
A System-level Abstraction and Service for Flourishing AI-powered Applications
Jinrong Yang, Zimeng Wang, Rong Chen†, Haibo Chen

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

Abstract
Modern devices increasingly employ local AI accelerators
such as GPUs, NPUs, and ASICs to meet growing demands
for AI capabilities. However, the current ad-hoc and siloed ap-
proach to enabling AI poses two fundamental challenges. De-
velopers have to handle unnecessary implementation details
when integrating AI into individual applications. Moreover,
the siloed approach hinders efficient resource management
when running multiple AI-powered tasks simultaneously.

This paper presents a system-level abstraction and service
for AI-powered applications. We introduce a virtual capability
layer with a unified API that efficiently powers various appli-
cations with AI technology, promoting a capability-centric
approach. Furthermore, the unified AI service enables more
efficient and collaborative resource management across con-
current AI tasks. Our prototype, XServ, demonstrates how this
approach simplifies application development and optimizes
resource utilization, paving the way for more efficient and
scalable AI-powered applications.

ACM Reference Format:
J. Yang, Z. Wang, R. Chen, and H. Chen. 2025. A System-level
Abstraction and Service for Flourishing AI-powered Applications.
In 16th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys

’25), October 12–13, 2025, Seoul, Republic of Korea. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3725783.3764406

1 Introduction
AI accelerators (abbreviated as XPUs)—such as GPUs, NPUs,
and ASICs—are increasingly common in modern edge de-
vices. Operating systems often treat these accelerators as PCIe
devices, with proprietary drivers, libraries, and frameworks
provided by hardware vendors [30, 49, 50, 52]. AI-powered
applications leverage this computing power to enable AI ca-
pabilities such as background removal and noise reduction for
online meeting software. However, for most AI-powered ap-
plication developers, understanding the details of AI hardware
†Rong Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery..
ACM ISBN 979-8-4007-1572-3/2025/10
https://doi.org/10.1145/3725783.3764406

and software stacks is difficult and unnecessary. Enabling AI
capabilities should be as simple as calling a function [56].
Meanwhile, the demands for AI capabilities are growing at
a pace that far exceeds the advancement of hardware. With
more AI-powered applications running concurrently on de-
vices, the current practice of building applications in a siloed
approach prevents efficient resource management.

These problems stem from two primary sources. First, there
is a misalignment in AI technology abstraction. As leverag-
ing AI capabilities has spread from specialized to general
developers, the current ad-hoc approach poses significant
challenges in development and deployment [8, 34]. While
some efforts provide system-level AI capabilities [23, 24, 39],
these SDKs lack extensibility and are limited to built-in mod-
els and capabilities. Second, applications interact exclusively
with hardware resources, lacking a unified service for efficient
and collaborative resource management. This severely limits
resource sharing and utilization, particularly as concurrent AI
tasks become increasingly common [18, 31].

To address these challenges, we propose a new system-level
abstraction and service designed for building AI-powered
applications. Our AI service provides a capability-centric in-
terface that simplifies application development and improves
resource utilization. It allows for the integration of AI capabil-
ities into various applications while hiding the complexities
of the underlying AI hardware and software stacks. Further-
more, the unified service enables efficient and collaborative
optimization for resource management across concurrent AI
tasks. Consequently, developers can focus on building indi-
vidual AI-powered applications without being burdened by
unnecessary implementation details.

2 Background and Motivation
The rapid advancement of AI technology has led to a surge
in AI integration across numerous applications. This poses
fundamental challenges for the current way of leveraging AI.

2.1 The Growing Popularity of AI Tasks
Flourishing AI-powered applications. The rise of AI-powered
applications is evident, with a search for “AI powered” on
GitHub yielding over 30,000 open-source projects. This high-
lights the widespread adoption of AI capabilities across di-
verse usage patterns [4, 53]. These applications fall into two
main categories: AI-native and AI-enhanced.

AI-native applications have core functionalities that in-
herently depend on AI, such as chatbots [2, 45] and AI
agents [35]. These applications typically use proprietary AI
models, with their design and development centered on deliv-
ering distinctive and powerful AI-driven features.

https://doi.org/10.1145/3725783.3764406
https://doi.org/10.1145/3725783.3764406


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea J. Yang, Z. Wang, R. Chen, and H. Chen

multitasking

Timeline

One-shot:

Multi-shot:

Batch:

XPU XPU XPU

Concurrent 
AI Tasks

model pool

T1 T2 T3 T4

T5

T6

T8

T7

Figure 1. An example of concurrent AI tasks.

AI-enhanced applications, in contrast, integrate AI capabil-
ities into traditional software to improve existing functions.
For example, screenshot tools [12] may add text recognition
and summarization, while photo albums can offer intelligent
search and categorization. These applications typically use
general AI capabilities like face tracking, handwriting recog-
nition, and facial recognition [55]. For these applications, de-
velopers prefer using existing models and frameworks. This
prevalent use of general, often model-agnostic, functionali-
ties demonstrates a strong developer demand for handy and
streamlined AI integration methods.

Emergence of concurrent AI tasks. The proliferation of AI-
powered applications is shifting execution from standalone to
concurrent modes. We categorize the execution patterns of AI
tasks into three types: one-shot, multi-shot, and batch tasks.
One-shot AI tasks refer to inference requests that complete
an individual task, typically with unpredictable arrival time
and model usage (𝑇1−4 in Figure 1), such as applying a beauty
filter when taking a photo [32] or generating an automatic
comment for a pull request. These tasks are characterized by
their latency sensitivity, bursty traffic patterns, short execu-
tion times, and diverse functionality and model types [26].
Inference might be triggered only once every few seconds,
minutes, or even hours, with each execution taking just mil-
liseconds. However, all models must remain in memory for
low response latency [64, 68], causing significant memory
waste when dozens of idle tasks occupy resources.
Multi-shot AI tasks involve logical sessions with multiple in-
ference requests, which are the primary focus of current AI
system research. These tasks appear in two forms: serial
multi-shot tasks (𝑇5−6), which process sequential inference
rounds [16, 65] such as image generation workflows and
chat completion services; and parallel multi-shot tasks (𝑇7),
which distribute execution across multiple paths as seen in
multimodal inference for speech assistants and non-textual
understanding with multi-agents [42, 62]. These tasks de-
mand state-aware scheduling with session affinity to preserve
context consistency and efficiently manage task lifecycles.
Batch AI tasks represent time-insensitive, long-running pro-
cesses (𝑇8), such as summarizing local documents or Win-
dows Recall [38] processing historical screenshots in the

background. The key challenge in multitasking is avoiding
foreground interference and minimizing resource usage. For
memory management, offloading techniques can free up space
for foreground tasks, and elastic memory configuration allows
quick memory transfer when needed [57]. Meanwhile, these
tasks require parallel execution with minimal interference and
fast preemption for accelerator responsiveness [13, 63].

2.2 Challenges in Leveraging AI Capabilities
Application developers face significant challenges when lever-
aging AI capabilities, primarily due to the complexity and
diversity of underlying AI hardware and software stacks. This
challenge extends beyond human developers to AI agents.

Complicated details for human developers. Unlike CPU
programs, where ABIs and compilers abstract most hardware
differences, XPUs lack similar generality. While AI serving
frameworks like ONNX Runtime [36] and PyTorch [47] pro-
vide backends to adapt to different XPUs, they still rely on
hardware-specific inference engines and struggle with ver-
sion compatibility issues [37]. Developers have to navigate
different inference engines across different XPUs during both
development and deployment. Traditional inference engines,
with their ad-hoc interfaces that focus only on model execu-
tion, fail to abstract the entire model usage lifecycle.

Developers are currently burdened with tasks including
model discovery, format conversion, data processing, and
mastering different XPU runtimes and frameworks. Each of
these steps is error-prone and significantly increases devel-
opment complexity. Common errors in AI-powered appli-
cations frequently arise from model conversion, framework
integration, and data processing issues [8]. Using AI capa-
bilities should be as straightforward as using networks and
file systems—accessible through simple, high-level interfaces.
An OS abstraction layer would effectively separate these com-
plex implementation details from application development,
shielding developers from the underlying complexity.

We argue that AI-powered application development should
focus on capabilities provided by AI technology rather than
specific models and XPUs. The usage of Large Language
Models (LLMs) exemplifies this capability-focused approach,
and we envision AI capabilities becoming just as accessible.
Consider translation software enhanced by LLMs—it simply
needs chat completion capabilities [22]. This can be imple-
mented by calling a standardized interface (e.g., Ollama Chat
API [44]) with just a few lines of code. Developers merely
call the capability interface without worrying about model se-
lection, data formatting, or request processing. When superior
models become available, they can be integrated seamlessly.

Better support for AI agents. AI agents are crucial for AI-
powered application development, functioning independently
as they perceive, decide, and act [60]. They use various tools,
including AI capabilities like visual understanding and speech
recognition, to perceive environments [33]. Humans naturally



A System-level Abstraction and Service for Flourishing AI-powered Applications APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

learn through analogy, like inferring a monitor button controls
power after learning a light switch controls lights. To enable
AI agents to learn, tools need standardized descriptions.

The most popular way for AI to use tools currently is the
Model Context Protocol (MCP) [3], where each tool writes its
own “manual” as a part of input for LLM inference. This ap-
proach of passing knowledge to large models in the context is
also called in-context learning [10]. Controlling tools through
in-context learning has strong generality—any tool can be
used with its instructions without tool-specific training.

However, in-context learning places significant demands
on context length and model intelligence. A simple inference
request may use only a dozen tokens, but several MCP tools
can require thousands of additional tokens [14]. The growth of
context leads to a significant increase in computation, severely
affecting response time. Meanwhile, MCP tool performance
varies dramatically across models, with many widely-used
models performing poorly [40]. In-context learning cannot
guarantee that the model will select appropriate tools for use,
nor can it ensure correct learning of tool usage methods.

The main drawback of MCP inference is that different
MCP tools with the same functionality lack standardized
usage patterns [15]. By reasonably defining common usage
patterns and having tools adapt to these capabilities, models
can pre-learn tool usage during training and also improve
their ability to generalize across different tools.

2.3 Challenges in Managing Hardware Resources
With the proliferation of AI-powered applications, hardware
resource demands are growing faster than hardware develop-
ment itself. This creates a widening gap between application
requirements and available resources. Individual models face
resource constraints that demand efficient utilization. Mean-
while, concurrent AI tasks introduce additional challenges of
resource sharing and competition.

Insufficient resources for individual models. Models are
growing from traditional DNN models with millions of pa-
rameters to MoE models with hundreds of billions, creating
substantial storage and memory pressure. Memory’s hierar-
chical structure like GPU memory, CPU memory, and SSD
storage offers progressively larger capacity but lower per-
formance. Large model inference can utilize these layers to
break GPU memory limitations, leveraging memory access
locality for optimization, using CPU memory for LLM infer-
ence [1, 27] and moving the KV cache to SSD [17, 25, 46].

Computational resource consumption also increases with
model size, requiring consideration of combined utilization
of computational resources. In consumer devices, heteroge-
neous computing resources such as CPU, GPU, and NPU are
becoming increasingly common [5, 48], and the demand for
using heterogeneous computing power for model inference is
also growing. Many works explore CPU-GPU and GPU-NPU
collaboration, utilizing heterogeneous computing resources
based on workload affinity [7, 20, 41, 54].

However, current optimizations target specific inference
frameworks and hardware configurations. These fragmented
optimizations require a system-level framework for integra-
tion, providing unified support for various AI capabilities. A
unified service is essential to coordinate these diverse opti-
mization techniques and provide a cohesive use of resources
for different AI models.

Resource competition for concurrent AI tasks. As model re-
source consumption increases, resource competition becomes
more frequent in concurrent scenarios, making scheduling
of limited resources even more critical. Resources contain
memory, computational, and I/O.

Memory competition can cause out-of-memory, prevent-
ing the normal execution of AI tasks. Applications prefer
to keep their models resident in memory, enabling rapid re-
sponse to inference requests and avoiding the time overhead
of reloading. However, most event-driven and periodic tasks
are idle most of the time, creating memory waste [64]. The
most direct approach is to have models occupy memory re-
sources on-demand based on computational resource usage,
but this requires fast model checkpoint and restore [58]. Sim-
ilar to operating system virtual memory, memory resource
oversubscription should be as transparent as possible to appli-
cations [59], minimizing modifications to applications.

Uncoordinated computational resource competition leads
to imbalanced resource utilization and inability to meet infer-
ence latency requirements. Without proper scheduling, some
tasks may monopolize computing resources while others ex-
perience significant delays, resulting in poor overall system
performance and user experience [21, 51]. In the SoCs of An-
droid phones, there are cases where GPU or NPU inference
performance is weaker than that of the CPU [66]. Applica-
tions cannot directly perceive the differences between vari-
ous hardware, making it difficult to make optimal hardware
choices [20]. Task scheduling for heterogeneous hardware
is also a research focus. To better schedule tasks on compu-
tational resources [51], frameworks, runtimes, drivers, and
accelerators need to work collaboratively.

I/O resource competition arises during model loading and
swapping. Poor I/O resource scheduling can lead to inference
stalls, wasting both memory and computational resources [59].
Most current scheduling approaches focus narrowly on com-
putation and trigger I/O tasks reactively, instead of coordinat-
ing I/O and computational scheduling together.

3 System-level Abstraction and Service
We propose a new system-level abstraction and service for
both AI-native and AI-enhanced applications to better adapt
to the development of future applications. To address the
usage difficulties identified above, we propose an abstraction
of AI Capabilities that both simplifies AI usage and provides
extensibility to accommodate the rapid development of AI.
For the existing resource management issues, we manage



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea J. Yang, Z. Wang, R. Chen, and H. Chen

driver

NPU

driver

ASIC

OpenVINO ONNX

driver

GPU

Scheduler
Manager

Config

Access

Monitor

Server Context Planner

Users

Applications Control 
Panel

ApplicationsAI-powered Applications

Inference
API

Virtual Capability Layer (libs)

Text Image Audio Video

Capability API

Model 
Pool

fsmm pr

multitasking

net sec

AI Accelerators

vLLM

Manage
API

Figure 2. Architecture of system-level AI service.

them through a unified AI Service, increasing sharing and
reducing competition.

3.1 Design Overview
Figure 2 illustrates the architecture of the system-level AI
service. The service provides a set of APIs for developers of
AI-powered applications while supporting various AI accel-
erators (XPUs). It also interacts with other system services,
such as the file system, to manage models and historical data.

The APIs are composed of three categories: Infer API,
Capability API, and Manage API. The Infer API supports
traditional workflows, providing commands for loading mod-
els and executing inference directly. The Capability API en-
ables function-call-style invocation of AI functionalities, ab-
stracting away the complexity of model selection and usage.
The Manage API provides administrative interfaces for ser-
vice configuration, permission control, and monitoring ability
through control panels.

The virtual capability layer (VCL) serves as an abstrac-
tion layer that provides a unified interface for AI capabilities.
Models can register their implemented capabilities with VCL,
enabling system-wide AI capability updates and extensions.
Beneath VCL lies the core of the unified AI service, which
handles model management, context handling, and request
planning. This orchestrator component generates inference
requests and forwards them to the scheduler and inference
engine for execution. The inference engine operates in con-
junction with AI accelerators and their drivers, collaborating
with the scheduler to achieve efficient resource management.

3.2 Capability Abstraction and API
The key aspect in API design is to balance stability and ex-
tensibility. Stability ensures that widely used APIs are not
arbitrarily modified. This guarantees that applications can

continue to function reliably over the long term. Extensibil-
ity allows the service to adapt to the rapidly evolving AI
capabilities, enabling applications to utilize new AI features.

For common and stable AI capabilities, such as chat com-
pletion and speech recognition, applications should be able to
use them easily. For experimental and unstable AI capabilities,
model-specific AI capabilities should be allowed. These can
be provided by the models or registered by the applications.

Limitations of existing abstractions. To clearly illustrate
why current operating system abstractions are insufficient, we
will analyze two prominent existing abstractions below.

The Linux file abstraction, primarily designed for storage
operations, shows significant limitations when applied to non-
storage tasks. For networking, developers have to implement
workarounds like epoll [43] to manage streaming data ef-
fectively. AI tasks present an even greater challenge as they
are fundamentally computational rather than storage-oriented.
Forcing AI operations into the file abstraction would create a
substantial semantic mismatch, leading to inefficiencies.

The ioctl interface, another mechanism in Linux, is also ill-
suited. Its primary purpose is to facilitate user-space to kernel-
space transitions, enabling applications to control devices
via drivers. AI tasks, in contrast, typically require interaction
with other user-space inference frameworks. Therefore, ioctl’s
model of kernel-mediated device control is inappropriate for
managing computational AI tasks or facilitating inter-process
communication between user-space components.

A new design. Drawing an analogy from the VFS, which
unifies disparate file systems, we propose the VCL. VCL ab-
stracts AI capabilities from diverse models. Similar to VFS’s
support for network file systems, VCL can also register re-
mote model capabilities, unifying access to local and remote
AI resources. Local AI capabilities within VCL are catego-
rized into three types: Common, Exclusive, and Custom.
Common Capability represents general and stable functional-
ities. They should be invoked through a defined consensus,
like LLM capabilities, which allows developers to use them
without model-specific considerations. Models should imple-
ment these capabilities as much as possible upon release.
Exclusive Capability denotes functionalities provided by spe-
cific models that have not yet achieved a common usage
standard, such as a unique background music generation ca-
pability. To use such a feature, applications must select the
specific model and invoke it by adhering to its declared API.
Customized Capability provides extensibility for AI function-
alities. Beyond pre-defined Common and Exclusive Capabili-
ties, sometimes applications require bespoke logic for tasks
like pre-processing, post-processing, or complex execution
flows. Applications can implement these Custom Capabilities
for specific models and register them with VCL.

Through the Capability API, applications can interact with
AI in a capability-centric paradigm. Existing systems like



A System-level Abstraction and Service for Flourishing AI-powered Applications APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

Windows Copilot Runtime [39], Apple Intelligence [24], Har-
monyOS AI Kit [23], and Sky Computing [6] have intro-
duced these similar abstractions. However, they are fixed and
lack the flexibility to keep pace with the rapid evolution of
AI. For applications preferring direct model interaction over
capability-based access, VCL also offers the Infer API. It
allows applications to use models traditionally, bypassing the
abstraction layer but still leveraging the system-level resource
management and scheduling provided by the AI service.

Beyond specifying AI capabilities, this abstraction layer
also supports passing task characteristics and requirements
as hints, providing additional application-layer semantics for
resource management and scheduling. For example, image
understanding tasks in photo album applications are batch
tasks with no return time requirements, while real-time image
background removal tasks in video editing applications are
single-turn tasks requiring rapid response. In concurrent sce-
narios, passing semantics to the orchestrator enables efficient
resource utilization and appropriate scheduling decisions.

3.3 Unified AI Service
To provide unified management of multi-tier memory, compu-
tational, and I/O resources and adapt to concurrent AI tasks
scenarios under heterogeneous hardware, we propose a uni-
fied AI service for resource management.

Task execution and resource-aware scheduling. The or-
chestrator operates between VCL and the inference engine,
receiving AI tasks along with their execution characteris-
tics and requirements from the upper layer. It schedules and
processes tasks based on resource utilization and hints from
tasks, forming inference requests that are then passed to the
inference engine for execution.

The model pool manages model memory resource usage,
dynamically loading and unloading models based on task
requirements. It can also utilize CPU memory and SSD for
offloaded inference according to memory usage constraints,
managing both memory and I/O resources. The request plan-
ner combines current task requirements with loaded models
to select appropriate models for implementing the required
AI capabilities, maximizing resource reuse and selecting the
suitable device for execution. The context handler manages
the state that needs to be preserved for stateful tasks, such
as KV cache in LLM inference. For context like KV cache,
it can make tradeoffs between memory and computational
resource usage, and can also use lower-tier memory to store
context and save memory resources.

Inference request execution and multitasking. All infer-
ence requests are passed to the execution engine (e.g., Open-
VINO [37]) for processing on XPUs. Most current XPUs
and their drivers—including GPUs, NPUs and ASICs—are
designed for standalone execution and must work with the
scheduler module (e.g., XSched [51]) to effectively support
multitasking.

For computational resources, existing multi-task execution
approaches use time-slicing or MPS methods. These mecha-
nisms struggle to guarantee response latency and reduce the
interference. Through modifications to drivers and engines,
hardware characteristics can be maximally utilized to im-
plement preemptive scheduling of AI accelerators, enabling
rapid preemption for foreground one-shot task responsiveness
while executing batch tasks in the background. Fine-grained
partitioning of computing units in spatial sharing can reduce
interference between tasks. For memory resource multi-task
support, existing solutions implement virtual memory exten-
sion through page faults. The scheduler can further optimize
memory resource switching and coordinate scheduling with
computational resources.

Cross platform compatibility. To ensure cross-platform com-
patibility for heterogeneous AI accelerators, the AI service
utilizes vendor-provided inference frameworks to unify the
use of diverse hardware at the model level. An integrated
engine must simply support model loading, inference, and
unloading to achieve hardware compatibility on its platform.

Model distribution is crucial for making models accessible
across diverse platforms. It involves weights, network archi-
tecture, and the inherent capabilities they define. Distribution
can utilize standardized formats like ONNX, analogous to
source code requiring user compilation. Alternatively, mod-
els can be provided as pre-compiled, hardware-optimized
binaries, enabling immediate out-of-the-box deployment.

4 Proof of Concept
Implementation. We implemented a proof of concept of our
AI service design on Linux and tested it on both an Intel
Core Ultra laptop and an NVIDIA GPU server. This pro-
totype, XServ, demonstrates how a system-level service for
AI-powered applications can simplify development and im-
prove resource utilization.

In the VCL, we currently support AI capabilities such as
object detection, chat completion, speech recognition, image
generation, image understanding, and background removal.
Table 1 shows the input and output of each capability and the
lines of code (LOC) required for capability implementation.
The AI service provides a Capability API for developers to
access these capabilities.

The scheduler utilizes multi-priority queues to establish a
basic priority scheduling mechanism. The inference engine
supports the OpenVINO framework [37] for inference using
Intel GPUs and NPUs, as well as the ONNX Runtime frame-
work [36] for inference using NVIDIA GPUs. The model
pool interacts with the filesystem to load model-related files,
while the context handler utilizes local storage to maintain
historical context for stateful tasks like chat capabilities.

API. For the Infer API, we provide load_model, unload_-
model, and infer interfaces. For the Capability API, generate
is used to invoke AI capabilities, requiring the capability



APSys ’25, October 12–13, 2025, Seoul, Republic of Korea J. Yang, Z. Wang, R. Chen, and H. Chen

Table 1. Virtual capability layer description.

Capability Input Output Impl. (LOC)

Object detection Image type, pos 118
Chat completion Prompt text 211
Speech recognition Audio text 935
Image generation Prompt image 752
Image understanding Image text 436
Background removal Image image 30

name and related arguments. For the Manage API, we pro-
vide install_model and uninstall_model for managing models,
get_capability and register_capability for retrieving and reg-
istering model capabilities, as well as other interfaces for
managing clients and history.

Application development. To verify that the AI service can
simplify application development, we implemented three AI-
enhanced applications: A shell with chat completion capabili-
ties to support intelligent completion. An instant messaging
(IM) application with chat completion and image generation
capabilities to support conversation summarization and emoji
generation. An online meeting client with chat completion,
speech recognition, and image understanding capabilities to
support meeting content summarization.

With the Capability API, adding these features required
only a few lines of code for each project. Table 2 shows the
lines of code required for using AI capabilities in applica-
tion development. The AI service significantly reduces the
complexity of integrating AI capabilities into applications.

Resource management. To optimize computing resource
utilization, we implemented a system-level priority sched-
uling based on XSched [51]. In desktop environments, user
attention differs between foreground and background applica-
tions. We leverage a GNOME shell extension to monitor the
window focus. Based on this, the AI service dynamically in-
creases the priority of AI tasks tied to the focused application
to ensure faster responsiveness. Without priority scheduling,
concurrent GPU execution of chat completion and image gen-
eration yielded a chat completion throughput of 5.58 tokens/s.
Enabling priority scheduling, with chat completion as the
foreground task, increased this throughput to 8.05 tokens/s.

Furthermore, dynamic load-aware task scheduling across
accelerators mitigates load imbalances. Our AI service ana-
lyzes task compatibility with available accelerators and dis-
patches tasks to the least loaded one. As an illustration, when
applications exclusively selected the GPU for inference, the
background removal frame rate in an online meeting client
was 23.79 FPS. Conversely, dynamic device selection by the
AI service, facilitating NPU utilization, boosted the back-
ground removal frame rate to 48.19 FPS.

The AI service also demonstrates significant resource ef-
ficiency. Consolidating chat completion for just three appli-
cations through the service, instead of using individual em-
bedded LLMs, saved over 20 GB of disk space. Concurrent

Table 2. AI-powered applications description.

APP AI Capability LOC Description

Shell Chat completion 5 Intelligent completion cmd

Meeting

Chat completion 3 Summarize meeting content
Speech recognition 1 Transcribe meeting audio
Image understanding 4 Understand shared screen
Background removal 1 Process camera video

IM
Chat completion 3 Summarize chat content
Image generation 2 Generate emojis

execution of these applications further reduced runtime mem-
ory consumption by approximately 10 GB.

5 Open Questions and Discussion
The design of the system-level abstraction and service raises
several important issues for future consideration.

Capability implementation. Currently, there are numerous
models available, and most models do not provide VCL im-
plementations. To address this challenge, one approach is
to require model publishers to provide them. Alternatively,
LLMs can be employed to read and analyze model documen-
tation and usage examples, automatically generating VCL
implementations for models [11, 29]. Such automated code
generation can rapidly create VCL implementations, reducing
the additional workload for model publishers.

Performance optimization. A system-level AI service, de-
spite adding complexity, enables significant performance op-
timizations through unified management. This allows for
system-wide strategies like co-scheduling diverse hardware
and fine-grained memory control, offering shared benefits
such as faster model loading or improved response times [28,
61]. However, realizing these optimizations presents archi-
tectural challenges, as they require coordinated support from
drivers and hardware. A key challenge lies in establishing uni-
fied abstractions across diverse XPUs that enable frameworks
to leverage these capabilities effectively [51].

Security and privacy. Beyond usability and performance,
security deserves careful consideration. Some applications
need to protect their model weights from leakage after reg-
istering with VCL. Multi-task inference provides isolation
through context, while a unified AI service lacks this mecha-
nism, potentially allowing malicious requests to access data
from other requests [67]. Integrating security hardware such
as TEE for heterogeneous confidential computing is a way to
protect sensitive data within the unified AI service [9, 19].

Acknowledgments
We thank anonymous reviewers for their valuable feedback.
We also thank the members of IPADS at SJTU for their inter-
est, insights, feedback, and support. This work is supported
in part by the NSF of China grant (No. 62272291) and the
Fundamental Research Funds for the Central Universities.



A System-level Abstraction and Service for Flourishing AI-powered Applications APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

References
[1] Keivan Alizadeh, Seyed Iman Mirzadeh, Dmitry Belenko, S. Khatam-

ifard, Minsik Cho, Carlo C Del Mundo, Mohammad Rastegari, and
Mehrdad Farajtabar. 2024. LLM in a flash: Efficient Large Language
Model Inference with Limited Memory. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(Eds.). Association for Computational Linguistics, Bangkok, Thailand,
12562–12584. doi:10.18653/v1/2024.acl-long.678

[2] Anthropic. 2025. Claude. https://claude.ai.
[3] Anthropic. 2025. Introducing the Model Context Protocol. https:

//www.anthropic.com/news/model-context-protocol.
[4] J. Bieniek, M. Rahouti, and D. C. Verma. 2024. Generative AI in

Multimodal User Interfaces: Trends, Challenges, and Cross-Platform
Adaptability. arXiv preprint arXiv:2411.10234 (2024).

[5] Nadav Bonen, Arik Gihon, Leon Polishuk, Yoni Aizik, Yulia Okunev,
Tsvika Kurts, and Nithiyanandan Bashyam. 2025. Lunar Lake an Intel
Mobile Processor: SoC Architecture Overview (2024). IEEE Micro 45,
3 (2025), 15–21. doi:10.1109/MM.2025.3558407

[6] Sarah E. Chasins, Alvin Wan Kok Cheung, Natacha Crooks, Ali
Ghodsi, Ken Goldberg, Joseph Gonzalez, Joseph M Hellerstein,
Michael I. Jordan, Anthony D. Joseph, Michael W. Mahoney, Aditya G.
Parameswaran, David A. Patterson, Raluca A. Popa, Koushik Sen, Scott
Shenker, Dawn Xiaodong Song, and Ion Stoica. 2022. The Sky Above
The Clouds. arXiv preprint arXiv:2205.07147 (2022).

[7] Le Chen, Dahu Feng, Erhu Feng, Rong Zhao, Yingrui Wang, Yubin Xia,
Haibo Chen, and Pinjie Xu. 2025. HeteroLLM: Accelerating Large Lan-
guage Model Inference on Mobile SoCs platform with Heterogeneous
AI Accelerators. arXiv preprint arXiv:2501.14794 (2025).

[8] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu,
Haoyu Wang, and Xuanzhe Liu. 2021. An Empirical Study on De-
ployment Faults of Deep Learning Based Mobile Applications. In 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). 674–685. doi:10.1109/ICSE43902.2021.00068

[9] Ben Dong and Qian Wang. 2025. Evaluating the Performance of
the DeepSeek Model in Confidential Computing Environment. arXiv
preprint arXiv:2502.11347 (2025).

[10] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li,
Heming Xia, Jingjing Xu, Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li,
and Zhifang Sui. 2024. A Survey on In-context Learning. In Proceed-
ings of the 2024 Conference on Empirical Methods in Natural Language
Processing, Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(Eds.). Association for Computational Linguistics, Miami, Florida,
USA, 1107–1128. doi:10.18653/v1/2024.emnlp-main.64

[11] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-Collaboration
Code Generation via ChatGPT. ACM Trans. Softw. Eng. Methodol. 33,
7, Article 189 (Sept. 2024), 38 pages. doi:10.1145/3672459

[12] Dynobo. 2025. NormCap, OCR powered screen-capture tool to capture
information instead of images. https://dynobo.github.io/normcap.

[13] Ruwen Fan, Tingxu Ren, Minhui Xie, Shiwei Gao, Jiwu Shu, and
Youyou Lu. 2025. GPREEMPT: GPU Preemptive Scheduling Made
General and Efficient. In 2025 USENIX Annual Technical Conference
(USENIX ATC 25). 263–272.

[14] Shiqing Fan, Xichen Ding, Liang Zhang, and Linjian Mo. 2025. MCP-
ToolBench++: A Large Scale AI Agent Model Context Protocol MCP
Tool Use Benchmark. arXiv preprint arXiv:2508.07575 (2025).

[15] Erhu Feng, Wenbo Zhou, Zibin Liu, Le Chen, Yunpeng Dong, Cheng
Zhang, Yisheng Zhao, Dong Du, Zhi-Hua Zhou, Yubin Xia, and Haibo
Chen. 2025. Get Experience from Practice: LLM Agents with Record
& Replay. arXiv preprint arXiv:2505.17716 (2025).

[16] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In 18th
USENIX Symposium on Operating Systems Design and Implementation

(OSDI 24). 135–153.
[17] Shiwei Gao, Youmin Chen, and Jiwu Shu. 2025. Fast State Restora-

tion in LLM Serving with HCache. In Proceedings of the Twentieth
European Conference on Computer Systems (Rotterdam, Netherlands)
(EuroSys ’25). Association for Computing Machinery, New York, NY,
USA, 128–143. doi:10.1145/3689031.3696072

[18] Liwei Guo, Wonkyo Choe, and Felix Xiaozhu Lin. 2023. STI:
Turbocharge NLP Inference at the Edge via Elastic Pipelining. In
Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Sys-
tems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Asso-
ciation for Computing Machinery, New York, NY, USA, 791–803.
doi:10.1145/3575693.3575698

[19] Husheng Han, Xinyao Zheng, Yuanbo Wen, Yifan Hao, Erhu Feng,
Ling Liang, Jianan Mu, Xiaqing Li, Tianyun Ma, Pengwei Jin, Xinkai
Song, Zidong Du, Qi Guo, and Xing Hu. 2025. TensorTEE: Unifying
Heterogeneous TEE Granularity for Efficient Secure Collaborative
Tensor Computing. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4 (Hilton La Jolla Torrey Pines, La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 282–297. doi:10.1145/3622781.3674168

[20] Mingcong Han, Weihang Shen, Rong Chen, Binyu Zang, and Haibo
Chen. 2025. Holistic Heterogeneous Scheduling for Autonomous Ap-
plications using Fine-grained, Multi-XPU Abstraction. arXiv preprint
arXiv:2508.09503 (2025).

[21] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022.
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN
Inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA,
539–558. https://www.usenix.org/conference/osdi22/presentation/han

[22] Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mo-
hamed Gabr, Hitokazu Matsushita, Young Jin Kim, Mohamed Afify,
and Hany Hassan Awadalla. 2023. How Good Are GPT Models at
Machine Translation? A Comprehensive Evaluation. arXiv preprint
arXiv:2302.09210 (2023).

[23] Huawei. 2025. Core Speech Kit-AI. https://developer.huawei.com/
consumer/en/doc/harmonyos-references-V5/core-speech-api-V5.

[24] Apple Inc. 2025. Apple Intelligence for Developers. https://developer.
apple.com/apple-intelligence.

[25] Jinwoo Jeong and Jeongseob Ahn. 2025. Accelerating LLM Serving
for Multi-turn Dialogues with Efficient Resource Management. In Pro-
ceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (Rotterdam, Netherlands) (ASPLOS ’25). Association for Computing
Machinery, New York, NY, USA, 1–15. doi:10.1145/3676641.3716245

[26] Mingoo Ji, Saehanseul Yi, Changjin Koo, Sol Ahn, Dongjoo Seo, Nikil
Dutt, and Jong-Chan Kim. 2022. Demand Layering for Real-Time
DNN Inference with Minimized Memory Usage. In 2022 IEEE Real-
Time Systems Symposium (RTSS). 291–304. doi:10.1109/RTSS55097.
2022.00033

[27] Hyungyo Kim, Nachuan Wang, Qirong Xia, Jinghan Huang, Amir
Yazdanbakhsh, and Nam Sung Kim. 2025. LIA: A Single-GPU LLM
Inference Acceleration with Cooperative AMX-Enabled CPU-GPU
Computation and CXL Offloading. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA ’25). As-
sociation for Computing Machinery, New York, NY, USA, 544–558.
doi:10.1145/3695053.3731092

[28] Hyungyo Kim, Nachuan Wang, Qirong Xia, Jinghan Huang, Amir
Yazdanbakhsh, and Nam Sung Kim. 2025. LIA: A Single-GPU LLM
Inference Acceleration with Cooperative AMX-Enabled CPU-GPU
Computation and CXL Offloading. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA ’25). As-
sociation for Computing Machinery, New York, NY, USA, 544–558.

https://doi.org/10.18653/v1/2024.acl-long.678
https://claude.ai
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://doi.org/10.1109/MM.2025.3558407
https://doi.org/10.1109/ICSE43902.2021.00068
https://doi.org/10.18653/v1/2024.emnlp-main.64
https://doi.org/10.1145/3672459
https://dynobo.github.io/normcap
https://doi.org/10.1145/3689031.3696072
https://doi.org/10.1145/3575693.3575698
https://doi.org/10.1145/3622781.3674168
https://www.usenix.org/conference/osdi22/presentation/han
https://developer.huawei.com/consumer/en/doc/harmonyos-references-V5/core-speech-api-V5
https://developer.huawei.com/consumer/en/doc/harmonyos-references-V5/core-speech-api-V5
https://developer.apple.com/apple-intelligence
https://developer.apple.com/apple-intelligence
https://doi.org/10.1145/3676641.3716245
https://doi.org/10.1109/RTSS55097.2022.00033
https://doi.org/10.1109/RTSS55097.2022.00033
https://doi.org/10.1145/3695053.3731092


APSys ’25, October 12–13, 2025, Seoul, Republic of Korea J. Yang, Z. Wang, R. Chen, and H. Chen

doi:10.1145/3695053.3731092
[29] Patrick Tser Jern Kon, Jiachen Liu, Yiming Qiu, Weijun Fan, Ting He,

Lei Lin, Haoran Zhang, Owen M. Park, George S. Elengikal, Yuxin
Kang, Ang Chen, Mosharaf Chowdhury, Myungjin Lee, and Xinyu
Wang. 2024. IaC-eval: A Code Generation Benchmark for Cloud
Infrastructure-as-Code Programs. In Advances in Neural Information
Processing Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan,
U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates,
Inc., 134488–134506.

[30] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS
abstractions make sense on FPGAs?. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 991–1010. https://www.usenix.org/conference/osdi20/
presentation/roscoe

[31] Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed
Haddadi. 2024. MELTing Point: Mobile Evaluation of Language Trans-
formers. In Proceedings of the 30th Annual International Conference
on Mobile Computing and Networking (Washington D.C., DC, USA)
(ACM MobiCom ’24). Association for Computing Machinery, New
York, NY, USA, 890–907. doi:10.1145/3636534.3690668

[32] Chongyi Li, Chunle Guo, Linghao Han, Jun Jiang, Ming-Ming Cheng,
Jinwei Gu, and Chen Change Loy. 2022. Low-Light Image and Video
Enhancement Using Deep Learning: A Survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 12 (2022), 9396–9416.
doi:10.1109/TPAMI.2021.3126387

[33] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and
Bernard Ghanem. 2023. CAMEL: Communicative Agents for "Mind"
Exploration of Large Language Model Society. In Advances in Neural
Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates,
Inc., 51991–52008.

[34] Chengfei Lv, Chaoyue Niu, Renjie Gu, Xiaotang Jiang, Zhaode Wang,
Bin Liu, Ziqi Wu, Qiulin Yao, Congyu Huang, Panos Huang, Tao
Huang, Hui Shu, Jinde Song, Bin Zou, Peng Lan, Guohuan Xu, Fei Wu,
Shaojie Tang, Fan Wu, and Guihai Chen. 2022. Walle: An End-to-End,
General-Purpose, and Large-Scale Production System for Device-Cloud
Collaborative Machine Learning. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 249–265. https://www.usenix.org/conference/
osdi22/presentation/lv

[35] Microsoft. 2025. Copilot and AI Agents. https://www.microsoft.com/
en-us/microsoft-copilot/copilot-101/copilot-ai-agents.

[36] Microsoft. 2025. ONNX Runtime. https://onnxruntime.ai/docs.
[37] Microsoft. 2025. OpenVINO Execution Provider. https://onnxruntime.

ai/docs/execution-providers/OpenVINO-ExecutionProvider.html.
[38] Microsoft. 2025. Recall Overview. https://learn.microsoft.com/en-

us/windows/ai/recall.
[39] Microsoft. 2025. Windows Copilot Runtime Overview. https://learn.

microsoft.com/en-us/windows/ai/overview.
[40] Guozhao Mo, Wenliang Zhong, Jiawei Chen, Xuanang Chen, Yaojie

Lu, Hongyu Lin, Ben He, Xianpei Han, and Le Sun. 2025. LiveMCP-
Bench: Can Agents Navigate an Ocean of MCP Tools? arXiv preprint
arXiv:2508.01780 (2025).

[41] Seungjae Moon, Junseo Cha, Hyunjun Park, and Joo-Young Kim. 2025.
Hybe: GPU-NPU Hybrid System for Efficient LLM Inference with
Million-Token Context Window. In Proceedings of the 52nd Annual
International Symposium on Computer Architecture (ISCA ’25). As-
sociation for Computing Machinery, New York, NY, USA, 808–820.
doi:10.1145/3695053.3731051

[42] Motahare Mounesan, Xiaojie Zhang, and Saptarshi Debroy. 2025. Infer-
EDGE: Dynamic DNN Inference Optimization in ’Just-in-time’ Edge-
AI Implementations. arXiv preprint arXiv:2501.18842 (2025).

[43] E. Nahum, T. Barzilai, and D.D. Kandlur. 2002. Performance issues in
WWW servers. IEEE/ACM Transactions on Networking 10, 1 (2002),
2–11. doi:10.1109/90.986497

[44] Ollama. 2025. API Reference. https://ollama.readthedocs.io/en/api/
#generate-a-chat-completion.

[45] OpenAI. 2025. ChatGPT. https://chatgpt.com.
[46] Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke

Zhou, Yingwei Luo, Xiaolin Wang, and Jie Zhang. 2025. InstAt-
tention: In-Storage Attention Offloading for Cost-Effective Long-
Context LLM Inference. In 2025 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 1510–1525.
doi:10.1109/HPCA61900.2025.00113

[47] PyTorch Foundation. 2025. PyTorch. https://pytorch.org.
[48] Alejandro Rico, Satyaprakash Pareek, Javier Cabezas, David Clarke,

Baris Ozgul, Francisco Barat, Yao Fu, Stephan Münz, Dylan Stuart,
Patrick Schlangen, Pedro Duarte, Sneha Date, Indrani Paul, Jian Weng,
Sonal Santan, Vinod Kathail, Ashish Sirasao, and Juanjo Noguera. 2024.
AMD XDNA NPU in Ryzen AI Processors. IEEE Micro 44, 6 (2024),
73–82. doi:10.1109/MM.2024.3423692

[49] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray,
and Emmett Witchel. 2011. PTask: operating system abstractions to
manage GPUs as compute devices. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (Cascais, Portugal)
(SOSP ’11). Association for Computing Machinery, New York, NY,
USA, 233–248. doi:10.1145/2043556.2043579

[50] Christopher J. Rossbach, Jon Currey, and Emmett Witchel. 2011. Oper-
ating Systems Must Support GPU Abstractions. In 13th Workshop on
Hot Topics in Operating Systems (HotOS XIII). USENIX Association,
Napa, CA. https://www.usenix.org/conference/hotosxiii/operating-
systems-must-support-gpu-abstractions

[51] Weihang Shen, Mingcong Han, Jialong Liu, Rong Chen, and Haibo
Chen. 2025. XSched: Preemptive Scheduling for Diverse XPUs. In 19th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 25). 671–692.

[52] Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya Zhang, Yige
Hu, Amir Wated, and Emmett Witchel. 2016. GPUnet: Networking
Abstractions for GPU Programs. ACM Trans. Comput. Syst. 34, 3,
Article 9 (Sept. 2016), 31 pages. doi:10.1145/2963098

[53] Jason Ching Yuen Siu, Jieshan Chen, Yujin Huang, Zhenchang Xing,
and Chunyang Chen. 2023. Towards Real Smart Apps: Investigating
Human-AI Interactions in Smartphone On-Device AI Apps. arXiv
preprint arXiv:2307.00756 (2023).

[54] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. 2024. PowerInfer:
Fast Large Language Model Serving with a Consumer-grade GPU.
In Proceedings of the ACM SIGOPS 30th Symposium on Operating
Systems Principles (Austin, TX, USA) (SOSP ’24). Association for
Computing Machinery, New York, NY, USA, 590–606. doi:10.1145/
3694715.3695964

[55] Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. 2021. Mind
Your Weight(s): A Large-scale Study on Insufficient Machine Learning
Model Protection in Mobile Apps. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 1955–1972. https://www.
usenix.org/conference/usenixsecurity21/presentation/sun-zhichuang

[56] Chengcheng Wan, Shicheng Liu, Henry Hoffmann, Michael Maire,
and Shan Lu. 2021. Are Machine Learning Cloud APIs Used Cor-
rectly?. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). 125–137. doi:10.1109/ICSE43902.2021.00024

[57] Jiali Wang, Yankui Wang, Mingcong Han, and Rong Chen. 2025. Colo-
cating ML Inference and Training with Fast GPU Memory Handover.
In 2025 USENIX Annual Technical Conference (USENIX ATC 25).
1657–1675.

[58] Xingda Wei, Zhuobin Huang, Tianle Sun, Yingyi Hao, Rong Chen,
Mingcong Han, Jinyu Gu, and Haibo Chen. 2025. PhoenixOS: Concur-
rent OS-level GPU Checkpoint and Restore with Validated Speculation.
In Proceedings of the 31th Symposium on Operating Systems Principles
(SOSP ’25). Association for Computing Machinery, New York, NY,
USA.

https://doi.org/10.1145/3695053.3731092
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://www.usenix.org/conference/osdi20/presentation/roscoe
https://doi.org/10.1145/3636534.3690668
https://doi.org/10.1109/TPAMI.2021.3126387
https://www.usenix.org/conference/osdi22/presentation/lv
https://www.usenix.org/conference/osdi22/presentation/lv
https://www.microsoft.com/en-us/microsoft-copilot/copilot-101/copilot-ai-agents
https://www.microsoft.com/en-us/microsoft-copilot/copilot-101/copilot-ai-agents
https://onnxruntime.ai/docs
https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html
https://onnxruntime.ai/docs/execution-providers/OpenVINO-ExecutionProvider.html
https://learn.microsoft.com/en-us/windows/ai/recall
https://learn.microsoft.com/en-us/windows/ai/recall
https://learn.microsoft.com/en-us/windows/ai/overview
https://learn.microsoft.com/en-us/windows/ai/overview
https://doi.org/10.1145/3695053.3731051
https://doi.org/10.1109/90.986497
https://ollama.readthedocs.io/en/api/#generate-a-chat-completion
https://ollama.readthedocs.io/en/api/#generate-a-chat-completion
https://chatgpt.com
https://doi.org/10.1109/HPCA61900.2025.00113
https://pytorch.org
https://doi.org/10.1109/MM.2024.3423692
https://doi.org/10.1145/2043556.2043579
https://www.usenix.org/conference/hotosxiii/operating-systems-must-support-gpu-abstractions
https://www.usenix.org/conference/hotosxiii/operating-systems-must-support-gpu-abstractions
https://doi.org/10.1145/2963098
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3694715.3695964
https://www.usenix.org/conference/usenixsecurity21/presentation/sun-zhichuang
https://www.usenix.org/conference/usenixsecurity21/presentation/sun-zhichuang
https://doi.org/10.1109/ICSE43902.2021.00024


A System-level Abstraction and Service for Flourishing AI-powered Applications APSys ’25, October 12–13, 2025, Seoul, Republic of Korea

[59] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. TMO: transparent
memory offloading in datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS
’22). Association for Computing Machinery, New York, NY, USA,
609–621. doi:10.1145/3503222.3507731

[60] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang
Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng,
Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang,
Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shi-
han Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin,
Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. 2023. The
Rise and Potential of Large Language Model Based Agents: A Survey.
arXiv preprint arXiv:2309.07864 (2023).

[61] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Meng-
wei Xu, and Xuanzhe Liu. 2025. Fast On-device LLM Inference
with NPUs. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS ’25). As-
sociation for Computing Machinery, New York, NY, USA, 445–462.
doi:10.1145/3669940.3707239

[62] Wenchao Xu, Jinyu Chen, Peirong Zheng, Xiaoquan Yi, Tianyi Tian,
Wenhui Zhu, Quan Wan, Haozhao Wang, Yunfeng Fan, Qinliang Su,
and Xuemin Shen. 2024. Deploying Foundation Model Powered Agent
Services: A Survey. arXiv preprint arXiv:2412.13437 (2024).

[63] Yuan Yao, Yujiao Hu, Yi Dang, Wei Tao, Kai Hu, Qiming Huang, Zhe
Peng, Gang Yang, and Xingshe Zhou. 2025. Workload-Aware Perfor-
mance Model Based Soft Preemptive Real-Time Scheduling for Neural

Processing Units. IEEE Transactions on Parallel and Distributed Sys-
tems 36, 6 (2025), 1058–1070. doi:10.1109/TPDS.2025.3553922

[64] Rongjie Yi, Ting Cao, Ao Zhou, Xiao Ma, Shangguang Wang, and
Mengwei Xu. 2023. Boosting DNN Cold Inference on Edge Devices.
In Proceedings of the 21st Annual International Conference on Mobile
Systems, Applications and Services (Helsinki, Finland) (MobiSys ’23).
Association for Computing Machinery, New York, NY, USA, 516–529.
doi:10.1145/3581791.3596842

[65] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). 521–538.

[66] Qiyang Zhang, Xiang Li, Xiangying Che, Xiao Ma, Ao Zhou, Mengwei
Xu, Shangguang Wang, Yun Ma, and Xuanzhe Liu. 2022. A Compre-
hensive Benchmark of Deep Learning Libraries on Mobile Devices. In
Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon,
France) (WWW ’22). Association for Computing Machinery, New York,
NY, USA, 3298–3307. doi:10.1145/3485447.3512148

[67] Shulai Zhang, Ao Xu, Quan Chen, Han Zhao, Weihao Cui, Zhen Wang,
Yan Li, Limin Xiao, and Minyi Guo. 2025. Efficient Performance-
Aware GPU Sharing with Compatibility and Isolation through Kernel
Space Interception. In 2025 USENIX Annual Technical Conference
(USENIX ATC 25). 1003–1019.

[68] Kongyange Zhao, Zhi Zhou, Lei Jiao, Shen Cai, Fei Xu, and Xu Chen.
2024. Taming Serverless Cold Start of Cloud Model Inference With
Edge Computing. IEEE Transactions on Mobile Computing 23, 8
(2024), 8111–8128. doi:10.1109/TMC.2023.3348165

https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3669940.3707239
https://doi.org/10.1109/TPDS.2025.3553922
https://doi.org/10.1145/3581791.3596842
https://doi.org/10.1145/3485447.3512148
https://doi.org/10.1109/TMC.2023.3348165

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Growing Popularity of AI Tasks
	2.2 Challenges in Leveraging AI Capabilities
	2.3 Challenges in Managing Hardware Resources

	3 System-level Abstraction and Service
	3.1 Design Overview
	3.2 Capability Abstraction and API
	3.3 Unified AI Service

	4 Proof of Concept
	5 Open Questions and Discussion
	References

