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Whole-graph training: hard to scale 
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Whole-graph training: hard to scale 

Sample-based training
► Systems: DGL, PyG, AliGraph[VLDB’19], P3[OSDI’21], . . . , GNNLab

► Friendly to GPU: massive parallelisms and limited GPU memory

► SET model:  Sample, Extract and Train
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GPUs have been widely exploited to accelerate GNN training
► Train: almost 

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

GCN w/ 3-hop sampling on OGB-Papers100M
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GPUs have been widely exploited to accelerate GNN training
► Train: almost 

► Extract: PaGraph[SOCC’20]

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-based Caching 2.88 1.73 4.00 8.62

GCN w/ 3-hop sampling on OGB-Papers100M
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GPUs have been widely exploited to accelerate GNN training
► Train: almost 

► Extract: PaGraph[SOCC’20]

► Sample: DGL, NextDoor[EuroSys’21]
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TSOTA 2.93 5.55 4.00 12.50
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w/ GPU-based Sampling 0.70 5.46 4.01 10.21

GCN w/ 3-hop sampling on OGB-Papers100M
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GPUs have been widely exploited to accelerate GNN training
► Train: almost 

► Extract: PaGraph[SOCC’20]

► Sample: DGL, NextDoor[EuroSys’21]

► Both ?

GNN Systems Sample Extract Train TOT

TSOTA 2.93 5.55 4.00 12.50

w/ GPU-based Caching 2.88 1.73 4.00 8.62
w/ GPU-based Sampling 0.70 5.46 4.01 10.21
w/ Both 0.70 3.62 4.00 8.37

GCN w/ 3-hop sampling on OGB-Papers100M
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Traditional Design:
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Traditional Design:

Time sharing/multiplexing
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Problems
► Capacity

Graph Topo Feature cachevs.
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Sample Runtime Train Runtimevs.

Problems
► Capacity



Analysis
18

GPU-based
Sample

11.4 GB

Problems
► Capacity

OGB-Papers100M
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GPU-based
Sample

11.4 GB

Problems
► Capacity

1. How to eliminate contention on GPU memory 
between different stages of the SET model
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1. Highly skewed graph

2. Random Sampling

Degree-based 
Caching Policy

Problems
► Capacity

► Efficiency
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OGB-Papers100M Weighted sampling

Problems
► Capacity

► Efficiency

1. Highly skewed graph

2. Random Sampling

Degree-based 
Caching Policy
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1. Highly skewed graph

2. Random Sampling

Degree-based 
Caching Policy

OGB-Papers100M Weighted sampling

Problems
► Capacity

► Efficiency

2. How to achieve optimal cache efficiency for 
diverse GNN datasets and sampling algorithms
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Time sharing 
w/ multi-GPUs



General Idea
24

Time sharing 
w/ multi-GPUs

Inter-task Redundancy

Intra-task Contention
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Observation:
HIGH
cross-GPU
similarity
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Observation:
HIGH
cross-GPU
similarity

LOW
cross-stage
data sharing
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Space sharing 
w/ multi-GPUs
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A factored design
► Inspired by the factored operating system (fos[ACM OSR’09])

Factored Operating Systems (fos): The Case for a Scalable Operating System for Multicores 

David Wentzlaff and Anant Agarwal @MIT 
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A factored design
► Inspired by the factored operating system (fos[ACM OSR’09])

► GNNLab: a factored system for sample-based GNN training
v Perform each stage on dedicate processors (GPUs and/or CPUs)

An example of GNNLab on an 8-GPU machine (2 Samplers & 6 Trainers) 

Trainer

Sampler
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Fundamental Challenge: load imbalance
► Coarse-grained (stage-level) workload partitioning

► Limited GPUs: normally <= 8, even just 1 

► Diverse datasets and workloads
v Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10
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Fundamental Challenge: load imbalance
► Coarse-grained (stage-level) workload partitioning

► Limited GPUs: normally <= 8, even just 1 

► Diverse datasets and workloads
v Sampling vs. Training: e.g., GCN = 1 : 1, while PinSAGE = 1 : 10

GOALs of GNNLab

1. Make stages work together efficiently
2. Assign GPUs to different stages flexibly

T

S

T

T

TimeIdle

G
PU
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Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage
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Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage

► A global queue @CPUs
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Architecture
► Two executors @GPUs

v Sampler: Sample stage

v Trainer: Extract & Train stage

► A global queue @CPUs
► Execution flow 

v Inter-executor: Parallel

v Intra-executor: Sequential w/ pipelining

v Gradient updates w/ bounded staleness
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GPU allocation scheme
► OB: performance of executors on GPU is predictable
► Ng: the number of GPUs

► Ns (resp. Nt): #GPUs allocated to Samplers (resp. Trainers)

► Ts (resp. Tt): the processing time of Sampler (resp. Trainer)
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GPU allocation scheme
► OB: performance of executors on GPU is predictable
► Ng: the number of GPUs

► Ns (resp. Nt): #GPUs allocated to Samplers (resp. Trainers)

► Ts (resp. Tt): the processing time of Sampler (resp. Trainer)

► Prefer to allocate GPUs to Samplers
v temporarily switching from Sampler to Trainer is efficient

► Dynamic executor switching [see our paper]

Prefer to Sampler
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A general caching scheme
► Hotness metric hv and cache ratio α
1. Store and sort vertices according to their hv
2. Load features of top-ranked α|V| vertices w.r.t. hv into GPU cache

For example: PaGraph[SOCC’20]

hv = out-degree of each vertex
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Pre-sampling based caching policy (PreSC)
► OB: Cross-task (epoch) similarity of access footprint 

Sampling alogrithms PR TW PA UK

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96
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Pre-sampling based caching policy (PreSC)
► OB: Cross-task (epoch) similarity of access footprint 

► General idea: pre-sample a few rounds to estimate vertex hotness
1. Conducts K sampling stages (normally 1) for the training set

2. Record visit count of the sampled vertices 

3. Use average count as the hotness metric hv

Sampling alogrithms PR TW PA UK

3-hop random 73.97 78.89 91.29 77.46

Random walks 78.16 72.68 87.14 64.40

3-hop weighted 77.69 66.64 89.57 72.96



GPU-based Feature Caching
40

Pre-sampling based caching policy (PreSC)
► Efficiency: close to Optimal,  vs. Degree avg 1.5× (up to 2.2×) 

► Robustness: stable for all 12 cases

Cache Ratio=10% Paper100M with 3-hop random
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Testbed
► 8 NVDIA V100 GPU

w/ 16GB memory

► Intel Xeon 2×24 CPU

GNNs
► GCN (3-hop rand ngb)

► GraphSAGE (2-hop rand ngb)

► PinSAGE (rand walks)

Datasets

Baselines
PR can be loaded into a single GPU 
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► MERITS: 
(A1) space sharing design

(A2) pre-sampling policy

(A3) efficient sampling impl.

► vs. PyG: 10.2×~74.3×

► vs. DGL:   2.4×~. 9.1×
due to (A1)~(A3)

► vs. TSOTA: 1.6×~3.8×,  e.f. PR
due to (A1) and (A2)

Our flexible scheduling scheme already provides 
optimal GPU allocations in an 8-GPU machine 
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S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
44

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
45

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
46

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
47

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
48

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.



Performance Breakdown
49

S, E, and T represent Sample, Extract, and Train stages. G, M, and C represent graph sampling,
marking cached vertices, and copying samples to host memory in Sample stage, respectively.
R% and H% represent the cache ratio of features and the cache hit rate.
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► DGL and TSOTA
► Time sharing design

► More work on CPUs

► CPUs stop growing

GCN on PA and TW
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► DGL and TSOTA
► Time sharing design

► More work on CPUs

► CPUs stop growing

► GNNLab
► Good parallelism

► Bottleneck may change

► 1 Sampler is not enough

► 3 Sampler is too much

GCN on PA and TW

GCN on PA
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Case: GraphSAGE on Papers100M

► Converge to same accuracy targets 

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×
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Case: GraphSAGE on Papers100M

► Converge to same accuracy targets 

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×

1. Faster training (per epoch)
► vs. DGL by 8.2× and TSOTA by 2.8×
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Case: GraphSAGE on Papers100M

► Converge to same accuracy targets 

► GNNLab outperforms
DGL by 10.2× and TSOTA by 3.5×

1. Faster training (per epoch)
► vs. DGL by 8.2× and TSOTA by 2.8×

2. Fewer epochs, reduced by 1.24×
► GNNLab: 106 (6 GPU workers for training)
► DGL/ TSOTA : 131 (8 GPU workers for training)

The more GPUs allocated for model training, the fewer
gradient updates per training epoch, and more epochs
are required to achieve the same expected accuracy.
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GNNLab: a factored system for sample-based GNN training
► Replace time sharing with space sharing design

► Flexible architecture and scheduling for load balance

► A new efficient and robust caching policy

GNNLab will be published in EuroSys 2022
Artifact Evaluation: https://github.com/SJTU-IPADS/fgnn-artifacts

Open source: https://github.com/SJTU-IPADS/gnnlab (available soon) 

AI needs Systems Research

https://github.com/SJTU-IPADS/fgnn-artifacts
https://github.com/SJTU-IPADS/gnnlab
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Space sharing advance
► Fine-grained: inside a GPU (MPS and MIG)

► Decouple GPU CU and GPU memory

How about other GNNs and sampling algorithms?
► ClusterGCN and Shallow Subgraph Samplers

How to contribute to DGL?


