

「大模型/AIGC与智能化基础软件」论坛

面向智能应用的算力硬件调度与管理

陈榕

上海交通大学

南京 • 2024.1

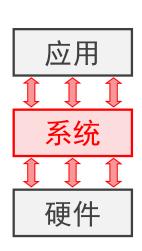
个人情况

陈榕

▶ 并行与分布式系统研究所(IPADS), 上海交通大学(2012)

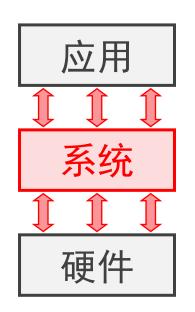
研究领域:基础系统软件(操作系统、分布式系统等)

- ▶ OSDI/SOSP(12篇)、EuroSys/ATC(12篇)
- ▶ 最佳论文奖: EuroSys 2015、ICPP 2007
- ▶ 2020年华为"奥林帕斯先锋奖"(第一完成人)



更多信息请见: https://ipads.se.sjtu.edu.cn/rong chen

系统软件研究



Imaging

Service

МL

ΑI

Vehicles

Autonomous Cybersecurity

内核、框架、工具 ...

CPU

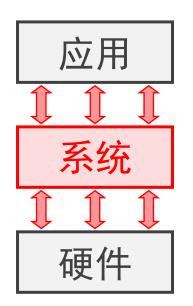
GPU / TPU / NPU

RDMA

DPU

SmartSSD

系统软件研究



Service

МL

Analytics

ΑI

Vehicles

发展快

内核、框架、工具 ...

CPU

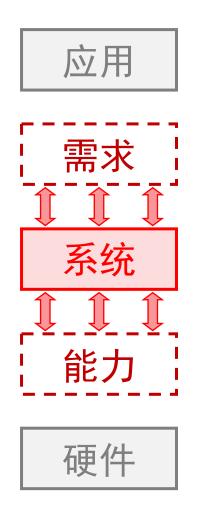
演进快

周期长

GPU / TPU / NPU

RDMA

DPU



Service

ML

Analytics

发展快

高吞吐、低时延、可扩展、大规模 ...

发展趋势

内核、框架、工具 ...

源自"共性"

算力、存力、带宽、持久、隔离 ...

演进趋势

演进快

CPU GPU / TPU / NPU

NVM

RDMA

DPU

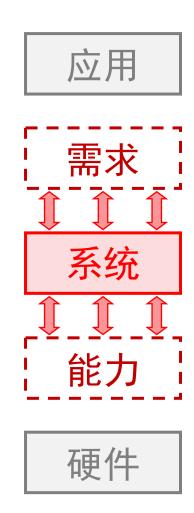
发展快

发展趋势

演进趋势

演进快

系统软件研究



CPU

GPU / TPU / NPU

NVM

RDMA

DPU

发展快

发展趋势

源自"共性"

演进趋势

SmartSSD

演进快

系统软件研究——智能时代

应用

智能应用

Imaging

Service

Physics Communications ML

Video

Analytics

Logistics Conversational

Vehicles

Autonomous Cybersecurity

需求

系统

硬件

-智能时代 系统软件研究——

应用

智能应用

Imaging

Service

Physics

Video

Analytics

Conversational

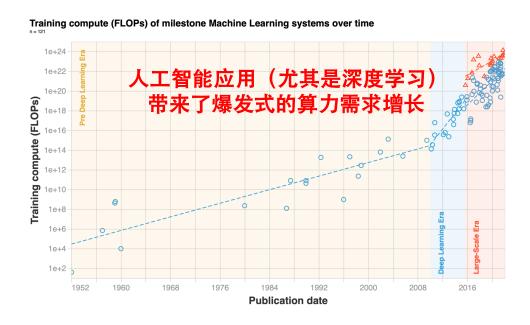
Vehicles

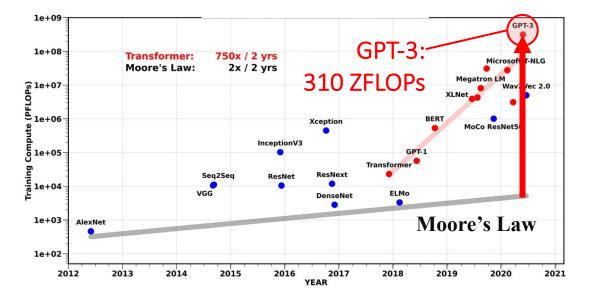
需求

大算力

能力

硬件





应用

需求

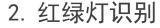
系统

硬件

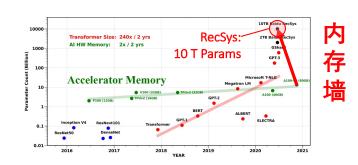
智能应用

大算力

强实时、高性价比、大内存、..

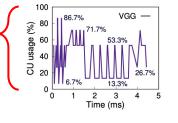


- 语音助理
- 疲劳监测



典型DNN任务: 3.5~13.6ms

Model	ResNet	DenseNet	VGG	Inception	Bei
#Kernels	307	207	55	146	20:
Exec. Time	13.6	3.5	4.4	8.3	5.4
			$\overline{}$		



算力需求 剧烈波动

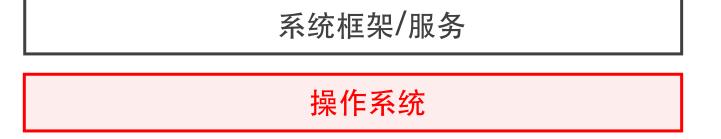
硬件

智能应用 应用 需求 大算力 强实时、高性价比、大内存、... **GPU** TPU / NPU / XPU ... NVLink / NVSwitch 系统 A100 108 SMs 6,912 cores 900GB/s total 3.6TB/s BW 能力 大算力、领域加速、高速互联

GPU、NPU/XPU、NVLink/NVSwitch/CXL

系统软件研究——智能时代

大算力 强实时、高性价比、大内存、..



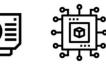
顺势而为

"人工智能"操作系统 关键技术

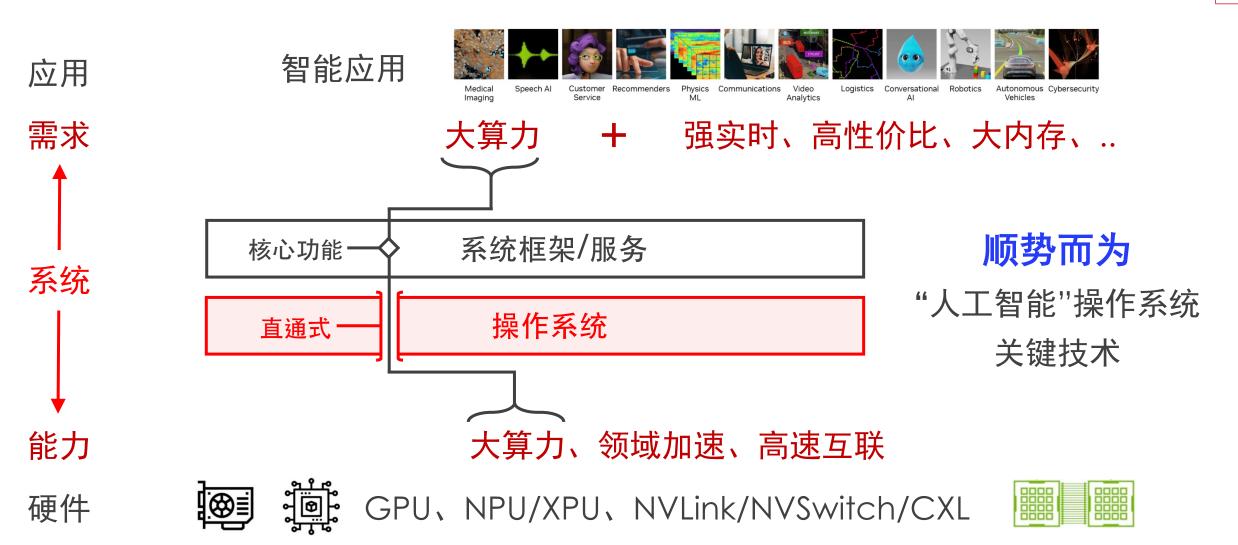
大算力、领域加速、高速互联

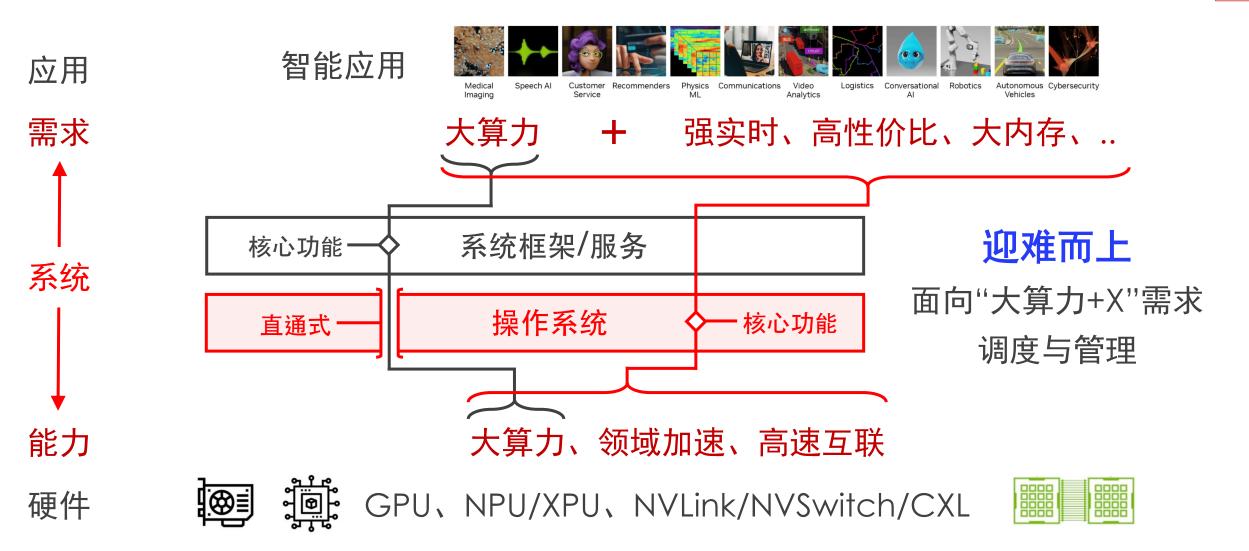
系统

能力

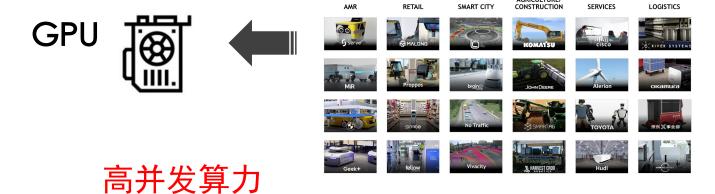


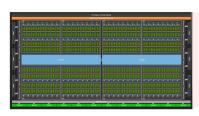
GPU、NPU/XPU、NVLink/NVSwitch/CXL





GPU调度与管理——大算力+X





GPU Architecture (Nvidia Ampere)

1 GPU

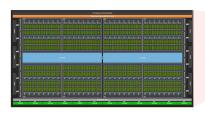
- x 8 GPCs / GPU
- x 8 TPCs / GPC
- x 2 SMs / TPC
- $= 128 \text{ SMs}^*$

Streaming Multiprocessor

2048 Thds/SM

GPU调度与管理——大算力+X

高并发算力



GPU Architecture (Nvidia Ampere)

1 GPU

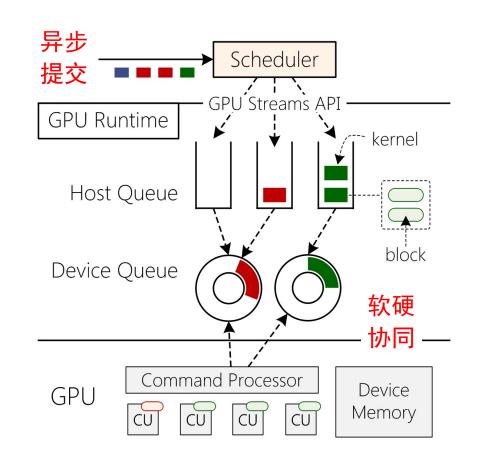
- GPCs / GPU
- TPCs / GPC
- x 2 SMs / TPC

 $= 128 \text{ SMs}^*$

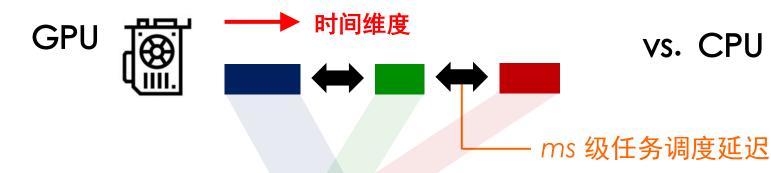
Streaming Multiprocessor

2048 Thds/SM

GPU任务调度



应用需求: 大算力 + 实时性



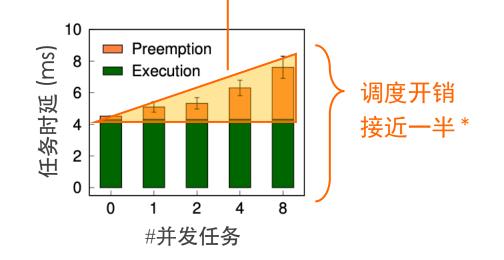
vs. CPU

- 执行时间更长(5~100 ms)
- 调度延迟更低(~5µs)

典型DNN推理任务: 3.5~13.6ms

Model	ResNet	DenseNet	VGG	Inception	Bert
#Kernels	307	207	55	146	205
Exec. Time	13.6	3.5	4.4	8.3	5.4

Testbed: AMD Radeon Instinct MI50 GPU



关键技术: GPU实时任务抢占

实时任务抢占

问题/挑战

1. 大算力硬件状态多 任务切换慢

- 300 µs

GPU A100

- o 128 SMs
- o 256 KB regs/SM
- o 164 KB shmem/SM

<1µs

切换延迟

思路/方法

关键洞见: GPU任务多有"幂等性"

重置执行中的任务 (不保存状态)

切换延迟 $5\mu s$

实时任务抢占

问题/挑战

1. 大算力硬件状态多任务切换慢

> 300 µs

GPU A100

- o 128 SMs
- o 256 KB regs/SM
- o 164KB shmem/SM

<1µs

切换延迟

2. 软硬协同异步提交 任务清理慢

>1 ms

典型DNN推理: 50~300+任务

ResNet(307), BERT(205), VGG(55)

思路/方法

关键洞见: GPU任务多有"幂等性"

重置执行中的任务(不保存状态) 切换延迟 5_{µs}

关键设计:垂直全栈清理

[软] Host Qs: 软件重置队列

[软-硬] Dev Qs: 编译插桩+主动退出

[硬] GPU SM: 硬件指令重置

~30µs

清理延迟

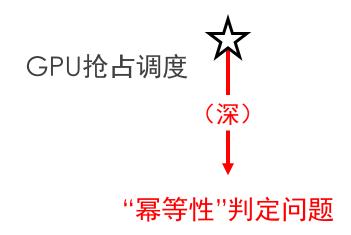
算力硬件的调度与管理

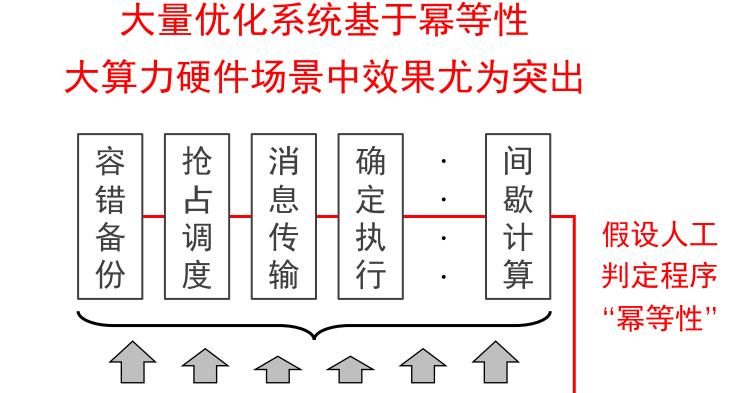
PU抢占调度

"首次在量产GPU上实现了微秒级任务抢占",

¹ Microsecond-scale Preemption for Concurrent GPU-accelerated DNN Inferences. OSDI 2022.

算力硬件的调度与管理——更"深"探索





幂等性/Idempotency ←

GPU程序"幂等性"——实际情况

```
#幂等/Non-idempotent

_global__ void vectorSet(A)
idx = bid * bdim + tid
A[idx] = VALUE

#幂等/Non-idempotent

_global__ void vectorInc(A)
idx = bid * bdim + tid
A[idx] = A[idx] + VALUE

vectorSet<<<32,64>>>(x) ★ 幂等

vectorSet<<<32,16>>>(y) ★ 幂等

· · · ·
```

GPU程序"幂等性"——实际情况

```
幂等/Idempotent
                                           vectorSet<<<32,64>>>(x) ★ 幂等
_global___ void vectorSet(A)
                                           vectorSet<<<32,16>>>(y) ★ 幂等
 idx = bid * bdim + tid
 A[idx] = VALUE
非幂等/Non-idempotent
                                           vectorInc<<<32,64>>>(x) ☆ 非幂等
_global__ void vectorInc(A)
                                           vectorInc<<<32,64>>>(y) ☆ 非幂等
 idx = bid * bdim + tid
 A[idx] = A[idx] + VALUE
条件幂等/Cond-idempotent
 _global__ void vectorAdd(A,B,C)
                                           vectorAdd<<<32,64>>>(x,y,z) ★ 幂等
 idx = bid * bdim + tid
 A[idx] = B[idx] + C[idx]
                                          vectorAdd<<<32,64>>>(x,y,X) ☆ 非幂等
             GPU程序/Kernel【静态】
                                     【动态】GPU实例/Instance
```

GPU程序"幂等性"——实际情况

幂等/Idempotent __global__ void vectorSet(A) idx = bid * bdim + tid A[idx] = VALUE

非幂等/Non-idempotent __global__ void vectorInc(A) idx = bid * bdim + tid A[idx] = A[idx] + VALUE

条件幂等/Cond-idempotent __global___ void vectorAdd(A,B,C) idx = bid * bdim + tid A[idx] = B[idx] + C[idx]

"条件幂等"GPU任务真实存在、且是大多数

GPU Apps	Code	#Kernels		0	•	O /T -	
Rodinia [9]	Source	40	7	12	21	2	基
Parboil [57]	Source	25	4	12	9	0	=
TVM [60]	Source	308	0	0	308	0	Ī
PyTorch [49]	Binary	66	3	1	62	2	ブ
TensorRT [44]	Binary	58	0	2	56	0	月
FT [46]	Binary	50	9	7	34	0	13
All		547	23	34	490	4	

89.6%

vectorAdd<<<32,64>>>(x,y,z) ★ 幂等
vectorAdd<<<32,64>>>(x,y,X) ☆ 非幂等

大厦将倾

GPU程序/Kernel【静态】

【动态】GPU实例/Instance

GPU任务"幂等性"——实际情况

条件幂等/Cond-idempotent __global___ void vectorAdd(A,B,C) idx = bid * bdim + tid A[idx] = B[idx] + C[idx]

【静态】GPU程序/Kernel

【动态】GPU实例/Instance

"条件幂等"GPU任务的大多数实例是"幂等"

GPU Apps	#Instances	●/★	○/☆	●/★	⊕/☆
Rodinia [9]	4,527	85	78	4,334	30
Parboil [57]	1,033	103	738	192	0
TVM [60]	609	0	0	609	0
PyTorch [49]	1,570	151	1	1,131	287
TensorRT [44]	478	0	8	465	5
FT [46]	10,000	229	988	7,119	1,664
All	18,217	568	1,813	13,850	1,986

vectorAdd<<<32,64>>>(x,y,z) ★ 幂等(大多数) ←

87.5%

vectorAdd<<<32,64>>>(x,y,X) ☆ 非幂等

关键技术: GPU实例的"幂等性"判定

问题/挑战

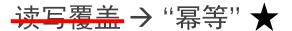
1. 如何安全判定"幂等性"?

现有方法: "读后写" → "幂等"

- × GPU执行访存高度并行
- × 无法确定线程间访存顺序

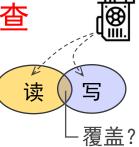
思路/方法

关键设计:"读-写域"覆盖检查



o 无误判/no false positive

○ 高精度/less false negative

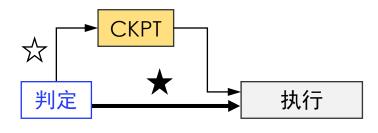


问题/挑战

1. 如何安全判定"幂等性"?

现有方法: "读后写" → "幂等"

- × GPU执行访存高度并行
- × 难以确定内存读写顺序
- 2. 如何在执行前完成判定?



典型基于"幂等性"的系统架构

思路/方法

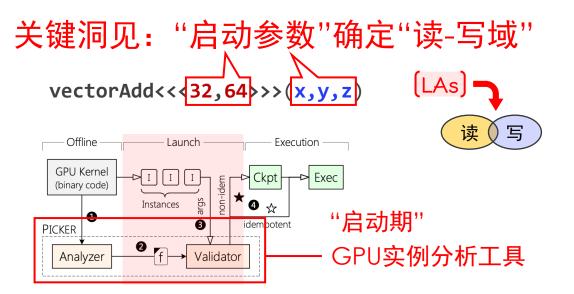
关键设计:"读-写域"覆盖检查

读写覆盖→"幂等"★

o 无误判/no false positive

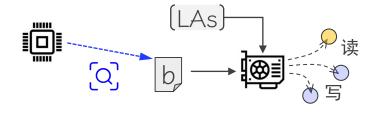
o 高精度/less false negative

读写 覆盖?



问题/挑战

- 3. 如何计算GPU程序读-写域?
 - × CPU无法执行GPU访存指令

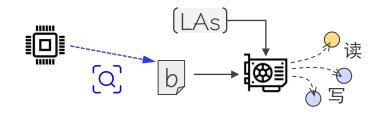


思路/方法

关键设计: 基于符号地址的模拟计算

问题/挑战

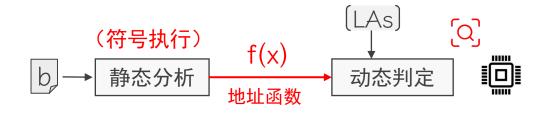
- 3. 如何计算GPU程序读-写域?
 - × CPU无法执行GPU访存指令



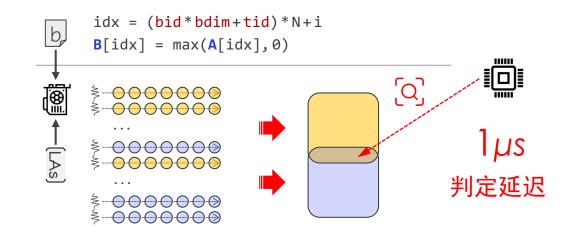
4. 如何快速判定实例"幂等"?

思路/方法

关键设计: 基于符号地址的模拟计算



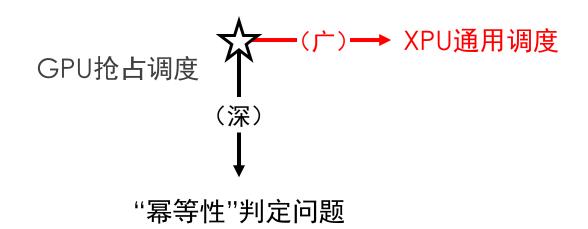
关键观察: 访存地址连续性、单调性



算力硬件的调度与管理——更"深"探索

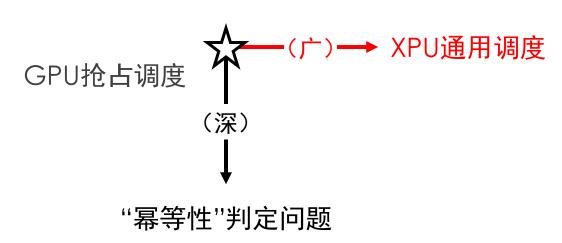
"首次实现了GPU实例的幂等性动态判定、且做到了安全、快速、精准,

算力硬件的调度与管理——更"广"探索



算力硬件的调度与管理——更"广"探索

"支持了GPU/NPU/DSA等 算力硬件和各类调度策略,



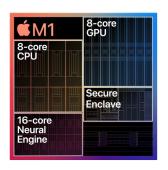
算力硬件(XPU)繁荣

GPU

TPU NPU SoC

What is an AIPC?

A PC with new NPU silicon that brings new AI experiences in productivity, creativity, and security through a combination of the CPU, GPU, and the NPU.



AI·PC 是一个"混合体"

在硬件上集成了混合AI算力单元 且能够本地运行个人大模型 创建个性化的本地知识库 实现自然语言交互

——《AI·PC产业(中国)白皮书》

算力硬件任务调度现状

GPU TPU NPU SoC

现有算力硬件(XPU: GPU/TPU/NPU/DSA/...)任务调度方法

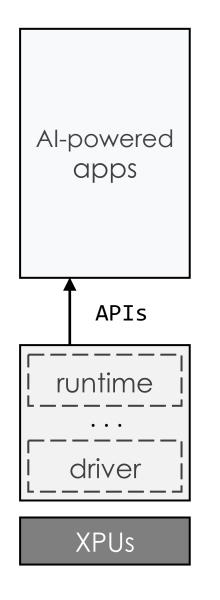
× 硬件调度:功能有限(First-Come-First-Serve)、仅适合大算力需求

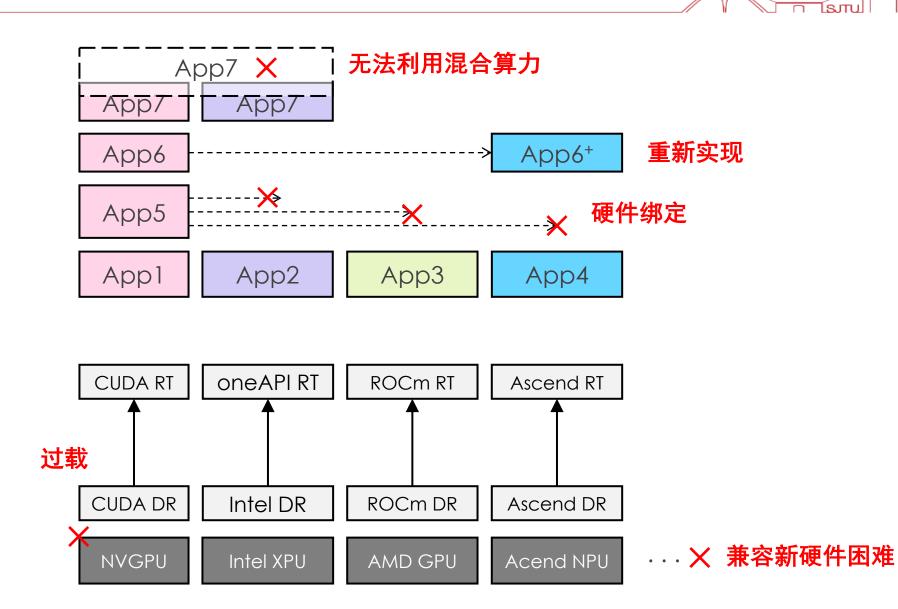
× 软件调度: 绑定特定硬件(修改)、实现工作量大、方法迁移困难

我们的工作:面向开源GPU(修改驱动/运行时/应用)、5,500 LoC(C++)

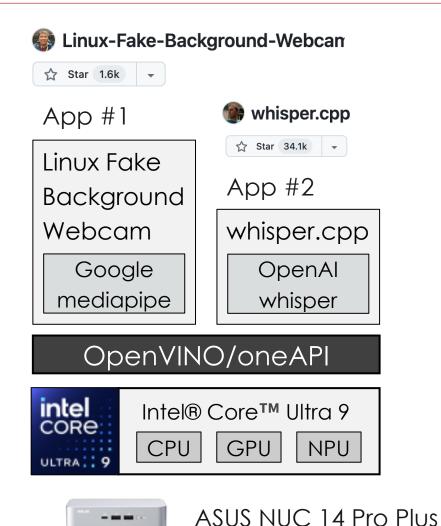
关键技术: XPU通用调度框架

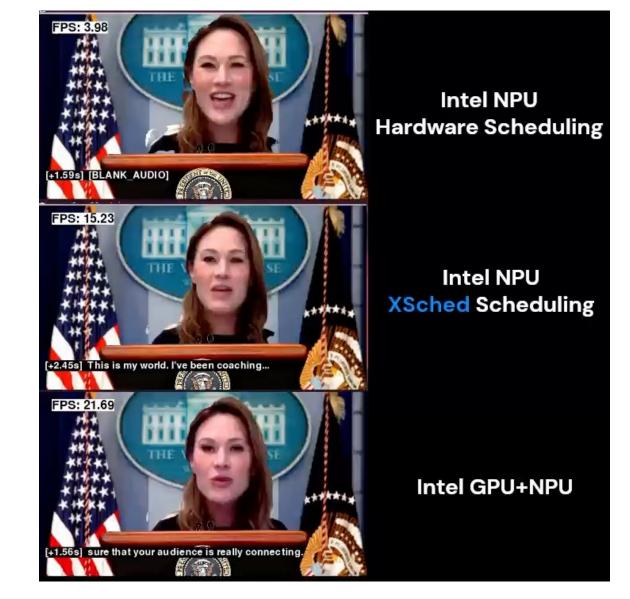
算力硬件任务调度现状





多任务调度问题演示





App#1: https://github.com/fangfufu/Linux-Fake-Background-Webcam

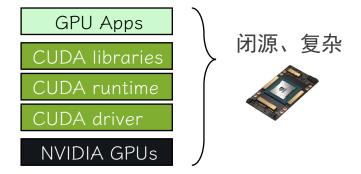
App#2: https://github.com/ggerganov/whisper.cpp

通用XPU调度技术

问题/挑战

- 1. 如何提供XPU通用调度?
 - × XPU软件栈闭源、复杂

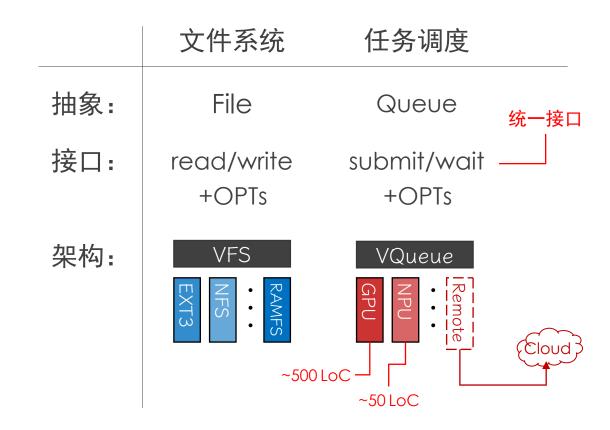
包括:驱动、运行时、应用



×XPU软件栈不兼容

思路/方法

关键思路: 借鉴内核的统一抽象设计



通用XPU调度技术

问题/挑战

2. 如何支持不同种类XPU?

×XPU硬件架构差异大

GPU: CUDA/ROCm 程序

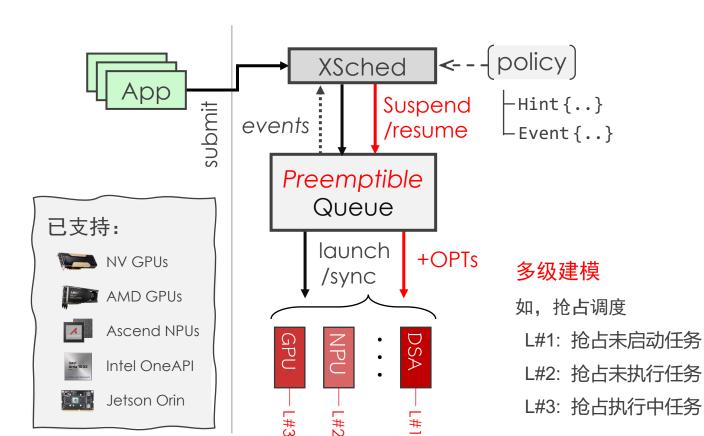
NPU: 预设命令/功能

×XPU硬件实现差异大

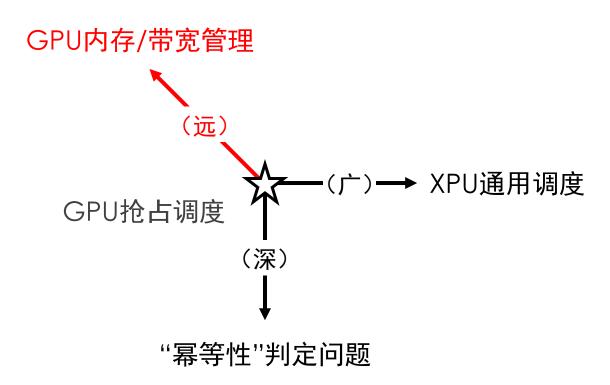
- 提交/等待(基础)
- 。 中断
- 计算单元重置
- 。 内存刷新
- O ...

思路/方法

关键思路:基于能力的多级建模



算力硬件的调度与管理——更"远"探索



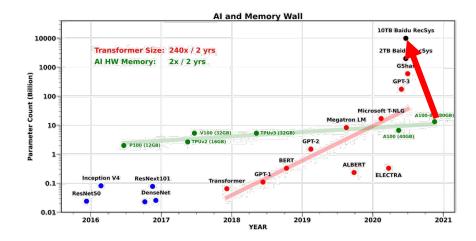
GPU内存/带宽管理

智能应用

Imaging

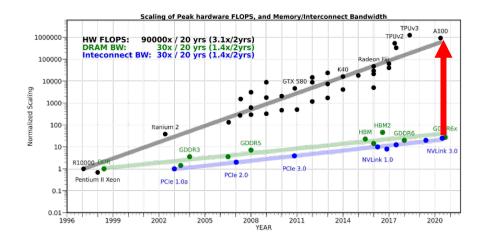
Conversational

人工智能应用(尤其是DL/LLM)在内存/带宽上同样带来了爆发式需求增长



内存需求: 240X / 2 Yrs

内存容量: 2X / 2 Yrs

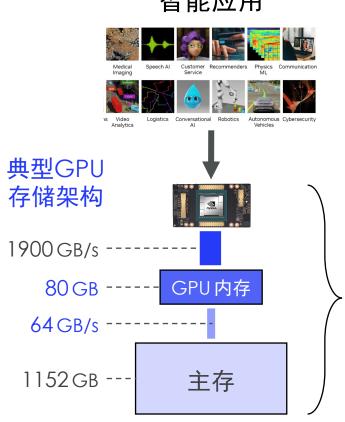


算力增长: 3.1X / 2 Yrs

带宽增长: 1.4X / 2 Yrs (内存)

1.4X / 2 Yrs (互联)

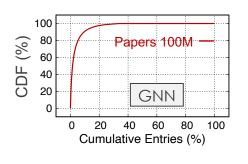
GPU缓存系统

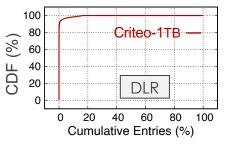


GPU 缓存系统

智能应用的数据访问普遍具有偏态分布特征

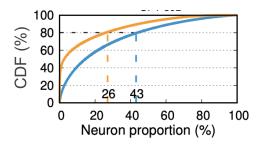
神经网络、推荐系统的嵌入(Embeddings)

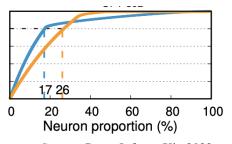




Source: UGache. SOSP 2023

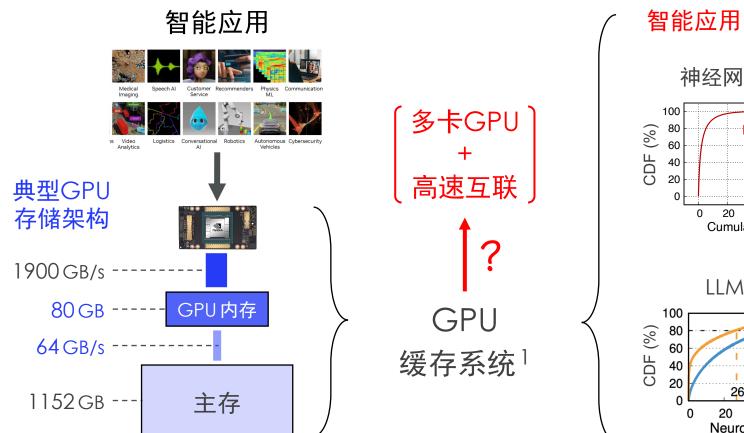
LLM神经元激活(Neuron Activation)





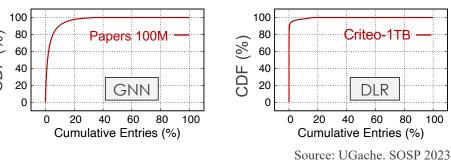
Source: PowerInfer, arXiv 2023

GPU缓存系统

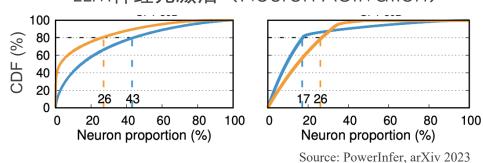


智能应用的数据访问普遍具有偏态分布特征

神经网络、推荐系统的嵌入(Embeddings)



LLM神经元激活(Neuron Activation)

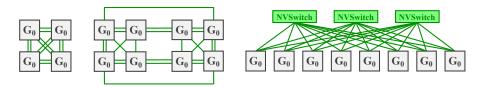


关键技术:多卡GPU统一缓存方法

多卡GPU缓存系统

问题/挑战

- 如何统一、高效的缓存数据?
 - × 多卡GPU系统: 互联架构多样
 - 互联硬件: PCIe / NVLink / NVSwitch . .
 - o 访存性能: Local / Remote / Host . .



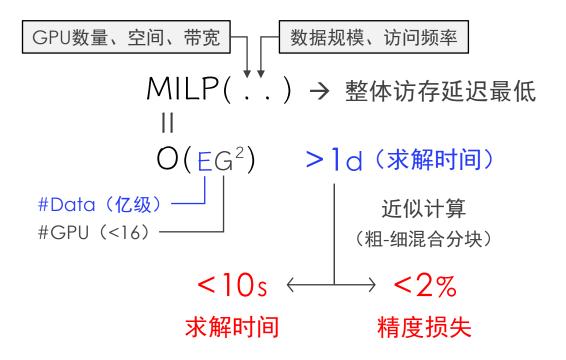
- × 统一缓存抽象: 放置策略复杂
 - 缓存什么数据、在哪里、...?

思路/方法

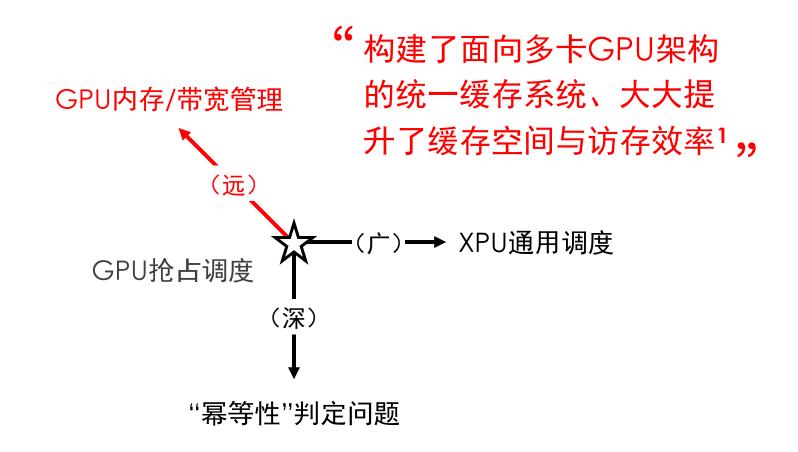
关键思路: 对缓存数据问题统一建模

多GPU缓存问题

混合整数线性规划/MILP



算力硬件的调度与管理——更"远"探索



应用和硬件的发展演进是系统软件研究的原动力

"应用需求"与"硬件能力"是系统软件研究的重要抓手

"赋能赋智"带来算力外需求, 亟需基础系统软件的关键支撑

我们的一些初步探索——算力硬件调度与管理

感谢!