
Characterization and Reclamation of Frozen Garbage
in Managed FaaS Workloads

Ziming Zhao
Institute of Parallel and Distributed Systems, SEIEE,

Shanghai Jiao Tong University
Shanghai, China

dumplings_ming@sjtu.edu.cn

Mingyu Wu
Institute of Parallel and Distributed Systems, SEIEE,

Shanghai Jiao Tong University
Shanghai AI Laboratory

Shanghai, China
mingyuwu@sjtu.edu.cn

Haibo Chen
Institute of Parallel and Distributed Systems, SEIEE,

Shanghai Jiao Tong University
Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China

Shanghai, China
haibochen@sjtu.edu.cn

Binyu Zang
Institute of Parallel and Distributed Systems, SEIEE,

Shanghai Jiao Tong University
Engineering Research Center for Domain-specific
Operating Systems, Ministry of Education, China

Shanghai, China
byzang@sjtu.edu.cn

Abstract

FaaS (function-as-a-service) is becoming a popular work-
load in cloud environments due to its virtues such as
auto-scaling and pay-as-you-go. High-level languages like
JavaScript and Java are commonly used in FaaS for pro-
grammability, but their managed runtimes complicate mem-
ory management in the cloud. This paper first observes the
issue of frozen garbage, which is caused by freezing cached
function instances where their threads have been paused
but the unused memory (e.g., garbage) is not reclaimed due
to the semantic gap between FaaS and the managed runtime.
This paper presents the first characterization of the negative
effects induced by frozen garbage with various functions,
which uncovers that it can occupy more than half of FaaS
instances’ memory resources on average. To this end, this
paper proposes Desiccant, a freeze-aware memory manager
for managed workloads in FaaS, which reclaims idle mem-
ory resources consumed by frozen garbage from managed
runtime instances and thus notably improves memory ef-
ficiency. The evaluation on various FaaS workloads shows
thatDesiccant can reduce FaaS functions’ peakmemory con-
sumption by up to 6.72×. Such saved memory consumption
allows caching more FaaS instances to reduce the frequency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’24, April 22–25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00
h�ps://doi.org/10.1145/3627703.3629579

of cold boots (creating instances before function execution)
and p99 latency by up to 4.49× and 37.5%, respectively.

CCS Concepts: • Computer systems organization →

Cloud computing; • Software and its engineering →

Runtime environments.

Keywords: Language Runtime, Function-as-a-Service, Garbage
Collection

ACM Reference Format:

Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang. 2024.
Characterization and Reclamation of Frozen Garbage in Managed
FaaS Workloads. In Nineteenth European Conference on Computer

Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New
York, NY, USA, 17 pages. h�ps://doi.org/10.1145/3627703.3629579

1 Introduction

Function-as-a-Service (FaaS) is a promising cloud service to
realize serverless computing, where user-uploaded applica-
tions (or functions) are deployed, scaled, and managed by
the cloud. Since functions are usually fine-grained code snip-
pets, they are usually written in high-level languages like
JavaScript, Python, and Java for ease of development [5],
which mandate the use of the managed runtimes (like Open-
JDK’s HotSpot JVM and V8 engine).

Mainstream cloud vendors have proposed their own FaaS
platforms [7, 28, 30, 38] to enable fine-grained and on-
demand function execution. Upon receiving requests, FaaS
platforms launch instances (usually containers or virtual ma-
chines) to execute individual functions. To mitigate the per-
formance overhead of repetitively creating instances, main-
stream FaaS platforms keep instances alive after a function
has finished. According to prior studies [53], such instances
can be kept fromminutes to hours so that they can be reused

281

https://doi.org/10.1145/3627703.3629579
https://doi.org/10.1145/3627703.3629579
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3629579&domain=pdf&date_stamp=2024-04-22

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

when facing the same type of requests. Since those idle in-
stances may still consume CPU resources without process-
ing any requests (e.g., background tasks to check incoming
network packets), mainstream FaaS platforms freeze them
by avoiding scheduling their corresponding threads until
the next request.
Although efficient for saving CPU cycles, this paper ob-

serves that the freeze semantics can cause problems for
functionswritten inmanaged languages.Managed runtimes
usually leverage their garbage collection (GC) mechanism
for memory management, which reclaims dead objects (or
garbage) when memory resources become scarce. However,
if a FaaS instance is frozen, GC has no opportunities for
memory reclamation, which leads to wasted memory. If
the amount of wasted memory is large, the FaaS platform
has to evict (usually destroy) idle instances to make space
for new requests, which can lead to more instance cre-
ations and larger latency for function execution. This paper
then presents the first characterization of frozen garbage by
studying the memory behavior of various functions written
in two popular languages (JavaScript and Java) in the FaaS
scenario.We find that all functions introduce frozen garbage
during their execution, which contributes to more than half
of the memory consumption on average. Meanwhile, we an-
alyze the memory management mechanisms inside main-
stream language runtimes and uncover that blindly conduct-
ingGC is also not enough to resolve the frozen garbage prob-
lem.
To this end, this work proposes Desiccant, a freeze-aware

memory manager to release memory resources consumed
by frozen garbage and thus allow better memory efficiency
for the FaaS platform. The design of Desiccant mainly con-
tains three parts. First, it becomes activated only when the
overall memory resources become scarce and provides an
activation threshold that dynamically changes according to
metrics like the frequency of instance eviction. Second, it
interacts with instances and the FaaS platform to receive
per-instance execution behaviors (namely profiles) to select
the most cost-effective ones for memory reclamation. Lastly,
it coordinates with existing GC algorithms in language run-
times to reclaim frozen garbage and releases freememory re-
sources to the FaaS platform. Meanwhile,Desiccant also pro-
vides optimizations to mitigate performance degradation af-
ter GC and reduce memory overhead caused by shared li-
braries.
Desiccant is implemented on OpenWhisk [6], a popular

open-source FaaS platform. It supports both JavaScript and
Java and only requires minor modifications to the language
runtimes. Our evaluation on various FaaS functions shows
thatDesiccant can efficiently reclaimmemory resources con-
sumed by frozen garbage and introduce up to 6.72× reduc-
tion in memory consumption. When evaluated under pro-
duction traces [43], Desiccant can reduce the frequency of
cold boots (instance creation before function execution) by

up to 4.49× and improve the functions’ p99 latency by up to
37.5%. We also evaluate Desiccant on Lambda, a commercial
FaaS platform provided by AWS, and the results are similar.
To summarize, the contributions of Desiccant mainly in-

clude:

• The first observation and characterization that unveil
the frozen garbage problem (§ 2) and its negative ef-
fects in the FaaS scenario (§ 3).
• Desiccant, a freeze-awarememorymanager to reclaim
frozen garbage in managed FaaS workloads and im-
prove memory efficiency (§ 4).
• A comprehensive analysis with both various FaaS
functions and production traces to show the perfor-
mance benefits introduced by Desiccant (§ 5).

2 Frozen Garbage in Managed FaaS
Workloads

2.1 The freeze semantics in FaaS

To achieve fine-grained resource management, FaaS plat-
forms execute functions in separate instances. Currently, in-
stances are usually containers or (lightweight) virtual ma-
chines. Since functions are short-running and triggered by
external events (like upcoming requests), an instance be-
comes idle when the function exits. If FaaS platforms di-
rectly destroy those idle instances after functions exit, func-
tion execution would suffer from frequent instance cre-
ations (namely cold boot in the FaaS scenario) and larger
latency. To this end, idle instances are usually kept alive by
FaaS platforms, and the maximum duration can be as long
as several hours [53]. Commercial FaaS platforms like AWS
Lambda also allow users to explicitly configure the number
of idle instances to improve performance [9]. Those idle in-
stances are utilized to execute subsequent invocations in or-
der to achieve lower latency. Although such a mechanism
causes functions to not start from a clean state and may
violate the "functional semantics" of FaaS, it is still widely
employed for performance considerations. Restoring from
function checkpoints or forking from existing instances can
also be applied to achieve better performance. Although
their resource consumption is lower, they might suffer from
additional execution overhead. For example, according to
our experiment, the recently released AWS SnapStart takes
over 100ms to restore a snapshot to a Java function instance
before execution.
However, those instances are not completely idle in the

operating system’s view. Although no functions are exe-
cuted, some background threads in the FaaS instance can
still be active. For example, the Just-In-Time (JIT) compil-
ing threads in managed runtimes can continue running for
code optimizations. As for application threads (usually re-
ferred to asmutators), theymay periodically send heartbeats
to other endpoints in the background. Those threads can

282

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

silently steal CPU slices and affect the execution of other
active instances.
To this end, FaaS platforms adopt the freeze semantics to

manage idle instances. Taking OpenWhisk, a popular open-
source FaaS platform, as an example: when an instance
(container) finishes executing a function, OpenWhisk soon
freezes the instance with the pause instruction in Docker so
that all its threads are paused and cannot be executed. Upon
receiving the same type of request, OpenWhisk scans the
frozen instances and thaws the corresponding one (if any)
to launch a function and process the request.
Note that the freeze semantics is not bound to Open-

Whisk. We have investigated commercial FaaS platforms by
splitting our uploaded functions into two parts: foreground
and background. The foreground task is identified as the
real function by the FaaS platform: when it finishes, the FaaS
platform stops charging from the function. Meanwhile, the
background task is implicitly specified, which periodically
sends heartbeats marked with a unique function ID to a
long-running server. In AWS Lambda, a mainstream FaaS
platform, we find that the background task keeps sending
heartbeats for about 100ms after the foreground one fin-
ishes. Afterward, the sending behavior stops, but it is re-
sumed if a function of the same type is received by the
instance (identified by the ID in heartbeats). The observa-
tion suggests that the instance is not destroyed by Lambda:
it is only frozen to wait for new requests (consistent with
Lambda’s early report [1]). We also observe similar results
in other FaaS platforms such as IBM Cloud Functions [30]
and Alibaba Cloud Function Compute [18].
The freeze semantics make the execution of FaaS in-

stances intermittent: the status of instances frequently
switches between frozen and running. Although this pattern
can save CPU resources, it is unaware of the memory effi-
ciency issue, which is of great significance in data centers
due to the high financial cost associated with memory [22].

2.2 Frozen garbage

FaaS functions are usually written in high-level languages
like JavaScript, Java, and Python to leverage their function-
ality and portability. Those languages use managed run-
times, which contain their own memory managers. Take
Java as an example: users are required to allocate memory
resources when creating the Java virtual machine (JVM) so
that the JVM can manage user data as objects in a heap dur-
ing application execution. Whenmemory resources become
scarce, JVMs initiate a garbage collection (GC) to reclaim
memory for later reuse. Other managed runtimes, such as
the V8 engine for JavaScript, also rely on GC for memory
management.
Unfortunately, the GC phase is not aware of the freeze se-

mantics in FaaS; it is still triggered only when free memory
in a FaaS instance becomes scarce. Therefore, if an instance
has finished executing a function and thus becomes frozen

0

2

4

file
−hash

hotel−searching

im
age−pipelin

e

im
age−resize

mapreduce
sort

specjbb2015
tim

e

Average

R
a

ti
o

Avg Ratio Max Ratio

(a) Java functions

0

1

2

3

alexa
clock

data−analysis

dynamic−htm
l

factor

fib
onacci

file
system fft

matri
x pi

unionfin
d

web−server

Average

R
a

ti
o

Avg Ratio Max Ratio

(b) JavaScript functions

Figure 1. The ratios for frozen garbage

by the FaaS platform, it can contain dead objects which have
not been collected by GC. Those dead objects cannot be
removed unless the instance is resumed to execute more
functions. We refer to those objects as frozen garbage. Since
the FaaS platform cannot reuse the memory consumed by
the frozen garbage, it has to destroy the whole instance for
memory reclamation, which can lead to more instance cre-
ations and worse function execution latency. To our best
knowledge, this work is the first one to unveil and analyze
the frozen garbage problem.

3 Characterization of Frozen Garbage

3.1 Memory inefficiency with frozen garbage

To study how frozen garbage affects the memory efficiency
of managed FaaS workloads, we analyze the memory be-
haviors of various FaaS functions in two languages com-
monly used in FaaS development (JavaScript and Java),
whose detailed descriptions are shown in Table 1. We col-
lect all functions written in Java and JavaScript from mul-
tiple FaaS benchmarks [2–4, 11, 19, 37, 57] and also trans-
form other event-based, highly-parallel applications (like
microservices [24, 26]) into FaaS functions to further enrich

283

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

the test suite. We leverage OpenWhisk [6], a commonly-
used open-source FaaS platform, to execute functions, and
the instances we use are Docker containers (the version is
20.10.9). To reflect the real-world execution on commercial
FaaS platforms like Lambda, we apply Lambda’s configura-
tions for language runtimes to OpenWhisk. The version for
Java is OpenJDK 8u322-GA (HotSpot JVM), which is the
same as that in Lambda (Amazon Corretto [10], the JDK
used in Lambda, also shows an OpenJDK version). As for
JavaScript, the version for Node.js is 14.20.0 (one of the ver-
sions supported on Lambda) and the corresponding V8 ver-
sion is 8.4.371.23-node.87. The memory budget for all FaaS
instances is 256MB (the default value in OpenWhisk), and
we leverage the runtime options in Lambda (e.g., the heap
size) to configure language runtimes in OpenWhisk.
To calculate the amount of frozen garbage, we first iter-

atively execute functions 100 times in the same instance
and collect the memory consumption every time a function
exits. Since some applications are actually function chains
that invoke multiple functions, we execute each function in
separate containers and collect their accumulated memory
consumption. We use USS (Unique Set Size, including pri-

vate_dirty and private_clean) to measure the memory con-
sumption of FaaS instances, which exclude shared libraries
(e.g., libjvm.so for Java) since they are shared by multiple
FaaS instances with the same language. Other metrics (e.g.,
the working set size) are not evaluated as they do not make
much sense in the frozen scenario. To compare against the
baseline, we also calculate an ideal case that only keeps
useful memory contents (e.g., live objects) in the instance1.
Figure 1 uses two ratios to represent the gap: avg_ratio
and max_ratio standing for the average and maximum ra-
tio between the memory consumption of the real execution
and that of the ideal one. The results uncover that all func-
tions regardless of programming languages generate frozen
garbage. For some functions, the ratio can be quite large. For
example, the maximum ratio for hotel-searching is larger
than 5, which suggests more than 80% of its memory only
contains frozen garbage. Meanwhile, the average number
of maximum ratios for all Java functions is 2.72 (63.2% is
occupied by frozen garbage). As for JavaScript functions,
the number is 2.15 (53.5%). The results suggest that FaaS in-
stances can contain a significant amount of frozen garbage.
The frozen garbage consumes memory resources and re-
duces memory efficiency, thereby limiting the number of in-
stances that can be cached within a fixed amount of memory
in the FaaS framework, leading to more cold boots, lower
peak throughput, and worse tail latency.

1The ideal memory consumption is measured at the end of each function
execution because that is the point at which instances are frozen.

0

10

20

30

40

0 25 50 75 100

Execution Times

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

) Vanilla Eager Ideal

(a) file-hash (Java)

0

20

40

60

0 25 50 75 100

Execution Times
M

e
m

o
ry

 C
o

n
s

u
m

p
ti

o
n

 (
M

B
) Vanilla Eager Ideal

(b) fft (JavaScript)

Figure 2. The memory consumption curves for two repre-
sentative functions

3.2 Is eager GC helpful?

Since the ideal case suggests the number of useful bytes in
the heap is restricted, a straightforward method would be
eagerly triggering GC after each function exits for memory
reclamation. Unfortunately, this mechanism is actually not
enough to reduce memory consumption, let alone its over-
head induced by more collections. To show its effect, we
choose two representative functions (respectivelywritten in
Java and JavaScript) and show their memory consumption
curves while processing all 100 functions. Figure 2 shows
that the eager GC mechanism does reduce the memory con-
sumption of FaaS instances, but the reduction rate varies
and fails to reach the ideal curve. For the fft function in
JavaScript, eager GC only slightly reduces the memory con-
sumption and is still far away from the ideal one. The rea-
son eager GC is not enough varies in different language run-
times, so we discuss them separately below.

3.2.1 HotSpot (Java). Since the Lambda platform always
uses the serial GC (found by dumping the runtime op-
tions inside Lambda’s FaaS instances) for Java functions,
we mainly study this algorithm. The serial GC embraces a
generational heap design, which contains two generations:
young and old (shown in Figure 3a). It also contains two GC

284

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

!"#$

%&'(

)'

*'+$, -."

(a) HotSpot (Serial GC)

!

!

"

"

#

##

#

!$%&

"%

#'(

(b) V8

Figure 3. The heap layout in different language virtual ma-
chines

cycles: youngGC collects the young generationwhile old GC
reclaimsmemory in both two generations. The young gener-
ation contains three spaces: the eden space serving memory
allocation requests from mutators; the from space storing
objects surviving at least one young GC; the to space serv-
ing as the destination for live objects in a young GC cycle.
After each young GC cycle, the role of from space and to
space switches. If an object has survived several GC cycles,
it is promoted to the old generation.
The resizing phase in the HotSpot JVM is usually trig-

gered after an old GC cycle, which contains resizing for
both two generations. For the young generation, the size
is mainly determined by the old generation size. As for the
old, the size is mainly affected by its free ratio (the number
of free bytes over the heap size), and the JVM ensures that
the free ratio always stays within a predefined range.
Therefore, forced collections at the exit point of a func-

tion are quite helpful in controlling the heap size. First, ap-
plications can only use interfaces like system.gc(), which al-
ways leads to an old GC cycle and thus triggers resizing.
Second, since all temporary objects become garbage after
a function exits, the free ratio is usually large and the heap
size can be shrunk. In the file-hash function, the whole heap
size is fixed to 7.88MB thanks to the old GC after each func-
tion invocation, so the overall memory consumption also
decreases compared with the vanilla baseline.
In HotSpot, heap expanding and shrinking are achieved

via mmap since it can clear the physical pages mapped to
the given virtual address range. The JVM maps more pages
as usable to expand while marking pages as inaccessible
(PROT_NONE) to shrink. Therefore, controlling the heap
size does help reduce the memory consumption of a JVM
(as shown in Figure 1a). However, all pages inside the heap
are still managed by the JVM and do not return to OS even
though they are actually free memory (e.g., pages in the to
space when young GC is inactive). This design is reasonable
because those pages are soon used by mutators and sub-
sequent GC cycles, and reclaiming their physical memory
would introduce more page faults and performance slow-
down. However, a frozen instance cannot use those pages
until it is resumed, rendering them wasted. Taking file-hash

as an example, the live byte size after GC is actually 1.07MB,
which means that 86.4% of heap memory contains only free
pages and can be released.

3.2.2 V8 (JavaScript) . The V8 engine also leverages a
generational design but with several differences compared
with the serial GC in HotSpot. For the young generation, V8
does not have an eden space; the from space serves alloca-
tion requests instead2. Meanwhile, all spaces are organized
as discontinuous chunks (256KB), while OpenJDK’s serial
GC uses consecutive spaces (shown in Figure 3b). Note that
V8’s heap also contains other spaces (e.g., code space stor-
ing code generated by the JIT compiler), but their memory
consumption is trivial and we omit them in this work.
Analog to HotSpot, V8 also has a heap resizing phase trig-

gered after old GC cycles. Its policy for the old generation is
quite simple: the generation expands when no free chunks
are available and shrinks after GC generates free chunks.
As for the young generation, the policies for expanding and
shrinking are separately considered: shrinking is triggered
after GC while expanding is before GC. If the accumulated
live bytes found in GC since the last expansion exceeds
the current young generation size, the generation is dou-
bled. Meanwhile, if the allocation rate becomes lower than
a given threshold, the generation size is reduced to twice the
live byte size. This design is not friendly to the intermittent
execution pattern in FaaS. Suppose an instance is frequently
used only for a while, the allocation rate is high and the
young generation size is repetitively doubled. Even though
collections can be triggered during the execution, the young
generation cannot be shrunk. This is the case in the fft func-
tion (Figure 2b): with more collections, the heap is still large
due to frequent memory allocations. For the vanilla setting,
the actual heap size is enlarged to 41.40MB mainly because
of the expansion of the young generation (32MB, the upper
bound for a 256MB heap). Due to the high allocation rate,
the young generation size remains the same after eager GC,
which can explain the curves in Figure 2b. However, if the
function is no longer invoked, the free pages inside the heap
are frozen.
V8 is more aggressive in releasing memory resources to

OS. If shrinking is required, V8 also releases free pages in
the to space since they are not used until the next GC cycle.
However, since shrinking is not triggered when the alloca-
tion rate is high, it cannot help the corresponding instance
to reduce its memory consumption.

3.2.3 Summary. We have shown that eager GC is not ef-
fective in reducing memory consumption for FaaS work-
loads, but the reason is different for two language run-
times. For OpenJDK’s HotSpot JVM, GC is only used for

2In V8, The role of from space and to space is somewhat different from
HotSpot. To avoid misunderstanding, we always assume the from space
stores live objects when GC is inactive.

285

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

resizing the heap instead of releasing memory resources, so
the memory consumption is still high even when the heap
mainly contains many free pages. For V8, although its re-
sizing phase also releases memory to OS, its policy is not
friendly to the intermittent execution pattern in FaaS and
thus never shrinks before freezing. Therefore, one should
provide runtime-specific designs to reclaim memory from
instances using different languages. Meanwhile, the recla-
mation should also consider the performance overhead (like
page faults) and remain adaptable to various GC algorithms
and language runtimes.

3.3 The effect of heap size

Since the memory budget is directly related to the available
CPU resources granted to a FaaS instance, a user may re-
quire more memory resources (resulting in a larger heap)
for more CPU slices and better performance. Therefore, we
also study the memory efficiency of FaaS instances when
the heap size varies. Figure 4 shows the average number of
average ratio andmaximum ratio for all functions written in
Java and JavaScript, respectively. For Java, the average num-
ber only slightly increases, which suggests that the HotSpot
JVM is able to control the heap size regardless of the config-
uration. As for JavaScript, the ratios become larger as the
heap size increases. For functions like fft, the average ratio
increases from 3.27× in the default setting to 7.11× for the
1GB setting. Therefore, one can expect more frozen garbage
with a larger heap setting for a part of FaaS applications.

0

1

2

256 512 1024

Memory Budget (MB)

R
a

ti
o

Avg Ratio Max Ratio

(a) Java functions

0

1

2

256 512 1024

Memory Budget (MB)

R
a

ti
o

Avg Ratio Max Ratio

(b) JavaScript functions

Figure 4. The average number of ratios under different
memory settings

4 Design of Desiccant

4.1 Overview

According to the analysis, this work provides Desiccant, a
freeze-aware memory manager to reclaim idle memory re-
sources in managed runtimes. During FaaS execution, Des-
iccant coordinates with language runtime instances to re-
claim frozen garbage and release free memory to the op-
erating system. Note that the process of Desiccant is part
of the FaaS framework’s resource management mechanism

!"#$%&''"(#$

)")*'+$&,-."

/(,#-(%"$%-%0"

12#3

!"#$%"&'"()(

/(,#-(%"$'",&)"

4$"5"%&6*(

7

8

9")-2(2(.$

:$

9";&",#"<3

7

/(,#-(%"$"=2%6*(

8

/(,#-(%"$%'"-6*(

4$"5"%&6*(

>,"<$

:$

?0'",0*@<3

/(,#-(%"$,"@"%6*(

4$'"%@-)-6*(

8

7

A--B$C@-D*')

EFC"(G02,HI

J",2%%-(#$

EK-%H.'*&(<I

Figure 5. Desiccant’s Integration with OpenWhisk

and therefore should not be billed to FaaS users. Mean-
while, Desiccant remains non-intrusive to most parts of the
FaaS platform and language runtimes, whichmakes it adapt-
able to other platforms and programming languages. Desic-
cant’s design mainly contains the following three parts (in-
troduced later).

• Activation. To reduce performance overhead, Desic-
cant is merely activated under memory pressure.
• Instance selection. According to Section 2.2, the
memory behavior of functions varies, and Desiccant

prefers to reclaim those containing the most frozen
garbage.
• Instance reclamation. Since the original reclama-
tion mechanisms are not effective, Desiccant modifies
them with minor efforts to release memory.

4.2 Activation

To minimize CPU consumption, Desiccant is not activated
until the portion of used memory of frozen instances ex-
ceeds a threshold. When Desiccant finishes reclamation and
the amount of used memory has dropped below the thresh-
old, it becomes inactive again. This design can be smoothly
integrated with existing instance management mechanisms
in FaaS platforms. For example, OpenWhisk monitors the
accumulated memory consumption of all frozen instances
and evicts (destroys) them when the remaining free mem-
ory is not enough to launch new instances. As shown in
Figure 5, Desiccant can serve as a background sweeper for
OpenWhisk. Since OpenWhisk already knows the current
memory usage, Desiccant can directly leverage it to check
if memory reclamation is necessary. Meanwhile, the evic-
tion policy in OpenWhisk is orthogonal to Desiccant: when
OpenWhisk determines to evict an instance, it does not need

286

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

to consider if the instance is under memory reclamation.
Due to the stateless nature of FaaS instances, direct evictions
do not introduce correctness issues. This design simplifies
the coordination between Desiccant and OpenWhisk and
makes Desiccant less intrusive to FaaS platforms. Other poli-
cies (e.g., activating memory reclamation when idle compu-
tation resources are available) might further enhance the
performance of Desiccant, and we left the design of more
advanced policies as our future work.

4.3 Instance selection

When Desiccant is activated, it first needs to select frozen
instances for reclamation. Desiccant follows two principles
for instance selection. First, Desiccant prefers instances that
have become frozen for long, as they continuously waste
memory resources. Second, Desiccant should choose in-
stances with the best reclamation efficiency (i.e., releasing
the most memory given the same amount of CPU time
slices). For the first principle, Desiccant provides a time-

out value, and only instances whose freeze time exceeds
the timeout are considered. As for the second one, Des-
iccant relies on both language runtime instances and the
FaaS platform to collect memory and CPU-related informa-
tion (namely profiles) after each reclamation succeeds. With
those profiles, Desiccant can calculate the expected reclama-
tion throughput (the amount of reclaimedmemory in a fixed
time interval) for all candidates and select those with the
largest throughput for reclamation (details in Section 4.5).

4.4 GC-based instance reclamation

Figure 6 shows the workflow of Desiccant’s reclamation
phase. After selecting suitable instances, Desiccant first in-
forms the FaaS platform of the identifier of instances to be
reclaimed. The FaaS platform then interacts with the in-
stance by invoking the reclaim interface. Since FaaS plat-
forms have already established a connection with instances
to send user requests, this step only needs to add a new re-

claim API which should be implemented by different lan-
guage runtimes.
HotSpot. Since OpenJDK’s original GC interface is in

the System module (System.gc()), we add a reclaim interface
in the same module. The pseudocode of the reclamation is
shown in Algorithm 1. When reclaim is invoked, it first uses
the GC interface to reclaim frozen garbage in the whole
heap (line 1-5). Afterward, it relies on the JVM’s resizing
policy to shrink its heap size if possible (line 6-9). Lastly,
we modify HotSpot’s releasing policy so that all free mem-
ory pages are returned to OS. This includes the whole from
space (not used until the next GC) and free memory in the
eden space, to space, and the old generation (line 10-15).
V8. The reclamation phase in V8 is similar. Since it al-

ready provides global.gc interface, we add global.reclaim to
first conduct GC and rely on the resizing policy to shrink. If
shrinking is required, as V8 automatically releases memory

Algorithm 1 reclamation in HotSpot

1: # for all generations in the heap
2: for 64=← 64=4A0C8>=B do

3: # perform GC on the generation
4: 64=.3>_2>;;42C8>=()
5: end for

6: # resize heap
7: for 64=← 64=4A0C8>=B do

8: 64=.A4B8I4 ()

9: end for

10: # reclaim memory from each space
11: for 64=← 64=4A0C8>=B do

12: for B?024 ← 64=.B?024B () do

13: <<0? (B?024.C>? (), B?024.4=3 () − B?024.C>? (),)

14: end for

15: end for

resources in the from space and the old generation, we only
need to further release free memory in the to space. Other-
wise, the reclaim interface releases free pages in all spaces.
Note that chunks in V8 contain self-described metadata on
their first page (4KB), which cannot be released. Neverthe-
less, unmapping other pages in the chunk already releases
most memory resources (98.4%).
When reclamation is finished, the language runtime col-

lects its own memory information and sends the memory
profile to the FaaS platform. The FaaS platform further ex-
tends the profile by calculating CPU time consumed by the
reclamation phase and sends the combined one to Desiccant
for more accurate instance selection. Since Desiccant reuses
the GC algorithms inside language runtimes, the required
modifications are minor. We only require 69 LoCs modifi-
cations to HotSpot and 170 LoCs to V8, which makes Des-
iccant easily adapted to other GC algorithms and language
runtimes.

!""#$%&"'()*+,-.",/0

1)0/&"2*

3 *0*()4$%)(5&0

60-2//",.

7)0/&"2*$2,-.",/0$888 9 *0*()4:;<=$%)(5&0

> 2,-.",/0$-0&0/?(,

Figure 6. The reclamation workflow

287

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

4.5 Policies used in Desiccant

4.5.1 Dynamic activation threshold. Since FaaS func-
tions have various memory demands and execution behav-
iors, the activation threshold is hard to be statically deter-
mined. If the threshold is set too small, Desiccant is fre-
quently triggered and consumes considerable CPU slices.
On the contrary, a too-large threshold would make FaaS
platforms suffer from insufficient memory and frequent in-
stance evictions. To this end, Desiccant proposes to dynami-
cally change the threshold bymonitoring instance evictions.
If the FaaS platform starts to evict instances, Desiccant im-
mediately lowers the threshold to a predefined one (60% by
default) and thus releases more memory resources. Other-
wise, Desiccant gradually increases the threshold to reduce
its performance overhead.

4.5.2 Profile collection and selection policy. The last
remaining problem is how to design policies so that Des-
iccant can accurately select instances with the best recla-
mation throughput. Desiccant’s policy mainly relies on two
observations. First, due to the stateless nature of FaaS, the
number of live bytes in a heap remains quite stable when
each function exits (Figure 2 shows similar results). Second,
since mainstream collectors use tracing-based algorithms to
find all live objects and reclaim others, their cost is propor-
tional to the number of live objects. Those two observations
suggest both the in-heap live byte size and reclamation time
is stable if the reclamation phase is triggered after the exit
point of functions. According to the observations, Desiccant
provides the estimation algorithm below.
In-heap live bytes. For ease of GC analysis, language

runtimes provide interfaces to query the number of live
bytes in the heap. Therefore, the reclaim interface can in-
voke them to collect the number and send it to the FaaS
platform as the memory profile. The profile is then sent to
Desiccant, and an instance’s expected in-heap live bytes are
estimated as the average of all profiles related to it.
CPU time. Desiccant relies on FaaS platforms to collect

the CPU time, which is calculated with the elapsed time
and the number of CPUs used by reclamation. To avoid in-
terferences with active FaaS instances, the FaaS platform
only uses idle CPU resources for reclamation and decreases
the number of CPU slices when newly-coming functions
require execution. Therefore, FaaS platforms should memo-
rize the number of CPUs used during the whole reclamation
phase and leverage it to calculate the accumulated CPU time.
For example, suppose the reclamation takes 10ms to finish
(collected by the platform), and its corresponding control
group (cgroup) has 0.5 CPUs in the first 3ms and 0.25 in the
rest, then its accumulated CPU time is 3.25ms (0.5*3+0.25*7).
The accumulated time is then written to the CPU profile so
that Desiccant can calculate the average time for each in-
stance.

Estimated reclamation throughput. To estimate the
expected reclamation throughput, Desiccant needs to know
each instance’s current in-heap memory consumption. For
V8, this implementation is quite simple as it has maintained
variables to memorize consumed memory resources. As for
HotSpot, we require each FaaS instance to report its heap’s
address range after creation. Since a JVM’s address range
for its heap never changes, the FaaS platform can use pmap

to collect its memory consumption within the range. With
the in-heap memory consumption statistics, Desiccant can
estimate the throughput with the formula:

)ℎA>D6ℎ?DC�BC8<0C43 =

("4<ℎ40? − �BC8<0C43_;8E4_1~C4B)

�BC8<0C43_�%* _C8<4

Afterward, Desiccant sorts instances with the estimated
throughput and selects the highest ones to reclaim.
Handling new instances. Since Desiccant maintains

profiles for each instance, a challenge is how to predict the
memory behavior for newly-created instances. As instances
running the same function share similar memory behav-
iors (especially the live bytes), Desiccant first searches for
existing instances with the same function type and lever-
ages their profiles for estimation. If no instances can be
found, Desiccant adopts the average throughput of all pre-
calculated instances for estimation. Once the instance is re-
claimed, Desiccant can collect its profile and subsequent es-
timations become more accurate. When an instance is de-
stroyed by the FaaS platform, its profiles are also abandoned
to reduce the memory overhead.

4.6 Optimizations for shared libraries

Language runtimes require memory-consuming shared li-
braries (e.g., libjvm.so in HotSpot and node in V8) for ex-
ecution. Since FaaS frameworks usually provide the same
language runtime for functions in the same language, those
libraries can be shared among containers and their memory
consumption is amortized. However, if the libraries are used
by only one function, the memory overhead is still consid-
erable. To this end, Desiccant provides an optimization to
unmap libraries if they are only used by one frozen instance.
This is achieved by searching the per-process smaps file for
memory ranges that are (1) private to the current process, (2)
not modified, and (3) mapped from files. Afterward, Desic-
cant marks those memory ranges as non-present via mmap

system calls. Note that those libraries are also included in
the USS part if they are not shared among instances, so Des-
iccant does not need to modify its policy in Section 4.5 to
support this optimization.

4.7 Avoiding aggressive collections

The GC interface provided by V8 suggests a global and thor-
ough collection, which aggressively reclaims all collectible
objects (including those pointed by weak references) and

288

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

causes significant performance degradation due to JIT code
deoptimizations for subsequent function executions. Since
Desiccant reclaims memory resources only in a best-effort
fashion, it does not require such aggressive collections. To
this end, Desiccant slightly modifies the GC interface of V8
so that it can receive an option to avoid collecting objects
referred to by weak references. This modification only adds
7 LoCs to V8 but improves function performance after recla-
mation.

5 Evaluation

5.1 Experiment setup

Desiccant is implemented and integrated with OpenWhisk,
a commonly-used open-source FaaS platform (the version is
20.11). All FaaS functions used in the evaluation are listed in
Table 1. We mainly use a server with dual Intel Xeon Gold
6138 CPUs and 128GB DRAM to launch containers as FaaS
instances. Meanwhile, we compareDesiccant with two base-
lines: a vanilla one that executes FaaS functionswithout con-
sidering the freeze semantics and an eager one that triggers
GC after every function exits.

5.2 Single function evaluation

We first study how Desiccant helps improve the memory
efficiency for single functions. Each function instance has
256MB memory resources and 0.14 CPU (according to the
configuration in commercial FaaS platforms [8, 47]). For
all functions, we still execute them for 100 times in the
same instance and freeze them. We assume the memory re-
sources become scarce so that Desiccant is activated to re-
sume frozen garbage from frozen instances. The memory
consumption is compared with the aforementioned base-
lines and the results are shown in Figure 7. Compared with
the vanilla baseline, Desiccant can significantly reduce the
memory consumption of FaaS instances: the reduction after
100 iterations ranging from 1.21× to 4.57× for Java functions
(2.78× on average) and from 1.51× to 3.04× for JavaScript
functions (1.93× on average). When compared with the ea-
ger GC mechanism, Desiccant still reduces the memory con-
sumption for all functions (1.36× on average for Java and
1.55× for JavaScript). Alternative solutions include not freez-
ing functions after execution or relying on the swapping
mechanism of the operating system to reclaimmemory. The
non-freezing solution yields similar results to the vanilla
baseline since frequent function execution also hinders po-
tential background garbage collection operations. The swap-
ping solution suffers from higher execution overhead after
reclamation as demonstrated in Section 5.6. The results of
Desiccant are close to the ideal baseline (0.1% on average for
Java functions and 6.4% on average for JavaScript functions)

in Section 3.1 and indicate Desiccant is effective in releas-
ing free memory consumed by frozen garbage. The reduc-
tion varies among functions due to different memory behav-
iors. For JavaScript functions, the improvement is mainly
related to the allocation rate: functions with more active
allocation behaviors frequently double their young gener-
ations, which cannot be optimized by the eager GC mech-
anism. As for Java functions, they usually have large de-
mands for memory during the first execution (due to initial-
ization), which significantly enlarges the heap size. Since
the frequency of old GC is quite small, the heap does not
shrink until all functions exit. Meanwhile, both eager GC
and Desiccant are helpful in triggering the shrinking phase
and thus reduce the memory consumption, while Desiccant
further releases free memory pages inside the heap to OS.
The difference between Desiccant and the ideal case stems
from different reasons. For Java functions, it mainly arises
from the page alignment overhead during reclamation. For
JavaScript functions, it mainly results from the unreclaimed
fragmented free memory released by the mark-sweep algo-
rithm and can be eliminated by further integrating reclama-
tion with the V8 engine (e.g., reclaiming them with the help
of V8’s free list).

0

100

200

300

400

file
−hash

hotel−searching

im
age−pipelin

e

im
age−resize

mapreduce
sort

specjbb2015
tim

eM
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
B

)

Vanilla Eager Desiccant Ideal

(a) Java functions

0

100

200

300

alexa
clock

data−analysis

dynamic−htm
l

factor fft

fib
onacci

file
system

matri
x pi

unionfin
d

web−serverM
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
B

) Vanilla Eager Desiccant Ideal

(b) JavaScript functions

Figure 7. Single instance’s memory consumption after
repetitive function executions

289

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

Table 1. Evaluated FaaS functions in this work. For chained functions, the number of functions are denoted after their names

Language Function name Description

Java

time Returning current time
sort Sorting an array of integers
file-hash Calculating the hash value for a file
image-resize Resizing an image
image-pipeline (4) Processing an image with four consecutive functions
hotel-searching (3) Searching hotels with preferences
mapreduce (2) Counting words in a map-reduce fashion
specjbb2015 (3) The purchasing transaction in a simulated supermarket

JavaScript

clock Returning the executed time of current process
dynamic-html Generating a HTML file randomly
factor Calculating the factorization for a large integer
fft Fast Fourier transform
fibonacci Calculating the nth value in a Fibonacci sequence
filesystem Accessing the file system
matrix Matrix multiplication
pi Calculating pi with a given number of iterations
unionfind Executing operations over a union-find disjoint set
web-server Launching a web server and processing requests
data-analysis (6) Analyzing data in a database
alexa (8) Interacting with smart-home devices

The results for mapreduce are interesting because the ea-
ger baseline has an even larger memory consumption com-
pared with the vanilla one. This is because the eager GC
mechanism is unaware of the chain semantics in FaaS work-
loads. Since the mapper function needs to transform inter-
mediate data into the reducer one, the data cannot be re-
claimed by GC even after the function exits, which leads
to higher memory consumption. In contrast, Desiccant does
not have this problem because it only reclaims inactive
(frozen) instances whose intermediate data has been trans-
ferred and thus can be collected.
Effects on other metrics. We also measure the overall

memory consumption with other metrics, RSS (Resident Set
Size) and PSS (Proportional Set Size). The evaluation is con-
ducted by launching multiple instances for the same func-
tion (using fft as an example, other functions have similar
results). As shown in Figure 8, when the number of contain-
ers is one, both RSS and PSS are improved by 4.16× thanks
to the Desiccant’s in-heap reclamation and unmap optimiza-
tion. When the number of concurrent instances increases,
the RSS value for each instance remains the same while the
PSS gradually approaches USS as libraries are shared among
instances. The results suggest Desiccant can improve the
system’s overall memory consumption for various scenar-
ios.

5.3 Performance on production traces

We also leverage production traces collected from Azure
Functions [43] for evaluation. The traces contain thousands

0

25

50

75

4 8 12 16

Execution Times

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

) RSS PSS USS

(a) Vanilla

0

25

50

75

4 8 12 16

Execution Times

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

) RSS PSS USS

(b) Desiccant

Figure 8. Improvement for per-instance RSS and PSS

of functions (each differentiated by a unique ID) deployed
on Azure, along with their inter-arrival time, duration, and
the allocated virtual memory. However, the traces do not
include the actual function code, making it impractical to
directly replay the trace for evaluating Desiccant’s perfor-
mance. Therefore, we choose 20 functions from the trace
whose execution time is closest to those listed in Table 1.
For chained functions, we also select one function from the
trace whose execution time is close to the overall time for
the whole chain. Later, we invoke the functions in Table 1
based on the inter-arrival patterns of the selected functions
recorded in the trace. Each function instance still has 256MB
memory for execution, and we configure the instance cache
(the cache used to keep frozen instances alive in memory)
size to 2GB. To show the results under different workloads,

290

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

we use a scale factor to proportionally reduce the inter-
arrival time for all functions. For example, if the scale factor
is 10, the inter-arrival time for functions is ten times smaller
than that in the original traces. Before replaying the trace,
we first warm up the system with a fixed scale factor (15)
for 60 seconds, and the replay time is fixed to 180 seconds.
Figure 9 first shows the performance of Desiccant under

different scale factors when compared with the vanilla and
eager configuration. As the results in Figure 9a suggest,Des-
iccant can reduce the cold boot rate by up to 4.49× com-
pared to the vanilla baseline (up to 3.75× compared to the
eager baseline), thanks to its memory reclamation mecha-
nism on frozen garbage. A lower cold boot rate also con-
tributes to better throughput: Figure 9b shows that the av-
erage throughput on Azure traces can reach 32.37 requests
per second with Desiccant, which is 17.4% and 15.3% bet-
ter than that in the vanilla and eager setting, respectively.
Meanwhile, the lower cold boot rate induced by Desiccant

can result in lower execution time, which is also helpful
in reducing the financial cost of FaaS functions borne by
FaaS users. Besides, by reducing the cold boot rate,Desiccant
also has a lower CPU utilization as a cold boot introduces
heavy CPU overhead (collected by the sar tool, shown in
Figure 9c). When the scale factor is between 15 and 30, Des-
iccant reduces FaaS instances’ accumulated CPU utilization
(averaged in 180 seconds) by 6.9% (vanilla) and 9.2% (eager)
on average. The eager baseline occupies more CPU when
the scale factor is low due to frequent GCs, suggesting the
importance of reclaiming only when necessary, as is done
by Desiccant. As for reclamation, we find that the frozen
garbage reclamation phase introduced by Desiccant only in-
duces up to 6.2% CPU overhead, which is trivial in the over-
all CPU utilization. Triggering GC only before freezing a
function can reduce the CPU overhead in the eager baseline,
but it will still suffer from a larger cold boot rate under high
throughput when compared to Desiccant due to the worse
reclamation efficiency.
Figure 10 further illustrates the tail latency of function

execution with two different scale factors. Since Desiccant

is helpful in reducing the cold boot rate, it reaches better
tail latency when compared with the vanilla one and the ea-
ger one regardless of scale factors. When under a medium
scale factor (15), Desiccant achieves 33.1%, 9.8%, and 37.5%
improvement on p90, p95, and p99 latency, respectively com-
pared with the vanilla baseline (33.0%, 7.5%, and 27.9% com-
pared with the eager baseline). As for higher throughput
(the scale factor is 25), the results are 39.9%, 36.3%, and 0.1%
compared to the vanilla baseline and 36.4%, 16.9%, and 0.1%
compared to the eager baseline. The tail latency gap gen-
erally increases with a larger scale factor because the base-
lines’ frequency of cold boot increases. Nevertheless, Desic-
cant does not show a significant improvement in p99 latency
when the scale factor is 25. This is because the throughput
is quite large and available CPU resources can be exhausted,

which makes new requests wait for seconds and dominates
the p99 latency.

0.00

0.02

0.04

0.06

0.08

15 20 25 30 35

Scale Factor

C
o

ld
 B

o
o

t
R

a
te

Desiccant

Vanilla

Eager

(a) Cold boot rate

20

25

30

15 20 25 30 35

Scale Factor

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

Desiccant

Vanilla

Eager

(b) Throughput

4

5

6

7

15 20 25 30 35

Scale Factor

C
P

U
 u

ti
li

z
a

ti
o

n
 (

%
)

Desiccant

Vanilla

Eager

(c) CPU utilization

Figure 9. Performance on Azure traces

0.80

0.85

0.90

0.95

1.00

0 10 20

Function Latency (s)

P
e

rc
e

n
ti

le

Vanilla

Desiccant

Eager

(a) scale factor=15 (medium)

0.80

0.85

0.90

0.95

1.00

0 20 40 60

Function Latency (s)

P
e

rc
e

n
ti

le

Desiccant

Vanilla

Eager

(b) scale factor=25 (high)

Figure 10. Tail latency for different scale factors

5.4 Results on Lambda

To confirm Desiccant’s performance is not bound to the
OpenWhisk platform, we further evaluate functions on
AWS Lambda. Since we have no permission to modify the
Lambda platform, we use the following strategy to evaluate
Desiccant. First, we pack functions into container images
for deployment, which contain the function’s related files,
modified language runtimes and a web server for communi-
cation. Second, we still assume that the functions are itera-
tively executed for 100 times, so we manually send a special
invocation to trigger a reclamation when all execution has

291

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

finished. Note that since the image-pipeline function con-
tains external calls to other processes, which are not sup-
ported by the vanilla Corretto image, we provide the results
for the other six Java functions.

0

50

100

150

file
−hash

hotel−searching

im
age−resize

mapreduce
sort

specjbb2015
tim

eM
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
B

)

Corretto Desiccant

(a) Java functions

0

200

400

alexa
clock

data−analysis

dynamic−htm
l

factor fft

fib
onacci

file
system

matri
x pi

unionfin
d

web−serverM
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

M
B

) Vanilla Desiccant

(b) JavaScript functions

Figure 11.Memory efficiency of functions on AWS Lambda

As shown in Figure 11, since the images are different from
those running in OpenWhisk, the memory behavior of Des-
iccant also changes. Nevertheless, Desiccant still introduces
2.08× improvement on average for Java functions (2.76× for
JavaScript functions). Since Lambda does not allow sharing
libraries among multiple FaaS instances, the unmapping op-
timization becomes more effective. The results suggest that
the frozen garbage problem also exists on Lambda andDesic-
cant is still effective in reclaiming frozen garbage on a com-
mercial FaaS platform.
Discussion on GC algorithms. We have observed that

Lambda leverages serial GC for all functions regardless of
their configurations, so we mainly study this algorithm in
this work. However, serial GC is a simple algorithm that
only leverages one GC thread for collection. Since the num-
ber of CPUs granted for each function instance is known be-
fore execution, we suggest FaaS platforms provide an adap-
tive configuration where parallel collection algorithms can
be used for instances with abundant CPU resources. Mean-
while, since mainstream GC algorithms are tracing-based,

Desiccant can be easily integrated with them by reusing
their collection phases.

5.5 Results on different memory settings

Figure 12 shows instances’ memory consumption after 100
function executions when the memory budget varies. We
first average the memory consumption among Java (Fig-
ure 12a) and JavaScript (Figure 12b) functions. Similar to
the analysis results in Figure 4, the reduction in average
memory consumption against the vanilla baseline does not
change much with a larger heap setting (from 2.75× to
2.94×). However, the reduction is larger in JavaScript func-
tions (from 1.69× to 2.10×). Although most functions writ-
ten in JavaScript have a stable memory consumption regard-
less of the configured heap size (such as clock shown in Fig-
ure 12c), exceptions like fft show dramatically larger mem-
ory consumption for both the vanilla and the eager baseline
(Figure 12d). We have analyzed the heap size of fft and ob-
served that its young generation size continuously increases
to 128MB for the 1GB setting and never shrinks. SinceDesic-
cant’s memory consumption always remains stable thanks
to its reclamation mechanism, its improvement against the
vanilla baseline can reach 6.72× for fft’s 1GB configuration
(5.50× for the eager baseline).

0

50

100

256 512 1024

Memory Budget (MB)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Vanilla Eager Desiccant Ideal

(a) average (Java)

0

25

50

75

256 512 1024

Memory Budget (MB)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Vanilla Eager Desiccant Ideal

(b) average (JavaScript)

0

5

10

15

20

256 512 1024

Memory Budget (MB)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Vanilla Eager Desiccant Ideal

(c) clock

0

50

100

150

256 512 1024

Memory Budget (MB)

M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

M
B

)

Vanilla Eager Desiccant Ideal

(d) fft

Figure 12. Memory consumption under different memory
settings

5.6 Execution overhead after reclamation

Since Desiccant releases memory to the operating system,
a function’s subsequent executions may suffer from more
page faults and performance slowdown. To understand the

292

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

performance overhead, we assume each function is itera-
tively executed for 130 times, reclaimed, and resumed to
execute for 10 times (we use more execution times than
other experiments because function performance is heav-
ily interfered with JIT compilation when executing for 100
times). The average latency after reclamation is then com-
pared with the latency averaged over the last ten executions
before reclamation. As the results shown in Figure 13 sug-
gest, the execution overhead introduced byDesiccant is 8.3%
on average. The overhead is acceptable considering Desic-

cant is able to reduce the cold boot rate, which has much
larger effects on the execution latency. Reclaiming memory
with the swapping mechanism comes with a higher execu-
tion overhead after reclamation (2.37 times slower for the
sort function when reclaiming the same amount of mem-
ory as Desiccant), as it lacks runtime semantic guidance
and may swap out pages used later. Meanwhile, avoiding
aggressive collections (proposed in Section 4.7 can prevent
two JavaScript functions (data-analysis and unionfind) from
significant performance slowdown (2.14× and 1.74×, respec-
tively).

0.0

0.5

1.0

alexa
clock

data−analysis

dynamic−htm
l

factor fft

fib
onacci

file
−hash

file
system

hotel−searching

im
age−resize

im
agepipe

mapreduce

matri
x pi

sort

specjbb2015
tim

e

unionfin
d

web−serverN
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e Before After

Figure 13. The execution overhead introduced byDesiccant

6 Related Work

6.1 Instance management in FaaS

Cold boot is a notorious problem in FaaS as it introduces
large tail latency to function execution. To avoid cold boot,
a straightforward method is to cache used instances and
reuse them when receiving the same type of function. This
method has been used by both commercial and open-source
FaaS frameworks [46, 53]. However, cached instances also
introduce largememory consumption. Tomitigate this prob-
lem, prior work provides various policies to reduce the cost
of cached instances. Shahrad et al. [43] leverage a hybrid his-
togram policy to identify applications invocation patterns
so that an instance can be reloaded and pre-warmed right
before a function needs it. FaaSCache [23] borrows ideas
from traditional caching policies to maintain idle contain-
ers, while IceBreaker [42] allows keeping warm containers

live on low-end servers to reduce the cost. Their warm-up
policies are orthogonal to Desiccant, and Desiccant’s mem-
ory reclamation policy can further improve the memory ef-
ficiency in their systems.
Instead of pre-warming, another line of work chooses

to create general-purpose instances (or snapshots) which
can be used by different functions. OpenWhisk launches
pre-warm containers with pre-installed language runtimes
like Node.js [46]. SOCK [41] optimizes python functions
by launching instances with pre-installed popular python
packages. Catalyzer [20] and SEUSS [16] create instances
by forking from existing ones. ReplayableJVM [52] launches
Java functions with existing JVM snapshots. Pagurus [32]
repurposes existing instances so that they can be reused
by other functions. REAP [48] loads snapshots from disks
and prefetches frequently-accessed pages according to prior
knowledge of functions’ memory access patterns. Desiccant
mainly focuses on memory reclamation from existing FaaS
instances and does not require modifications to FaaS in-
stances like containers.

6.2 Language runtime optimizations for FaaS

Since managed languages are widely used in the FaaS sce-
nario, their underlying managed runtimes are optimized or
retrofitted for fine-grained function execution. Photons [21]
and Flock [60] allow multiple instances to run together
in the same JVM to reduce the frequency of cold boot.
Shredder [58] and CloudFlare Workers [12] support run-
ning multiple JavaScript functions in the same V8 engine
with the context abstraction. Faasm [44] provides Faaslet

to execute functions compiled into WebAssembly [29] and
stateful support to efficiently share data among functions.
JWarmup [59] harmonizes features in JVMs to improve the
startup time, while GraalVM Native Image [54] compiles
Java applications and the underlying JVM into executables
for fast boot. BeeHive [61] provides sharedmemory support
to automatically offload functions to FaaS platforms for re-
source elasticity. JITServer [31] turns the dynamic compi-
lation module into an external service to reduce the appli-
cation startup time, while Ignite [17] allows sharing JITted
code among Java functions to skip the warmup phase after
instance creation.Desiccant optimizes language runtimes to
release unused memory to OS, but its modifications are mi-
nor to remain adaptable to various GC algorithms and man-
aged runtimes.

6.3 Garbage collection optimizations

Garbage collection (GC) is an important module in managed
runtimes, and its performance is critical to applications. To
this end, prior work has proposed GC optimizations for vari-
ous scenarios. Yak [39, 40] and Broom [27] are optimized for
big-data scenarios and leverage epoch-basedmechanisms to

293

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

manage objects with the same lifecycle together. NG2C [13–
15] has a similar goal but uses pre-tenuring to avoid fre-
quent data copy on long-lived objects. Yang et al. [56] pro-
pose isolating read and write operations in GC consider-
ing the bandwidth issues on non-volatile memory devices.
Wang et al. [34, 49, 50] uncover the GC bottleneck on a
far memory setting and provides several optimizations. Elas-
ticMem [51] dynamically changes the heap size limit toman-
age memory resources among multiple JVMs in a cloud en-
vironment. Taurus [35, 36] coordinates the GC behaviors
among multiple JVMs for better application performance.
M3 [33] instead coordinates GC with memory management
mechanisms of other modules in the software stack for per-
formance improvement. Platinum [55] optimizes GC in in-
teractive services by isolating the execution of mutators and
GC threads. Suo et al. [45] and NumaGiC [25] uncover GC
performance issues related to NUMA and provide NUMA-
friendly GC optimizations. Desiccant does not provide opti-
mizations on GC algorithms, but it manually chooses trig-
gering points for GC (after functions exit) and leverages GC
to reclaim and release frozen garbage for better memory ef-
ficiency.

7 Discussion: Applying Desiccant to other
scenarios

Although Desiccant currently mainly focuses on two lan-
guages (Java and JavaScript) and the GC algorithms used
in AWS Lambda, Other scenarios share the similar prob-
lem. Take the Python language Take the Python language,
which is commonly used in the FaaS scenario, as an exam-
ple. The mainstream CPython runtime manages memory in
arenas of 256KB and only releases the entire memory of an
arena when it becomes empty. Since CPython is not aware
of freeze semantics, the memory in arenas is not returned to
the OSwhen the instance should be frozen. Other languages
(e.g., Go) and GC algorithms (e.g., G1GC) also face the same
issues. In summary, the frozen garbage problem commonly
exists in language runtimes and GC algorithms whose mem-
ory management mechanism does not promptly return the
memory to the OS when it becomes available.
To apply Desiccant and address the frozen garbage prob-

lem, a language runtime or GC algorithmmust have a mem-
ory management mechanism that satisfies the following re-
quirements: 1) It should have the ability to estimate the
reclamation throughput. 2) It should be able to determine
which region of the memory is free (not occupied by live ob-
jects). Consequently, Desiccant can use the estimated recla-
mation throughput to select appropriate instances for recla-
mation and return the free memory to the OS with the as-
sistance of the language runtime. Therefore, except for the
HotSpot JVM and the V8 engine, Desiccant can also be ap-
plied to other scenarios. For instance, for the CPython run-
time, Desiccant can record the average collection time and

the number of live objects after each garbage collection,
and can collect the addresses of all arenas and determine
their physical memory usage with the pmap tool to calcu-
late the total physical memory occupied by the heap. Later,
Desiccant can utilize the formula described in Section 4.5
to calculate the estimated reclamation throughput, thereby
selecting the most valuable instance for reclamation. To
reclaim memory, Desiccant can leverage CPython’s mark-
sweep garbage collector and internal data structures (e.g.,
free list) to identify free memory regions and release them
back to the operating system using the mmap operation. For
the Go runtime, as its heap is located in several contiguous
memory ranges, Desiccant can employ similar methods to
estimate the efficiency of reclamation. Subsequently, Des-
iccant can utilize Go’s internal data structures to identify
free regions and perform reclamation accordingly for the se-
lected instance. For the G1GC, despite having a different GC
algorithm compared to the Serial GC, it is still based on the
HotSpot JVM and fulfills the aforementioned requirements,
making it compatible with Desiccant. we intend to extend
the application of Desiccant to more scenarios in the future.

8 Conclusion

FaaS (function-as-a-service) is becoming a promising com-
puting paradigm in the cloud environment. Since most
functions are written in high-level managed languages like
JavaScript and Java for ease of development, their mem-
ory resources are managed by the underlying language
runtimes. Unfortunately, the runtimes are unaware of the
freeze semantics in FaaS and thus contribute to the frozen
garbage problem and lead tomemorywaste. To this end, this
work proposesDesiccant, which reclaims free memory from
frozen FaaS instances to improve memory efficiency and re-
duce the frequency of instance re-creation. The evaluation
results on various FaaS workloads show that Desiccant can
reduce functions’ memory consumption by up to 6.72×.

Acknowledgments

We sincerely thank the anonymous EuroSys’24 reviewers
for their insightful suggestions. This work was supported
in part by the National Natural Science Foundation of China
(No. 62202295, 61925206, 62172272). Corresponding author:
Mingyu Wu (mingyuwu@sjtu.edu.cn).

References
[1] Understanding container reuse in aws lambda. h�ps://aws.amazon.

com/cn/blogs/compute/container-reuse-in-lambda/, 2014.
[2] Faastest. h�ps://github.com/nuweba/faasbenchmark, 2020.
[3] Serverlessbench. h�ps://serverlessbench.systems/en-us/, 2020.
[4] The faasdom benchmark suite. h�ps://github.com/

faas-benchmarking/faasdom, 2021.
[5] The state of serverless. h�ps://www.datadoghq.com/

state-of-serverless/, 2022.
[6] Apache OpenWhisk. Apache openwhisk - open source serverless

cloud platform. h�ps://openwhisk.apache.org/, 2020.

294

https://aws.amazon.com/cn/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/cn/blogs/compute/container-reuse-in-lambda/
https://github.com/nuweba/faasbenchmark
https://serverlessbench.systems/en-us/
https://github.com/faas-benchmarking/faasdom
https://github.com/faas-benchmarking/faasdom
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://openwhisk.apache.org/

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

[7] AWS. Aws lambda. h�ps://aws.amazon.com/lambda/, 2023.
[8] AWS. Configuring lambda function options. h�ps://docs.aws.amazon.

com/lambda/latest/dg/configuration-function-common.html, 2023.
[9] AWS. Configuring provisioned concurrency. h�ps://docs.aws.

amazon.com/lambda/latest/dg/provisioned-concurrency.html, 2023.
[10] AWS. Configuring provisioned concurrency. h�ps://aws.amazon.

com/corre�o/, 2023.
[11] Timon Back and Vasilios Andrikopoulos. Using a microbenchmark to

compare function as a service solutions. In ESOCC, volume 11116 of
Lecture Notes in Computer Science, pages 146–160. Springer, 2018.

[12] Zack Bloom. Cloud computing without containers. h�ps://blog.

cloudflare.com/cloud-computing-without-containers/, 2018.
[13] Rodrigo Bruno and Paulo Ferreira. Polm2: automatic profiling for

object lifetime-aware memory management for hotspot big data ap-
plications. In Proceedings of the 18th ACM/IFIP/USENIX Middleware

Conference, pages 147–160. ACM, 2017.
[14] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. Ng2c: pre-

tenuring garbage collection with dynamic generations for hotspot big
data applications. ACM SIGPLAN Notices, 52(9):2–13, 2017.

[15] Rodrigo Bruno, Duarte Patricio, José Simão, Luis Veiga, and Paulo Fer-
reira. Runtime object lifetime profiler for latency sensitive big data
applications. In Proceedings of the Fourteenth EuroSys Conference 2019,
page 28. ACM, 2019.

[16] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. Seuss: skip redundant paths to make server-
less fast. In Proceedings of the Fifteenth European Conference on Com-

puter Systems, pages 1–15, 2020.
[17] João Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. From

warm to hot starts: leveraging runtimes for the serverless era. In Ho-

tOS, pages 58–64. ACM, 2021.
[18] Alibaba Cloud. Function compute. h�ps://www.alibabacloud.com/

product/function-compute, 2023.
[19] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-

stawski, and Torsten Hoefler. Sebs: a serverless benchmark suite for
function-as-a-service computing. In Middleware, pages 64–78. ACM,
2021.

[20] DongDu, Tianyi Yu, Yubin Xia, Guanglu Yan, ChenggangQin, Qixuan
Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup for server-
less computing with initialization-less booting. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems. ACM, 2020.
[21] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gustavo Alonso.

Photons: Lambdas on a diet. In Proceedings of the 11th ACM Sym-

posium on Cloud Computing, pages 45–59, 2020.
[22] Alexander Fuerst, Stanko Novaković, Íñigo Goiri, Gohar Irfan

Chaudhry, Prateek Sharma, Kapil Arya, Kevin Broas, Eugene Bak,
Mehmet Iyigun, and Ricardo Bianchini. Memory-harvesting vms in
cloud platforms. In Proceedings of the 27th ACM International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems, pages 583–594, 2022.
[23] Alexander Fuerst and Prateek Sharma. Faascache: keeping serverless

computing alivewith greedy-dual caching. InASPLOS, pages 386–400.
ACM, 2021.

[24] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
pages 3–18. ACM, 2019.

[25] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan
Nguyen. Numagic: a garbage collector for big data on big numa ma-
chines. In ACM SIGARCH Computer Architecture News, volume 43,
pages 661–673. ACM, 2015.

[26] GitHub - delimitrou/DeathStarBench. Open-source benchmark
suite for cloud microservices. h�ps://github.com/delimitrou/

DeathStarBench.
[27] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios

Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G Murray,
Steven Hand, and Michael Isard. Broom: Sweeping out garbage col-
lection from big data systems. In 15th Workshop on Hot Topics in Op-

erating Systems (HotOS XV), 2015.
[28] Google. Cloud functions - google cloud. h�ps://cloud.google.com/

functions/, 2022.
[29] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with webassembly. In Pro-

ceedings of the 38th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 185–200, 2017.
[30] IBM. Ibm cloud functions. h�ps://www.ibm.com/cloud/functions,

2023.
[31] Alexy Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara. Jit-

server: Disaggregated caching JIT compiler for the JVM in the cloud.
In USENIX Annual Technical Conference, pages 869–884. USENIX As-
sociation, 2022.

[32] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help
rather than recycle: Alleviating cold startup in serverless computing
through inter-function container sharing. In USENIX Annual Techni-

cal Conference, pages 69–84. USENIX Association, 2022.
[33] David Lion, Adrian Chiu, and Ding Yuan. M3: end-to-end memory

management in elastic system software stacks. In EuroSys, pages 507–
522. ACM, 2021.

[34] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond,
Stephen M. Blackburn, Miryung Kim, and Guoqing Harry Xu. Mako:
a low-pause, high-throughput evacuating collector for memory-
disaggregated datacenters. In PLDI, pages 92–107. ACM, 2022.

[35] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. Tau-
rus: A holistic language runtime system for coordinating distributed
managed-language applications. ACM SIGOPS Operating Systems Re-

view, 50(2):457–471, 2016.
[36] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz.

Trash day: Coordinating garbage collection in distributed systems. In
15th Workshop on Hot Topics in Operating Systems (HotOS XV), 2015.

[37] Pascal Maissen, Pascal Felber, Peter G. Kropf, and Valerio Schiavoni.
Faasdom: a benchmark suite for serverless computing. InDEBS, pages
73–84. ACM, 2020.

[38] Microsoft. Azure functions. h�ps://azure.microso�.com/services/

functions/, 2023.
[39] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,

Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance big-
data-friendly garbage collector. In Proc. the 12th USENIX Conference

on Operating Systems Design and Implementation, 2016.
[40] Khanh Duc Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and

Guoqing Xu. Facade: A compiler and runtime for (almost) object-
bounded big data applications. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages

and Operating Systems, page 675, 2015.
[41] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Har-

ter, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Sock:
Rapid task provisioning with serverless-optimized containers. In Pro-

ceedings of the 2018 USENIX Conference on Usenix Annual Technical

Conference, USENIX ATC ’18, pages 57–69, Berkeley, CA, USA, 2018.
USENIX Association.

[42] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Icebreaker: warm-
ing serverless functions better with heterogeneity. In ASPLOS, pages
753–767. ACM, 2022.

[43] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

295

https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://aws.amazon.com/corretto/
https://aws.amazon.com/corretto/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://www.alibabacloud.com/product/function-compute
https://www.alibabacloud.com/product/function-compute
https://github.com/delimitrou/DeathStarBench
https://github.com/delimitrou/DeathStarBench
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://www.ibm.com/cloud/functions
https://azure.microsoft.com/services/functions/
https://azure.microsoft.com/services/functions/

EuroSys ’24, April 22–25, 2024, Athens, Greece Ziming Zhao, Mingyu Wu, Haibo Chen, and Binyu Zang

Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20),
pages 205–218, 2020.

[44] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation for
efficient stateful serverless computing. In 2020 USENIX Annual Techni-

cal Conference (USENIX ATC 20), pages 419–433. USENIX Association,
2020.

[45] Kun Suo, Jia Rao, Hong Jiang, and Witawas Srisa-an. Characterizing
and optimizing hotspot parallel garbage collection on multicore sys-
tems. In Proceedings of the Thirteenth EuroSys Conference, page 35.
ACM, 2018.

[46] Markus Thömmes. Squeezing the milliseconds: How to make server-
less platforms blazing fast, 2017.

[47] Huangshi Tian, Suyi Li, Ao Wang, Wei Wang, TianlongWu, and Hao-
ran Yang. Owl: performance-aware scheduling for resource-efficient
function-as-a-service cloud. In SoCC, pages 78–93. ACM, 2022.

[48] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. Benchmarking, analysis, and optimization of server-
less function snapshots. In ASPLOS, pages 559–572. ACM, 2021.

[49] ChenxiWang, HaoranMa, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D. Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In OSDI, pages 261–280. USENIX Association, 2020.

[50] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. Memliner: Lin-
ing up tracing and application for a far-memory-friendly runtime. In
OSDI, pages 35–53. USENIX Association, 2022.

[51] Jingjing Wang and Magdalena Balazinska. Elastic memory manage-
ment for cloud data analytics. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 745–758, Santa Clara, CA, 2017.
USENIX Association.

[52] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Replayable execu-
tion optimized for page sharing for a managed runtime environment.
In Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–16,

2019.
[53] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. Peeking behind the curtains of serverless platforms. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical

Conference, USENIXATC ’18, pages 133–145, Berkeley, CA, USA, 2018.
USENIX Association.

[54] ChristianWimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wögerer, Peter B Kessler, Oleg Pliss, and Thomas Würthinger. Initial-
ize once, start fast: application initialization at build time. Proceedings
of the ACM on Programming Languages, 3(OOPSLA):1–29, 2019.

[55] MingyuWu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu
Zang, Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao
Zhang. Platinum:A cpu-efficient concurrent garbage collector for tail-
reduction of interactive services. In 2020 {USENIX} Annual Technical

Conference ({USENIX}{ATC} 20), pages 159–172, 2020.
[56] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang. Bridging the

performance gap for copy-based garbage collectors atop non-volatile
memory. In EuroSys, pages 343–358. ACM, 2021.

[57] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian
Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th

ACM Symposium on Cloud Computing, pages 30–44, 2020.
[58] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing

the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing, pages 1–12.
ACM, 2019.

[59] Yifei Zhang, Tianxiao Gu, Xiaolin Zheng, Lei Yu, Wei Kuai, and San-
hong Li. Towards a serverless java runtime. In ASE, pages 1156–1160.
IEEE, 2021.

[60] Ziming Zhao, Mingyu Wu, Xujie Cao, Haibo Chen, and Binyu
Zang. Flock: Towards multitasking virtual machines for function-as-
a-service. IEEE Trans. Computers, 72(11):3153–3166, 2023.

[61] Ziming Zhao, Mingyu Wu, Jiawei Tang, Binyu Zang, Zhaoguo Wang,
and Haibo Chen. Beehive: Sub-second elasticity for web services with
semi-faas execution. In ASPLOS (2), pages 74–87. ACM, 2023.

296

Characterization and Reclamation of Frozen Garbage in Managed FaaS Workloads EuroSys ’24, April 22–25, 2024, Athens, Greece

A Artifact Appendix

A.1 Abstract

This artifact contains the source code of Desiccant and
scripts to run the main experiments. Desiccant is proposed
to optimize the memory efficiency of managed FaaS work-
loads. The design of Desiccant is mainly based on the ob-
servation of the frozen garbage problem, where the FaaS
framework freezes cached function instances while leaving
unused memory unreclaimed. To address this issue, Desic-
cant reclaims frozen garbage with the help of the language
runtime, thereby improving memory efficiency and benefit-
ing end-to-end performance under a fixed memory budget.

A.2 Description & Requirements

A.2.1 How to access. The artifact is publicly available at
h�ps://doi.org/10.5281/zenodo.10103366.

A.2.2 Hardware dependencies. We evaluate Desiccant
on a server with dual Intel Xeon Gold 6138 CPUs. We use
CPU 0-19 for the execution of the FaaS framework and test
scripts, and CPU 20-39 to execute FaaS functions. Other
x86_64 hardware can also run Desiccant by changing the
CPU binding configuration as described in the README.md
of the artifact.

A.2.3 Software dependencies. We evaluate Deisccant
on Ubuntu 20.04, but higher versions may also be accept-
able.

A.2.4 Benchmarks. Desiccant is evaluated based on the
Azure Functions Trace Dataset available at h�ps://github.
com/Azure/AzurePublicDataset/blob/master/AzureFunction

sDataset2019.md, as well as a set of FaaS functions de-
scribed in the paper. We have included all of them in the
artifact.

A.3 Set-up

The detailed set-up guide can be found at h�ps://github.
com/SJTU-IPADS/Desiccant-artifacts#3-setup.

A.4 Evaluation workflow

This artifact contains two major claims (C1, C2), which are
proven by five experiments (E1-E5), as listed in Table 2.

A.4.1 Major Claims.

• (C1): Desiccant can reclaim frozen garbage from func-
tions under different enviornments and memory con-
figurations. This is proven by the experiments de-
scribed in Section 5.2 (E1, E2), 5.4 (E4) and 5.5 (E5),
whose results are shown in Figure 7, Figure 8, Fig-
ure 11 and Figure 12.
• (C2): Desiccant can imporve end-to-end function ex-
ecution performance under a fixed memory upper
bound. This is proven by the experiments described in

Section 5.3 (E3), whose results are shown in Figure 9
and Figure 10.

A.4.2 Experiments. Our experiments have been auto-
mated using scripts. For each mentioned figure, the artifact
contains automated scripts that can directly reproduce the
data similar to that presented in the paper. To run the ex-
periment, navigate to the corresponding directory and ex-
ecute the command ./run.sh. To parse the result, execute
./parse.sh in the same directory. The script will output
the parsed result to stdout in CSV format, whose caption and
data would be similar to what is shown in the corresponding
figure. The mapping relationship of directories and figures
is shown in Table 2.

Table 2. The mapping relationship of the artifact

Directory Experiment Figure Claim

./exp/fig7 E1 Figure 7 C1

./exp/fig8 E2 Figure 8 C1
./exp/fig9,10 E3 Figure 9 & Figure 10 C2
./exp/fig11 E4 Figure 11 C1
./exp/fig12 E5 Figure 12 C1

297

https://doi.org/10.5281/zenodo.10103366
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunction
https://github.com/Azure/AzurePublicDataset/blob/master/AzureFunction
sDataset2019.md
https://github.com/SJTU-IPADS/Desiccant-artifacts#3-setup
https://github.com/SJTU-IPADS/Desiccant-artifacts#3-setup

	Abstract
	1 Introduction
	2 Frozen Garbage in Managed FaaS Workloads
	2.1 The freeze semantics in FaaS
	2.2 Frozen garbage

	3 Characterization of Frozen Garbage
	3.1 Memory inefficiency with frozen garbage
	3.2 Is eager GC helpful?
	3.3 The effect of heap size

	4 Design of Desiccant
	4.1 Overview
	4.2 Activation
	4.3 Instance selection
	4.4 GC-based instance reclamation
	4.5 Policies used in Desiccant
	4.6 Optimizations for shared libraries
	4.7 Avoiding aggressive collections

	5 Evaluation
	5.1 Experiment setup
	5.2 Single function evaluation
	5.3 Performance on production traces
	5.4 Results on Lambda
	5.5 Results on different memory settings
	5.6 Execution overhead after reclamation

	6 Related Work
	6.1 Instance management in FaaS
	6.2 Language runtime optimizations for FaaS
	6.3 Garbage collection optimizations

	7 Discussion: Applying Desiccant to other scenarios
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

