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Abstract—Full-system simulation is critical in evaluating design alternatives for multicore processors. However, state-of-the-art

multicore simulators either lack good extensibility due to their tightly-coupled design between functional model (FM) and timing model

(TM), or cannot guarantee cycle-accuracy. This paper conducts a comprehensive study on factors affecting cycle-accuracy and

uncovers several contributing factors less studied before. Based on these insights, we propose a loosely-coupled functional-driven

full-system simulator for multicore, namely Transformer. To ensure extensibility and cycle-accuracy, Transformer leverages an

architecture-independent interface between FM and TM and uses a lightweight scheme to detect and recover from execution

divergence between FM and TM. Built upon Transformer and its foundational simulator components, a graduate student only needed to

write about 180 lines of code to extend an X86 functional model (QEMU) in Transformer. Moreover, the loosely-coupled design also

removes the complex interaction between FM and TM and opens the opportunity to parallelize FM and TM to improve performance.

Experimental results show that Transformer achieves an average of 8.4 and 7.0 percent performance improvement over GEMS in

4-core and 8-core configuration while guaranteeing cycle-accuracy. A further parallelization between FM and TM leads to 35.3 and

29.7 percent performance improvement respectively.

Index Terms—Functional-driven, multicore simulation, full-system, extension
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1 INTRODUCTION

FULL-SYSTEM simulation is a key tool to evaluate new
ideas in architectural design. Generally, there are two

basic models in a full-system simulator: functional
model (FM), which provides a full-system execution envi-
ronment to execute operating systems and applications
then collects the resulted instruction flow and data access
information; and timing model (TM), which simulates
micro-architectural behavior of the instruction flow gener-
ated by FM. Due to the importance of full-system simula-
tors, researchers have designed and implemented a
number of FMs, such as Simics [10], QEMU [5] and
COREMU [17], and TMs, such as GEMS [11], MPTLsim [19]
and RAMP GOLD [16]. However, FMs and TMs are usually
tightly coupled together in a full-system simulator and it is
usually hard to extend new FMs or TMs in the simulator.
For example, developers have spent years to combine M5
with GEMS (i.e., gem5 [7]) or extend QEMU to
PTLsim (MARSS [13]). Further, such a tightly-coupled
design also makes it hard to efficiently parallelize FM and
TM, resulting in inferior performance.

There is a good reason to take the tightly-coupled design
in current mainstream full-system multicore simulators. To
guarantee cycle-accuracy, such as faithful instruction execu-
tion behavior and timing, they usually use TM to drive the
execution of FM: in each cycle, TM advises FM on which
instruction FM should execute; FM will also report to TM
with information regarding the executed instruction, to let
TM maintain correct architecture states and timing informa-
tion. Such a tightly-coupled and complex interaction
between TM and FM limits both extensibility and perfor-
mance of full-system simulators.

There have been some efforts in trying to explore a
loosely-coupled design for multicore simulators, which
exploit a speculative Functional-First simulation design.
However, not all accuracy factors are included in their
design. Thus, it cannot guarantee cycle-accuracy. Moreover,
they have no implemented prototype for multicore simula-
tors. COTSon [2] uses Timing feedback mechanism in its
framework, but it is mainly used for sampling direction,
rather than accuracy assurance.

In this paper, we first present a comprehensive study on
the limiting factors that lead to execution divergence
between FM and TM. We show that besides traditional
well-known factors such as branch misprediction and
shared data access order, interrupt/exception handling and
shared page access order also lead to execution divergence
and thus cycle-inaccuracy in a loosely-coupled design. To
understand the probability of occurrence of these factors,
we profile the proportions of these events in a set of bench-
marks and find that these events happen very infrequently
(less than 1 percent). This indicates that for most cases, there
is no execution divergence between FM and TM.

Based on the above analysis, we propose Transformer, a
loosely-coupled, functional-driven simulation scheme for
full-system multicore simulation. In Transformer, FM runs
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ahead and provides instructions and data access informa-
tion to TM. TM then uses such information to simulate the
detailed timing of micro-architecture. Transformer also pro-
vides a lightweight scheme to detect and recover from exe-
cution divergence, thus ensures cycle-accuracy. Basically,
Transformer rolls back FM to the path indicated by TM. For
branch misprediction and interrupt/exception handling,
Transformer uses an additional simple FM to generate the
instruction flow information in wrong path to feed TM, so
as to further reduce the interaction between FM and TM
caused by the rollback scheme. Further, to make Trans-
former extensible, we provide an architecture-independent
instruction and data flow interface between FM and TM.

In Transformer, the interaction between FM and TM is
much simpler and thus provides great flexibility to extend
with new FMs or TMs. Further, as FM and TM are now
loosely-coupled, it also opens the opportunity to parallelize
FM and TM to improve performance.

We have implemented Transformer based on GEMS [11],
a widely-used tightly-coupled simulator, and parallelize FM
and TM to achieve better performance. Based on Trans-
former, a graduate student only needed to write about 180
lines of codes (LOCs) and took about 350 working
hours (about two months) to extend an x86 functional model
(QEMU). Furthermore, experiments with SPLASH-2 [18] and
PARSEC [6] show that Transformer achieves about 8.4 and
7.0 percent performance improvement compared to GEMS
while guaranteeing cycle-accuracy in 4-core and 8-core con-
figuration. Moreover, the performance increases to 35.3 and
29.7 percent after FM and TMare parallelized respectively.

In summary, this paper makes the following
contributions:

� The first comprehensive analysis on factors leading
to execution divergence between FM and TM, which
uncovers that interrupt/exception handling and
shared page access are also limiting factors to cycle-
accuracy.

� A loosely-coupled full-system multicore simulation
framework that is extensible, fast, and cycle-accurate,
as well as a set of techniques to detect and recover
from execution divergence.

� An experimental evaluation that confirms the effec-
tiveness and efficiency of Transformer and a case
study that extended QEMU in Transformer to dem-
onstrate the extensibility.

The rest of the paper is organized as follows. Section 2 dis-
cusses themotivation of the loosely-coupled design and com-
prehensively analyzes which factors affect cycle-accuracy.
Section 3 proposes the Transformer framework, describes the
lightweight cycle-accurate solutions and discusses the archi-
tecture-independent interface. Section 4 presents a case study
for extension and evaluates the performance improvement of
Transformer in Section 5. The related work is discussed in

Section 6. Finally, Section 7 concludes the paper and dis-
cusses possible futurework.

2 MOTIVATION

In this section, we first analyze the limitations of a tightly-
coupled design for full-system multi-core simulators.
Then, we analyze factors that may lead to divergence
between FM and TM.

2.1 Limitations with a Tightly-Coupled Design

To achieve cycle-accuracy (e.g., guarantee correct interleav-
ing in parallel applications), existing full-system multicore
simulators usually exploit a tightly-coupled timing-driven
design. As shown in Fig. 1, in each cycle, TM directs FMwith
which instructions should be executed and FM feeds back
the executed results to TM to maintain correct architectural
states and timing information. Then, TM has to simulate part
of the functional model so as to direct the execution of FM.
Moreover, TM needs to update its own states according to
FM’s execution results. Such a tightly-coupled manner leads
to a complex interaction between FM and TM, which makes
it very difficult to extend a new FM or TM into those simula-
tor frameworks. For example, the developers spend years to
combine M5 with GEMS (gem5 [7]) or extend QEMU into
PTLsim (MARSS [13]).

In addition, the complex interaction in current tightly-
coupled design also limits simulation speed. To illustrate
this problem, we profile the execution proportion of FM,
TM and their interactions (using the experiment setup in
Section 5.1). From the data shown in Table 1, we can obtain
the following observations.

� To support TM, FM has to execute in an instruction-
by-instruction model instead of fast binary transla-
tion to provide execution information to TM. As a
result, FM occupies about 10 percent of the whole
execution time, which cannot be neglected any more.
However, it is impossible for a tightly-coupled
design to gain performance improvement through
parallelizing FM and TM.

� The complex interaction produces about 16-26 percent
overhead due to complicated control logic and fre-
quent state transformationwith poor locality.

2.2 Factors to Cycle-Accuracy

To gain insight into possible solutions to loosely-coupled
cycle-accurate design, we study the factors leading to exe-
cution divergence between FM and TM. Besides tradi-
tional well-known factors such as branch misprediction
and shared data access order, we find that interrupt/
exception handling and shared page access order also lead
to execution divergence and thus cycle-inaccuracy in a
loosely-coupled design.

Fig. 1. Tightly-coupled FM and TM.

TABLE 1
Simulation Execution Time Breakdown

Config FM (support TM) TM Interaction

4-core 9.5% 64.7% 25.8%
8-core 11.4% 71.9% 16.7%
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� Branch misprediction: In modern architectures, branch
prediction is usually exploited in the pipeline design
to avoid stalls caused by branch instructions. The
branch could bemispredicted to execute a wrong path
in TM. However, FM always executes the instructions
on the correct path, leading to execution divergence
with actual architectural execution (i.e., TM).

� Shared data access order: In parallel applications,
shared data accesses are distributed among all the
threads and not all of them are carefully designed to
guarantee a deterministic access order. The Out-of-
Order execution model in pipeline and the unpre-
dictable scheduling of threads will result in the
incorrect access order of shared data in FM, com-
pared to the correct access order decided by TM’s
detailed timing simulation. That is, FM may execute
a different write/read order compared with that of
TM, which may diverge to another execution path.

� Interrupt/exception handling: Interrupt or exception is
similar to branch misprediction. To process the inter-
rupt or exception, FM will directly jumps to the
interrupt/exception handler and simulates along the
handling path. However, TM cannot find an inter-
rupt or exception operation until it commits an inter-
rupt or exception-related instruction. Before that,
TM will fetch instructions from wrong path, i.e., next
PC instead of the interrupt/exception code, thus
leading to execution path divergence.

� Shared page access order (i.e., Memory Management Unit
(MMU)miss order):The system behavior has to be sim-
ulated in a full-system multicore simulation.
Although such a design guarantees cycle-accuracy, it
involves some additional shared data accesses among
different threads, which would further lead to path
divergence between FM and TM. The divergence will
take place under two conditions. First, two memory
operations in different threadsmay access datawithin
the same page. When this page is not in memory, the
first access will result in an MMU miss and its corre-
sponding thread has to include the operations to pro-
cess the MMU miss. Second, two pages (suppose A
and B) accessed by two data accesses might be
mapped to the same entry in the page table. Suppose
page A is in memory while page B is not present. If
the access to page B is executed first, page A will be
split out. When page A is accessed again, an MMU
miss occurs. However, if page A is executed first, no
MMU miss will occur. Since both of these two

conditions are related toMMUmiss, wewill also refer
to this factor asMMUmiss order.

Some advanced processor features like load specula-
tion [20] may also cause execution divergence. Though such
features are usually not supported in current mainstream
processors, it is easy for Transformer to handle such a diver-
gence. Correct memory access sequence from FM is stored
in an architectural-independent interface (Memory Access
Table (MAT) in Section 3.1). After a memory operation is
committed, the corresponding item in MAT is removed.
Therefore, if a mis-speculation is detected for load specula-
tion, TM only needs to mark the load as un-speculation,
squash the pipeline and re-execute the simulation from the
load instruction.

2.3 Rate of Path Divergence Factors

Although these factors would lead to execution divergence
between FM and TM, they rarely occur in actual. To illus-
trate this issue, we profile the occurrence proportion of each
divergence factor in the total execution (using the 4-core
and 8-core configurations in Section 5.1). The occurrence
rate of each factor means its average percentage in the exe-
cution of an application. For example, a 1.25 percent occur-
rence rate of misprediction means 1.25 mispredictions per
100 instructions on average.

2.3.1 Branch Misprediction Rate

Branchmisprediction only affects the performance of the tim-
ing model. Actually, the functional model always know the
right path of branches. The timingmodel also knows the right
path instructions and it simulates branch prediction to get the
prediction results. If the prediction result indicates a wrong
prediction, the timingmodelwill get wrong-path instructions
to simulate the behavior. Fig. 2 shows the branch mispredic-
tion occurrence rate for each benchmark. The data means the
average number of mispredictions for each instruction. High
misprediction rate will only affect execution performance of
timing model. As the data shows, the occurrence rate of
branch misprediction is only about 0.53 and 0.40 percent on
average under 4-core and 8-core configuration respectively.
Even for the benchmarks whose branch predictor fails more
than 50 percent (e.g., lu and water), the occurrence rate of
branchmisprediction is less than 1.3 percent.

2.3.2 Interrupt/Exception Rate

Fig. 3 shows the total interrupt and exception rate for each
benchmark. As the data shows, the average rate of interrupt

Fig. 2. Branch misprediction rate.
Fig. 3. Interrupt/exception rate.
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and exception is only about 1.3E-4 and 1.9E-4 under 4-core
and 8-core configuration respectively. Even for the
benchmark (cholesky) with most occurring proportion, it is
less than 0.2 percent.

2.3.3 Shared Data Access Order Violation Rate

Fig. 4 shows the shared data access order rate for each
benchmark. As the data shown, the average rate of shared
data access order violation is only about 7.8E-5 and 1.7E-5
under 4-core and 8-core configuration respectively.

2.3.4 MMU Miss Rate

Fig. 5 shows the MMU miss rate for each benchmark. The
average rate of MMU miss is only about 1.6E-5 and 5.2E-6
under 4-core and 8-core configuration respectively. Even for
the benchmark (radix) with most occurring proportion, it is
only about 5.3E-5.

As shown in the above data and Table 2, branch mispre-
diction occurs the most frequently but still only occupies
about 0.53 percent. The total frequency of path diversities is
less than 1 percent. Therefore, in most cases (more than
99 percent), there is no execution divergence between FM
and TM. This provides the opportunity to use a loosely-cou-
pled design that may bring better extensibility to support
other FMs or TMs and higher performance due to possible
parallelization.

3 THE TRANSFORMER FRAMEWORK

This section presents the design of our loosely-coupled
framework called Transformer. We first describe a light-
weight scheme to detect and recover from execution

divergence to guarantee cycle-accuracy. Then, to make
Transformer more extensible, we illustrate an architecture-
independent instruction and data flow interface between
FM and TM. The overall framework of Transformer works
as shown in Fig. 6.

As analyzed in Section 2.3, all the factors leading to execu-
tion divergence between FM and TM occur very infre-
quently. Therefore, a loosely-coupled function driven model
is applied in the design of Transformer. In other words, FM
in most cases generates the architecture-independent
instruction and data flow information (e.g., pipeline depen-
dence, memory access address) to TM. TM simulates the
detailed micro-architecture using instruction and data infor-
mation provided by FM and detect whether there is execu-
tion divergence. When a divergence factor is detected,
different strategies (roll back FM and create a wrong-path
FM) are applied to revise the divergence execution.

3.1 Divergence Detection

To guarantee cycle accuracy in a loosely-coupled design, the
first thing is to detect when and where an execution diver-
gence occurs. Among the four factors, it is easier to detect
branch misprediction and interrupt or exception handling.
For branch misprediction, we can detect the divergence
through checking whether the target address of a branch
instruction in TM is the same as that in FM. If they are differ-
ent, a divergence occurs. For interrupt or exception handling,
whenever it occurs, a divergence happens. Therefore, we
will mainly focus on how to detect the divergences caused
by shared data access order and shared page access order.

3.1.1 Shared Data Access Order

Data access order violation is an essential factor affecting
cycle-accuracy. Thus it is a simple choice to detect the viola-
tion in shared data access order by checking whether the
loaded values of shared memory between FM and TM are
identical. However, based on such an approach, it is diffi-
cult to learn where and when the actual thread interleaving
violation occurs. Since the loaded value may be affected by
a distant prior store instruction or two store instructions
may write to the same address, the order violation

Fig. 4. Shared data access order violation rate.

Fig. 5. MMU miss rate.

TABLE 2
Proportion of Path Diversities

Path divergence Source Proportion

Branch Misprediction 5.3E-3
Interrupt/Exception Handling 1.4E-4
Shared Data Access Order Violation 7.9E-6
MMUMiss 1.6E-5

Fig. 6. The transformer framework.
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information may have already been lost when the loaded
value is detected to be violated. To overcome this problem,
we use a more accurate method: when FM executes instruc-
tions, it records its access order for each shared datum.
When TM commits the memory instruction, it checks
whether its access order is the same as that of FM. If it is dif-
ferent, a divergence occurs.

To achieve this goal, we design a data structure called
Memory Access Table to efficiently record and check the
shared data access order. As shown in Fig. 7, MAT is a two-
dimensional table. The first level is a hashed list of memory
addresses and we will call the node as the memory address
node; for each address, it maintains a list of memory
accesses from different cores and the node in it will be
referred to as the memory access node. Each memory access
node records which core it comes from and its operation
type (i.e., read or write). The mechanism of recording
and checking the accesses to shared data is demonstrated
as follows:

� Shared data access order recording:When FM executes a
memory instruction, it first checks whether there is a
memory address node in MAT for the accessing
address. If not, a new address node is created and
inserted into the end of memory address list. Other-
wise, an access node for this operation is inserted to
the end of the memory access list for its address.

� Shared data access order checking: Order violation is
checked by TM. Since the memory operations in a
memory access list are inserted based on their execu-
tion sequence in FM, it is easier for TM to check the
violation. When TM commits a memory instruction,
it only needs to check whether there is no store node
before it in the memory access list. If so, there is no
violation. And then, this memory operation is com-
mitted and its node is deleted from MAT. When the
memory access list becomes empty, the memory
node of this address is also removed from MAT.
Otherwise, the violation is reported.

After the order checking, the node of a memory opera-
tion will be deleted from MAT. Therefore, the size of MAT
should not be larger than the number of memory instruc-
tions that FM executes exceeding TM, which makes MAT
relatively small and low-overhead. More details of MAT
design can be found in the Section 3.3.

3.1.2 Shared Page Access Order

For shared page access order, i.e., MMU miss order, it is
instinct to apply MAT again to check the divergence.

However, the functionality of MMU is only simulated by
FM. In order to check whether the order violates, TM also
has to be able to check whether MMU misses or hits. As a
result, the information of entire page table has to be trans-
ferred from FM to TM as well, which will lead to more inter-
actions between FM and TM.

To simplify the design, our solution is to avoid this type
of divergence. Whenever an MMU miss is encountered, we
block FM execution until TM directs it to advance, i.e., until
the MMU miss instruction commits in TM. After that, FM
will process the MMU miss and update its status. Thus all
the MMU misses are processed in the correct order with the
guidance of TM, which guarantees the accuracy of MMU
simulation.

However, this may bring the danger of draining pipeline
in TM, i.e., no instructions are provided by FM. Actually,
the pipeline draining will never happen due to the wrong-
path FM mechanism discussed in Section 3.2. In TM, when
an MMU miss happens, it raises an MMU miss interrupt.
As for interrupt handling, it will fetch instructions from the
wrong path until the MMU miss instruction commits.
Although we block the execution of FM, we will create a
wrong-path FM and provide instruction flow to TM, which
can avoid pipeline draining.

3.2 Divergence Revision

When a path divergence is detected, we need to revise the
simulation to keep cycle-accuracy. The simple waiting
mechanism makes FM to wait for TM, and then continue
simulation in TM’s direction. However, such a manner is
unduly timing-consuming, which needs frequent and com-
plex interaction between FM and TM. We can also deal with
the divergence through a rolling back mechanism, by which
FM rolls back its execution to the last checking point when a
divergence is detected. However, since FM runs ahead, it is
difficult to know when to do a checkpoint. Therefore, it will
produce tremendous overhead to save the states for check-
point frequently. Moreover, the rollback strategy can also
incur double rollback (from the right path to the wrong
path, and again from the wrong path to the right path) for
branch misprediction and interrupt or exception handling.
Therefore, besides the rollback strategy, we will also exploit
some other optimized strategy: to create a wrong-path FM
to execute the wrong path to provide the instruction infor-
mation to TM for branch misprediction and interrupt or
exception handling.

3.2.1 Basic Strategy: Roll Back FM

To roll back FM, we need the correct architecture states at a
rollback point, including registers, memory values, MMU
states and I/O states. The direct solution is to checkpoint
architecture states in a fixed time period. For example,
SlackSim [8] uses the fork system call to do checkpoint.
However, it is difficult to know when a checkpoint is
required. Moreover, saving all states will produce signifi-
cant time and space overhead. Therefore, we introduce a
lightweight mechanism to roll back FM states.

� For registers, which are inherently lightweight, TM
maintains a copy of these states for rollback. At

Fig. 7. Memory access table structure.
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initialization, TM reads these values from FM. Then,
when each instruction is executed, FM transfers the
changed registers to TM. Finally, TM updates
the copy when it commits an instruction. Therefore,
the register states in TM are updated by the instruc-
tions without divergence, which can guarantee cor-
rect register states for roll back.

� For memory values, we record the old value of each
store instruction in MAT for rollback. When a diver-
gence is detected, we only need to restore these old
values from MAT, which greatly reduces memory
checkpoint and rollback overhead.

� As discussed in Section 3.1, to avoid shared page
access order divergence, we block FM when an
MMU miss (note that only MMU miss changes
MMU states) occurs until TM directs it to advance its
execution. Thus, MMU states are always correct in
FM and there is no need for rollback.

� As some I/O operations cannot be rolled back, we
simply block the execution of FM when I/O opera-
tions occur until TM commits all instructions before
it. This mechanism avoids I/O rollback.

3.2.2 Optimized Strategy: Create a Wrong-Path FM

Although a rollback strategy can be used to handle the
divergence problem, it is not efficient enough. For branch
misprediction and interrupt or exception handling, it would
incur double rollback. When a branch predicts a wrong PC
or an interrupt or exception instruction is in its fetch stage,
TM first rolls back FM to execute the wrong path. Then, it
again rolls back FM to execute the right path when branch
misprediction is finished or interrupt/exception instruction
jumps to the trap handling path in the commit stage.

To further optimize the rollback strategy, we create a
wrong-path FM to execute the wrong path to provide TM
with the instruction information. However, no data infor-
mation is transferred because the wrong path instructions
are not committed to change architecture states actually.

In fact, wrong-path FM is a simplified FM, which has the
similar functionalities with the main FM. The simplification
is from two aspects: 1) When creating a wrong-path FM, we
only initialize the register values for it. In detail, the initial
values of these registers are the execution results of the
instruction which is just before the mispredicted instruction.
That means, in wrong-path FM initialization, we first exe-
cute all the instructions in the pipeline and apply the states
updating caused by these instructions. For memory values,
it reads from the main FM and MAT, or the values it stores
in its load-store queue. Since MAT records all the memory
traces, wrong-path FM will get the correct memory value
according to the timestamp of the mispredicted instruction.
While for MMU states and I/O states, it reads directly from
the main FM since wrong-path instructions are not commit-
ted and cannot change these states. 2) During wrong-path
execution, it uses its own copy of registers. Since TM simu-
lation does not need the actual value of each register,
wrong-path FM needs only to provide TM with the instruc-
tion information as described in Section 3.3. Thus the execu-
tion results of wrong-path instructions are only effective in
wrong-path FM and will not affect the simulation in TM.

When a branch misprediction is finished or an interrupt/
exception jumps to the trap handling path (correct path),
Transformer terminates the wrong-path FM and TM
receives instruction and data flow information from main
FM again. Specifically, after TM calculates the target
address of the branch instruction, it will raise a mispredic-
tion exception if the target address is different from the pre-
dicted target address. Moreover, this exception will cause
the termination of wrong-path FM and a squash of pipeline.

Branch instruction may also occur in wrong-path instruc-
tions. For each of these instructions, wrong-path FM will
record the current states in a checkpoint and execute along
the predicted path. If the misprediction instruction in the
correct path, which initializes the wrong-path FM, first
raises an exception, wrong-path FM will discard all the
checkpoints and terminate. If misprediction exception is
raised by wrong-path branch instructions, wrong-path FM
will roll back to the related checkpoint and continue execu-
tion along another path. In fact, in our evaluation, wrong-
path execution will meet 3-4 branch instructions at most,
but almost no roll back really happens (less than five times
in one benchmark).

3.3 Architecture-Independent Interface

3.3.1 Interface Overview

For the sake of extensibility, we design an architecture-
independent interface in Transformer between FM and TM.
FM only needs to map the instructions to the interface and
TM only needs to read the interface to do the detailed simu-
lation. We abstract and generalize the information needed
for the detailed simulation in TM as two main parts: pipe-
line dependence information and memory information.
Pipeline dependence information includes the function
unit usage, register usage, etc. Memory information is used
for the simulation of memory hierarchy, and includes PC
address andmemory address for memory instructions.

In order to guarantee cycle-accuracy, we also need to
consider the divergence factors, as discussed in Section 2.2.
For interrupts and exceptions, we set a flag for the instruc-
tion and record its detailed type. For branch instructions,
we provide target PC addresses for both the two branch
directions. When TM simulates the branch instructions, TM
will predict which direction it will take and directly read
the corresponding address. In order to process shared page
access order divergence, we set a flag to illustrate whether
this instruction will cause an MMUmiss. As for shared data
access order divergence, we insert an access node into MAT
for each memory instruction. In addition, in order to sup-
port the rollback mechanism as discussed in Section 3.2, we
need to record the changed register values for each instruc-
tion and the old memory value for each store instruction.

In general, we design our architecture-independent inter-
face as containing the following information:

� Pipeline dependence: Whether an instruction can
issue in the pipeline depends on two conditions:
1) whether the functional unit is available;
2) whether the source operands are ready. The sec-
ond type of dependence is maintained by registers
for computational instructions and by memory
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address for memory instructions. Thus, we abstract
the pipeline dependence of an instruction as three
factors: functional unit for this instruction, source/
destination register ID, and memory address.

� Memory information: For instruction cache simulation,
we need the PC address for each instruction. For
data cache simulation, we need memory address for
memory instructions. Both the addresses include vir-
tual address and physical address.

� Accuracy information: In order to guarantee cycle-
accuracy, we need to record interrupt/exception
information, branch target PC addresses for both
directions, and MMU misses. We also need to record
changed register values for each instruction and old
memory values for store instructions, as the support
of rollback mechanism. Moreover, to detect shared
data access order violation, the interface needs to
include shared data access order in MAT, which will
be introduced in detail later.

Such an architecture-independent interface provides
Transformer with more flexibility to extend the state-of-the-
art FMs or TMs. Since a loosely-coupled design and clear
interface, a new FM only needs to map its instruction infor-
mation to the interface and support the rollback or the block
strategy. It does not need to know other details in TM.
Moreover, for a new TM, it only needs to read the interface
to do detailed simulation and generate necessary checking
information to detect and deal with divergence conditions.

3.3.2 MAT Design

In the architecture-independent interface, MAT is the most
complex one because it includes both regular memory infor-
mation and the information for memory order violation.
Besides reading memory information for detailed timing
simulation, TM also needs to retrieval it for order violation
detection. Its design will influence not only the extensibility,
but also the performance. Therefore, two issues should be
considered carefully for MAT design. The first one is how to
organize these memory items in MAT since different mem-
ory operations will access the data with different data length.
The second is how to retrieval an item inMAT efficiently.

There are memory accesses with different data length in
an application, such as one-byte datum, two-byte datum or
four-byte datum. Memory operations with different data
sizes might have overlap when they access their data. The
memory accesses in Fig. 8 is such an example. In this exam-
ple, Addr1 is an 8-byte write operation and addr2 is a four-
byte read access. They have 4-byte overlap for shared data
accesses. To detect this interleaving order violation, we can
divide each memory access into several memory accesses
where each only accesses one-byte length. However, such a

solution will lead to more items are inserted into MAT with
more space overhead. Moreover, because one memory oper-
ation may correspond to multiple items in MAT, it will
involve more time overhead to maintain MAT, such as
deleting items when a memory operation is committed.

In modern process design, most Reduced Instruction Set
Computer (RISC) Instruction Set Architectures (ISA) align
memory address, i.e., n-byte access address is n-byte
aligned. Moreover, for Complex Instruction Set Computer
(CISC) ISAs with various address length, an unaligned
address can be divided into two aligned addresses. There-
fore, to avoid the constraints of a division strategy, we apply
an up-bound alignment method for MAT organization.
When a memory address is inserted into MAT, it is con-
verted to an up-bound value to represent its address. To
determine the up-bound value, we profiled the memory
access address in different applications and find that more
than 99.9 percent of memory access size is smaller than
8 bytes. The data are shown in Fig. 9. Therefore, using 8-byte
aligned address can fit most addresses to avoid dividing the
address. Therefore, we set it as the default up-bound value.
If a memory assess length is larger than 8-byte, it will be split
into multiple addresses aligned to 8 bytes. The detailed pro-
cess to maintain MAT is shown as follows.

� For memory addresses accessing not larger than
8-byte data, we put it into an 8-byte aligned memory
address slot andusing an 8-bit bitmap to recordwhich
bytes it accesses in the corresponding 8 bytes. By
doing so, we define shared memory access, i.e., inter-
leaved accesses, as two memory accesses 1) from dif-
ferent cores, 2) fixed into the same 8-byte address slot,
and 3) the and operation result for two bitmaps does
not equal zero, i.e., two addresses are interleaved.

� For memory addresses accessing larger than 8-byte
data (e.g., 16-byte, or 64-byte), we divide the address
to several 8-byte aligned addresses.

The second issue for MAT design is how to retrieve an
item in MAT when checking the order violation. Here, we
use a hash table to reduce the retrieval overhead of a mem-
ory address in MAT. To achieve this goal, MAT is organized
as a hash table, which use mod m operation as the hash func-
tion. Each item in the hash table points to a link list. All the
memory addresses with the same hash value are saved in
the same link list. When a memory address is ready, it will
be inserted at the head of the corresponding link list. When

Fig. 8. Interleaved cases with different memory address.

Fig. 9. Proportion of each address size.
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a memory operation is committed, the corresponding list is
retrieved to check whether there exists a violation. Since the
value m decides the length of each link list, it will influence
the performance when retrieving a memory address in
MAT. To decide the parameter of the hash function, we con-
duct an evaluation with different hash sizes. As the data
shown in Fig. 10, when the hash value (m) is 256, we can
achieve the best performance, which brings 8.44 percent
performance improvement on average compared to the
original GEMS. Therefore, we apply this configuration as
the default parameter for the design of hash table.

Since the buffer size of architecture-independent inter-
face also influences the performance, we also collect the per-
formance data in different buffer size. As the data shown in
Fig. 11, when the buffer size reaches 256, the performance
will change little. Therefore, we set 256 as the default buffer
size for the architecture-independent interface.

4 CASE STUDY: EXTENDING QEMU

In our current implementation, we mainly based on GEMS,
which use Simics as its FM. QEMU, as an open-sourced
emulator, has been widely used in architecture designs and
system research. To illustrate the extensibility of Trans-
former, we extended QEMU into Transformer as a new FM.

4.1 Challenges and Requirements

QEMU is a fast machine emulator based on dynamic trans-
lation. It emulates several CPUs, such as x86, PowerPC,
ARM, and SPARC, on different hardware platforms. While
integrating a QEMU version with RISC ISA, such as MIPS
and ARM, the work for extension is straight-forward
because the implementation of Transformer is based on
GEMS, which is SPARC based and belongs to RISC ISA. We
only needed to extend QEMU to make it be able to collect
the execution information from applications and translate it
into the formats of architecture-independent interface. TM
gets such information and directs the execution of QEMU
when divergence is detected. However, x86 emulation is an
important component in QEMU. As the most widely used
CISC ISA, x86 has significantly different features from those
of RISC ISAs, such as complex instruction semantics and
various instruction length. Thus a mechanism is required to
remove the gap between CISC ISAs and RISC ISAs.

There are two major challenges here. The first challenge is
how to translate these CISC instructions into the formats of

architecture-independent interface because these instructions
havemore complex structure. The second one is how to simu-
late the timing behavior of these CISC instructions. RISC
instructions are with fixed lengths. In contrast, CISC instruc-
tions are with varied lengths. Such a difference requires a dif-
ferent I-Cache simulation mechanism. Moreover, to
guarantee cycle-accuracy, Transformer needs to roll back the
execution of FM when a divergence is detected. However,
there is an obstacle for CISC instruction simulation. When a
CISC instruction is executed, it is usually mapped to several
RISC-like micro-instructions. When an interrupt occurs dur-
ing the simulation, we need to record the correct architectural
and micro-architectural states. This means if some micro-
instructions of one CISC instruction have already been com-
mitted and the others have not, we are unable to guarantee
the correctness of the recorded architectural states because
the CISC instruction has partially committed.

4.2 Implementation

In the current design of QEMU, it uses Tiny Code Generator
(TCG) as a median layer between the target ISA and the
host ISA. TCG is a RISC-like intermediate representation,
which is similar to the micro-instructions translated from
CISC instructions. A target instruction is first translated into
a TCG representation (one or multiple TCG instructions).
Then these TCG instructions are mapped onto the host
machine. To bridge the gap between CISC ISA and RISC
ISA, we extract the execution information for TM from TCG
directly. Pipeline dependence and memory information are
extracted from TCG and written into the communication
buffer between FM and TM. TM reads the buffer and re-
organizes the information with its internal instruction form,
which we call microinstruction, for detailed simulation. To
guarantee precise exception and rollback, the microinstruc-
tions belonging to the same CISC instruction (x86 instruc-
tion here) will not be committed until all of the
microinstructions are ready to be committed. If a CISC
instruction causes an interrupt or a branch misprediction,
the interrupt or branch information will be processed at a
CISC instruction level. Thus we guarantee the semantic cor-
rectness for a CISC ISA in our framework.

To simulate the behavior of instruction cache, the micro-
instructions decomposed from one CISC instruction share
the same PC address, which is the actual address of
the CISC instruction. Only the address of the first

Fig. 10. Performance improvement of different MAT hash sizes. Fig. 11. Performance improvement of different buffer sizes.
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microinstruction will be used to access I-cache normally.
After this address finishes the cache access, all the related
microinstructions will be removed from the interface buffer
without any other cache access.

5 EVALUATION RESULTS

In this section, we first present our experience to illustrate
the extensibility and high productivity of Transformer.
Then, we evaluate the performance improvement of Trans-
former brought by simple interaction and parallelization
between FM and TM. Finally, we discuss the accuracy influ-
ence of different divergence factors.

5.1 Experimental Setup

Our baseline processor is a 4-core/8-core out-of-order
SPARC processor with an MOESI cache coherence protocol.
Each core has an out-of-order pipeline with yags branch
predictor. Detailed configuration is shown in Table 3.

We use SPLASH-2 [18] and PARSEC [6] benchmark
suites for evaluation. The benchmarks run on a Solaris 10
operating system with reference input. The baseline simula-
tor is Simics 3.0.31 + GEMS 2.1.1 [11], a widely-used tightly-
coupled multicore simulator. Our Transformer prototype is
constructed based on GEMS and it is with about 4.2 K LOCs
changes in total: about 1 K modified LOCs in GEMS to
decouple FM and TM, and about 3.2 K added LOCs to guar-
antee cycle-accuracy and provide architecture-independent
interface between FM and TM. All the experiments are exe-
cuted on a 6-core Intel I7 980 CPU (3.33 GHz, private L1 and
L2 cache, 12 M shared L3 cache) with 2 GB memory.

5.2 Simulation Extensibility

As Transformer exploits the loosely-coupled design and
provides an architecture-independent interface (e.g., pipe-
line dependence, memory information and accuracy main-
taining information) between FM and TM, the extension
becomes much easier. Extending an FM only needs to map
the executed instructions into the interface information,
which is generally direct available through instrumentation.
While extending a TM only needs to make TM read directly
from interface, instead of doing detailed decode itself and
interacting frequently with FM. As a result, the extension
efforts of constructing multicore simulators, measured in
man-months, can be significantly reduced.

To demonstrate the extensibility of Transformer, we have
extended a functional model QEMU [5] into our framework
to construct an x86 simulator. This extension only consists
about 180 lines of code. The whole extension work was done
by a graduate student, who is familiar with QEMU but new
to GEMS, in about 350working hours (about twomonths).

Compared to multiple person-year efforts cost in prior
extension work such as gem5 andMARSS, shown in Table 4,
Transformer provides an alternative solution with its
loosely-coupled framework, to ease the efforts and difficul-
ties in simulator researches.

5.3 Performance Improvement

5.3.1 Improvement of Sequential Transformer

We first evaluate the performance of the sequential Trans-
former framework, i.e., loosely-coupled Simics and GEMS,
against the tightly-coupled baseline simulator Simics and
GEMS. As shown in Fig. 12, the sequential Transformer
achieves about 8.4 and 7.0 percent performance improve-
ment on average for 4-core configuration and 8-core config-
uration, which is mainly from simpler interaction: 1) fewer
interactions only for rare path divergence cases (less than 1
percent), where TM revises the execution; 2) TM no longer
simulates redundant functional execution. The 8-core con-
figuration performance improvement is smaller than that of
4-core configuration because TM under the 8-core configu-
ration occupies more proportion of the execution time.

5.3.2 Improvement of Parallel Transformer

Due to the loosely-coupled design between FM and TM, we
can parallelize FM (i.e., Simics) and TM (i.e., GEMS) with
pipeline parallelism. The parallelized FM and TM works as
two threads: FM thread produces instruction and data flow
information to a buffer; TM thread reads the buffer, simu-
lates micro-architecture, and revises FM or creates a wrong-
path FM (in the same thread) if necessary.

As the data shown in Fig. 13, parallel Transformer achieves
about 35.3 and 29.7 percent performance improvement
against the baseline GEMS simulator for 4-core configuration
and 8-core configuration. The performance improvement
from parallelizing FM and TM is about 29.4 and 24.4 percent.
The reason for this improvement is that the parallelization
not only distributes the computation into two different cores,
but also achieves better instruction and data locality as FM

TABLE 3
Baseline 4-core/8-Core OoO SPARC Configuration

TABLE 4
Extension Efforts Comparison

Simulator Combining Work Extension Efforts

gem5 [7] GEMS +M5 Dozens of person-years
MARSS [13] PTLsim + QEMU 1.5 years by a 4-people group
Transformer GEMS + QEMU About two person-months

Fig. 12. Performance improvement of sequential transformer.
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and TM are separated. Moreover, in a timing-first simulation
model, TM has to include an FM part to check whether its
states are consistent to those got from FM. In a contrast, the
TM in Transformer only needs to simulate the timing behav-
ior without a redundant functional execution. Therefore,
while parallelizing FM and TM in Transformer, the execution
of TM will dominate the total execution time. This is the rea-
son why the performance gain of parallel Transformer
exceeds the potential improvement (the performance gain
from only removing FM fromGEMS) shown in Table 1.

5.4 Analysis of Divergence Factors

In order to validate our analysis of cycle-accuracy factors
resulting in execution divergence between FM and TM in
Section 2.2, we take a detailed evaluation on the influence of
accuracy, which can provide some insights to full-system
multicore simulation designs.

5.4.1 Influence of IPC

First, we use a full-feature version simulator as the baseline
and evaluate different versions, which ignores one diver-
gence factor respectively. Then for each version, we com-
pare the average Instructions Per Cycle (IPC) values of the
10,000 cycles intervals throughout the application between
the baseline and the factor-removed versions. The compari-
son results are shown as the curves in the following figures.
The y-axis of each point in the curve represents the average
IPC of the 10,000 cycles interval and the x-axis represents
the cycle count from the beginning. Considering the varia-
tion of different benchmark applications, we just analyze
one application as an example for each divergence factor.
All the data are evaluated under the 4-core configuration
and collected after the initialization part (as the 5 M-25 M
cycles curve shown in the figures).

Branch misprediction influence. Fig. 14 shows the branch
misprediction influence on water-N benchmark from
SPLASH-2 of the intervals from 5 to 20 M cycles as an exam-
ple. From the figure we can find obvious variances between
the two curves. The variance is not that distinct but continu-
ous, resulting from the relatively high occurrence rate of
branch misprediction.

Interrupt/exception influence. Fig. 15 shows the interrupt
and exception influence on Lu-C benchmark from
SPLASH-2. The two curves lap over each over mostly,
because of the interrupts happen rarely. The obvious vari-
ance occurs at 18 and 25 M cycles respectively. In general,
the interrupt-removed version shows little error rate with
the baseline version.

Shared data access order violation influence. Fig. 16 shows
the shared data access order influence on swaptions bench-
mark from PARSEC. The IPC fluctuates because of the
application behavior. We can also find some variances in
the figure. Although the shared data access order does affect
the scheduling of the threads interleaving, the total violation
influence is not that obvious.

MMUmiss influence. Fig. 17 shows the influence of shared
data access order on lu-N benchmark from SPLASH-2. We
can find a variance at 6 and 26 M cycles. In fact, MMU miss
is not often and shared page access order violation occurs
more rarely. That is the reason why the two curves in
Fig. 16 are almost the same.

As above data shown, the divergence factors will mainly
cause variances in a local area. To illustrate their global
influence on accuracy, we collect the global IPC error rate
when removing them. The data are shown in Fig. 18. As the
data shown, except branch misprediction with 6.6 percent
average error rate, the other factors have little accuracy
influence on simulation.

Fig. 13. Performance improvement of parallel transformer.

Fig. 14. Branch misprediction influence.

Fig. 15. Interrupt/exception influence.

Fig. 16. Shared data access order violation influence.
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5.4.2 Influence of Divergence Instructions

Besides the occurrence rate of accuracy factors shown in
Section 2.3, we also collect the number of divergence
instructions to illustrate the influence of different accuracy
factors. The percentages of these divergence instructions are
shown in Table 5.

For branch misprediction factor, each misprediction will
cause 7.73 wrong-path instructions, on average, fetched into
the pipeline and squashed out later. These instructions are
1.77 percent of the total instructions of the applications.

The processing of interrupts or exceptions are similar to
the branch misprediction, which uses the wrong-path FM to
provide wrong-path instructions and relative information.
On average, each interrupt or exception will introduce 15.7
divergence instructions across the workloads. The number
of divergence instructions is larger than that of branch mis-
prediction because an interrupt or exception divergence can
only be found when it is committed in the commit stage of
the pipeline. Since interrupts and exceptions occur rarely,
the percentage of divergence instructions is 0.2 percent on
average and the influence is tiny.

When a shared data access order violation happens at the
commit stage of the pipeline, FM will roll back to the correct
states. Since TM simulates the timing of the instruction and
thus is always correct, FM will roll back all its wrongly-exe-
cuted instructions. Moreover, TM gets the instructions from
FM through the communication buffer, TM also needs to
squash pipeline and re-fetch the correct instructions. In fact,
the pipeline is almost full during the normal execution and
TMwill usually squash all the instructions in the instruction
window. Thanks to the low occurrence rate of shared data

access order violations, the percentage of divergence
instructions in TM is no more than 0.5 percent. However,
the case of FM is a little different. In sequential version, the
step of FM and TM are carefully controlled that FM advan-
ces and fills in the instruction buffer when TM needs to
fetch instructions into the pipeline. Thus in the worst occa-
sion, FM will roll back all the instructions in the pipeline
instruction window, which is similar as TM. However, in
the parallel version, FM is much faster than TM and the
instruction buffer is almost full all the time through. Thus
FM will roll back all the instructions in the pipeline instruc-
tion window and communication buffer. Because of the rel-
ative larger size of communication buffer, FM will roll back
more instructions, at most 6.8 percent of the total instruc-
tions. However, since most of the instructions in communi-
cation buffer is useless and are not executed at all in TM’s
perspective, FM’s influence is very tiny.

In our framework, we avoid the occurrence of MMUmiss
order violation, so it will not cause divergence instructions
in Transformer. But in the previous evaluation, as shown in
Section 2.3, in the worst case (radix benchmark with the
most occurrence proportion), the violation occurrence rate
is 5.3E-5 at most. If each violation causes TM squash all the
instructions in the instruction window, divergence instruc-
tions are 0.33 percent of total instructions at most, and
0.1 percent on average.

6 RELATED WORK

In this section, we will discuss related works from two
perspectives: simulator productivity and acceleration
techniques.

6.1 Simulator Productivity

Existing full-system multicore simulators usually exploit a
tightly-coupled FMandTMdesign to achieve cycle-accuracy.
A good example is the widely-used Simics + GEMS [11] sim-
ulator, which is used in this paper as the baseline simulator.
Other main-stream simulators, such as MARSS [13] and
gem5 [7], exploit integrated FM and TM design, even more
tightly-coupled than Simics + GEMS.

To achieve sampling simulation, Cotson [2] exploits a
functional-directed loosely-coupled design, where FM exe-
cutes ahead for most cases and TM gives feedback to the
FM periodically. However, Cotson does not provide cycle-
accurate solutions to revise those path divergences and only
periodically provides feedbacks to FM. Within LSE frame-
work [21], simulators can be constructed from a machine
description that closely resembles the hardware, ensuring
fidelity in the model. LSE abstracts the component as a black
box and defines the communication between the compo-
nents, thus supporting the extension of other components

Fig. 17. MMU miss influence.

Fig. 18. Total influence.

TABLE 5
Influence of Divergence Instructions

Factor Proportion

Branch misprediction 1.77%
Interrupt/exception handling 0.2%
Shared data access order violation 0.48%
Shared page access order violation 0.1%
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or models. But its definition also limits the convenience in
extending new components into its framework.

In contrast, Transformer gives a comprehensive analy-
sis to which factors will affect cycle-accuracy in loosely-
coupled design, i.e., branch misprediction, interrupt/
exception handling, shared data access order, shared page
access order. We further provide several lightweight solu-
tions to detect and revise the simulation instead of simply
rolling back FM using heavy-overhead checkpoint mecha-
nism. Moreover, we design an architecture-independent
interface between FM and TM to make it more extensible.

6.2 Acceleration Techniques

Another category of related work is simulation acceleration
techniques, including parallel simulation, Field-Program-
mable Gate Array based (FPGA-based) simulation, sam-
pling techniques and analytical modeling.

For parallel simulation, SlackSim [8] uses multi-threads
to simulate different cores and a master thread to control
steps of different cores to guarantee the correct access order
of shared resources. Because the maximum distance of
threads’ steps is usually set as last level cache hit latency,
SlackSim has lots of synchronization among the threads.
Graphite [12] also parallelize the timing simulation and
uses an algorithm to randomly synchronize the simulation
threads, which reduces the number of synchronization and
achieves a high performance. However, it cannot guarantee
cycle accuracy because lots of threads are out of cycle limit
threshold. Sniper [22], which combines Interval Simula-
tion [23] and Graphite together, also proves that the relaxed
synchronization models can lead to significant errors.

FPGA-based simulators, such as RAMP GOLD [15],
HASim [14] and UT-FAST [9], use FPGA to help achieving
high performance and accuracy. The FPGA acceleration
usually brings considerable improvement on performance,
from hundreds of KIPS to tens of MIPS. However, FPGA
simulators cost too much on developing time and efforts,
and the complexity, which is a major restriction on further
optimization. Moreover, it is quite difficult to extend or
modify components and models in FPGA platforms.

Sampling techniques like ESESC [3] and DAPs [4] exploit
cyclic behavior in applications to accelerating the simulation
speed. It aims at the sampling of the multi-threaded bench-
marks basing on the randomicity of transactions in the
server workloads.

There are also some works using analytical models to
accelerate the timing simulation of micro-architecture. Inter-
val Simulation [23] is an application level simulator, and
mainly focuses on the simulation of miss events which will
affect the normal execution of instruction traces. ZSim [24]
introduces its instruction-driven approach, which uses the
instruction-centric timing model for fast simulation.

Thanks to the extensibility of Transformer, this frame-
work is orthogonal to the above techniques focusing on
accelerating TM part. In fact, the above acceleration techni-
ques can be applied to Transformer framework with little
modification, which is one of our future work.

7 CONCLUSION

In this paper, we proposed Transformer, an extensible, fast,
and cycle-accurate loosely-coupled full-system multicore

simulator. We first presented a comprehensive analysis to
four factors affecting cycle-accuracy in loosely-coupled
design and provided lightweight solutions to detect and
revise these divergence factors to ensure cycle-accuracy.
Then we further designed an architecture-independent
interface between FM and TM, which makes Transformer
more flexible to extend state-of-the-art FMs and TMs. As
demonstrated, a graduate student only wrote about 180
lines of code to extend an X86 functional model based on
Transformer. Finally, besides the simple interaction, we fur-
ther parallelized FM and TM to improve the performance.
Experiments showed that in 4-core and 8-core configura-
tion, it achieved about 8.4 and 7.0 percent performance
improvement compared to the widely-used tightly-coupled
baseline simulator GEMS [11] and 35.3 and 29.7 percent per-
formance improvement after parallelizing FM and TM.
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