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ABSTRACT
Leveraging serverless computing for cloud-based machine
learning services is on the rise, promising cost-efficiency
and flexibility are crucial for ML applications relying on
high-performance GPUs and substantial memory. However,
despite modern serverless platforms handling diverse devices
like GPUs seamlessly on a pay-as-you-go basis, a longstand-
ing challenge remains: startup latency, a well-studied issue
when serverless is CPU-centric. For example, initializing
GPU apps with minor GPU models, like MobileNet, demands
several seconds. For more intricate models such as GPT-2,
startup latency can escalate to around 10 seconds, vastly
overshadowing the short computation time for GPU-based
inference. Prior solutions tailored for CPU serverless setups,
like fork() and Checkpoint/Restore, cannot be directly and
effectively applied due to differences between CPUs and
GPUs.
This paper presents gCROP (GPU Checkpoint/Restore

made On-demand and Parallel), the first GPU runtime that
achieves <100ms startup latency for GPU apps with up to
774 million parameters (3.1GB GPT-2-Large model). The
key insight behind gCROP is to selectively restore essential
states on demand and in parallel during boot from a pre-
pared checkpoint image. To this end, gCROP first introduces
a global service, GPU Restore Server, which can break the
existing barrier between restore stages and achieve parallel
restore. Besides, gCROP leverages both CPU and GPU page
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faults, and can on-demand restore both CPU and GPU data
with profile-guided order to mitigate costs caused by faults.
Moreover, gCROP designs a multi-checkpoint mechanism
to increase the common contents among checkpoint images
and utilizes deduplication to reduce storage costs. Imple-
mentation and evaluations on AMD GPUs show significant
improvement in startup latency, 6.4x–24.7x compared with
booting from scratch and 3.9x–23.5x over the state-of-the-art
method (CRIU).

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
Cloud Computing; Startup Latency; Checkpoint and Restore;
GPUs
ACM Reference Format:
Yanning Yang, Dong Du, Haitao Song, Yubin Xia. 2024. On-demand
and Parallel Checkpoint/Restore for GPU Applications. In ACM
Symposium on Cloud Computing (SoCC ’24), November 20–22, 2024,
Redmond, WA, USA. ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3698038.3698510

1 INTRODUCTION
With the increasing popularity of AI/ML apps, e.g., Chat-
GPT [17], Sora [27], and image recognition, machine learn-
ing has been widely adopted in today’s cloud. Cloud ten-
ants [5, 59, 65] can deploy their own machine learning mod-
els, providing diverse AI services to users. However, the
substantial computing demands of these AI services (mostly
model inference) cannot be efficiently met by CPUs alone. To
address the challenge and enhance AI service performance,
cloud vendors tend to deploy and support GPUs on the cloud
for developers and end-users to use.

Compared with (cheaper) CPU instances, GPUs bring sig-
nificant resource and cost challenges. On AWS, a GPU in-
stance (p3.2xlarge with one V100 [19] GPU, price: 1524.24
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USD per month) is about 9x expensive compared with CPU
instances (t2.2xlarge) [7]. To mitigate the costs and also fit
the on-demand nature of services, a recent trend to deploy
GPU apps are utilizing serverless computing, which promises
cost-efficiency and flexibility, e.g., ServerlessLLM [44].

However, despite modern serverless platforms handling di-
verse devices like GPUs seamlessly on a pay-as-you-go basis
(e.g., AWS SageMaker [65] and Alibaba serverless GPU [5]),
a longstanding challenge remains: long startup latency. For
example, initializing GPU apps with small GPU models, like
MobileNet, demands several seconds (§2.2). For more intri-
cate models such as GPT-2, startup latency can escalate to
around 10 seconds, vastly overshadowing the short computa-
tion time for serverless tasks like GPU-based inference (e.g.,
∼5ms – ∼500ms). Although cold startup latency is a well-
studied problem for CPU-centric serverless computing [56],
it has little progress for GPU apps. Prior solutions [26, 31, 42,
61, 69, 71, 72] tailored for CPU serverless setups, e.g., fork(),
cannot be directly and effectively applied due to the lack of
some features in GPUs. For example, GPUs do not have the
OS kernel which can help to reuse application states with
fork().

State-of-the-art efforts have explored caching [76, 78, 80],
API forwarding [43, 60, 79], and optimized loading [25, 44,
81], to optimize the startup latency. However, the effective-
ness and efficiency of caching highly rely on the policies,
and it may incur non-trivial resource overheads to keep GPU
apps alive. Although API forwarding (e.g., FaaSwap [79]) can
skip the GPU context and library initialization costs (about
800ms for a PyTorch application on our AMD platform), it
introduces inter-process communication (IPC) overhead be-
tween GPU apps and the GPU server. Optimized loading
systems, e.g., ServerlessLLM [44] and SAGE [81], design bet-
ter image formats and utilize OS and hardware features (e.g.,
mmap()) to improve the loading performance. However, the
latency is still far from ideal — the actual execution time is
usually less than 10% of the startup time (§2.2).

This paper presents gCROP, the first GPU runtime system
that achieves <100ms startup latency for large GPU apps
(GPT-2-Large). gCROPwill manage the GPU apps in the local
machine, and can be incorporated with serverless systems
like prior container-based serverless runtimes (e.g., runc [22]
and gVisor [11]). gCROP adopts the idea of init-less boot-
ing [42], skipping the initialization with checkpoint images,
which has been widely explored in CPU-centric serverless
systems. Specifically, gCROP leverages Checkpoint/Restore
which can directly restore from a well-prepared checkpoint
image, therefore skipping many unnecessary (and redun-
dant) initialization tasks.

Designing an efficient Checkpoint/Restore (C/R) for GPU-
based serverless apps is non-trivial — our experiments on

CRIU [9] show that it still has 193ms–2,278ms startup la-
tency (image cached in memory). Specifically, gCROP needs
to resolve three major challenges. First, the restore proce-
dure for GPU-based apps is significantly longer compared
with CPU apps. Besides the CPU data in DRAM, restore for
GPU apps still needs to load the GPU data including model
parameters to the GPU (VRAM), taking several seconds for
large models. An intuitive idea is to parallelize the CPU and
GPU recovery, however, we observe the existence of restorer
barrier, which is the root cause of why existing GPU C/R
can only perform (mostly) in a sequential way — GPU data
need to be restored before the barrier while CPU data need
to be restored after the barrier (§2.3). Second, GPUs compli-
cate the on-demand recovery. When optimizing C/R for CPU
processes, a common strategy involves utilizingmmap() for
on-demand recovery [42, 61, 72, 74]. However, GPUs lack
native support for mmap(), presenting a significant hurdle,
and fault-based on-demand paging may lead to higher costs
because of CPU-GPU data transfer. Last, GPU apps’ check-
point images incur much more memory and storage costs.
For example, the checkpoint image of MobileNet requires
468MB to store CPU data and 283MB to store GPU data. How-
ever, MobileNet has only 2.5M parameters, which requires
less than 10MB of space if stored using float32.
To tackle the challenges, we propose the design of on-

demand and parallel restore for GPU apps in gCROP. First,
gCROP introduces a delegation-based parallel restore, break-
ing the restorer barrier by delegating the GPU recovery task
to a global GPU Restore Server (an OS service). It leverages
address space isolation as the new barrier, harmonizing the
performance and feasibility. Second, gCROP supports on-
demand restore by introducing gmmap(), a mechanism to
support on-demand paging on GPU devices. gCROP com-
bines both CPU mmap() and GPU gmmap() to mitigate re-
covery costs, and adopts a profile-guided recovery mechanism
to reduce the costs caused by faults. Last, gCROP designs a
multi-checkpoint mechanism, which increases the ratio of
identical content among checkpoint images of different GPU
apps. Based on the mechanism, gCROP can effectively reduce
the storage costs through deduplication.
We have successfully built the prototype of gCROP, the

first GPU runtime (for serverless and other scenarios) with
low startup latency. We implement gCROP based on CRIU
with AMD GPU, and evaluate it using both microbench-
marks and real-world applications. Results show significant
improvement in startup latency, 6.4x–24.7x compared with
booting from scratch and 3.9x–23.5x over the state-of-the-art
method (CRIU).
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2 MOTIVATION
2.1 GPU-based Serverless Computing
Serverless computing. Serverless computing or Function
as a Service (FaaS) is a trending cloud computing paradigm.
In this model, users only need to submit their function code
to the cloud provider to handle requests and don’t have to
manage resources such as servers by themselves. Serverless
typically provides the ability to automatically scale (or auto-
scale) based on load. During scaling, the FaaS platform needs
to initialize a new instance for handling requests — this pro-
cess is called cold start. As the execution time of serverless
functions is usually very short, reducing cold start latency
is crucial for improving the performance of serverless plat-
forms. Many optimizations have been proposed to reduce
startup latency, including caching [36, 45, 53, 61, 64, 66, 77],
serverless-customized container designs [11, 30], fork-based
approaches [31, 42, 53, 61, 74] and Checkpoint/Restore [33,
70–72].
GPUs are becoming more important for serverless apps.
Heterogeneous devices and accelerators (like GPUs) are be-
coming more important for serverless computing, especially
considering AI/ML workloads like LLM (ChatGPT). In the
following text, we use GPU process to refer to apps that use
both CPU and GPU and CPU process to refer to apps that
only use CPU. Prior academic works [32, 37, 41, 48, 52, 62,
63, 76, 78, 80] and cloud vendors [5, 65] have already at-
tempted to integrate GPUs into serverless platforms. Similar
to CPU serverless, users only need to upload function code
and model files to the GPU serverless platform. When re-
quests arrive, the platform starts the function and loads the
model onto the GPU to process.

Specifically, the startup and the execution of a GPU process
can be divided into four stages: (1) loading the framework
(e.g., loading the Python interpreter, PyTorch framework), (2)
loading the model, (3) transferring the model to the GPU and
(4) executing the model. Stage (3) and (4) implicitly involve
a lot of trigger-based initialization, like the creation of GPU
contexts, the initialization of GPU-accelerated libraries, and
the compilation of intermediate GPU kernel code to machine
code. In the rest of the section, we use Python and PyTorch
as the framework by default, nevertheless, our method is
general and can support other frameworks (e.g., TVM [3]).
Cold start challenges for GPU apps. The startup latency is
high for GPU-based serverless apps, and prior optimizations
for CPU-based serverless apps are not feasible. First, GPU
apps consume significantly more resources than regular CPU
functions, making caching-based methods more costly. For
example, a fully warmed-up MobileNet requires 792MB of
memory, which is larger than most CPU-based serverless
functions, and 322MB of GPU VRAM, which is much more

Table 1: The startup and execution latency breakdown.
C-ResNet152 is generated using TVM [3], while others
are implemented on PyTorch. We conduct our tests on
an AMD GPU (§6) and clear the page cache before each
test.

MobileNet ResNet152 GPT-2 C-ResNet152
Parameters 2.5M 60.2M 774.0M 60.2M

Load framework PyTorch: 1,990.0ms 160.3ms
Load model 89.1ms 1,146.0ms 5,850.7ms 448.1ms
First transfer 869.6ms 928.0ms 1,317.2ms 196.2ms

(Second transfer) (9.1ms) (59.5ms) (272.8ms) (33.8ms)
First execution 802.0ms 882.6ms 965.4ms 13.1ms

(Second execution) (5.8ms) (16.3ms) (255.5ms) (10.5ms)
Total 3,750.7ms 4,946.6ms 10,123.3ms 817.7ms

expensive than regular memory. Second, GPU processes lack
some characteristics of CPU processes, making certain opti-
mizations (e.g., fork()) not directly applicable to GPU func-
tions. For example, GPUs lack the OS support for fork(), and
GPU memory usually does not support the copy-on-write
feature, both of which are commonly used techniques for the
rapid startup of CPU functions. Last, GPU functions have
more startup procedures and more complex states, leading to
longer initialization time compared to most CPU functions.
Although some traditional optimization methods can still be
applied, their effectiveness is limited.

2.2 A Quantitative Analysis on GPU Startup
Latency breakdown. We analyze the cost of cold start la-
tency for common GPU serverless apps (Table 1). Specifi-
cally, we break down the startup and the execution latency
for three apps with different sizes of models: MobileNet (2.4
million parameters) represents a small model, ResNet152
(60.2 million parameters) represents a medium model, and
GPT-2-Large (774.0 million parameters) represents a large
model. All these apps are based on Python and PyTorch. We
also break down the latency of ResNet152 with TVM (based
on C++) to show the impacts of different GPU frameworks.
We obtain the transfer and execution latency by measuring
the corresponding framework APIs or ROCm APIs. Because
there is a lot of trigger-based initialization (referred to as
GPU runtime initialization), which costs a lot of time during
the first call to these APIs, we measure both transfer and
execution latency twice. The “Second transfer” and “Second
execution” in the table can represent the real transfer and
execution costs after a model has been fully initialized and
warmed up.

As shown in Table 1, during startup and the first execution,
the GPU process spends a substantial amount of time on ini-
tialization and the actual execution time is small compared
to the initialization latency. In the case of MobileNet, the
actual execution time is only 0.15% of the total time, while
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Figure 1: Comparison between booting from scratch
and restoring. (a)We cache themodel files and the check-
point image files in the page cache, and warm up the
environment. (b) We clear the page cache and do not
perform any warm-up operation.

for GPT-2-Large, it is just 2.52%. Additionally, for small and
medium models, loading framework takes the most signif-
icant cost, constituting 53% and 40% of the total costs. For
large models, loading models takes the most significant costs,
amounting to 57% of total costs.
State-of-the-art works. To mitigate the long startup latency
of GPU apps, prior efforts have explored three types of op-
timizations. First, skip the (almost) whole initialization
with caching [76, 78, 80]. A serverless platform can cache
hot (or recently used) GPU apps on the CPU (host memory)
and GPU (VRAM). When a request arrives and the cache is
hit, the request can be directly handled by the GPU apps,
achieving optimal performance with minimal startup latency
(e.g., routing and queuing). However, the effectiveness and
efficiency of caching highly rely on the policies, which are
still challenging to design in real-world scenarios. Besides,
caching may incur non-trivial resource overheads. An opti-
mization is to only cache partial data to CPU and GPU, while
loading others on-demand, called partial caching [55, 77],
which can better balance the performance and the resource
costs. We have implemented partial caching in GPU to only
cache the framework, however, our results (§6) show that
loading models and transferring them to the GPU still bring
non-trivial costs, e.g., the latency for MobileNet is 243ms
and for GPU-2-Large is 925ms.
Second, skip the initialization of GPU runtime with

API forwarding, e.g., FaaSwap [79] and others [43, 60]. This
method relies on a proxy-based design — a pre-initialized
GPU server (directly communicating with GPUs) acts as a
proxy and GPU applications send the CUDA [10]/ROCm [23]
commands and the data to the proxy for processing. It can ef-
fectively optimize the GPU runtime initialization costs (about
800ms for a PyTorch application in a warmed environment
on our AMD platform). However, it introduces a new type
of cost — the inter-process communication (IPC) overhead
between the GPU application and the GPU server. Besides,
it still requires loading framework and models, which also
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Stage-1:
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Common states 
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CPU memory/mapping
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Figure 2: Breakdown of GPU restore. We label the la-
tency of each stage for small and large GPU apps (Mo-
bileNet and GPT-2-Large). We test the latency with all
image data cached in host memory.

take non-trivial costs for GPU apps. Furthermore, different
GPU applications need to share the GPU servers, leading to
potential security issues.
Last, due to limitations of caching whole apps and for-

warding, some works explore optimized loading with a
set of techniques [25, 44, 81]. For example, Safetensors [25]
adopts mmap()-based loading. Although it can achieve bet-
ter performance, it still causes significant page faults and
cannot fully utilize multi-tier memory hierarchy [44]. Server-
lessLLM [44] takes one step further, proposing a better image
format for sequential and chunk-based loading (no serializa-
tion), and also utilizing a parallel design to effectively lever-
age multi-tier features. SAGE [81] re-organizes the startup
procedure and attempts to decouple the initialization of the
process and the preparation of the model data and process
them simultaneously. However, all these approaches can-
not optimize the process initialization costs (about 1600ms
for a PyTorch application in a warmed environment on our
platform, including about 800ms to load the framework and
800ms to initialize the GPU runtime), which is the primary
overhead for applications with small models.
Initless-bootingwithCheckpoint/Restore (C/R).Apromis-
ing approach to optimize the startup latency is to skip the ini-
tialization with states reusing, e.g., Checkpoint/Restore (C/R)
or fork(), which has been a common method to optimize
the cold start latency of CPU functions [33, 70–72]. It saves
the states of an already initialized process into images via
checkpointing and then restores the process states through
replayable execution, which skips the initialization phase,
thus speeding up process startup. CRIU [9] is currently one
of the most popular Checkpoint/Restore tools. However, C/R
is rarely explored for GPU serverless applications because
of the lack of both OS and hardware support.

Recently, GPU vendors have started efforts to support C/R
for GPU applications, e.g., CRIUAMDGPUplugin [28]. To un-
derstand the effectiveness, we adopt the method and present
an evaluation for commonGPU applications, as shown in Fig-
ure 1. As a result, we observe that C/R effectively optimizes
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the start latency for GPU applications with small models,
e.g., MobileNet. However, the costs are still high, achieving
several hundred milliseconds even in the case of data cached
in page cache. For GPT-2-Large, restoring takes even longer
compared to booting due to the larger amount of data that
needs to be recovered.
Performance breakdown ofGPUCheckpoint/Restore (C/R).
We break down the restore phase of CRIU into four stages,
as shown in Figure 2. First (Stage-1), CRIU processes will
read the checkpoint image, perform basic initialization, and
fork() a new process (called restore process). Initially the re-
store process can execute like a regular process and can be
regarded as a full-featured restorer. The parent (CRIU process)
is called watching process. Stage-1 takes small costs, about
3.5–3.8ms.
Second (Stage-2), the full-featured restorer will recover

most of states and data except for CPU memory, including
CPU file descriptors, GPU data, kernel driver states in AMD
GPUs (called kernel fusion driver, KFD [28]), etc. Here we use
GPU data to refer to memory contents that are managed by
AMDGPU driver (most in VRAM, some in the host memory),
and CPU data to refer to regular memory contents that need
to be restored (all in the host memory). The costs of Stage-2
depend on the size of the model, e.g., MobileNet takes 101ms
while GPT-2-Large takes 912ms.

Third (Stage-3), the restore process will restore the CPU
memory and mappings (i.e., page tables). To achieve this, the
restore process will unmap its old mappings (including CRIU
code, libraries, etc.) and map new ones for the target process.
To perform this operation, the restore process requires some
code inmemory (specifically, the code responsible for unmap-
ping and restoring target memory). Therefore, CRIU installs
and jumps to amini restorer (Figure 3, Step 1), which includes
self-contained code and data in a region not used by either
the restore process or the target process. The mini restorer
will unmap all other memory regions (Figure 3, Step 2) that
may potentially overlap with the new memory mappings,

and then recover the CPU memory states and mappings dur-
ing this stage (Figure 3, Step 3). As the application usually
maintains the whole model in the memory, the costs of Stage-
3 also highly depend on the model size, i.e., MobileNet takes
162ms while GPT-2-Large takes 1310ms.

Last (Stage-4), some states, e.g., shared virtual memory
(SVM) [14] ranges, are CPU mapping-dependent, which can
only be recovered after Stage-3. As the restore process has
no restorer anymore, AMD provides a new driver interface
that allows the watching process to help the restore pro-
cess recover these states. Consequently, the restore process
becomes the target process capable of handling requests.
Storage overhead. Besides the restore latency, another chal-
lenge for GPU C/R is the high storage overhead. To check-
point programs’ states, CRIU will generate multiple image
files, including metadata for the process states, CPU memory
data, GPU device metadata, and GPU data. Among these,
the CPU and GPU data images incur significant overhead.
For example, the checkpoint image of MobileNet requires
468MB to store CPU data and 283MB to store GPU data,
while the model parameters only require <10MB of space (if
stored using float32). Therefore, to apply C/R for cold start
optimization, it is crucial to minimize storage overhead.

2.3 Insights and Challenges
We present gCROP, a new GPU runtime system (based on
Checkpoint/Restore) that achieves low startup latency with
two insights. First, GPU data restore (Stage-2) and CPU data
restore (Stage-3) are two major bottlenecks with no theo-
retical dependency. gCROP aims to restore the two parts in
parallel, fully utilizing the CPU and PCIe (GPU) bandwidth
to restore the states efficiently. Second, since not all restored
states are utilized during execution [42], gCROP employs
on-demand states restore to further optimize the latency.
Furthermore, by simultaneously enabling our on-demand
and parallel features, we can overlap computation and data
restoration during the execution phase, thereby further re-
ducing latency.
However, designing the on-demand and parallel restore

for GPU apps is challenging.
Challenge-1: restorer barrier restricts the parallel restore
of CPU and GPU data. An intuitive parallel method is to
utilize a background thread to restore GPU data (Stage-2)
when the main thread is restoring the CPU data (Stage-3).
However, we observe there is a strong barrier between Stage-
2 and Stage-3, called the restorer barrier, as shown in Figure 2,
restricting the parallel design. Specifically, to restore the GPU
data (Stage-2), the restore process utilizes various libraries
for complex operations, such as employing libdrm for DMA
operations (Figure 3). However, in Stage-3, to restore the
target process’s memory states, the mini restorer will unmap
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all old mappings (Figure 3 Step 2), which means all these
libraries will be unmapped, making it almost impossible to
restore GPU data in this stage. Consequently, CRIU must
first execute the GPU data recovery in Stage-2, followed by
transitioning to the mini restorer for Stage-3 (Figure 3 Step
1) and unmapping the libraries, code, and data used in Stage-
2 (Figure 3 Step 2). This sequential execution prevents the
parallel processing of Stage-2 and Stage-3, leading to the
establishment of the restorer barrier — a strict dependency
between the two stages.
To address this challenge, we propose a delegation-based

parallel restoremechanism. Rather than conducting all restora-
tion within the restore process, we advocate transferring
control of both the GPU memory regions that need to be
restored and data to a global GPU restore service (designed
in this work), delegating the restore of GPU data to this
service. This approach allows GPU data to be restored in a
separate address space, leveraging address space isolation as
the new restorer barrier. Consequently, GPU and CPU data
can be restored in parallel within distinct address spaces. We
explain the details of this design in §3.2.
Challenge-2: GPUs bring new challenges for on-demand
recovery. When optimizing Checkpoint/Restore for CPU
processes, a common strategy involves utilizingmmap() for
on-demand recovery [42, 61, 72, 74]. However, GPUs lack
native support for mmap(), presenting a significant hurdle.
What’s worse, in GPU processes, both the CPU and GPU act
as accessors for some memory regions managed by the GPU
kernel driver [28], significantly heightening the complexity
of on-demand restore. Moreover, as the GPU must traverse
PCIe each time it accesses data not in VRAM, the overhead of
on-demand restore surpasses that of mmap-based methods
for CPU processes.
To tackle this challenge, we propose an on-demand solu-

tion based on multiple page tables for both CPUs and GPUs.
Specifically, we introduce gmmap() (GPU mmap) to sup-
port on-demand GPU paging and combine mmap() and
gmmap() to enable on-demand GPU recovery. Addition-
ally, to mitigate potential performance issues arising from
GPU page faults, we introduce a profile-guided approach to
the background restore of GPU data using the GPU Restore
Server, leveraging the knowledge of page access orders.
Challenge-3: checkpoint image consumes much space.
To reduce storage overhead, a potential optimization is to
deduplicate identical contents among checkpoint images of
different GPU applications. Since these applications are often
based on the same GPU runtime and framework, this ap-
proach may save a lot of storage space. However, we observe
that due to diverse data layouts across processes, identical
content is relatively rare among different images.
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Figure 4: Overview of gCROP. gCROP is a GPU runtime
for low startup latency.

To tackle this challenge, gCROP introducesmulti-checkpoint
mechanism, which can effectively increase the ratio of identi-
cal contents. Specifically, we observe that, unlike the booted
processes which usually have diverse layouts, restored pro-
cesses have the fixed mapping (as the saved ones). Therefore,
unlike prior systems that checkpoint the app at the entry-
point, gCROP will perform checkpoint twice — the first for
the GPU framework and the second for the apps. All the apps
using the same framework will share the same framework
checkpoint, increasing the number of identical pages.

3 DESIGN
To overcome the above challenges, we propose gCROP (GPU
Checkpoint/Restore made On-demand and Parallel). gCROP
utilizes C/R technology to bypass the initialization phase of
applications and optimizes the restore phase through two
innovative approaches: parallel restore (§3.2) and on-demand
restore (§3.3). In the restore phase, gCROP first parallelizes
the restore of the process states and the GPU data. Then
once the necessary data is restored, the process begins to
execute, and any further data required is restored on demand
or in the background. Moreover, to save space, we propose
a multi-checkpoint mechanism (§3.4) to split the function
image into its private parts and the common parts shared
among functions and only store the private parts once. Next,
we first introduce the overall architecture, and then explain
the techniques.

3.1 System Overview
Platform. gCROP targets similar programming models of
nowadays serverless platforms like AWS Lambda [4] and
others [2]. gCROP requires developers to explicitly specify
the hardware resources of the functions, e.g., the GPU type
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and the requested size. Developers can write their functions
based on a specific language runtime supported by the plat-
form, and can utilize the GPU devices if specified. When a
GPU-dependent function is uploaded to the platform, gCROP
will prepare a checkpoint image for it and profile the GPU
data restore order. When a request arrives, the API Gateway
of a platform schedules a function’s instance (when scal-
ing) to machines satisfying the hardware requirements, and
then notify the gCROP Daemon on each machine to load the
checkpoint image of the function and restore the instance.
Architecture. Figure 4 shows the architecture of gCROP.
gCROP includes four components: gCROP Daemon, Image
Storage, Restore Server, and the kernel driver (for page fault
handler). The entireworkflow can be divided into four phases:
checkpoint phase, profile phase, restore phase and execution
phase. The first two phases are offline (performed during
function uploading) and the others are online (triggered
when requests arrive).

In the checkpoint phase (Figure 4-a), gCROP will boot an
instance when a function is uploaded, and then checkpoint
the target process into the raw checkpoint image, and dedu-
plicate the raw image to save space (§3.4). When the gCROP
Daemon receives a request (a new instance scheduled), it
launches a CRIU watching process to restore the target pro-
cess. To accelerate the restore phase, the restore of GPU data
is delegated to Restore Server (§3.2), as shown in Figure 4-b.
Moreover, Restore Server adopts an on-demand mechanism
to restore the GPU data. It allows the restore process to pro-
ceed to the next phase without restoring all the GPU data
and continues to restore the GPU data in the background
(on-demand) (§3.3). In the execution phase (Figure 4-c), the
page fault mechanism intercepts memory access requests
in the GPU kernel for those unrestored areas. To mitigate
the costs caused by page faults, gCROP will also profile the
GPU apps offline to generate a trace, and utilize the trace to
guide the restore procedure to recover pages that are highly
possible used first (§3.3).

3.2 Parallel Restore
We first explain how to enable parallel restore for GPU apps,
as shown in Figure 5. To break the restorer barrier, gCROP in-
troduces two newprimitives: delegation and asyncNotification,
as well as a dedicated system service called Restore Server.
Restore Server. gCROP introduces a system service, Restore
Server, to assist and boost the procedure of restore. Restore
Server exposes a set of interfaces to allow CRIU watching
processes (launched by gCROP Daemon) and restore pro-
cesses to invoke, through IPC (domain sockets). Unlike the
GPU servers used in prior API forwarding systems, Restore
Server is only involved during the startup and does not in-
tercept GPU APIs during execution. Therefore, it will not
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Figure 5: Parallel restore.

incur overhead to the application execution during runtime.
In our prototype, we implement Restore Server in userspace.
GPU data management and hardware support. We first
explain the mechanisms to manage GPU data in current
GPU systems, which is the basics of our design. GPUs usually
support low-level interfaces and abstractions to manage GPU
data, which is necessary for both sharing memory and C/R.
For example, AMD GPU and ROCm runtime manage the
GPU data using the abstraction called buffer objects. A buffer
object is a data structure used to manage memory (such as
GPU VRAM) utilized by the GPU driver, and each buffer
object represents a contiguous virtual memory area [50].
Besides, the AMD GPU driver provides two interfaces [1],
import() and export(), to allow processes to export a buffer
object to a Linux dma-buf [6], or import a buffer object from a
dma-buf. The dma-buf is supported by Linux to share buffers
for hardware (DMA) access across multiple device drivers
and subsystems, and can be exposed as a file descriptor in
userspace for applications to use.
Delegation. The key insight to enable parallel restore is to
delegate the GPU data restore to Restore Server to break the
restorer barrier. Specifically, when the restore phase begins,
the restore process first restores the driver states through
ioctl() interface and gets a set of dma-buf file descriptors
(FDs) which represent the memory regions to be restored.
Instead of importing these file descriptors in the restore pro-
cess, the restore process will transfer the FDs to Restore
Server at the beginning of Stage-2 through a Unix domain
socket. It will also transfer the function image FD to Restore
Server. After receiving these FDs, Restore Server imports
them and obtains memory access permissions for these re-
gions. This method separates the restore of CPU and GPU
data into different address spaces, which breaks the restorer
barrier. Consequently, Restore Server can restore GPU data
in the background, allowing the restore process to continue
with other tasks without waiting for the GPU data to be fully
restored.

421



SoCC ’24, November 20–22, 2024, Redmond, WA, USA Yanning Yang et al.

mapped

unmapped

CPU PT

Image file

CPU PT

CPU Page fault

Find

Update & map

Restored 

buffer object

GPU Page fault

Find buffer
              object (BO)

Map

GPU PT

Restore
Server

BO
Unrestored 

buffer object Wait
BO

Restore

GPU PT

1

(a) mmap() (b) gmmap() (c) Profile-guided recovery

2 3 4 5 6

GPU app

Recovery index without profile

Access 3

(Wait)

Access 2

(success)

Access 1

(Wait)

4 2 5 1 6 3

GPU app

Recovery index with profile

Access 3

(success)

Access 2

(success)

Access 1

(success)

GPU data

GPU data

Blocking time: 3

Blocking time: 0
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Async notification. As there are two parallel threads to
perform the restore, we need to sync the progress at some
point. In CRIU, one reasonable sync point is the beginning
of Stage-4, which will restore the remaining states and start
to execute. To enable the synchronization, when the restore
process completes its work on CPU data restore, the watch-
ing process will check whether Restore Server has completed
the GPU data restore. If not, it waits for the completion noti-
fication of Restore Server before allowing the restore process
to execute.
The asynchronous notification will be further released

with the design of on-demand restore (§3.3), in which the
restore process only waits for data not applied for on-demand
restore, while others can be recovered during runtime in an
on-demand way.
Optimization with caching. In addition to its core func-
tionalities, gCROP can leverage caching to further enhance
performance. By employing various policies, Restore Server
can proactively cache GPU data of specific (hot) functions
in memory buffers (host memory or VRAM), thereby reduc-
ing the overhead associated with GPU data restore. This
caching optimization is not easily achievable with existing
CRIU systems, which lacks a global service for managing
GPU data. Currently, CRIU can only cache relevant data in
the Linux page cache before restoration, requiring an addi-
tional memory copy from the page cache to align memory
buffers for CPU-GPU communication. The introduction of
Restore Server empowers the system with caching capabili-
ties tailored specifically for GPU C/R.

3.3 On-demand Restore
To further mitigate the startup latency, gCROP introduces
the on-demand restore for GPU apps that can recover both
CPU and GPU data during runtime. Our solution can be
divided into three parts: a traditional mmap-based method
for CPU data, a request interception mechanism based on
GPU page fault mechanism for GPU data (called gmmap()),
and a profile-guided recovery mechanism to mitigate the
blocking costs caused by GPU page faults.

On-demand CPU data restore.We utilize themmap() and
on-demand paging supported by OS kernel as well as page
faults by CPU to enable the on-demand CPU data restore, as
shown in Figure 6-a. Specifically, there are two cases. First,
during Stage-3, the restore process will load the CPUmemory
from the checkpoint image and restore the page mapping,
which may bring significant costs as GPU apps usually hold
large memory on the CPU side. To mitigate the costs, we
follow prior efforts [42, 61, 71, 73], and try to use mmap()
to map the checkpoint image directly to the memory. To this
end, we modify the function image data reading part in CRIU
to mmap the corresponding function image area. When the
GPU app accesses unrestored memory, a page fault will be
triggered and the data will be loaded on-demand, as shown
in the figure.
Second, GPU pages may also be (directly) mapped to the

CPU page tables [28], which are restored by Restore Server
in the background. In this case, a CPU page fault still occurs
when an access touches un-restored GPU pages. The OS
kernel will redirect the fault to GPU driver, which will be
handled by gCROP’s fault handler. As the faulting data is
GPU data, gCROP reuses the same logic for gmmap() to
handle the case.
On-demand GPU data restore (gmmap()). The basic idea
of GPU on-demand paging is similar to CPU — intercept-
ing memory accesses to unrecovered areas and retrying the
accesses after the related area restoration. We observe that
existing GPU vendors can support the required hardware
primitives: GPU page faults and memory access retry (e.g.,
AMD XNACK feature [12]).

To achieve this, we delay the GPU page mapping and pre-
pare the dedicated fault handler in the kernel. In the original
CRIU, when the restore process sends an ioctl request to
the kernel to restore the driver states, the GPU driver will
reconstruct all buffer objects of the process and immediately
map the areas represented by these buffer objects into the
GPU page table. So the restored process can access the corre-
sponding GPU memory areas. However, since our GPU data
is prepared in parallel and on-demand, we must delay the
mapping operation. Specifically, during restoration, gCROP
will skip the mapping of on-demand buffer objects and mark
them as not ready. To notify the driver when buffer objects
are restored, gCROP’s kernel driver provides a new ioctl
interface to Restore Server to use.

In the running phase, when the app accesses the un-restored
area, it will trigger a GPU page fault to our page fault han-
dler, as shown in Figure 6-b. In this handler, gCROP checks
whether the buffer object of the accessed address has been
restored by Restore Server. If yes, gCROP’s driver will update
the GPU page table for the buffer object. If not, the system
will wait until Restore Server calls the ioctl interface.
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We discuss two differences here. First, we perform restora-
tion at the granularity of buffer objects. The main reason for
the design choice is that GPU apps may access near pages
in the same buffer object, recovering the whole object once
can avoid future faults and handling. It is easy to extend
the system to support other granularities like pages. Second,
instead of fetching the requested pages directly, gCROP still
relies on Restore Server to prepare the data. The main reason
is to avoid costly and complex synchronization between the
driver and the user-mode Restore Server. With our profile-
guided recovery optimization, this design choice performs
well in practice.
Profile-guided recoverymechanism. Because copying data
from CPU to GPU memory is costly, we use a background
restore approach managed by Restore Server instead of copy-
ing only when a page fault is triggered. However, in this
method, the restore order is important. Poor restore orders
may result in urgently needed data being restored last, caus-
ing unnecessary delays. We notice that for most models, the
computation order is usually fixed [35, 49], which implies
a fixed memory access sequence as well. So we propose an
application-layer transparent profiling mechanism to get the
restore order of GPU data, as shown in Figure 6-c. Specifi-
cally, we modify the AMD GPU page fault handler to export
the sequence of buffer objects triggering page faults. This
can be done offline. During the restore phase, Restore Server
follows this sequence to restore the data.

3.4 Multi-Checkpoint Mechanism
To mitigate the storage costs caused by checkpoint images,
gCROP presents the multi-checkpoint mechanism.

Idea of deduplication. The basic idea to resolve the costs
is to share the content of checkpoint images among GPU
apps. Specifically, as GPU apps usually depend on the same
GPU runtime, frameworks and operators, their checkpoint
files may have the same content that can be deduplicated.
For example, two GPU apps running on PyTorch may share
the same content for the Python interpreter and PyTorch
libraries. Deduplicating the same content in the checkpoint
images may save a lot of space.
Challenges. However, one significant challenge is that —
even different apps share the same content, the data is not
well-aligned in the same address (or offset) in the checkpoint
images, and cannot be easily deduplicated. Figure 7-a shows
a typical procedure of checkpoint. First, the framework (e.g.,
PyTorch) is loaded as the empty GPU process and performs
initialization. Then the app loads the app-specific code and
data, and is saved as a checkpoint image at the entry point.
Nevertheless, different apps may have different data layouts
on both the CPU and GPU sides, leading to a poor dedupli-
cation result.
Multi-checkpoint. We observe that, unlike the booted pro-
cesses which usually have diverse layouts, restored processes
have the fixed mapping (as the saved ones) and have a higher
possibility to be deduplicated. Based on this observation, we
propose multi-checkpoint — instead of performing a one-
time checkpoint, we perform twice, as shown in Figure 7-b.
Specifically, gCROP will perform a checkpoint after load-
ing framework, generating a checkpoint image called frame-
work checkpoint. The framework checkpoint only needs to be
dumped once for each framework. Then different GPU apps
are subsequently checkpointed based on the same framework
checkpoint — gCROP restores from the framework check-
point, loads the GPU app, and performs the second check-
point. This only needs apps to specify a startup function and
doesn’t need to access the internals of apps. This method
can significantly increase the identical regions among GPU
apps. For example, the MobileNet application can have 22%
identical regions compared to the framework checkpoint for
CPU data.
Multi-checkpointwithwarmed operators.Much of the ini-
tialization for GPU runtime occurs in the first time of model
transfer and execution, which also contains non-trivial re-
gions that can be deduplicated. However, with the above
multi-checkpoint method, these regions may be missed. To
further improve the benefits of deduplication, we introduce
the second optimization, warmed operators, as shown in Fig-
ure 7-c. Specifically, gCROP will run some common GPU op-
erators to initialize the GPU runtime (e.g., run torch.addmm
to initialize rocBLAS [24]), after loading the framework and
before dumping the framework checkpoint. gCROP allows
platforms to determine the policies for warm operators, and
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our results show that these warmed operators will not in-
crease the final image size.
Deduplication procedure. In gCROP, we implement CPU
data deduplication by comparing their data to the framework
checkpoint and GPU data deduplication by comparing their
data among different app checkpoints. For CPU data, we
compare the template image and the function image at the
granularity of pages, considering pages to be the same only
if both the virtual address and the data are identical. For
GPU data, we compare all images at the granularity of buffer
objects, where buffer objects are treated identically if they
have the same size and data, without requiring the virtual
addresses to match. In this way, each function image only
needs to store the parts that differ from the base image.
Co-design with restore. To accelerate the restore phase, the
Restore Server can cache identical buffer objects (<200MB)
in the framework checkpoint into the GPU memory before
the restore phase. These buffer objects are almost identical to
all the images. As a result, Restore Server can copy the data
from the cached buffer object to the corresponding region
using a VRAM-to-VRAMDMA transfer instead of a memory-
to-VRAM DMA transfer.

4 IMPLEMENTATION
We implement gCROP based on the AMD GPU MI50, ROCm
version 5.6.0, CRIU version 3.19, and Linux kernel 6.8.0.
Restore Server. We implement Restore Server as a system
service, which will be launched and initialized during ma-
chine boot. In the restore phase, various restore processes
andwatching processes establish connections with the server
through UNIX domain sockets. The server provides three in-
terfaces: recv_driver_fd, recv_command, and restore_begin.
Recv_driver_fd is used to receive the device file descriptor
(FD) opened by the restore process. In later GPU data restore,
Restore Server needs this FD to notify the kernel driver when
a buffer object is restored. Driver can use this FD to determine
which process the buffer object belongs to. Recv_command
is used to receive the GPU data image FD, the dma-buf FD
of the region to be restored, and the necessary metadata
for restoration, such as whether it is on-demand, the size
of the region to be restored, etc. Restore_begin indicates
that the corresponding restore process has completed trans-
mitting the command, and upon receiving this command,
Restore Server will begin the restoration. We also provide
a set of interfaces for communication and notification with
the watching processes.

Restore Server supports various cache policies. In our im-
plementation, gCROP can cache the corresponding data in
memory buffers at the buffer object granularity and mark
them using the st_dev (device ID) and st_ino (file serial num-
ber) of the corresponding file descriptor. During restoration,

gCROP compares the st_dev and st_in of the received GPU
data image file descriptor. If it has already been cached, the
restoration starts directly from thememory buffer; otherwise,
data is read from the corresponding file descriptor.
GPU page fault handling. In the process of handling a
page fault, our page fault handler is divided into three steps.
The first step is to find the corresponding buffer object based
on the address that triggers the page fault. The second step
is to check if the buffer object has completed restoration.
For every buffer object, we use a bit in its flag to indicate
whether the recovery is complete. The third step is to update
the mapping with amdgpu_vm_update_range() and other
function calls.
On-demand buffer object choose. Now we only apply our
on-demand mechanism to buffer objects explicitly allocated
by the apps (e.g., hipMalloc). Specifically, we modify the low-
level GPU runtime (e.g., ROCm) to export the virtual address
ranges of user-explicitly allocatedmemory (less than 20 lines)
and then select the buffer objects matching these address
ranges to serve as on-demand buffer objects. For other buffer
objects, we restore them before program execution and don’t
apply the on-demand method to them.
Page cache management. The presence or absence of some
dynamic libraries (such as the PyTorch library, rocBLAS li-
brary, etc.) in the page cache can influence performance.
Therefore, to ensure the fairness of experiments, we modify
vmtouch [16] to implement the checkpoint and restore func-
tionality of the page cache. Specifically, we first run a fully
warmed-up PyTorch process and record the cache status of
various files in the page cache at that time (<600MB). This is
achieved using the mincore() syscall. In our tests, we repro-
duce the page cache state according to the record and clear
other page caches, which accelerates program execution and
ensures that all evaluation are under the same page cache
status.

5 DISCUSSION
Generality. gCROP requires modifications and support from
low-level GPU software, e.g., driver and runtime. Due to
Nvidia’s closed-source stack, we implement our prototype
on the AMD GPU platform. However, our method is not
strictly dependent on the AMD GPU devices. As long as the
following requirements are met, gCROP can be easily ported
to other vendors.

First, GPU vendors should provide basic support to check-
point and restore GPU-related kernel states. As GPU vendors
usually maintain their own kernel-mode states, C/R systems
like CRIU cannot directly save and recover a GPU-related
process. Instead, CRIU relies on plugins to handle the device-
specific states, e.g., AMDGPU plugin [28]. Recently, Nvidia
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also starts the support for CRIU by providing a close-sourced
plugin (in binary) [20]. We believe in the near future, the first
requirement will become the basic feature of GPU devices.
Second, GPU devices should provide a page fault mechanism
to support on-demand restore. AMD supports page faults
through its XNACK feature [12], which allows the GPU to
retry memory accesses after a page fault when the accessed
data does not exist in VRAM. Nvidia also supports the page
fault mechanism to enable on-demand migration in unified
virtual memory (UVM) [29]. Last, we need GPU memory
transfer mechanism to support parallelized restore. AMD
GPUs provide a set of interfaces (e.g., amdgpu_bo_export)
to export and import the same buffer objects between dif-
ferent processes, which allows us to parallelize the restore
procedure. For Nvidia, since its runtime API already supports
IPC APIs (e.g., cudaIpcOpenMemHandle) to share the same
GPU memory area, we believe it has low-level APIs that
can directly interact with kernel drivers without the CUDA
runtime to share GPU memory areas.
Besides, our insights also have a certain generality. For

the first design, NVIDIA GPUs also tend to utilize CRIU for
Checkpoint/Restore and will face similar challenges as AMD
GPUs for parallel restore. For on-demand restore, the key
optimization lies in the observation that the application does
not require all data at startup. This characteristic comes from
the application and does not change with the architecture.
For the multi-checkpointing mechanism, the same content
arises from using the same framework and GPU runtime,
and all Checkpoint/Restore-based methods will encounter
similar issues.
Multiple GPU support. Although our prototype is imple-
mented on a single GPU, the design does not conflict with
multiple GPU environments. In fact, gCROP may have more
optimization opportunities in multiple GPU scenarios. For
example, both AMD and Nvidia support direct GPU-to-GPU
copies [13, 15] and one possible optimization is to use high-
speed connections (e.g., NvLink [21]) between GPUs to accel-
erate GPU data recovery through direct GPU-to-GPU mem-
ory access. When an instance already exists on GPU 1 and
a new identical app instance needs to be created on GPU
2, instead of reading data from disk or host memory, it can
be faster to copy data directly from instance 1 to instance 2
via GPU-to-GPU memory access. These instances can dele-
gate the corresponding GPU regions to Restore Server and
then Restore Server can perform this operation. We leave
the design and optimizations for multi-GPU C/R as future
work.
Security. Since all function images are based on one template
checkpoint, their positions of stack, heap, or libraries can be
the same, which cannot be simply protected by the ASLR

(Address Space Layout Randomization) technology. One so-
lution is to only enable the multi-checkpoint mechanism
in the scope of one tenant, or update the template image
periodically. Cloud vendors can determine the policies to use
the technique and balance the storage costs and security.
Another potential concern is that the multi-checkpoint

mechanism requires application support, which may suggest
cloud vendors require access to the internals of apps. How-
ever, since our method only needs apps to specify a startup
function, developers can easily implement this on the client
side by following the cloud vendors’ guidelines.
Integration with container or virtual machine runtime.
Currently, our work mainly focuses on optimizing the over-
head of GPU app startup. In a serverless platform, user func-
tions generally run in containers or virtual machines. gCROP
and prior container or VM runtimes can be easily integrated,
i.e., after an empty container/VM is launched, the system
can invoke gCROP to restore a GPU app instead of booting
from scratch.
Workload scope. Since our method requires checkpointing
and profiling, it may be costly for applications that are only
launched once in the cloud (i.e., non-repetitive). To avoid
resource waste in these cases, platforms can allow developers
to specify the basic pattern of their apps/workloads and only
enable C/R when necessary.

6 EVALUATION
In the evaluation, we try to answer the following questions:
• How does gCROP reduce the startup and end-to-end la-
tency of GPU applications? (§6.2)

• What is the end-to-end latency breakdown? (§6.3)
• How does our profile-guided recovery mechanism opti-
mize the latency? (§6.4)

• How does the multi-checkpoint mechanism save the stor-
age costs? (§6.5)

• How does gCROP reduce memory usage of applications?
(§6.6)

• Howdo different cache configurations affect latency? (§6.7)
• Howdoes gCROP performwhen scalingmultiple instances?
(§6.8)

6.1 Experimental Setup
Testbed. We use an x86-64 server with an 8-core Intel i7-
10700 CPU, 16GB memory and one AMD Radeon Instinct
MI50 GPU (60 CUs and 16GB of memory) to evaluate. The
OS is Ubuntu 18.04 with Linux kernel 6.8.0. All experiments
are conducted in an official docker image with ROCm 5.6.0,
PyTorch 1.12 and Ubuntu 20.04. The version of CRIU is 3.19.
Workloads. We use 7 representative pre-trained models
(as shown in Table 2): MobileNet, ResNet18, Inception-V3,
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Table 2: Workloads. “Warm exe.” refers to the execution
time of the model after it has been loaded into the GPU
and completely warmed up. “Cold exe.” refers to the total
boot time from scratch.

Models Parameters Warm exe. Cold exe.

Hello / 0.2ms 3.3s
MobileNet 2.5M 5.8ms 3.8s
ResNet18 11.7M 2.7ms 3.9s
Inception-V3 27.2M 12.1ms 4.4s
ResNet152 60.2M 16.3ms 5.0s
BERT-Base 109.5M 18.9ms 4.7s
OPT-350M 331.2M 154.0ms 5.6s
GPT-2-Large 774.0M 255.5ms 10.1s
C-ResNet152 60.2M 10.5ms 0.8s

ResNet152 fromTorchVision [18] and BERT-Base, OPT-350M,
GPT-2-Large from Transformers [75], covering the parame-
ter range from 2.5million to 774.0 million. Themodels are not
modified. In addition to these models, we also select an app
(called Hello) that performs only a single matrix addition and
multiplication (torch.addmm) to approximate the scenario
with zero model parameters (Table 2) and a ResNet152 app
from DISB benchmark [47], which is generated by TVM [3]
and based on the C++ environment (called C-ResNet152).

Similar to previous work [49], we use a synthetic dataset
for all model inputs. All vision models use 224*224 RGB
images. BERT-Base configures a sequence length of 512 while
OPT-350M and GPT-2 configure 1024.

At the start of every experiment, we clear the page cache.
Subsequently, we reconstruct the page cache according to
our record (see §4 page cache management) and restore Hello
app once to warm up the environment. In all experiments
(except §6.7), similar to previous works [46, 49, 79] that cache
all models in memory, we keep the model and image files
in the page cache for our baselines and in Restore Server
memory buffer for gCROP.
Baseline system.We compare gCROP to four baseline sys-
tems: booting from scratch, cold partial caching, warm par-
tial caching and CRIU. Partial caching refers to preemptively
keeping alive a Python interpreter that has loaded the Py-
Torch framework for applications except C-ResNet152. For C-
ResNet152, partial caching refers to starting the process and
pausing it before loading themodel. Cold partial caching does
not perform any additional warming on this basis. Warm
partial caching builds on cold partial caching by loading and
executing each model once, and then releasing the models.
This allows the framework layer to be fully warmed up, so
subsequent processes only need to load the respectivemodels
to transition to the related apps.

Since nearly all AI applications rely on a few frameworks,
we believe that cold partial caching can represent the lower
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Figure 9: End-to-end latency.

bound of partial caching methods for cold startup in GPU
scenarios. For security reasons, cloud services may not allow
different users’ models to run in the same process to warm
up once. In such cases, we can only perform warm-up by
running some common models and operators, which would
result in higher startup latency compared to our warm partial
caching method. Therefore, we believe that warm partial
caching can represent the upper bound of partial caching
methods. CRIU denotes the baseline Checkpoint/Restore
method.

6.2 Startup and End-to-end Latency
We first evaluate the startup and the end-to-end latency of
gCROP with diverse applications to show its effectiveness.
Startup latency. Figure 8 shows the results. Except for Hello
app and MobileNet, gCROP achieves the best performance in
all other models. Specifically, gCROP can boost the startup
latency of most models to 44ms–73ms, and for large models
like GPT-2-Large, the startup latency is (firstly) reduced to
97ms. For the smallest model (MobileNet), gCROP’s startup
latency is comparable to warm partial caching but is 20.6x,
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Figure 10: The end-to-end latency breakdown.

4.83x and 5.50x faster than booting from scratch, cold par-
tial caching and CRIU, respectively. For the largest model
(GPT-2-Large), gCROP improves startup latency by 17.6x,
9.5x, 8.4x, and 23.5x compared to booting from scratch, cold
partial caching, warm partial caching, and CRIU, respectively.
This result demonstrates that the improvement of gCROP is
general for diverse models, ranging from a small model with
2.5 million parameters to a large model with 774.0 million
parameters.
End-to-end latency. Figure 9 shows the results of end-to-end
latency. Except for Hello app andMobileNet, gCROP achieves
the best performance in all other models. Specifically, most
models in gCROP only need 60ms–121ms to complete an
end-to-end execution and OPT-350M and GPT-2-Large need
406ms and 460ms. Compared to cold partial caching and
CRIU, gCROP is 14.4x and 4.4x faster for the smallest model
and 3.8x and 5.5x for the largest model. For warm partial
caching, gCROP is up to 6.6x faster for ResNet152 and 2.3x
faster for GPT-2-Large. ForMobileNet, gCROP is only slightly
slower than warm partial caching and requires 63.9ms while
warm partial caching needs 58.9ms, which is because the
overhead of loading and transferring small models is not
significant for warm partial caching, while gCROP needs to
restore the entire process.

6.3 Latency Breakdown
In this section, we break down the latency of different sys-
tems with two models, the smallest model (MobileNet) and
the largest model (GPT-2-Large), as shown in Figure 10. For
booting from scratch, its latency is approximately the sum
of the latency of cold partial caching and the overhead of
loading the framework (about 800ms in this case). We do not
draw this baseline in the figure. For cold partial caching and
warm partial caching, we divide the end-to-end latency into
three parts: model load time (“Load” in the figure), transfer
time (Transfer), and execution time (Execution). Load time
refers to the duration required to load the model from a file
into host memory, while transfer time refers to the duration

needed to move the model from host memory to GPU mem-
ory. For CRIU, the latency is divided into CPU data restore
time (CPU), GPU data restore time (GPU), and other process
state restore time (Other state). The CPU restore time refers
to the duration required to restore CPU data in Stage-3, while
the GPU restore time includes both the time needed to re-
store the GPU driver states and the GPU data in Stage-2. The
remaining restore time is the other process state restore time.
For gCROP, we add wait time (Wait), which represents the
time the restore process waits in Stage-4 for Restore Server
to recover buffer objects that are not applied on-demand.
If Restore Server completes the recovery before the restore
process enters Stage-4, this time is 0. Additionally, in gCROP,
since GPU data restore is done in the background, GPU re-
store time refers to the time taken to restore the GPU driver
states and the time required to transfer the file descriptors
related to the on-demand buffer objects to Restore Server.
Comparison with cold partial caching. Since GPU run-
time initialization costs a lot of time during the first execution
in the cold partial caching method, gCROP is significantly
faster regardless of whether the model is large or small. Even
the execution time of the model alone in the cold partial
caching method exceeds the entire restore and execution
time of gCROP. Moreover, the cold partial caching method
requires additional system memory to cache processes.
Comparison with warm partial caching. For MobileNet,
because loading and transferring small models does not take
much time for warm partial caching, the end-to-end time
of gCROP is slightly longer than the warm partial caching
method. However, as the model size increases, warm partial
caching incurs significant overhead due to the need for dese-
rialization during model loading. Additionally, since warm
partial caching lacks on-demand technology, it cannot over-
lap computation with data transfer, further widening the
performance gap with gCROP.
Comparison with CRIU. The improvements over CRIU
mainly come from four aspects. First, in the restore phase,
not all data in memory is needed to restore (e.g., the model
parameters stored in memory). gCROP uses mmap to almost
eliminate the overhead of restoring memory data (less than
2ms). Second, the parallel restore of GPU data and process
states, combined with the restore of on-demand GPU data,
hides most of the GPU memory restore time within the pro-
cess state restore and execution time. For MobileNet, the
non-overlapping GPU driver states and data restore time
is only 3.5 ms, and for GPT-2-large, it is also only 53 ms.
Third, GPU data is pre-cached in Restore Server, reducing
the time CRIU takes to read GPU data from the page cache
into the buffers. Fourth, by caching the same GPU data in
GPU memory, the time spent on DMA transfers from system
memory to GPU memory is reduced.
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Figure 11: Execution and end-to-end time of different
on-demand GPU data recovery orders.

Comparison between small and large models. In gCROP,
because mmap() is used, the CPU memory restore time al-
most does not increase with the model size. For the GPU
part, the GPU driver state restore and FDs transfer time also
almost do not increase with the model size. However, the
GPU data restore time gradually becomes a bottleneck as
the model size increases. For smaller models, the wait time
is almost zero and the execution time is almost not affected
by the on-demand mechanism. For larger models, because
the restore of GPU data is slower than the restore of other
process states, the target process must wait for it and then
the execution time is longer than CRIU.

6.4 Profile-guided Recovery Mechanism
To understand the role of profile-guided recovery mecha-
nism in optimizing execution latency and end-to-end (e2e)
latency, we test the execution and e2e latency on GPT-2-
Large and OPT-350M, as shown in Figure 11. We consider
four representative cases. The worst case means the data
that is needed first is restored last, representing a scenario
where restoration is exactly in the worst order. The default
case refers to the restoration following the default order
without profiling according to CRIU. The profile case which
gCROP does, involves the use of the profile-guided recovery
mechanism. The none case means the GPU data on-demand
mechanism is not utilized and all GPU data is restored in the
restore phase.
Compared to the execution time of the none case, the

increase of the execution time for the default case is 1.76x
and 4.42x larger than that for the profile method for OPT-
350M and GPT-2-Large. By using the profile method, the
execution and the end-to-end latency are reduced by 1.24x
and 1.19x for OPT-350M and 1.72x and 1.60x for GPT-2-Large
compared to the default case. This demonstrates that this
mechanism can effectively reduce the execution and end-to-
end latency of large models by mitigating page faults. For
small models, due to the short execution time and the short
GPU data restore time, the effect of the profiling mechanism
is not significant.
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Figure 13: Memory usage.

6.5 Benefits of Multi-Checkpoint
To show the benefits on resources by gCROPmulti-checkpoint
mechanism, we analyze the image sizes of models that are
implemented on PyTorch for gCROP and the other two
baselines (Figure 12). In our figure, the base method only
checkpoints once and does no deduplication and the multi-
checkpoint (“Multi” in the figure) method means to dump
the framework checkpoint without warmed operators and
only deduplicate by comparing the app checkpoint to the
framework checkpoint.
Because all GPU apps depend on the same GPU runtime

and AI framework, gCROP can save 8%–54% of CPU data
image size and 5.3%–87.3% of GPU data image size for mod-
els (for Hello app gCROP can save 99%). For large models,
because parameters occupy most of the CPU and GPU data,
the optimization effect of this method is weaker. Addition-
ally, because GPU is not used in the framework checkpoint
stage, the framework checkpoint has no GPU data, and all
GPU data need to be stored in their respective app images.

6.6 Memory Usage
Figure 13 compares memory usage of MobileNet and GPT-2-
Large in all baselines and gCROP. We use proportional set
size (PSS) to represent the memory usage, and VRAM size to
represent the GPU memory usage. PSS-x means the average
value of memory usage over x running processes. The aver-
age VRAM usage remains almost the same regardless of the
number of processes, so we only show one. In this section,
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Figure 14: End-to-end latency under different cache
configurations.

we utilize CRIU-NS [8] to restore each process to its own
namespace to avoid PID conflicts. Before measuring memory
usage, all applications execute once to warm up after the
restoration. We can see that gCROP achieves much lower
PSS than all other baselines due to the on-demand restore of
CPU data.

6.7 Different Cache Configurations
We test the startup latency of gCROP for the Mobilenet and
GPT-2-Large models under different cache configurations,
as shown in Figure 14. Specifically, we categorize the cache
configurations into four types: cache no data (None), cache
CPU data only (CPU), cache GPU data only (GPU), and cache
all data (CPU+GPU). The CPU-only configuration stores the
CPU data directly in the page cache, while the GPU-only
configuration caches the GPU data in Restore Server.

For MobileNet, the startup latency increases by 10.8x, 9.1x,
and 1.8x for the None configuration, the CPU-only config-
uration, and the GPU-only configuration compared to the
CPU+GPU configuration, respectively, and the end-to-end
latency increases by 14.4x, 10.6x, and 5.4x. For GPT-2-Large,
the startup latency increases by 14.2x, 8.4x, and 4.2x for the
none configuration, the CPU configuration, and the GPU
configuration compared to the CPU+GPU configuration, re-
spectively, and the end-to-end latency increases by 20.0x,
18.4x, and 2.1x. It can be observed that caching GPU data is
crucial for the performance of gCROP. Furthermore, with-
out caching GPU data, the restore of GPU data becomes the
bottleneck in the restoration, regardless of the model size.

6.8 Concurrent Execution
Serverless requests often exhibit bursts, potentially requiring
to simultaneously scale multiple instances. Even if model
applications on the same GPU can increase throughput by
enlarging the batch size instead of launching more instances,
servers with multiple GPUs may still face situations where
multiple instances need to scale simultaneously. We evaluate
the startup time of gCROP for the case of simultaneously
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Figure 15: Total time of simultaneously scaling mul-
tiple instances. Total time refers to the time from the
start of the first instance to the completion of the last
instance.

scaling multiple instances of MobileNet and ResNet152 (Fig-
ure 15). Similar to §6.6, we utilize CRIU-NS to restore each
process to its own namespace to avoid PID conflicts. Addi-
tionally, we make some modifications to the CRIU invisible
files restore logic to prevent conflicts when multiple CRIUs
restore simultaneously.

In Figure 15, we evaluate the total latency with n (1–8) in-
stances for simultaneous restore. Compared to CRIU, gCROP
improves the total time by 5.5x–9.2x, with an average time
of less than 40ms to complete a restoration of MobileNet and
less than 45ms to complete a restoration of ResNet152.

7 RELATEDWORK
Serverless inference systems. Industry such as AWS [65],
Azure [59], and Alibaba [5], along with open-source systems
like KServe [34], have provided support for serverless-based
inference. Many academic works [32, 37, 48, 52, 62, 63, 76,
78, 80] attempt to build or optimize inference systems in
serverless. However, these systems mainly focus on resource
efficiency, scheduling or other issues, and skirt around the
cold start issue or simply adopt caching based on various poli-
cies or predictions to avoid cold starts. In contrast, gCROP
focuses on reducing the latency of cold start directly.
Cold-start optimizations in conventional model serving
systems. There is a long line of research on the system sup-
port for model serving [35, 38–40, 46, 49, 51, 54, 58, 68]. Most
of them are long-running, and loadmodels into GPUmemory
in advance (before serving) and do not have startup problems.
However, to serve models beyond GPU memory limits, some
systems [35, 46, 49] introduce mechanisms to swap models
between host and GPU. These mechanisms cause additional
overheads when transferring a model from the host into the
GPU, similar to the cold start issue in serverless systems.
PipeSwitch [35] introduces the pipeline model transmission,
while DeepPlan [49] proposes a direct-host-access mecha-
nism to reduce waiting time for the model transfer. Despite
these advancements in model transfer, these methods ignore
the overhead of process initialization. Besides, they may not
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satisfy the isolation requirements of serverless platforms. In
contrast, gCROP considers the scenario of starting a com-
plete inference process from scratch, achieving fast startup
while meeting isolation requirements.
Keep-alive and pre-warming policy in serverless comput-
ing. Caching can completely or partially avoid the overhead
of cold starts. To reduce the costs associated with caching,
manyworks [36, 45, 53, 55, 57, 64, 66, 67, 77] focus on optimiz-
ing pre-warming or keep-alive policies. A common approach
among these works is to dynamically determine the num-
ber and duration of caching instances based on historical
data, aiming to minimize the number of cold starts while
consuming fewer resources. Our work complements these
techniques, as we focus on reducing the latency of a single
startup. These various policies can be easily integrated with
gCROP to further accelerate startup latency.

8 CONCLUSION
The long startup latency of GPU apps is known as theAchilles’
Heel of today’s model serving systems (based on server-
less computing). To mitigate this issue, this paper presents
gCROP, achieving <100ms startup latency for models with
up to 774 million parameters. Although we are still far away
from the ideal performance (e.g., <1ms in CPU apps), gCROP
is a new milestone by combining a set of techniques to
achieve the results. With more OS and hardware support,
we believe future works can further reduce the latency.
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