IR
UP
DQ
FH

Challenge: Compatibility
16

Functional flaw: remote write is NOT persistent

► Solution1: + remote read (two network roundtrips)

Performance pitfall: remote write is inefficient

► < 29% of NVM thpt limit (15M vs. 52M reqs/s)

New hardware features are unaware of each other

1 Intel. The librpmem library. https://pmem.io/pmdk/librpmem/

RNIC RNIC NVM
w

r
flush

https://pmem.io/pmdk/librpmem/

Our work
17

Collaborative offloading for the concurrent use of RDMA & NVM

► Characterizing RDMA+NVM for optimization hints

► Case studies: distributed TX (DrTM+H) and FS (Octopus)

► Suggestions to RDMA/NVM hardware designers

Optimization Hints
study

Distributed FS & TX

advise

optimize

USENIX
ATC’21

Characterizing
18

Characterizing remote persistent memory w/ RDMA and NVM

► A systematic study of the collaboration btw. RDMA and NVM

► Tools: https://github.com/SJTU-IPADS/librdpma

Optimization Hints

study

prior work RDMA PCIe NVM Cache

HW details

https://github.com/SJTU-IPADS/librdpma

Example 1
19

Optimization Hint

► Disable DDIO to skip LLC for large writes

NVM feature

► Random I/O causes write amplification

Performance pitfall

► RNIC sequentially writes the data to LLC

► Then, LLC randomly evicts the data to NVM
0

20

40

60

80

100

�. �. �. �. ��. ��. ��. ���.

%XON RQH�VLGHG�:5,7(

%
:
��
*
ES
V�

'',2�GLVDEOHG

'',2�HQDEOHG

Random

Sequential

Example 2
20

Optimization Hint

► Use 64B granularity for small writes

NVM feature

► Read-modify-write pattern (PCIe partial-write)

Performance pitfall

► An extra read to NVM if write does not

fit PCIe data word granularity (e.g., 64B)

Read-modify-write

RDMA Write

16B one-sided write

Th
ro

ug
hp

ut

+DUGZDUH�OLPLW

H1 H3 H5

H6

+DUGZDUH�/LPLW

5'0$�ZULWH�190

�2SWV

5'0$�ZULWH�SD\ORDG

3
HU
IR
UP
DQ
FH

Characterizing
21

Characterizing remote persistent memory w/ RDMA and NVM

► A design guideline: 9 optimization hints in 3 aspects

► Achieve 87% of NVM thpt limit (from 15M to 45M reqs/s)

Optimization Hints

study

prior work

Optimizing
22

Applying our performance hints to existing RDMA-NVM systems

► DrTM+H (distributed TX) by 1.44×/2.09× for TPC-C/SmallBank

► Octopus (distributed FS) by 2.40× for Data I/O

DrTM+H
OSDI’18

Octopus
ATC’17

optimize
Optimization Hints

study

prior work

Th
ro

ug
hp

ut
+N

VM H4 H1 H5 H3 H6 H7 H8

+P
er

si
st H9

Factor Analysis of SmallBank

Case Study: Distributed Transaction
23

Applying our performance hints cumulatively on DrTM+H

DrTM+H
OSDI’18Optimization Hints

optimize

Hints Optimizations
H1 Separate memory pool from different sockets to avoid cross-socket NVM access

H3 Configure database with DDIO disabled

H4 Use ntstore to optimize the commit phase

H5 Align and pad logs/records larger than 256 B to XPLine granularity

H6+H7 Align and pad logs/records smaller than 256 B to 64 B granularity

H8 Implement a DRAM-based lock service for the validation phase

H9 Implement remote persistent log with H9 in one roundtrip

2.09×

Improve perf. & enable persist

Advising
24

Suggestions to hardware designers

► RDMA (persistent) WRITE: avoid extra RDMA READ

► RDMA-version nstore: avoid disabling DDIO

Optimization Hints

study

prior work

advise

open source1

1 Our open-sourced toolkit: https://github.com/SJTU-IPADS/librdpma

. . .

https://github.com/SJTU-IPADS/librdpma

Outline

Case #1: Collaborative offloading

Case #2: Cooperative offloading

Outlooking systems research for DPU
Application

Systems

Hardware

New Trend : Capability Integration
26

Intelligent Hardware Network + Computation
Storage

. . .
CPU, FPGA, ASIC

SmartNIC SmartSSD Smart + X

New Trend : Capability Integration
27

Integrating multiple capabilities into a single device

► Typical case: DPU/SmartNIC (e.g., Nvidia BlueField)

PC
Ie

DR
AM

IX
/R

X

New Trend : Capability Integration
28

Nvidia
BlueField-2

Network
ConnectX-6

Storage:
16GB DDR4

Intelligence
ARM Cortex-A72
Accelerators

BlueField 2

• ConnectX-6 (2x 100Gbps)
• 16 GB of on-board DRAM
• ARM Cortex-A72 (8 cores)

Integrating multiple capabilities into a single device

► Typical case: DPU/SmartNIC (e.g., Nvidia BlueField)

New Trend : Capability Integration
29

Integrating multiple capabilities into a single device

► Typical case: DPU/SmartNIC (e.g., Nvidia BlueField)

► Good: Innately immune to compatibility issues

► Bad: (much) higher cost, compared to RNIC

BlueField-21 ConnectX-62

Price 1.5× $ 3615 $ 2,440

Space 2.0× 6.6 in. x 4.53 in. 6.6 in. x 2.71 in.

Power 3.2× 75W 23.6W

1 NVIDIA MBF2H516A-EEEOT BlueField-2
2 NVIDIA MCX653106A-HDAT ConnectX-6

PC
Ie

DR
AM

IX
/R
X

Network
ConnectX-6

Storage:
16GB DDR4

Intelligence
ARM Cortex-A72
Accelerators

BlueField 2

Challenge: Underutilization
30

DPU is inferior in every single capability

► Wimpy cores (e.g., 8-core ARM) and small memory (e.g., 16GB)

► Net. perf. degradation (BF-2 vs. CX-6): latency (+6~30%), thpt (-15~36%)

Challenge: Underutilization
31

Case study: Get (k) in distributed key/value store (KVS)

RNIC-based KVS
2x RDMA READs (1 for index, 1 for value)

DPU-based KVS
1x SEND/RECV, offload indexing to DPU

14%

YCSB C THPT
RNIC

Host
DRAM

RNIC

addrGet (key) value

Cl
ie

nt
Se

rv
er

RDMA
READ

RDMA
READ

Index Values

Cl
ie

nt

RNIC

Se
rv

er

Host
DRAM

RNIC
addr

Get (key) value

SoC

RDMA
SEND

RDMA
RECV

Index Values

Challenge: Underutilization
32

DPU is inferior in every single capability

► Wimpy cores (e.g., 8-core ARM) and small memory (e.g., 16GB)

► Net. perf. degradation (BF-2 vs. CX-6): latency (+6~30%), thpt (-15~36%)

Existing systems only utilize a portion of DPU device

► Only NIC-Host path, treated as RNIC

► Only computing resource (SoC), treated as accelerator

A systematic way to fully utilize integrated capabilities

PC
Ie

IX
/R
X

DR
AM

Our work
33

Cooperative offloading for fully utilizing DPU

► Characterizing: study offloading paths, rather than HW components

► A step-by-step optimization guideline for DS designer

► Case studies: DPU-accelerated distributed FS and KV

► Open-source toolkit: https://github.com/smartnickit-project

path-level studystudy

Advice/Findings Guideline

USENIX
OSDI’23

rebuild Distributed
Systems

https://github.com/smartnickit-project

Characterizing
34

Characterizing DPU (i.e., BlueField 2) in path level

► Study offloading paths, rather than HW components

► Four paths: NIC-Host (), NIC-SoC (), SoC-Host (), SoC-only ()

► Performance implications: bottlenecks, anomalies, and takeaways

IX
/R

X

Host DRAM

PCIe0

PC
Ie

1

DR
AM

IX
/R

X PCIe
Switch

PCIe0

Host DRAM

RNIC SoC

Host

RNIC

1

2

3

4

1 2 3 4

Client Client

Example 1
35

Findings

► NIC-Host is slower than RNIC

► Overhead: PCIe latency (300ns x4)

► Non-trivial for small request (1-2µs)

Takeaway

► If only NIC-Host is used, select RNIC

as it is faster, cheaper, and saves power

Latency (µs)

READ WRITE SND/RCV

Host DRAM

PCIe0

PC
Ie

1

DR
AM

IX
/R

X PCIe
Switch

RNIC SoC

Host

1

1

RN
IC

(Payload = 64B)

Host DRAM

PCIe0

PC
Ie

1

DR
AM

IX
/R

X PCIe
Switch

RNIC SoC

Host

2

Example 2
36

Findings

► NIC-SoC is faster than NIC-host (no PCIe0),

but still slower than RNIC (PCIe switch)

► SEND/RECV is much slow (wimpy SoC cores)

READ WRITE SND/RCV

1

RN
IC 2 Latency (µs)

(Payload = 64B)

Example 3
37

Findings

► RDMA READ performance of NIC-SoC

collapses w/ large request (>=9MB)

Advice: avoid large READ requests

► PCIe MTU: Host (512B) vs. SoC (128B)

► NIC-SoC READ: 4× PCIe packets

for large requests à HoL blocking

2

2

WRITE

READ

1 WRITE
/READ

Host DRAM

PCIe0

PC
Ie

1

DR
AM

IX
/R

X PCIe
Switch

Host

1

2

READ

R E Q s

REQs

R E A D

Example 4
38

Characterizing concurrent paths in DPU

► DPU is always underutilized when only using a single path

► Study the concurrent use of multiple offloading paths (e.g., +) 1 2

Takeaway
► Concurrent offloading can better utilize DPU,

esp. when used in opposition directions (R+W)

► But, carefully avoid interference btw. paths,

e.g., NIC cores (+) and PCIe switch (+) 1 2 2 3

1

2

NIC SoC

Host

1 3

Host

SoCNIC

2

3

Host

SoCNIC

Characterizing
39

Our path-level DPU study

► A comprehensive perf. study on offloading paths (6) × primitives (3)

► 11 findings/advice for either individually using a single path or

concurrently using multiple paths

path-level studystudy

Advice/Findings

USENIX
OSDI’23

Optimizing
40

A step-by-step optimization guideline for system designers

1. Devise potential alternatives for DPU to support the given functionality,

and optimize them based on our study

2. Evaluate and rank alternatives based on system-specific criteria

3. Select and combine alternatives in turn until DPU is saturated

path-level studystudy

Advice/Findings Guideline

Case Study: Get(k) in Key/Value Store
41

1. Devise alternatives (A1-A5) and optimize them

1

A1 A2 A3 A4 A5

2 2 2READx2 S/R 3 READx2 2 S/R 3 READ4 READ 1 READ 2 S/R READx24 +

Guideline DPU-accelerated KVS
rebuild

Case Study: Get(k) in Key/Value Store
42

2. Evaluate and rank alternatives based on high performance

Rank: A5 > A4 > A1 > A3 > A2

Guideline DPU-accelerated KVS
rebuild

Case Study: Get(k) in Key/Value Store
43

3. Select and combine alternatives in turn until DPU is saturated

Rank: A5 > A4 > A1 > A3 > A2

Guideline

0

20

40

60

80

0 20 40 60 80

Thpt (Mreqs/sec)

La
te

nc
y

(u
s)

A5+A4: use A5 first until SoC is
saturated, and then select A4

DPU-accelerated KVS

RNIC-based SOTA

rebuild

Advising
44

Suggestions to hardware designers

► Support CXL to relieve the pressure on SoC cores

► Support ARM CCI (similar to DDIO on host CPU)

► Align PCIe MTU of SoC and Hots CPU

. . .
advise

path-level studystudy

Advice/Findings Guideline

Encourage hardware
vendors to disclose
more details of DPU

rebuild Distributed
Systems

Outline

Case #1: Collaborative offloading

Case #2: Cooperative offloading

Outlooking systems research for DPU
Application

Systems

Hardware

Which type of processor should be selected, SoC, FPGA, or ASIC?

► An inherent trade-off in programmability and performance

Outlooking
46

Performance

Programmability P4FPGA

SoC

ASIC

fastest but not programmable

easiest to program but even slower than the host Tradeoffs

Which type of processor should be selected, SoC, FPGA, or ASIC?

► “Don’t want to CHOOSE, want BOTH”: SoC + FPGA/ASIC/...

Outlooking
47

SoC (ARM)
VPP Accelerators

Soc (Xeon)
Agilex FPGA

SoC (ARM)
ASIC Accelerators

DPA (RISC-V)

SoC (ARM)
ASIC Accelerators

Marvell OCTEON Intel IPU NVIDIA BlueFieldBroadcom Stingray

How to measure integrated hardware components in DPU?

► New metrics, benchmarks, and toolkits?

Outlooking
48

OVS Acceleration

UDF Acceleration

IPsec
Acceleration

Evaluating performance/power-saving
of accelerators for network functions

Which domain-specific accelerators deserve to be integrated?

Outlooking
49

The killer applications of DPUs
datacenter networking, storage, security, and virtualization workloads

Source: https://developer.nvidia.com/blog/power-the-next-wave-of-applications-with-nvidia-bluefield-3-dpus/
https://packetpushers.net/marvells-octeon-10-challenges-all-comers-for-dpu-supremacy/

https://developer.nvidia.com/blog/power-the-next-wave-of-applications-with-nvidia-bluefield-3-dpus/
https://packetpushers.net/marvells-octeon-10-challenges-all-comers-for-dpu-supremacy/

Which domain-specific accelerators deserve to be integrated?

► Compression, encryption, virtualization, packet processing, . . .

Outlooking
50

2020 20232016 2023 2021Year

Which domain-specific accelerators deserve to be integrated?

► Compression, encryption, virtualization, packet processing, . . .

Outlooking
51

different
vendors

DIFF
DIFF
DIFF
DIFF
DIFF

DIFF
DIFF

DIFF

2020 20232016 2023 2021Year

Which domain-specific accelerators deserve to be integrated?

► Compression, encryption, virtualization, packet processing, . . .

Outlooking
52

2020 20232016 2023 2021Year

different
versions

DEL
ADD

ADD
ADD

Outlooking
53

How to unify system abstraction & programming interface?

► e.g., BlueField: PCIe accelerator vs. a standalone server

CPU vs. GPU vs. DPU

DPUs offload and accelerate the data
center OS and infrastructure software

“Server in front of a server”

Three major blocks:

Source: https://developer.nvidia.com/blog/power-the-next-wave-of-applications-with-nvidia-bluefield-3-dpus/

Network, Compute, Storage

https://developer.nvidia.com/blog/power-the-next-wave-of-applications-with-nvidia-bluefield-3-dpus/

NIC core CPU

Outlooking
54

How to unify system abstraction & programming interface?

► e.g., BlueField: PCIe accelerator vs. a standalone server

PC
Ie

DR
AM

IX
/R

X

DPA Accelerators
Network Processor

Datapath Processor

General Processor

Domain-specific
Accelerator

BlueField 3

Host
f data

RDMA packets

f

RDMA packets

Client

Conclusion & Thanks
55

Our approach: characterizing, optimizing, and advising

► Collaborative offloading for multiple devices (e.g., RDMA & NVM)

► Cooperative offloading for intelligent devices (e.g., DPU)

Our outlook on systems research for DPU

See more at https://ipads.se.sjtu.edu.cn/rong_chen

Hardware evolution:
single capability breakthrough & multiple capability integration

https://ipads.se.sjtu.edu.cn/~rchen

