
This paper is included in the Proceedings of the
20th USENIX Conference on File and Storage Technologies.

February 22–24, 2022 • Santa Clara, CA, USA
978-1-939133-26-7

Open access to the Proceedings
of the 20th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

HTMFS: Strong Consistency Comes for Free with
Hardware Transactional Memory in Persistent

Memory File Systems
Jifei Yi, Mingkai Dong, Fangnuo Wu, and Haibo Chen, Institute of Parallel

and Distributed Systems, Shanghai Jiao Tong University
https://www.usenix.org/conference/fast22/presentation/yi-htmfs

HTMFS: Strong Consistency Comes for Free with Hardware Transactional
Memory in Persistent Memory File Systems

Jifei Yi, Mingkai Dong, Fangnuo Wu, Haibo Chen
Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
File system designs are usually a trade-off between perfor-

mance and consistency. A common practice is to sacrifice data
consistency for better performance, as if high performance
and strong consistency cannot be achieved simultaneously.
In this paper, we revisit the trade-off and propose HOP, a
lightweight hardware-software cooperative mechanism, to
present the feasibility of leveraging hardware transactional
memory (HTM) to achieve both high performance and strong
consistency in persistent memory (PM) file systems. The key
idea of HOP is to pick the updates visible to the file system
interface and warp them into HTM. HOP adopts an FS-aware
Optimistic Concurrency Control (OCC)-like mechanism to
overcome the HTM capacity limitation and utilizes coopera-
tive locks as fallbacks to guarantee progress. We apply HOP
to build HTMFS, a user-space PM file system with strong
consistency. In the evaluation, HTMFS presents up to 8.4×
performance improvement compared to state-of-the-art PM
file systems, showing that strong consistency can be achieved
in high-performance persistent memory.

1 Introduction
File systems are the key cornerstones of many storage services
such as key-value stores and databases and applications that
persistently store data. In the early days, file systems are
designed for performance with loose consistency guarantees.
For example, FFS [47] relies on the clean unmount of the file
system to avoid consistency issues. In case of crash or power
shortages, file system users have to invoke and wait for the
lengthy file system consistency checker, i.e., fsck, which will
detect consistency issues and attempt to recover but with no
guarantee [26].

Nowadays, with the speedup of storage devices and their
widespread use in applications, performance is not the only
feature that applications need. Applications also require
strong consistency in order to provide reliable services. For
example, key-value stores and databases need strong crash
consistency to guarantee that all returned writes are persisted
and can be correctly read after a system crash. Upon file

systems with no or weak consistency guarantee, these appli-
cations have to either compromise on the consistency level
or use complicated mechanisms to provide reliable storage.
Programming efforts can also be reduced if the file system
can provide strong consistency.

The strong consistency of the file system implies per-
request sequential consistency, which consists of two aspects.
First, for arbitrary file system requests, the modification to
the file system states observed by concurrent tasks should be
atomic. Most file systems use inode-level locks, which en-
sures the modification order of different requests to guarantee
sequential consistency. Second, whenever the system crashes,
after a reboot, all previous file system requests should satisfy
the all-or-nothing semantics, i.e., all changes to the file system
state by a single file system request should be applied or none
of them should be applied. File systems do not necessarily
guarantee strong crash consistency. For example, ZoFS [16]
do not provide the atomicity of data modification. Suppose
a writer crashes halfway through writing; it is possible for
a reader to read the partially updated value after the system
recovers.

At the same time, modern storage devices have become
faster and different. The emerging persistent memory (PM)
enforces memory with durability. Consequently, file systems
can use load/store instructions to access PM storage with near-
DRAM performance. Several PM file systems [11, 13, 16–18,
37, 42, 74, 80] are proposed to exploit the PM characteristics;
many of them provide strong consistency.

However, existing PM file systems still require complicated
and expensive mechanisms, such as journaling [6, 10] and
shadow paging [7,64], for strong crash consistency. Journaling
has the double writes problems, while shadow paging needs
to propagate the changes to an atomic update, thus it only fits
dedicated data structures. The write amplification is related
to the data structure it uses and the pattern it writes.

Previous approaches are limited to atomicity unit of CPU
writes. Intel’s restricted transactional memory (RTM) [32]
can provide atomicity of multiple updates. However, file sys-
tem is incompatible with RTM naturally. Block device based

USENIX Association 20th USENIX Conference on File and Storage Technologies 17

Table 1: Crash consistency mechanism comparison. The specific write amplification of shadow paging corresponds to the data
structure and write locations. The write set size of RTM is evaluated with sequential writes on our platform.

Mechanism Write Amplification Write Set Data Strucute Crash Consistency

In-place Update 1 Unlimited Any No guarantee
Journaling >2 (double writes) Unlimited Any Strong
Shadow Paging >1 Unlimited Dedicated Strong
Soft Updates 1 Unlimited Dedicated Weak
RTM 1 <16k Any Strong
HOP Nearly 1 Unlimited Any Strong

file systems access data via IO, which will abort the RTM.
Although persistent memory can be accessed directly by CPU
load/store instructions, the PM write operations need to be
persisted with the help of cache line flush instructions (such
as clflush, clflushopt, and clwb) which will abort the
RTM.

Recently, Intel proposes its second-generation Optane Per-
sistent Memory products, which in cooperation with the new
Xeon platforms enable enhanced asynchronous DRAM re-
fresh (eADR) technique that embraces the CPU cache in the
domain of persistence in case of crashes [29]. In particular, the
platforms guarantee the persistence of memory writes once
they become globally visible, which means that data modi-
fication to the persistent memory no longer requires cache
line flush for persistence. This gives us the possibility of
combining RTM and persistent memory to provide atomicity,
concurrency, and persistence at the same time.

Although RTM can be used with PM, several challenges
prevent RTM-PM from being used directly in PM file systems.
At first, users use file systems to process large data storage
and retrieval. However, RTM is limited in both read and write
set size, thus can easily abort due to file data copy. Second,
there are certain dependencies in the code paths of FS-related
system calls. For example, path-related operations (such as
open and mkdir) must be preceded by path lookups, and file
indexing must be done before reading and writing a file. The
operations can be lengthy and may include memory accesses
that do not need to be tracked by RTM. Simply wrapping
the entire operation within an RTM not only easily leads to
capacity abort, but also increases the probability of conflict
aborts.

In this paper, we propose HOP1, a lightweight hardware-
software cooperative mechanism for providing strong consis-
tency in PM file systems. HOP builds on the recent eADR-
compliant platforms and leverages Hardware Transactional
Memory (HTM) to guarantee the atomic durability of file
system updates. To address the capacity limitation of HTM,
HOP adopts an OCC2 [41]-like mechanism to chop a large
file system request into smaller pieces, while retaining both
concurrent consistency and crash consistency during the exe-

1HOP is short for Hardware-assisted Optimistic Persistence.
2Optimistic Concurrency Control

cution. To guarantee file system progress, HOP designs co-
operative locks as the fallback of HTM. The comparison of
HOP and other crash consistency mechanisms is shown in
Table 1.

To illustrate HOP, we implement HTMFS, a user-space PM
file systems base on ZoFS. Evaluation using FxMark [52],
Filebench [72], LevelDB [24], and TPC-C [15] on SQLite [70]
shows that HOP outperforms state-of-the-art PM file systems,
achieving a similar performance to the weak consistency FS
implemention while providing strong consistency. With care-
fully designed fine-grained concurrency control, HTMFS pro-
vides even better performance in competitive cases.

The contributions of the paper include:

• The design of HOP, a lightweight hardware-software
cooperative mechanism to provide strong consistency in
persistent memory file systems (§3);
• The implemention of HTMFS which provides both

strong consistency and performance using HOP (§4);
• Comprehensive evaluation that shows that HTMFS out-

performs state-of-the-art persistent memory file systems,
proving the effectiveness of HOP (§5).

2 Background and Motivation
In this section, we introduce the background knowledge and
motivation of our work.

2.1 File System Consistency and Performance
The original file systems are not built with consistency as
the priority, e.g., FFS has no consistency guarantee if a crash
happens before a clean unmount [26].

An ancient fsck tool simply makes the file system mount-
able [26], without any guarantees on data consistency or per-
sistency. A fsck tool helps recover, repair, and refresh the
system.

Without file systems providing consistency, applications
need to take responsibility for guaranteeing consistency. For
example, to guarantee that data are persisted to file A in
atomic, applications need to do the following operations in
sequence.

1. Create file B with the same content as file A;
2. Write new data to file B;

18 20th USENIX Conference on File and Storage Technologies USENIX Association

3. Flush file B to guarantee that the new data is persisted in
storage;

4. Rename file B as file A;
5. Sync the directory change;

This obviously is costly for applications. Thus some file
systems, such as Ext4 and NOVA [80], provide strong consis-
tency as an optional feature.

However, strong consistency does not come for free. Ext4
uses data journal to provide atomic updates for the data, and
therefore has the problem of double writes as shown in Ta-
ble 1. NOVA can use the CoW (copy-on-write) approach to
update data atomically. However, CoW may degrade NOVA’s
performance by up to more than 60% in our evaluation part.

2.2 Persistent Memory and PM File Systems
Persistent Memory (PM) is an emerging storage technology
that enforces byte-addressable memory with persistence. With
the same interfaces as volatile memory (i.e., DRAM), data
written to PM are guaranteed to retain across power cycling.
As a result, the storage hierarchy has changed.

Based on these changes, several PM file systems are pro-
posed to better exploit the PM characteristics for better perfor-
mance. These file systems revisit existing crash consistency
mechanisms in the new scenarios brought by PM, rather than
exploring fundamentally different (and more efficient) crash
consistency mechanisms of file systems. The only difference
would be leveraging atomic instructions to provide small up-
dates up to a single cache line. BPFS [13] organizes the whole
file system in a tree structure and provides strong consis-
tency via shadow paging and atomic instructions. PMFS [18]
introduces fine-grained journaling and combines atomic in-
structions and optional shadow paging for data consistency.
NOVA [80] is a log-structured file system designed for PM,
which combines all the atomic instructions, shadow paging,
and journaling for strong consistency. SoupFS [17] is a revisit
of the soft update technique on PM and provides no strong
consistency guarantee.

Traditional file systems, such as Ext4 and XFS, introduce
direct access mode (DAX) to bypass page cache in the data
path, optimizing their performance when running on PM.
However, this doesn’t change the crash consistency level of
these file systems.

The byte-addressability and persistence of PM also mo-
tivate several user-space file systems, e.g., Aerie [74],
Strata [42], SplitFS [37], ZoFS [16], and Libnvmmio [11].
Strata and Libnvmmio use logs to guarantee consistency.
SplitFS relies on the underlying Ext4 for metadata processing.
ZoFS takes the soft update approach to protect data modifica-
tion, thus only providing weak consistency. It first updates the
data in place and then modifies the size of the file to complete
the operation. However, if the system crashes before the file
size is changed, partial updates may be read by the next read
operation.

In summary, PM brings new opportunities in the design

of file systems; while existing new file systems still stick to
existing mechanisms for crash consistency, leaving the trade-
off between performance and strong consistency a lasting
barrier towards fast and reliable file systems.

2.3 Hardware Transactional Memory
Transactional memory provides programmers with an easy
(and sometimes efficient) approach to implementing concur-
rent applications. Hardware transactional memory technolo-
gies, such as Intel’s Restricted Transactional Memory (RTM)
in TSX [1] and ARM’s TME [46], provide hardware support
of transactional memory. Programmers only need to identify
the critical section that wraps the shared memory resources
and mark it with xbegin and xend instructions. The transac-
tional memory mechanism will guarantee that the execution
of critical sections can be serialized so that no data race oc-
curs. Executing transactions failing to meet the serializable
requirements will be aborted by the hardware, which is de-
tected via the cache coherence protocol. Specifically, data
writes of an uncommitted transaction are kept in the private
cache of that CPU core and only become globally visible
when the transaction successfully commits.

Due to the strong affiliation to the cache implementation,
the following limitations will cause HTM to abort, which the
users should take care of.

Conflict aborts. HTM uses read/write set to track accesses
to memory. Cache lines read in the HTM are added to the
read set, and cache lines written are added to the write set.
Before HTM is successfully committed, if a cache line in the
read set is modified or the write set is accessed by another
core, this transaction will be aborted due to conflicts. This
type of abort may succeed by retrying the transactions.

Capacity aborts. CPU’s private cache size is limited; thus,
HTM has limited read and write sets. Any transaction that
exceeds the read or write set will inevitably be aborted, no
matter how many times the transaction is retried.

Other aborts. Besides conflict and capacity aborts, some
other sources could abort a transaction, such as interrupts and
HTM-incompatible instructions. It depends on the specific
scenario to tell whether a simple retry will make the transac-
tion succeed. For example, if a page fault occurs during the
transaction, the interrupt will cause the transaction to abort.
In this case, a prefault (trigger the page fault in advance) is
necessary before retrying the transaction.

2.4 HTM in PM File Systems
HTM was never an option for file system consistency in the
era of block-based storage devices. The emergence of byte-
addressable persistent memory gives a chance to use HTM
in file systems. However, the volatility of CPU cache forces
the use of cache line flush instructions for durability, which
intrinsically conflicts with the HTM mechanism that stashes
in-flight transaction data within the CPU cache. Until January

USENIX Association 20th USENIX Conference on File and Storage Technologies 19

2021, Intel’s new platform included the CPU cache in the
persistence domain, meaning that data that reaches the CPU
cache can be guaranteed to be durable even in case of crashes
and power shortage, it becomes possible to use HTM upon
persistent memory. And it goes beyond that. HTM becomes
a good companion to be used with persistent memory. Ac-
cording to Intel [29], only globally visible data will be made
durable if a power shortage occurs. In other words, HTM
in-flight data modifications will be discarded, making HTM
a good alternative approach to enforce atomic updates for
crash consistency in file systems. HTM seems promising to
be used in file systems to provide both crash consistency and
concurrency guarantees at the same time.

3 Design
At first sight, it seems straightforward to equip file systems
with HTM: simply wrapping each file system request in a
pair of xbegin and xend can guarantee the ACID of the file
system request. However, the reality proves that this is far
from enough. Due to the long code path and complicated
operations in file system requests, wrapping the entire file
system request directly within a hardware transaction will
frequently (if not always) result in transaction aborts. Directly
adopting HTM in a file system will lead to the following three
problems:

1. The long code path may permanently cause capacity
aborts;

2. The long code path make the transaction easier to abort
due to data conflicts;

3. More works need to be repeated in the retry of the abort
transaction.

To resolve the above problems, we designed a lightweight
hardware-software cooperative mechanism named HOP.
Next, we will first introduce what HOP is and then describe
how we use HOP to build an RTM-compliant file system,
namely HTMFS.

3.1 HOP
To shorten the code path in the HTM, we split a single file
system operation into multiple small pieces. When joined to-
gether, they will perform similarly to a single huge transaction.
This idea is similar to transaction chopping [68].

All memory accesses in file system operations can be clas-
sified into three types:

1. Reads;
2. Invisible writes: updates that cannot be observed via the

file system interface (such as memory allocation and
updates to the shadow pages);

3. Visible writes: updates that can be observed by the file
system interface (like timestamp modification, in-place
updates, and the change of file size).

To alleviate the capacity aborts caused by complex file system

Record
seqcount A

Read data A

Record
seqcount B

Read data B

RTM begin

Validate
seqcount records

Visible writes

RTM end

If A is changed

If B is changed

RTM abort

Invisible writes
& other ops

Invisible writes &
other ops

1

1

Figure 1: HOP: A transaction wants to read critical data A and
B, and write something in atomic. It can read the seqcount and
the data in sequence, and validate them in the same RTM with
the visible writes to ensure A and B do not change during the
whole execution; i.e., the whole process can be considered as
an atomic transaction.

operations, HOP only wraps visible writes (3) in the transac-
tions. Invisible updates are designed to be able to roll back
with minimal overhead, while critical reads are protected by
sequence counts.

In more detail, we first perform all reads and invisible
writes outside the RTM. Then we wrap the visible writes
to persistent memory using an RTM to complete them atomi-
cally. However, not applying any protection to the first part
may lead to concurrency errors. HOP ensures concurrent con-
sistency by protecting the fields that may cause concurrency
errors by sequence counts. As shown in Figure 1, when we
want to access the protected fields outside an RTM, we will
first record the corresponding sequence count and then access
the persistent memory. These sequence numbers will be vali-
dated when entering the RTM-protected region to ensure that
the rest remains unchanged throughout the process as long
as the RTM commits successfully. If the validation fails (i.e.,
there is a sequence count that has been changed), HOP will
roll back to the first changed point to restart the transaction.
For example, if we find that A’s seqcount has not changed, but
B’s seqcount has been modified, we will take the red dotted
line “B is changed” to re-record B’s seqcount and re-read B.

Besides a modified seqcount, many reasons (introduced in
§2.3) may also cause the aborts. If it is an accidental abort
caused by an interruption or something else, retrying the RTM
transaction again (“RTM abort” in Figure 1) is enough, as
going back to the very beginning would cause unnecessary
overhead.

Discussion of concurrency correctness. Next, we will dis-
cuss all concurrency scenarios (read-read, write-write, write-
read, and read-write) in the HOP. Read-read will not bring
problems anytime. Since potentially conflicting writes in the
HOP are protected by RTM, two conflicting writes will cause
each other to conflict abort until one of them succeeds (or keep
aborting each other, making it impossible to move forward,
which we will avoid by other methods).

20 20th USENIX Conference on File and Storage Technologies USENIX Association

RSC → Record the Sequence Count RD → Read the Data

VR → Verify the Records M → Modification

RTM
begin

Thread 1

RTM
end

VR MRSC RD

Thread 2

Time

A AB B B C C

A → No effect B → Verification failed C → RTM abort

Figure 2: HOP: Thread 2 modifies the sequence count
recorded (or to be recorded) by thread 1 at different times,
leading to three results. A has no effect on thread 1, while
B and C both cause thread 1 to redo, thus guaranteeing that
there will be no concurrency errors.

Write-read/read-write, however, will cause an RTM to abort
if they conflict, given that potentially confliting write opera-
tions are all executed inside the RTM. Any abort will trigger
a redo in Figure 1, so a successfully committed transaction
guarantees that no concurrency errors exist.

For the read-write scenario, as shown in Figure 2, thread
1 first reads some variables protected by the sequence count,
then begins the RTM, validates the sequence numbers, and
performs all visible write operations. Thread 2 is simplified to
modify the conflict variable at some point in time. The time
point modified by thread 2 can be divided into three ranges,
resulting in three consequences.

• Result A: If Thread 2 modifies seqcount before Thread
1 reads it or after Thread 1 finishes all operations, it has
no effect on the result of Thread 1.
• Result B: If Thread 2 modifies seqcount between Thread

1 reading seqcount and verifying seqcount, it causes
Thread 1 to fail validation and thus redo the whole task.
• Result C: If Thread 2 modifies seqcount after Thread

1 verifies successfully (while before the RTM ends), it
causes an RTM abort in Thread 1 as it modified Thread
1’s read set, thus redoing the whole task.

With HOP, we can break the RTM capacity limit. Then we
will introduce how HOP helps to build HTMFS through some
specific operations in the file system.

3.2 File Operations
3.2.1 Data Read

For data reads, we use a seqcount-based method to make it
atomic. Specifically, the structure of a file is shown in Fig-
ure 3, for each page, we first record the persistent pointer
(with the sequence count) of the last page, and then read its
content. After finishing reading, we verify that the pointers to
all records and their sequence counts are unchanged. We will
re-read the page that changed and then verify all the sequence

Shadow page
0

Shadow page
1

…

Ptr NSeq

Ptr 0Seq

Ptr 1Seq

Inode

File

Page 0

Page N

Page 1

1. Prepare the data2. Replace the pointer and the
sequence count in an RTM

Figure 3: A file is organized in a page table like manner. A
single-page update is performed directly wrapped in a trans-
action. Multi-page updates need to allocate new pages (the
shadow pages) for the data, and then copy the new data to
the shadow pages. Pointers and the corresponding sequence
counts are updated atomically in an RTM.

counts again until all records in this progress stay stable. As
only data writes modify the sequence counts or the persistent
pointers, we can ensure that there are no changes to the pages
we read throughout the entire read operation.

3.2.2 Data Write

Data updates are the foundation of file system operations. One
of the major challenges that HTMFS faces is the conflicts be-
tween RTM’s capacity limitation and the large amount of
data involved in file system operations. As a result, directly
wrapping the whole file system operation in an RTM trans-
action will inevitably cause capacity aborts that prevent the
operations from being completed.

To address this issue, we propose a hybrid approach that
combines the copy-on-write and journalling to convert data
updates to metadata updates that can be embedded in the
RTM transactions.

Small writes, which fit in a single PM page, are wrapped in
an RTM directly. For large data writes, as shown in Figure 3,
our strategy first writes data to the persistent memory so that
large bulk of data can be represented by pointers, enabling
it to be easily embedded in the limited RTM transaction. To
explain in detail, we first allocate PM space to store the data.
Note that the allocation information is in DRAM, which will
not be persisted after a crash. But the data is in PM. Then we
start an RTM transaction, in which file system metadata is
modified, including the modification of allocation metadata.
The persistence point is the RTM commit. Upon a successful
commit, the file data and metadata are persistent in an atomic
approach. Upon a transaction abort, no changes to the file
systems are visible after reboots, with the only exception
that the file data are written to the unallocated PM, which
is benign most of the time. But the blocks may have leaked
after a system crash. Time-consuming scanning of the whole
persistent memory can help retrieve the leaked space. To
eliminate the recovery process, we design a new allocator
based on the free list (as shown in Figure 4) to prevent a
memory leak.

USENIX Association 20th USENIX Conference on File and Storage Technologies 21

C Next Ptr 0 Ptr 1 … Ptr 510

Page 0 Page 1
Page
510

8 bytes

4096 bytes

C Next Ptr 0 Ptr 1 … Ptr 510

AllocatedFree page

4096 bytes

Figure 4: The atomical allocator. C stands for Current. The
pages before Current are free pages, while the after is allo-
cated.

3.2.3 Allocation

We split the allocation into two parts: first we move the al-
located blocks into a temporal allocating list, which has the
same structure as the unallocated space list. Then we simply
discard the temporal list inside a transaction to persist the
allocation. If a crash happens, we add the temporal list into
the unallocated space list to prevent a memory leak.

To ensure that the file system does not reference any unallo-
cated data block, usually the file system modifies (or removes)
the reference to the data block before releasing the block. A
memory leak may also occur if the file system crashes after
a reference to a block of data has been removed (when this
block of memory has not yet been freed). When we need to
free multiple data blocks, we may also have a crash halfway
through the release. An easier way to ensure atomicity is wrap-
ping all these operations in a transaction, but RTM is likely to
have a capacity abort. To solve this, we adopt a method simi-
lar to the allocation for the free operations. Only operations
that must be completed atomically are placed inside RTM,
thus avoiding the probability of a capacity abort.

3.3 Directory Operations
3.3.1 Path Walk

File systems usually use a tree structure to maintain the di-
rectory hierarchy. Path walking is a quite common scenario
in file systems. Many file-system-related system calls require
path walking, such as open, mkdir, unlink, etc. These func-
tions will first do a path walk, where the file system will split
the full path by slash. It then looks for each level of pathname
in turn, starting from the root directory, until it reaches the last
level. Then the specified operation (e.g. open) is performed
on the last file name in the last directory.

All operations that need to walk the path will record the
sequence numbers of the directory entries (dentry) it visits,
and validate these sequence numbers in the same RTM with
the data writes (as shown in Figure 1). Take touch /a/b as
an example, this operation will first search the dentry a in the
root directory (/). When it finds the matching dentry, it will
first record the sequence number of the dentry (Dseq of the
dentry a) and then read the inode number of the directory a.

InodeDirectory

Hash table

Dir

Entries

inoDseq Name

…

inoDseq Name…

PtrBseq

PtrBseqBucket 0

Bucket N

Dentry 0

Dentry M

Figure 5: HTMFS uses hash tables to manage the directory
entries. Bseq is used to serialize changes to directory entries
within the same bucket. This prevents the insertion of two
files with the same name, etc.

Then it will begin a transaction, validate the sequence number
read previously, insert the new dentry b into the directory /a,
and finally commit the transaction.

3.3.2 Directory Updates

We do not use locks on the directory inode to protect updates
to the same directory (add/remove a dentry). Instead, we use
a separate seqcount in each bucket, and all insert operations
need to modify the seqcount of the corresponding bucket in
the hash table (Bseq in Figure 5). When inserting multiple
different directory entries into a directory simultaneously,
the competition will result in only one directory insertion
operation succeeding. At the same time, the other will have
to redo the whole operation because the sequence number
has been modified. In the process of redoing the operation,
the operation will find that a directory entry with the same
name already exists in the directory and return the error code
EEXIST.

In file systems, directories can be removed by the system
call rmdir. However, only empty directories can be removed
to avoid deleting useful data accidentally. The utility rm can
be used to remove a non-empty directory with a parameter -r,
which will remove directories and their contents recursively.
In the implementation, it will remove all the children of the
directory first and then delete the empty directory from the
file system tree by rmdir. This process does not break the
restriction that only empty directories can be removed in file
systems.

We need to consider the situation that process A tries to
touch a new file /a/b/c into an empty directory /a/b while
process B attempts to delete this empty directory /a/b.

As shown in Figure 1, A will first walk the path and record
the sequence count Dseq of /a/b’s dentry. Then it will vali-
date the sequence number in the same RTM with the insertion
of /a/b/c. If the sequence number has been changed be-
fore the validation, then A will fail to validate it and rollback
(lookup the path again). If the sequence number is changed af-
ter A succeeds in validation, the modification of this sequence
number (B changes it in another transaction) will cause the
transaction of A to abort. Then A will be rolled back and do
again. In the new round of path lookup, it will find that the
directory /a/b does not exist, which has the same results as
if B’s entire operation had finished before A, will not cause

22 20th USENIX Conference on File and Storage Technologies USENIX Association

any problem.
B also needs to validate and modify this sequence number

in the same RTM with the operation that deletes this empty
directory. Once successfully committed, the insert operation
that has not finished the path walking will not be able to find
this directory (/a/b), the others will fail to validate the Dseq
or be aborted by the modification of the Dseq, thus protecting
the correctness of this case. If B is aborted by A because of
a conflict, B will find that the directory is not empty when it
retries, thus returning ENOTEMPTY as if it is trying to delete a
non-empty directory, which is the same as if A operation is
finished atomically before B.

This Dseq guarantees that the results of both operations
in this case are consistent with a serial execution. So it is
no longer necessary to use locks to protect its concurrent
correctness.

3.4 Other File Types
Symbolic links. Symbolic links are first expanded to a nor-
mal path, and the new path will be returned to the dispatcher,
which will re-dispatch the file request. The rest of the opera-
tion is just like a normal file.

3.5 The Timestamps
There are several timestamps in file systems to record some
information about a file.

• Access timestamp (atime): the last time the file was
accessed.
• Modified timestamp (mtime): the last time the file’s con-

tents were modified.
• Changed timestamp (ctime): the last time the metadata

of the file was changed.

Many file system operations (even read operations such as
read, stat, etc.) will modify some of the timestamps. Modi-
fying the timestamp should theoretically happen at the same
time as accessing the file, so they need to be done atomically.
We need to modify the timestamps in the same transaction as
the other operations. Here we observe that placing accesses
and modifications to critical variables at the end of a transac-
tion significantly reduces the probability of an abort due to
conflicts.

3.6 The Special Case: Rename
Both unlink and rmdir can only remove leaf nodes (files and
empty directories) from the file system. Rename, however,
has no such limitation and can move a filesystem subtree to
another location.

Rename is a special operation that requires atomically re-
moving a directory or a file from the file system tree and
adding it to another directory. Usually we will hold locks on
both directories to ensure the correctness. However, it may
happen that two rename operations both hold a lock and wait
to take each other’s lock, resulting in a deadlock. This prob-

/

A X

B

C

Y

Z

/

A X

B

C

Y

Z

Figure 6: Rename cycle. If rename only locks the parent
inode of the source and destination, the rename cycle (outside
of the directory tree) may occur.

lem can be solved by comparing the two locks and taking the
locks in a certain order. However, taking only the locks of
the two directories modified cannot prevent the occurrence
of a cycle. As shown in Figure 6, there are two path /A/B/C
and /X/Y/Z in the directory tree. There are two rename oper-
ations; one wants to rename /A/B to /X/Y/Z/B and another
wants to rename /X/Y to /A/B/C/Y.

Take the first operation as an example. 1. First it will walk
the path and find the source directory A/B (lock the parent
inode A) and the destination /X/Y/Z (lock the inode Z). 2.
Then it tries to delete the directory entry B from the directory A
and insert a new directory entry B to the directory Z. 3. Finally
it will release the two held locks. However, between step 1
and 2, another operation may also finish the path walking
and get the two inodes (source Y and destination C). Without
other protection, both operations can succeed, thus resulting
in a rename cycle. So we need to take extra steps to avoid
the cycle, for example, by adding a global rename lock to
serialize all rename operations.

We still adopt a lock-free design (HOP) for the rename
process. In the path walking (namex), we record the sequence
count of all the directories we traversed (as described in
§ 3.3.1), and finally check if all the sequence counts have
changed in one RTM. If there is a change, the namex opera-
tion will be executed again from the point of change; if there
is no change, the operation of deleting the directory entry
and adding it is continued. Since all of the above operations
(checking for path changes and modifying directory entries)
are done within the same RTM, a successful RTM commit
guarantees that the entire rename operation completes atomi-
cally. In the preceding example, if both operations complete
the path walking and enter the directory modification step
(step 2), then when one operation completes, the other opera-
tion will abort as its read set is modified, thus re-validating
the sequence number and failing because the sequence count
has been modified. It then rolls back, redos the path walking
and finds the directory tree has changed finally.

USENIX Association 20th USENIX Conference on File and Storage Technologies 23

KernFS

Pages for Coffers to store

data and metadata

Super

block

Page

allocation

table

Path-Coffer

mappings

LibFS
A Free

pages
B

C D

Coffer_enlarge Coffer_shrink

Allocator-K

Allocator-L

Figure 7: HTMFS consists of a KernFS and a user-space li-
brary (LibFS). LibFS calls Coffer_enlarge to ask for more
PM space from the kernel. When there are too many free
pages, LibFS return some to KernFS via Coffer_shrink.

4 Implementation
To illustrate the effectiveness of HTMFS, we implement a
new file system. After comparing several file systems, we
decide to implement HTMFS based on ZoFS [16] because
all operations in ZoFS are in user space, thus avoiding the
possibility of transaction abort due to system calls.

The overall architecture is shown in Figure 7. ZoFS con-
sists of a kernel-state KernFS and one (or more) user-space
file system libraries. HTMFS also consists of two parts, the
original KernFS of ZoFS and a new LibFS. In ZoFS, the en-
tire file system tree is divided into multiple zones according
to permissions.

4.1 KernFS
KernFS is responsible for maintaining information about all
the zones in the entire file system, and the attribution of all
persistent memory pages. Each zone has a root page that
stores the metadata for that zone. KernFS uses a persistent
hash table to store all the zones, where the key is the path
prefix of each zone and the value is the relative address of the
root page of each zone. When a user-space filesystem library
needs to access a path, KernFS uses this hash table to find the
root page of that zone and further access that zone.

KernFS manages all PM space globally at page granularity.
ZoFS uses a two-level allocation. KernFS allocates PM pages
to zones in bulk, and each zone further allocates its pages to
store data and metadata. KernFS keeps track of the allocation
status of each page, i.e., which zone each page belongs to and
which pages are free and can be allocated. In this process,
ZoFS uses a global volatile red-black tree to track all free
spaces in the allocation table, and another red-black tree [5]
to track all allocated spaces and the root page address of the
corresponding zone. These volatile data structures can be
easily recreated after a system crash.

4.2 LibFS
LibFS is responsible for managing all the metadata and data

inside a zone, including mainly files and directories. It con-
tains all the designs in § 3. The file structure, shown in Fig-
ure 3, is a three-level structure similar to a page table, support-
ing files up to 512 GB. Of course, it can be easily extended to
support larger files. The directory structure is a hash table as
shown in Figure 5.

Since KernFS uses a free list to manage free space, when
a zone issues a system call to the kernel to get more free
space (Coffer_enlarge), KernFS returns a free list. Thus,
our LibFS needs to convert the free list to a version recognized
by HTMFS (as shown in Figure 4). This prevents modifica-
tions to the kernel side.
Fallback path. When RTM fails, we choose to retry or fall-
back path depending on the return value. We also walk the
fallback path when the number of failed retries exceeds the
threshold (We choose 60 in the implementation as it gives
the best performance when varing the maximum retry num-
ber from 10 to 100.). In the fallback path we use inode-level
read/write locks for concurrency control and use RTM for
crash consistency. When RTM still fails in the fallback path,
we use journal as a last resort.

Operations on the normal path will first check if the write
lock is held by someone after RTM begins. If the write lock is
held by another task, the operation will rollback to the fallback
path and try to hold the write lock. If the lock is not held by
others during the check, but someone else gets the write lock
before the RTM commit, the operation will abort because it’s
read set has been modified, then retry the RTM operation, and
re-check the lock state.

4.3 Prevent RTM abort
There are many causes of RTM abort, starting with RTM
capacity abort. The simplest implementation is to wrap the
entire file system call in an RTM, and after experimenting
we find that most directory and file operations yield capacity
abort. After using HOP, HTMFS solve this type of problem.

In our implementation we find that one common cause of
RTM abort is page fault, which cannot be predicted. So we
prevent page fault failures by first accessing the memory that
needs to be accessed and preloading the code to be executed
after an RTM abort.

Lastly, the failure is due to conflict, which returns a spe-
cific value. In that case HTMFS tries to retry first, which can
resolve these conflicts if there is not much competition. If the
retries fail a certain number of times, HTMFS fallbacks to
the fallback path, i.e., using locks to protect critical code for
concurrency control. In fallback path we will first take locks
to prevent concurrent accesses and then use HOP to ensure its
crash consistency. So it can still meet the strong consistency
requirement.

There are some other reasons, such as intermixing AVX
and SSE instructions in an RTM, long strings in REP-MOV* in-
structions, etc., which can cause RTM abort [31]. In practice,
we found that the REP-MOV* instruction used by memcpy will

24 20th USENIX Conference on File and Storage Technologies USENIX Association

cause RTM abort in a high probability. So we use cyclic as-
signments (SSE2-MOV*) to replace the memcpy inside RTM.

5 Evaluation
In this section, we evaluate HTMFS against state-of-the-art
file systems using different data consistency mechanisms to
answer the following questions.

• Can HTMFS’s HTM-based hybrid strong crash consis-
tency techniques provide almost as good performance as
weak consistency?
• Can HTMFS improve the applications’ performance?
• How does HTM improve the performance of file sys-

tems?

5.1 Platform Setup
Experiments are conducted on a twenty-eight-core Intel®

Xeon® Gold 6330 CPU server. Hyper-threading is disabled,
and the CPU frequencies are set to 2.0GHz to get stable results
during the evaluation. The server is equipped with 512GB
DDR4 DRAM and 1024GB Intel® Optane™ Persistent Mem-
ory 200 series.

To evaluate the performance of HTMFS, we compare it
against state-of-the-art file systems. ZoFS [16] is evaluated
as the baseline. We also evaluate three state-of-art PM-aware
file systems (NOVA [80], SplitFS [37], and Libnvmmio [11]
on NOVA) to compare. Inode-level locks are used in these
file systems. We remove all clflush, clflushopt, clwb, and
fence instructions in all of these file systems to improve their
performance because these operations are not needed on the
eADR platform.

We use FxMark [52], filebench [72], TPC-C [15] on
SQLite [70], and LevelDB [24] to evaluate the performance
of HTMFS.

5.2 Micro-benchmarks
FxMark includes a set of micro-benchmarks that stress the
performance of FS-related system calls. We use FxMark to
evaluate the performance and scalability of HTMFS.

Figure 8 shows the performance of file data and meta-
data operations as the number of threads increases. HTMFS
outperforms other file systems in most workloads, including
data writes(8(a)(b)) and metadata operations(8(e)(g)(h)). For
some workloads, the results of SplitFS and Libnvmmio are not
fully displayed, as they get stuck or encounter self-contained
errors with an increasing number of threads.

Figure 8a shows the performance for data overwrite opera-
tions when different threads overwrite the first 4KB block of
different files (DWOL). HTMFS is slower than ZoFS because
we replace memcpy (which uses REP-MOV* instructions) with
SSE2-MOV* instructions, which takes more time. If we use
SSE2-MOV* instructions in ZoFS, the degradation disappears,
as ZoFS-SSE2 in the figure shows. Other workloads do not
suffer from this degradation because REP-MOV*-based mem-
cpy (in ZoFS) only outperforms SSE2-MOV*-based memcpy

(in HTMFS) when hitting the cache. In DWOL, almost all
writes hit the cache, while in other workloads, throughputs
are dominated by writes to PM.

With the medium sharing level, where different threads
overwrite different blocks in a shared file (DWOM), HTMFS
shows the best scalability. In contrast, the throughputs of other
file systems drop as the number of threads increases, as shown
in Figure 8b. When there are 28 threads, the throughput of
HTMFS is 8.4× of ZoFS. The good scalability of HTMFS
mainly comes from the HTMFS’s lock-free design. For tests
like DWOL and DWOM where the write operations only
write to the cache, this part of the difference is magnified to
become obvious.

For data append (DWAL, Figure 8c), HTMFS fails to scale
after 12 threads. NOVA scales best in this workload, thanks to
its per-core allocator. The performance gap between NOVA
and HTMFS mainly comes from the different write instruc-
tions they use. NOVA uses non-temporal write (NT-write)
instructions to store data, which bypass the cache and directly
write to PM. It only occupies the write bandwidth of the PM.
In contrast, HTMFS uses normal write instructions to store
data. In case of a cache miss, HTMFS first reads the data into
a cache line, then writes to the cache line, occupying both read
and write bandwidth of the PM. However, the reads and writes
to the PM interfere with each other, causing a decline in the
total bandwidth [81]. Therefore, in DWAL, where most writes
miss the cache, HTMFS has lower throughput than NOVA.
We replace the write instructions in ZoFS and HTMFS with
non-temporal ones and name them ZoFS-NT and HTMFS-
NT. They show similar good scalability as NOVA. However,
the performance begins to degrade after four threads because
ZoFS and HTMFS have reached the upper limit of the PM
write bandwidth, which keeps decreasing as the number of
threads increases [34, 81].

For data read workloads, when different threads read a
block in their respective private file (DRBL, Figure 8d), all
file systems scale nearly linearly. Reading a private block in
the shared file (DRBM) and reading the same block (DRBH)
show similar performance, so these results are not shown here.

For metadata creation workloads, Figure 8e shows the per-
formance when different threads create files in different direc-
tories (MWCL). HTMFS and ZoFS stop to scale after eight
threads. This is because HTMFS and ZoFS are bounded by
the limited PM write bandwidth resource.

However, NOVA performs better than HTMFS with less
PM write bandwidth. The reason is that ZoFS uses zero in-
dexes to indicate a non-exist page (as shown in Figure 3). It
needs to initialize the file index to zero when creating a file,
occupying significant PM bandwidth. ZoFS cannot use file
size to indicate whether a page exists in a file because when a
crash happens before an update operation completes, the file
size will be inconsistent with the file index after reboot. How-
ever, the file size and the file index are consistent at any time
in HTMFS, which makes it feasible for HTMFS to remove the

USENIX Association 20th USENIX Conference on File and Storage Technologies 25

1 2 4 8 12 16 20 24 28
#Threads

0

50

100

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(a) Data overwrite, low contention

1 2 4 8 12 16 20 24 28
#Threads

0

4

8

12

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(b) Data overwrite, medium contention

1 2 4 8 12 16 20 24 28
#Threads

0

1

2

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(c) Data append, low contention

1 2 4 8 12 16 20 24 28
#Threads

0

100

200

300

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(d) Data read, low contention

1 2 4 8 12 16 20 24 28
#Threads

0

1

2

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(e) Metadata create, low contention

1 2 4 8 12 16 20 24 28
#Threads

0

100

200

300

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

(f) Metadata create, medium contention

1 2 4 8 12 16 20 24 28
#Threads

0

5

10

15

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

)

(g) Metadata rename, low contention

1 2 4 8 12 16 20 24 28
#Threads

0

250

500

750

1000

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

(h) Metadata rename, medium contention

Ext4-DAX

NOVA-CoW

NOVA-relax

SplitFS

Libnvmmio

ZoFS

ZoFS-NT

ZoFS-SSE2

ZoFS-NZ

HTMFS

HTMFS-NT

HTMFS-NZ

Figure 8: Results of FxMark workloads. HTMFS outperformaces ZoFS in DWOM(8b), MWCM(8f), MWRM(8h) and achieves
similar performance in most cases. The worse performance of HTMFS (compared with ZoFS, e.g., DWOL(8a)) mainly comes
from the gap between a certain instruction we replace.

file index initialization when creating a file. After removing
the zero operation from HTMFS and ZoFS, the scalability
becomes better than NOVA, as shown by HTMFS-NZ (No
Zero) and ZoFS-NZ.

When creating files in a shared directory (MWCM, Fig-
ure 8f), HTMFS still scales well while other file systems
exhibit poor scalability as the number of threads increases.
The good scalability of HTMFS mainly comes from our lock
strategy. Instead of locking the parent directory before ev-
ery create operation, we only need hash table related lock,
which avoids a lot competition. HTMFS-NZ performs better
than HTMFS because it removes unnecessary memset from
code path. It achieves maximum throughput when using eight
threads, and degrades as threads increases [34, 81].

For metadata rename workloads, when different threads
rename files in different directories (MWRL, Figure 8g),
all file systems scale nearly linearly and HTMFS performs
best among them. When moving files into a shared directory
(MWRM, Figure 8h), like MWCM, HTMFS performs best
among them. Thanks to the fine-grained concurrency control
provided by HOP, HTMFS outperforms ZoFS by up to 6×.

Abort rate. Since we will retry for up to 60 times, an operation

Table 2: Abort rate. The abort operation accounts for a small
proportion of total operations, as well as the fallback path.

Operation Average Abort Count Fallback Rate
DWAL-8threads 0.002 0%
DWOL-1thread 0 0%
Varmail-1thread 0.004 0%
Varmail-28threads 0.303 0.17%
TPC-C SQLite 0.001 0%

may trigger abort up to 60 times, being counted as 60 aborts.
The average abort count is calculated by dividing the number
of aborts by the total number of operations completed. After
an operation has failed for all the 60 times, it will give up
and walk the fallback path. We count the number of times the
fallback path is executed and obtain the fallback rate as shown
in Table 2. In the several tests both the number of aborts and
the number of fallback path executions are negligible.
The latency of the fallback path. For the write operation, we
evaluate the operation latency of the normal path (RTM suc-
ceeds), the fallback path (RTM fails), and the journal-based
path. The results are shown in Table 3. Although the scala-
bility of the normal path is better than the fallback path, their
latency is about the same. For writing 4KB files, the latency

26 20th USENIX Conference on File and Storage Technologies USENIX Association

Table 3: Operation latency. Each path is independent. e.g.,
Fallback path latency does not contain that of running a nor-
mal path. The journal-based path is slower than others because
it requires writing more additional data.

Latency/cycles Write (4KB) Mkdir Rename

Normal path 620.77 12360.67 3378.03
Fallback path 654.47 12486.87 3390.23
Journal-based path 4924.00 13627.00 3548.53
CoW path (NT write) 2293.00 / /

Table 4: The throughput under high abort rate. We write
DWOH that multiple threads write to a shared block in a
shared file. HTMFS can fallback to lock rapidly to avoid
dramatic performance drops.

Throughput (Kops/s)/#Thread 1 8 28

HTMFS 3732 1309 1111
ZoFS 6148 1241 983
NOVA-CoW 517 416 408
NOVA-relax 1036 1026 992
Libnvmmio 520 416 413

of the journal-based path should be twice the normal path
theoretically. However, it is much higher than the theoretical
value since the normal path writes are not all written to the
PM (reside in the cache). To verify that, we add the latency of
the CoW path (using non-temporal write, where the writes fall
into the PM directly). The latency of the journal-based path
is slightly higher than twice that of the CoW path because the
former needs to record some metadata updates.

The latency difference between the different paths is not sig-
nificant for other metadata operations. The journal-based path
requires logging metadata updates, so the latency is slightly
higher than the others.
The performance under high abort rate. We design a work-
load with strong competition for fxmark that multiple threads
write to a shared block in a shared file to evaluate how
HTMFS’s fallback path performs. As shown in Table 4,
HTMFS is able to fall back to locks quickly. As the number
of threads increases, HTMFS’s performance becomes better
than ZoFS. The performance of HTMFS is weaker than ZoFS
with a single thread, the reason of which is still because we
use a slower memcpy to avoid RTM abort.

5.3 Macro-benchmarks
We select two filebench [72] workloads to evaluate the perfor-
mance of HTMFS. Table 5 summarizes the characteristics of
these workloads and the results are shown in Figure 9. We can
observe that HTMFS performs well in all chosen workloads.

Webproxy is a read-dominated workload, HTMFS achieves
similar performance with ZoFS and shows slightly higher
throughput than NOVA and Libnvmmio.

Varmail emulates an email server with a large number

Table 5: Filebench workload characteristics.

Workload # Files Dir Width File Size R/W Ratio

Webproxy 10,000 1,000,000 16KB 5:1
Varmail 1,000 1,000,000 16KB 1:1

of small files and involves both read and write operations.
HTMFS is a good fit for this workload as Varmail involves
more metadata operations. Besides, NOVA and Libnvmmio
also show good scalability.

In both workloads, SplitFS is also tested but not shown
here as it fails to scale after 8 threads and not outperforms
HTMFS.

5.4 Crash Consistency Correctness
Correctness is difficult to be proven without formal verifica-
tion. To show the crash consistency correctness of HTMFS,
we design a simple experiment to show the difference between
HTMFS and ZoFS (a weak crash consistency file system).

We first create a 4KB-file filled with character ‘a’. Then
we open it and write 8KB ‘b’ into it with a file system call
write(fd, data, 8192). In this process, the file system
1) first allocates a new free page as the second page (4KB–
8KB), 2) overwrites the first page (0–4KB) with ‘b’, 3) fills
the allocated page with ‘b’, 4) then links it to the file data
index, 5) and finally updates the file size from 4KB to 8KB
and updates both ctime and mtime in the file’s metadata to
the current time.

We inject several system crashes during the file system call
write(fd, data, 8192) and then check some characteris-
tics after rebooting the file system. As all PM writes in the
RTM are guaranteed to be persisted atomically [66], rather
than injecting crash in the RTM, we insert crash begin/after
the RTM. The results are shown in Table 6.

The first two rows show the characteristic of consistent
(all-or-nothing) states, respectively. If no change is applied,
we should see 4KB “a” in the file, the length of the freelist
being 249 (measured in the experiment), the ctime and mtime
both unchanged. If the whole operation is finished, the file
size, the content, the length of freelist (which should be 248
since a new page will be allocated) and the ctime and mtime
should be updated altogether.

Row 3–8 (from ZoFS-1 to HTMFS-3) show the character-
istic when ZoFS and HTMFS crash at different points. For
every crash point, ZoFS has some difference with both consis-
tent states. For example, at crash point 1, ZoFS is inconsistent
for its freelist is reduced by 1, which means there is a per-
sistent memory leak in ZoFS. At the same time, HTMFS is
consistent with “nothing” or “all” state, proving HTMFS has
stronger crash consistency than ZoFS.

5.5 Application Benchmarks
TPCC on SQLite. SQlite is a widely used lightweight yet full-
featured SQL database engine. We drive SQLite with TPC-

USENIX Association 20th USENIX Conference on File and Storage Technologies 27

Ext4-DAX NOVA-CoW NOVA-relax SplitFS Libnvmmio ZoFS HTMFS

1 2 4 8 12 16 20 24 28
#Threads

0

500

1000

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

(a) Webproxy

1 2 4 8 12 16 20 24 28
#Threads

0

500

1000

1500

T
h
ro

u
g
h
p
u
t

(K
o
p
s
/s

)

(b) Varmail

Figure 9: Filebench. HTMFS achieves similar throughput as ZoFS in these workloads.

Table 6: Crash consistency states of ZoFS and HTMFS. We
insert three crash points when writing 8KB ‘b’ into a file of
4KB ‘a’. HTMFS is consistent with all-or-nothing states after
crash, while ZoFS fail to restore consistent state.

Crash Point File Size Content[0] Len(freelist) Ctime&Mtime
Nothing 4KB ‘a’ 249 Not changed
All 8KB ‘b’ 248 Changed
ZoFS-1 4KB ‘a’ 248 Not changed
HTMFS-1 4KB ‘a’ 249 Not changed
ZoFS-2 4KB ‘b’ 248 Not changed
HTMFS-2 4KB ‘a’ 249 Not changed
ZoFS-3 8KB ‘b’ 248 Not changed
HTMFS-3 8KB ‘b’ 248 Changed

Table 7: TPC-C transaction mix.

Transaction NEW PAY OS DLY SL
Ratio 44% 44% 4% 4% 4%

C [15], which is an online transaction processing benchmark
that simulates an order processing application.

TPC-C involves five types of transactions: New-Order
(NEW), Payment (PAY), Order-Status (OS), Delivery (DLY),
and Stock-Level (SL). We use the mixed workload in the
experiment and run it with a single thread. Table 7 gives the
ratio of different transactions.

Figure 10 summarizes the throughput of different file sys-
tems. HTMFS achieves the second highest throughput, which
is 2% lower than ZoFS. While NOVA-CoW is 67% slower
than NOVA. This demonstrates the low overhead of HTMFS
in achieving strong consistency.
LevelDB. LevelDB [24] is a key-value storage library devel-
oped by Google. We use LevelDB’s db_bench benchmarks
to prove that we can achieve strong consistency with little
overhead. SplitFS and NOVA provide both strong and weak
consistent modes. However, we cannot run this benchmark
on SplitFS, so we only compare HTMFS with NOVA.

For the read operations, NOVA-CoW and NOVA-relax
perform almost the same. For the update operations (fill,
overwirte, and delete), NOVA-CoW is obviously slower than
NOVA-relax, while HTMFS always performs as well as ZoFS.

0 20000 40000 60000 80000 100000
Throughput (TpmC)

Ext4-DAX

SplitFS

NOVA-CoW

NOVA-relax

Libnvmmio

ZoFS

HTMFS

Figure 10: TPC-C SQLite. HTMFS provides stronger con-
sistency with acceptable performance reduction compared
to ZoFS, while NOVA sacrifices much more to get the same
consistency.
Table 8: Latency of LevelDB. HTMFS and ZoFS perform
almost identically, while we can observe a clear latency gap
between NOVA-CoW and NOVA-relax. This indicates that
HTMFS efficiently achieves data consistency guarantees.

Latency/µs NOVA-CoW NOVA-relax ZoFS HTMFS
Fill sync. 6.605 5.262 3.190 3.134
Fill seq. 4.605 3.284 2.071 2.039
Fill rand. 31.528 25.142 24.125 24.313
Overwrite. 39.662 31.641 42.128 42.207
Read seq. 1.020 1.004 2.111 2.136
Read rand. 7.357 7.029 11.027 10.600
Read hot. 1.373 1.373 1.289 1.281
Delete rand. 3.169 2.120 1.335 1.281

6 Discussion
6.1 Other File System Features
Previous sections mainly focus on the common file system
interfaces, like read/write. We suggest that our design can be
further combined with other features.

Compression Some file systems support data compression
features to reduce space on storage devices. The compression
procedure can be viewed as normal read (read the data and
apply the compression algorithm) plus write (write the com-
pressed data), which falls into the scope of our HOP design.

28 20th USENIX Conference on File and Storage Technologies USENIX Association

Deduplication Deduplication features the ability to reduce
redundancy in stored data to reclaim disk space. It involves
scanning all data at intervals to find duplicate blocks and
remove them. The scanning part does not introduce any con-
flicts, and the removing part is no different from common file
operations, which can also be handled by the HOP design to
ensure consistency.

Checksumming/Encrypting Checksumming and Encrypt-
ing features are supported for error-detection and security
considerations, which works by checksumming/encrypting
the data before write operations and verifying the checksum
during read operations. This procedure can be easily wrapped
in the original read and write operations protected by HOP.

To summarize, these advanced features are orthogonal to
our work and can be implemented in further works.

6.2 HOP in Key-Value Stores
Since key-value stores have a fixed access interface (e.g.
put/get/scan) like the file system, it is relatively easy to
use HOP for key-value stores. Like applying HOP to the
file system, when using it for key-value stores, we need to
consider how each API needs to be modified to reduce the
transaction size.

7 Related Work
To our best knowledge, no prior work has discussed using
HTM to improve the performance of strong consistent file
systems. We discuss related work in this section.

Persistent Transactions. As PM adds durability to mem-
ory, researchers study how to facilitate the PM program-
ming via transaction semantics. Some of these studies [9,
12, 14, 23, 25, 27, 38–40, 44, 45, 48, 49, 56, 61, 62, 75, 82, 83]
use software approaches, such as undo and/or redo logs,
to guarantee transaction semantics on PM; while the oth-
ers [3,4,8,21,33,35,36,44,54,63,71] leverage modified hard-
ware mechanisms. All these existing persistent transaction
systems targets on user-space applications or data structures,
while our work focuses on using HTM in PM file systems.
Compared with the data structures, the file systems put extra
challenges due to the FS’s inevitable large memory footprint
and complex operations.

Before eADR [29] is available, many HTM implementa-
tions or modifications are proposed to facilitate PM with
HTM [3, 4, 22, 35, 60, 77]. The design of HTMFS is orthog-
onal to these HTM hardware implementation. Furthermore,
HTMFS can be simplified if transaction suspend and resume
are supported on the platform, as what is planned in the next-
generation Intel’s server platform [30].

System Transactions and Transactional FS. Researchers
have studied to use transactions in an operating system [58,
59]. TxLinux [65] is the first operating system that leverages
MetaTM [60], an interrupt-compatible HTM model, in a co-
operative synchronization approach that combines HTM with

software locks. TxOS [57] proposes and implements system
transactions to provide system-wide transactional support. A
transactional Ext3 is implemented in TxOS.

A set of file systems provide transactional APIs to applica-
tions so that multiple file operations could be finished in an
ACID transaction. Examples include Microsoft TxF [2,50], In-
version [55], OdeFS [20], DBFS [53], TFFS [19], Stasis [67],
Amino [78], Valor [69], CFS [51], and TxFS [28]. Unlike
these prior studies, our work focuses on leveraging HTM to
enforce the performance and strong consistency within each
single file system operation. We think it possible to extend
HTMFS to implement cross-operation transactions and we
leave further exploration as future work.

HTM-assisted OCC. Several prior work has explored to
combine HTM with OCC-like mechanisms. DBX [76] first
use an OCC-like mechanism to address the limited working
set of HTM. Leis et al. [43] proposes to split a database trans-
action into small pieces, each of which is protected by an
HTM transaction. These pieces are then glued together via
timestamps to guarantee the atomicity of the whole database
transaction. HTCC [79] combines fine-grained locks and
HTM-assisted OCC. It uses HTM-assisted OCC only on cold
data to reduce the database transaction abort rates and lever-
ages delta-restoration to minimize the overhead of transaction
restarts. In contrast to this work that focuses on concurrent
consistency of database transactions, our work focuses on pro-
viding both concurrent consistency and crash consistency with
a combination of HTM and FS-aware OCC-like mechanism.

Page fault in RTM. PfTouch [73] efficiently solves the
problem of RTM abort due to page fault by modifying the
RTM hardware to recognize page fault and triggering page
fault in the abort handler. With RTM hardware support,
HTMFS can use these methods to reduce the performance
loss due to page fault abort.

8 Conclusion
We provide HTMFS, the first HTM-based PM file system.
HTMFS provides strong crash consistency and fine-grained
concurrency control with HTM support. Evaluation shows
that the performance of HTMFS is as good as file systems
that only provide weak crash consistency guarantees while
providing strong consistency guarantees. In some competitive
scenarios, the performance improvements are significant.

Acknowledgements
We sincerely thank our shepherd Changwoo Min, the anony-
mous reviewers, Nian Liu, Jingwei Xu, and Qing Wang for
their constructive comments and insightful suggestions. This
work is supported in part by the National Natural Science
Foundation of China (No. 61925206), the High-Tech Support
Program from Shanghai Committee of Science and Tech-
nology (No. 19511121100), and Huawei. Mingkai Dong
(mingkaidong@sjtu.edu.cn) is the corresponding author.

USENIX Association 20th USENIX Conference on File and Storage Technologies 29

References
[1] Intel® 64 and IA-32 Architectures Software Developer’s

Manual, volume 1, chapter 16. Intel, 2021.

[2] Christian Allred. Understanding windows file system
transactions. https://www.snia.org/sites/defau
lt/orig/sdc_archives/2009_presentations/t
uesday/ChristianAllred_UnderstandingWind
owsFileSystemTransactions.pdf, 2009.

[3] Hillel Avni and Trevor Brown. Persistent hybrid trans-
actional memory for databases. Proc. VLDB Endow.,
10(4):409–420, November 2016.

[4] Hillel Avni, Eliezer Levy, and Avi Mendelson. Hard-
ware transactions in nonvolatile memory. In Proceed-
ings of the 29th International Symposium on Distributed
Computing - Volume 9363, DISC 2015, pages 617–630,
Berlin, Heidelberg, 2015. Springer-Verlag.

[5] Rudolf Bayer. Symmetric binary b-trees: Data structure
and maintenance algorithms. Acta Informatica, 1:290–
306, 1972.

[6] S. Best. Jfs overview.

[7] Rev C, Dave Hitz, James Lau, and Michael Malcolm.
File system design for an nfs file server appliance. 10
2000.

[8] Daniel Castro, Paolo Romano, and João Barreto. Hard-
ware transactional memory meets memory persistency.
In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 368–377, 2018.

[9] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging locks for non-volatile mem-
ory consistency. In Proceedings of the 2014 ACM Inter-
national Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’14,
pages 433–452, New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[10] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic crash consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 228–243, New York,
NY, USA, 2013. Association for Computing Machinery.

[11] Jungsik Choi, Jaewan Hong, Youngjin Kwon, and Hwan-
soo Han. Libnvmmio: Reconstructing software IO path
with failure-atomic memory-mapped interface. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 1–16, 2020.

[12] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. Nv-heaps: Making persistent objects
fast and safe with next-generation, non-volatile memo-
ries. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XVI, pages
105–118, New York, NY, USA, 2011. Association for
Computing Machinery.

[13] Jeremy Condit, Edmund B Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Der-
rick Coetzee. Better i/o through byte-addressable, per-
sistent memory. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pages
133–146, 2009.

[14] Andreia Correia, Pascal Felber, and Pedro Ramalhete.
Romulus: Efficient algorithms for persistent transac-
tional memory. In Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures,
SPAA ’18, pages 271–282, New York, NY, USA, 2018.
Association for Computing Machinery.

[15] The Transaction Processing Council. Tpc-c benchmark
v5.11. 2021.

[16] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and
Haibo Chen. Performance and protection in the zofs
user-space nvm file system. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 478–493, 2019.

[17] Mingkai Dong and Haibo Chen. Soft updates made
simple and fast on non-volatile memory. In Proceed-
ings of the 2017 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’17, page 719–731.
USENIX Association, 2017.

[18] Subramanya R Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. System software for persistent mem-
ory. In Proceedings of the Ninth European Conference
on Computer Systems, pages 1–15, 2014.

[19] Eran Gal and Sivan Toledo. A transactional flash file sys-
tem for microcontrollers. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
ATEC ’05, page 7, USA, 2005. USENIX Association.

[20] Narain H. Gehani, H. V. Jagadish, and William D.
Roome. Odefs: A file system interface to an object-
oriented database. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, VLDB ’94,
pages 249–260, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

30 20th USENIX Conference on File and Storage Technologies USENIX Association

https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2009_presentations/tuesday/ChristianAllred_UnderstandingWindowsFileSystemTransactions.pdf

[21] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu.
Crafty: Efficient, htm-compatible persistent transactions.
In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2020, pages 59–74, New York, NY, USA, 2020.
Association for Computing Machinery.

[22] Ellis Giles, Kshitij Doshi, and Peter Varman. Hardware
transactional persistent memory. In Proceedings of the
International Symposium on Memory Systems, MEM-
SYS ’18, pages 190–205, New York, NY, USA, 2018.
Association for Computing Machinery.

[23] Ellis R. Giles, Kshitij Doshi, and Peter Varman. Soft-
wrap: A lightweight framework for transactional support
of storage class memory. In 2015 31st Symposium on
Mass Storage Systems and Technologies (MSST), pages
1–14, 2015.

[24] Google. Leveldb. https://github.com/google/le
veldb, 2021.

[25] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang,
Binyu Zang, Haibing Guan, and Haibo Chen. Pisces: A
scalable and efficient persistent transactional memory. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, pages
913–928, USA, 2019. USENIX Association.

[26] Valerie Henson. The many faces of fsck. https://lw
n.net/Articles/248180/, Sep. 2007.

[27] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and
Thomas Moscibroda. Log-structured non-volatile main
memory. In Proceedings of the 2017 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 703–717, USA, 2017. USENIX Associ-
ation.

[28] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu
Cheng, Vijay Chidambaram, and Emmett Witchel. Txfs:
Leveraging file-system crash consistency to provide acid
transactions. ACM Trans. Storage, 15(2), May 2019.

[29] Intel. eadr: New opportunities for persistent memory
applications. https://software.intel.com/conte
nt/www/us/en/develop/articles/eadr-new-o
pportunities-for-persistent-memory-appli
cations.html, Jan. 2021.

[30] Intel. Intel® architecture instruction set exten-
sions and future features programming reference.
https://software.intel.com/content/dam/dev
elop/external/us/en/documents-tps/archit
ecture-instruction-set-extensions-progra
mming-reference.pdf, May 2021.

[31] Intel. Intel® transactional synchronization exten-
sions (intel® tsx) programming considerations.
https://software.intel.com/content/www/us/
en/develop/documentation/cpp-compiler-de
veloper-guide-and-reference/top/compiler
-reference/intrinsics/intrinsics-for-int
el-advanced-vector-extensions-2/intrinsi
cs-for-intel-transactional-synchronizati
on-extensions-intel-tsx/intel-transactio
nal-synchronization-extensions-intel-tsx
-programming-considerations.html, June 2021.

[32] Intel. Restricted transactional memory overview.
https://software.intel.com/content/www/us/
en/develop/documentation/cpp-compiler-de
veloper-guide-and-reference/top/compiler
-reference/intrinsics/intrinsics-for-int
el-advanced-vector-extensions-2/intrinsi
cs-for-intel-transactional-synchronizati
on-extensions-intel-tsx/intrinsics-for-r
estricted-transactional-memory-operation
s/restricted-transactional-memory-overvi
ew.html, 2021.

[33] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli.
Failure-atomic persistent memory updates via justdo log-
ging. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages
427–442, New York, NY, USA, 2016. Association for
Computing Machinery.

[34] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and
Steven Swanson. Basic performance measurements of
the intel optane dc persistent memory module, 2019.

[35] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis
Viglas. Dhtm: Durable hardware transactional mem-
ory. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA ’18, pages
452–465. IEEE Press, 2018.

[36] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo
Cintra. Atom: Atomic durability in non-volatile memory
through hardware logging. In 2017 IEEE International
Symposium on High Performance Computer Architec-
ture (HPCA), pages 361–372, 2017.

[37] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
Splitfs: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 494–
508, 2019.

USENIX Association 20th USENIX Conference on File and Storage Technologies 31

https://github.com/google/leveldb
https://github.com/google/leveldb
https://lwn.net/Articles/248180/
https://lwn.net/Articles/248180/
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-programming-considerations.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intrinsics-for-restricted-transactional-memory-operations/restricted-transactional-memory-overview.html

[38] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen,
and Thomas F. Wenisch. High-performance transac-
tions for persistent memories. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 399–411, New York, NY,
USA, 2016. Association for Computing Machinery.

[39] R Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xin-
wei Fu, Anthony Demeri, Changwoo Min, and Sudarsun
Kannan. Durable transactional memory can scale with
timestone. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
335–349, 2020.

[40] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making volatile in-
dex structures persistent with DRAM-NVMM tiering. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 773–787. USENIX Association, July
2021.

[41] H. T. Kung and John T. Robinson. On optimistic meth-
ods for concurrency control. ACM Trans. Database
Syst., 6(2):213–226, June 1981.

[42] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon
Peter, Emmett Witchel, and Thomas Anderson. Strata:
A cross media file system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 460–
477, 2017.

[43] Viktor Leis, Alfons Kemper, and Thomas Neumann.
Exploiting hardware transactional memory in main-
memory databases. In 2014 IEEE 30th International
Conference on Data Engineering, pages 580–591, 2014.

[44] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
Dudetm: Building durable transactions with decoupling
for persistent memory. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’17, pages 329–343, New York, NY,
USA, 2017. Association for Computing Machinery.

[45] Youyou Lu, Jiwu Shu, and Long Sun. Blurred persis-
tence in transactional persistent memory. In 2015 31st
Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–13, 2015.

[46] Berenice Mann. New technologies for the arm a-profile
architecture. https://community.arm.com/devel
oper/ip-products/processors/b/processors
-ip-blog/posts/new-technologies-for-the-
arm-a-profile-architecture, April 2019.

[47] Marshall K. McKusick, William N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. A fast file system for unix.
ACM Trans. Comput. Syst., 2(3):181–197, August 1984.

[48] Amirsaman Memaripour, Anirudh Badam, Amar Phan-
ishayee, Yanqi Zhou, Ramnatthan Alagappan, Karin
Strauss, and Steven Swanson. Atomic in-place updates
for non-volatile main memories with kamino-tx. In Pro-
ceedings of the Twelfth European Conference on Com-
puter Systems, EuroSys ’17, pages 499–512, New York,
NY, USA, 2017. Association for Computing Machinery.

[49] Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. Pronto: Easy and fast persistence for volatile
data structures. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
’20, pages 789–806, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[50] Microsoft. Transactional ntfs (txf). https:
//docs.microsoft.com/en-us/windows/win
32/fileio/transactional-ntfs-portal, May
2018.

[51] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-
Won Lee, and Young Ik Eom. Lightweight Application-
Level crash consistency on transactional flash storage. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 221–234, Santa Clara, CA, July 2015.
USENIX Association.

[52] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and
Taesoo Kim. Understanding manycore scalability of file
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 71–85, 2016.

[53] Nicholas Murphy, Mark Tonkelowitz, and Mike Vernal.
The design and implementation of the database file sys-
tem. 2002.

[54] Matheus Almeida Ogleari, Ethan L. Miller, and Jishen
Zhao. Steal but no force: Efficient hardware undo+redo
logging for persistent memory systems. In 2018 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 336–349, 2018.

[55] Michael A. Olson. The design and implementation of
the inversion file system. In USENIX Winter 1993 Con-
ference (USENIX Winter 1993 Conference), San Diego,
CA, January 1993. USENIX Association.

[56] pmem.io. Persistent memory development kit. https:
//pmem.io/pmdk/.

[57] Donald E. Porter, Owen S. Hofmann, Christopher J.
Rossbach, Alexander Benn, and Emmett Witchel. Oper-
ating system transactions. In Proceedings of the ACM

32 20th USENIX Conference on File and Storage Technologies USENIX Association

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://docs.microsoft.com/en-us/windows/win32/fileio/transactional-ntfs-portal
https://pmem.io/pmdk/
https://pmem.io/pmdk/

SIGOPS 22nd Symposium on Operating Systems Princi-
ples, SOSP ’09, pages 161–176, New York, NY, USA,
2009. Association for Computing Machinery.

[58] Donald E. Porter and Emmett Witchel. Understand-
ing transactional memory performance. In 2010 IEEE
International Symposium on Performance Analysis of
Systems Software (ISPASS), pages 97–108, 2010.

[59] Hany E. Ramadan, C. Rossbach, and E. Witchel. The
linux kernel: A challenging workload for transactional
memory. 2006.

[60] Hany E. Ramadan, Christopher J. Rossbach, Donald E.
Porter, Owen S. Hofmann, Aditya Bhandari, and Em-
mett Witchel. Metatm/txlinux: Transactional memory
for an operating system. In Proceedings of the 34th
Annual International Symposium on Computer Archi-
tecture, ISCA ’07, pages 92–103, New York, NY, USA,
2007. Association for Computing Machinery.

[61] Pedro Ramalhete, Andreia Correia, and Pascal Felber.
Efficient algorithms for persistent transactional memory.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’21, pages 1–15, New York, NY, USA, 2021.
Association for Computing Machinery.

[62] Pedro Ramalhete, Andreia Correia, Pascal Felber, and
Nachshon Cohen. Onefile: A wait-free persistent trans-
actional memory. In 2019 49th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN), pages 151–163, 2019.

[63] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi,
Yongwei Wu, and Onur Mutlu. Thynvm: Enabling
software-transparent crash consistency in persistent
memory systems. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48,
pages 672–685, New York, NY, USA, 2015. Association
for Computing Machinery.

[64] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10(1):26–52, feb 1992.

[65] Christopher J. Rossbach, Owen S. Hofmann, Donald E.
Porter, Hany E. Ramadan, Bhandari Aditya, and Em-
mett Witchel. Txlinux: Using and managing hardware
transactional memory in an operating system. In Pro-
ceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, pages 87–102,
New York, NY, USA, 2007. Association for Computing
Machinery.

[66] Andy Rudoff. Questions about eadr, sfence and intel
tsx. https://groups.google.com/g/pmem/c/_DJC
FGylfVE/m/L0oyltg8BAAJ, 2020.

[67] Russell Sears and Eric Brewer. Stasis: Flexible transac-
tional storage. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI
’06, pages 29–44, USA, 2006. USENIX Association.

[68] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick
Valduriez. Transaction chopping: Algorithms and
performance studies. ACM Trans. Database Syst.,
20(3):325–363, sep 1995.

[69] Richard P. Spillane, Sachin Gaikwad, Manjunath Chinni,
Erez Zadok, and Charles P. Wright. Enabling transac-
tional file access via lightweight kernel extensions. In
Proccedings of the 7th Conference on File and Stor-
age Technologies, FAST ’09, pages 29–42, USA, 2009.
USENIX Association.

[70] SQLite. Sqlite transactional sql database engine. https:
//www.sqlite.org/, 2021.

[71] Long Sun, Youyou Lu, and Jiwu Shu. Dp2: Reducing
transaction overhead with differential and dual persis-
tency in persistent memory. In Proceedings of the 12th
ACM International Conference on Computing Frontiers,
CF ’15, New York, NY, USA, 2015. Association for
Computing Machinery.

[72] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system bench-
marking. USENIX; login, 41(1):6–12, 2016.

[73] Rubén Titos-Gil, Ricardo Fernández-Pascual, Alberto
Ros, and Manuel E Acacio. Pftouch: Concurrent page-
fault handling for intel restricted transactional memory.
Journal of Parallel and Distributed Computing, 145:111–
123, 2020.

[74] Haris Volos, Sanketh Nalli, Sankarlingam Panneersel-
vam, Venkatanathan Varadarajan, Prashant Saxena, and
Michael M. Swift. Aerie: Flexible file-system interfaces
to storage-class memory. In Proceedings of the Ninth Eu-
ropean Conference on Computer Systems, EuroSys ’14,
pages 14:1–14:14, New York, NY, USA, 2014. ACM.

[75] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight persistent memory. In Pro-
ceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 91–104, New
York, NY, USA, 2011. Association for Computing Ma-
chinery.

[76] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen.
Using restricted transactional memory to build a scal-
able in-memory database. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys
’14, New York, NY, USA, 2014. Association for Com-
puting Machinery.

USENIX Association 20th USENIX Conference on File and Storage Technologies 33

https://groups.google.com/g/pmem/c/_DJCFGylfVE/m/L0oyltg8BAAJ
https://groups.google.com/g/pmem/c/_DJCFGylfVE/m/L0oyltg8BAAJ
https://www.sqlite.org/
https://www.sqlite.org/

[77] Zhaoguo Wang, Han Yi, Ran Liu, Mingkai Dong, and
Haibo Chen. Persistent transactional memory. IEEE
Comput. Archit. Lett., 14(1):58–61, January 2015.

[78] Charles P. Wright, Richard Spillane, Gopalan Sivathanu,
and Erez Zadok. Extending acid semantics to the file
system. ACM Trans. Storage, 3(2):4–es, June 2007.

[79] Yingjun Wu and Kian-Lee Tan. Scalable in-memory
transaction processing with htm. In Proceedings of the
2016 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’16, pages 365–377, USA,
2016. USENIX Association.

[80] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 323–338, 2016.

[81] Jifei Yi, Benchao Dong, Mingkai Dong, Ruizhe Tong,
and Haibo Chen. MT2: Memory bandwidth regulation
on hybrid NVM/DRAM platforms. In 20th USENIX
Conference on File and Storage Technologies (FAST 22),
Santa Clara, CA, February 2022. USENIX Association.

[82] Pantea Zardoshti, Tingzhe Zhou, Yujie Liu, and Michael
Spear. Optimizing persistent memory transactions. In
2019 28th International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), pages
219–231, 2019.

[83] Lu Zhang and Steven Swanson. Pangolin: A fault-
tolerant persistent memory programming library. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, pages
897–911, USA, 2019. USENIX Association.

34 20th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background and Motivation
	File System Consistency and Performance
	Persistent Memory and PM File Systems
	Hardware Transactional Memory
	HTM in PM File Systems

	Design
	HOP
	File Operations
	Data Read
	Data Write
	Allocation

	Directory Operations
	Path Walk
	Directory Updates

	Other File Types
	The Timestamps
	The Special Case: Rename

	Implementation
	KernFS
	LibFS
	Prevent RTM abort

	Evaluation
	Platform Setup
	Micro-benchmarks
	Macro-benchmarks
	Crash Consistency Correctness
	Application Benchmarks

	Discussion
	Other File System Features
	HOP in Key-Value Stores

	Related Work
	Conclusion

