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Abstract
We present XIndex, a concurrent ordered index designed for
fast queries. Similar with a recent proposal of the learned
index, XIndex uses learned models to optimize index effi-
ciency. Comparing with the learned index, XIndex is able to
effectively handle concurrent writes without affecting the
query performance by leveraging fine-grained synchroniza-
tion and a new compaction scheme Two-Phase Compaction.
Furthermore, XIndex adapts its structure according to run-
time workload characteristics to support dynamic workload.
We demonstrate the advantages of XIndex with both YCSB
and TPC-C (KV), a TPC-C variant for key-value store. On
a 24-core machine, XIndex achieves up to 3.3× and 4.4×
performance improvement comparing with Masstree and
Wormhole respectively. XIndex is open-sourced1.

CCS Concepts • Information systems → Data struc-
tures; • Theory of computation → Concurrent algo-
rithms.

1 Introduction
The pioneering study on the learned index [15] opens up
a new perspective on how machine learning can re-sculpt
the decades-old system component, indexing structure. The
key idea of the learned index is to use learned models to
approximate indexes. More specifically, it first trains the
model with each key and its position, then uses the model
to predict the data position with the given key.

1https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
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To deliver high lookup performance, the learned index
uses simple learned models such as linear regression or sim-
ple layer neural networks. To enable the simplity on learned
models, it adds extra requirements on the data layout. For in-
stance, to learn ordered index, it requires the data to be both
ordered and contiguous. As a result, the data distribution
can be simulated with linear models, and the performance is
1.5-3× better than B-tree.

However, the current study of the learned index is still
preliminary, and lacks practicability in a broad class of read-
world scenarios because of two limitations: first, it does not
support of any modifications including inserts, updates or
deletes; Second, it assumes the workload has a relative static
query distribution2. More specifically, it requires all data are
uniformly accessed. But, making the learned index practi-
cal for dynamic workloads with updates is not a easy task,
because its high performance is tied closely to both data
distribution and query distribution, especially for ordered
index. First, the learned index requires data to be contiguous
for using simple models. Thus, it needs to construct new
dataset and retrain the model to handle every update events.
Although, there are proposals [9, 18] of handling updates for
the learned index more efficiently. But none of them is able
to ensure correctness in face of concurrent operations [ZG:
need to discuss it in detail in relatedwork section]. Sec-
ond, the learned index is sensitive to the changes of the data
and query distribution at runtime. Its current design employs
several learned models, and each is in charge of a portion of
data. However, the prediction error of every model varies.
At the same time, queries in real-world workloads tend to
be skew, where some “hot” keys are much more frequenty
queried than others [7, 10, 16, 25]. As a result, when the
model that indexes those hot keys has large errors, queries
can incur high overheads (sec:issues).

In this paper, we present XIndex, a new fully-fledged con-
current index structure inspired by the learned index. While
XIndex leveraging learned model to speed up the lookup, it
can handle concurrent writes efficiently with good scalability.

2The query distribution describes the access frequencies of keys among
queries within a specific workload. By contrast, data distribution describes
the keys and their lookup positions within a dataset.

https://doi.org/10.1145/3332466.3374547
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Moreover, it is designed to adapt its structure deterministi-
cally at runtime and decouple its efficiency from the runtime
workload characteristics. Specifically, this paper makes the
following contributions:

Ascalable and concurrent learned index, XIndex.With
understandings of the learned index’s pros and cons, XIndex
range-partitions data into different groups, each attached
with learned models for lookup and a delta index to han-
dle inserts. To achieve high performance, XIndex exploits a
combination of innovative methods (e.g., Two-Phase Com-
paction) and classic techniques (e.g., read-copy-update (RCU)
[21] and optimistic concurrency control [3, 4, 20]).

Deterministic data structure adjustment according
to runtimeworkload characteristics.Unlike B-treewhose
structure is decided by the fanout, XIndex adapt its structure
to runtime workload characteristics through structure up-
date operations, such as group split and group merge. Users
can configure the expected behaviours through parameters
such as error bound threshold (e) and delta index size thresh-
old (s).

Implementation and evaluationwith bothmacro and
micro benchmarks. We implement XIndex and compare
it against state-of-the-art structures (the learned index [15],
Wormhole [24], Masstree [20] and stx::Btree [1]). The bench-
marks we used include different microbenchmarks, the YCSB
benchmark and the TPC-C (KV) benchmark which is a TPC-
C variant for key-value stores. The experimental results show
that, with 24 CPU cores, XIndex achieves up to 3.2× and 4.4×
performance improvement comparing with Masstree, Worm-
hole respectively.
The rest of the paper is organized as follows. We first

describe the background and motivation in Section 2. Sec-
tion 3 gives the design of XIndex. Afterwards, we presents
the concurrent support (Section 4), the runtime structure
adjustment strategy (Section 5) and optimizations (Section 6).
Section 7 shows evaluation results. We discuss alternative de-
sign choice and limitations of current design in Section 8 and
summarize related works in Section 9. Section 10 concludes
this paper.

2 Background & Motivation
2.1 The learned index
The insight of the learned index is that range indexes can be
viewed as functionsmapping keys to data positions. For fixed-
length key-value records, assuming they are sorted in an
array3, this function is effectively a cumulative distribution
function (CDF) of keys’ distribution. Given the CDF F , the
position of a record is ⌊F (key) × N ⌋, where N is the total
number of records.

The core idea behind the learned index is to approximate
the CDF with machine learning models, such as deep neu-
ral networks, and predict record positions using models. In
3We refer to this array as sorted arrays.

order to provide the correctness guarantee despite of pre-
diction errors, the learned index stores the maximal and
minimal prediction errors of the model. After training the
model, the errors are calculated by taking the difference be-
tween the predicted and the actual positions of each key
and taking the maximum and minimum. For a record in the
sorted array, its actual position must fall in [pred(key) +
min_err , pred(key) +max_err ], where pred(key) is the pre-
dicted position. Therefore, the learned index uses binary
search within the range to locate the record We use error
bound, loд2(max_err − min_err + 1), to express the cost
of lookup. The learned index will be more effective with
a smaller error bound. In contrast with common machine
learning practices where model generalization matters, the
learned index expects the model to overfit to reduce errors
over existing data.

However, using a single model to learn the entire CDF falls
short in prediction accuracy due to the complexity of CDFs.
To improve the prediction accuarcy and therefore reduce
the error bound, the paper proposes a staged model architec-
ture, termed Recursive Model Indexes (RMI). RMI contains
multiple stages of models, which resembles the multi-level
structure of B-tree. The model at each internal stage predicts
which model to be activated at the next stage; the model in
the leaf stage directly predicts the CDF values. With RMI ar-
chitecture, each leaf stage model only approximates a small
part of the complete CDF, a much simpler function to learn,
which in turn reduces the model error bounds.
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Figure 1. Learned index throughput normalized to
stx::Btree. The numbers indicate the absolute throughput of
stx::Btree in Mops/s.

The evaluation of the paper [15] shows that the learned
index can achieve better (1.5-3×) performance than B-tree
across several datasets. We further evaluate the learned index
with different dataset size. We find that, the learned index has
better performance than stx::Btree with large datasets, but
gets outperformed by stx::Btree with small dataset. Figure 1
shows the performance of the learned index under different
dataset sizes with normal distribution. The learned index is
configured with a 2-stage RMI architecture and 2nd stage
has 10K linear models. We compare the learned index with
stx::Btree [1] and configure stx::Btree with its default fanout
(16). With small datasets (less than 10K), the learned index’s
performance is limited by the model computation cost. Most
of the learned index’s query time (47% of 42ns) is spent
on model computation when the dataset size is 0.1K. While
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Figure 2. Concurrency issue in face of concurrent opera-
tions.

stx::Btree has 2 layers and only needs 25ns to finish one query.
When the dataset size increases, the learned index shows
large performance advantages over stx::Btree. The reason is
that, the increase in the overhead of binary search for the
learned index is much slower than that of node traversal
for stx::Btree. Meanwhile, the model computation cost of
the learned index is constant. For instance, with dataset size
increasing from 1M to 10M, the error bound increases from
4.7 to 6.6 and the time of binary search in the learned index
has a growth of 38% (from 68ns to 94ns). However, the query
time of stx::Btree only has a increase of 92% (from 207ns to
399ns).

2.2 The issues
Despite of the performance advantage of the learned index,
there are two issues which limit its practicability.

First, the learned index does not provide an efficientmethod
to handlewrites, especially under concurrent scenarios. Based
on current design, an intuitive solution is to buffer all writes
in a delta index, then periodically compact it with the learned
index. The compaction includes both merging the data into a
new sorted array and retrain the models. Though straightfor-
ward, this method suffers from severe slow down for queries.
One reason is that each request has to first go through the
delta index(es) before looking up the the learned index. Con-
sidering building a the learned index with 200M records, and
using Masstree to be the delta index. With a workload of
10% writes, the query latency increases from 530ns to 1557ns
due to the cost of searching Masstree. Another reason is that
concurrent requests are blocked by the compaction, which is
time-consuming. It takes up to 30s to compact a delta index
of 100K records with a the learned index with 200M records.

A possible improvement based on abovemethod is employ-
ing in-place updates with nonblocking compaction scheme.
We can perform writes to existing records in-place, and only
inserting new records to the delta index. Thus, a query only
looks up the delta index when it fails to find a matching
record in the learned index. Meanwhile, to avoid blocking
query requests, we can compact the data asynchronously
with background threads. However, simply using these two
methods together may arise correctness issue — the effect
of in-place writes might be lost due to the data race with

Systems Workloads
Skewed 1 Skewed 2 Skewed 3 Uniform

stx::Btree 1.84 1.86 1.83 1.16
the learned index 1.57 3.71 1.41 2.38

Error bound 15.71 5.87 19.52 6.95

Table 1. stx::Btree’s and the learned index’s through-
put(Mps) & the learned index’s error bound in uniform and
skewed query workloads of OSM dataset. The last row gives
the average error bound weighted by the models’ access
frequency.

background compaction. Let’s consider this example (Fig-
ure 2) where operation op1 in-place updates record r1 and
operation op2 concurrently merges the delta index with the
learned index into a new sorted record array. With the fol-
lowing interleaving, op1’s update to r1 will be lost due to
the concurrent compaction: 1) op2 starts the compaction and
copies r1 to the new array; 2) op1 in-place updates r1 in the
old array; 3) op2 finishes the compaction, update the data
array and retrains the model.
Second, the learned index’s performance is tied closely

to workload characteristics, including both data and query
distributions. This is because the lookup efficiency depends
on the error bounds of specific leaf stage models activated for
the queries, meanwhile, the error bound of different model
varies. As a result, the learned index can have worse perfor-
mance than B-tree with certain workloads. Table 1 shows the
performance of the learned index and stx::Btree under both
uniform and skewed query distributions on osm dataset (de-
tails in Section 7). Under the uniform query distribution, all
keys have the same chance to be accessed. Under the skewed
query distribution, 95% queries access 5% hot records, and
the hot records of each workload reside in different ranges.
“Skewed 1” chooses hot keys from the 94th to 99th percentiles
of the sorted key array. “Skewed 2” chooses from the 35th to
40th, while “Skewed 3” chooses from the 95th to 100th.

The learned index has better performance than stx::Btree
under the workloads of “Skewed 2” and “Uniform”, but is out-
performed under “Skewed 1” and “Skewed 3”. This is because
The learned index have much higher average error bounds
on the frequently accessed records under workload “Skewed
1” and “Skewed 3”, which hinders the query performance.
The underlying cause is that the learned index only tries
to minimize the error of each model individually, lacking
the consideration for accuracy differences between models.
Similar results can be observed in other workloads as well
(Section 7.3).

3 XIndex Data Structure
3.1 Overview
XIndex adopts a two-layer architecture design (Figure 3). The
top layer contains a root node which indexes all group nodes



PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

ro
ot
		n
od
e

gr
ou
p	
no
de
s

RMI	Model

Group	Pointers

Group2Data	Array
Delta	Index

Linear	Models
Groupn···

Figure 3. The architecture of XIndex.
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in the bottom layer. The data is divided into groups by range
partitioning. The root uses a learned RMI model to index
the groups. Each group node uses a learned linear model to
index its belonged data. For writes, XIndex performs in-place
updates on existing records, and associates each group with
a delta index to buffer insertions.
XIndex first introduces a new compaction scheme, Two-

Phase Compaction (Section 3.4), to compact the new data con-
ditionally. The compaction is performed at background and
does not block any concurrent operations. The compaction
has two phases:merge phase and copy phase. In merge phase,
XIndex merges current data array and delta index into a
new data array. Instead of directly copying the data, XIndex
maintains the data references in the new data array. Each
reference points to the records being compacted, residing in
either the old data array or the delta index. After ensuing
there will be no accesses on the old data array through an
RCU barrier, XIndex performs the copy phase. It replaces
each reference in the new data array with the real value.
Considering above exmple (Figure 2) with Two-Phase Com-
paction in Figure 4, after the merge phase, the new data array
contains the pointer (e.g., p1) of each record (e.g., r1). If there
exist a concurrent write which updates r1 to be r ′1, it can
safely proceed as it is already referenced by the new data
array. After a RCU barrier, no thread will access the old data
array anymore. p1 is replaced with r ′1 in the copy phase.

XIndex is able to adjust its structure according to runtime
workload characteristics. At runtime, if some group incurs

Algorithm 1: Structures
1 struct root_t:
2 rmi_t rmi;
3 uint32_t group_n;
4 key_t pivots[];
5 group_t* groups[];
6

7 struct record_t:
8 key_t key;
9 val_t val;

10 uint64_t // composite 8B
11 is_ptr : 1, removed : 1
12 lock : 1, version : 61;

13 struct group_t:
14 key_t pivot;
15 bool_t buf_frozen;
16 uint16_t model_n;
17 uint32_t array_size;
18 model_t

models[MAX_MODEL_N];
19 record_t data_array[];
20 buffer_t* buf;
21 buffer_t* tmp_buf;
22 group_t* next;

high prediction error, XIndex adds more linear models in that
group by “model split” to increase the inference accuracy. If
a group has too many models or its delta index is too large,
XIndex splits the group — replacing the group with two new
groups each containing half data of the old group. XIndex
also performs model merge and group merge, if the merging
does not affect the prediction accuracy. Furhtermore, if there
are too many groups, XIndex retrains the RMI model of the
root node, and may adjust the model’s structure to improve
the accuracy.

3.2 Layout
XIndex maintains three basic structures of record_t, root_t
and group_t according to the root node, the group node and
the record (Algorithm 1).
The record_t is the basic representation of the data. It in-

cludes the key (key), the record data (val) and some metadata.
The is_ptr flag indicates whether val is the actual value or a
memory reference. The removed flag is set when a record is
logically removed. The lock and version is concurrency con-
trol flags which ensure concurrent operations are exclusively
executed.
The root_t contains the group’s information and an RMI

model. The group information includes each group’s smallest
key (pivots_n) and address (groups), and the total number of
groups (groups_n). The RMI model (rmi) is used to predict the
group with a given key. It is trained with pivots and groups.
In current design, XIndex uses two-stage RMI architecture
solely of linear models. The number of models in its second
stage is adjustable at runtime (Section 5).

The group_t has three basic components: the data, models
and delta index. For the data, all records indexed by the group
is continuously stored in data_array. Each group uses at least
one linear models to index the record in data_array, and the
models are maintained in models. The mode_t includes the
parameters of the linear models, and the data range belonged
to each model. The buf is the delta index which buffers all
insertions. During compaction, buf is frozen and (buf_frozen
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Algorithm 2: Get and Put
1 get(root, key):
2 group← get_group(root, key)
3 pos← get_position(group, key)
4 val← empty
5 if pos , empty
6 val← read_record(group.data_array[pos])
7 if val = empty
8 val← get_from_buffer(group.buf, key)
9 if val = empty && group.tmp_buf , null

10 val← get_from_buffer(group.tmp_buf, key)
11 return val
12

13 put(root, key, val):
14 retry:
15 group← get_group(root, key)
16 pos← get_position(group, key)
17 if pos , empty
18 if update_record(group.data_array[pos], val) = true
19 return
20 if group.buf_frozen = false
21 insert_buffer(group.buf, key, val)
22 else
23 if update_in_buffer(group.buf, key, val) = true
24 return
25 if group.tmp_buf = null
26 goto retry
27 insert_buffer(group.tmp_buf, key, val)

is set to be true. The tmp_buf serves as a temporary delta
index which buffers all insertions termporarily during the
compaction. For optimization purpose, the group_t maintains
its smallest key in a seperate variable, pivot.

3.3 Basic operations
XIndex provides basic index interfaces — get, put, remove and
scan (Algorithm 2). All the operations share the same logic
for searching the correct group and lookup the requested
key in data_array, after then, the procedures diverge.

XIndex first uses the root to find the group the requested
key belongs to (Line 2, 15) assisted by the root’s RMI model.
The models only provide predicted positions and we need
to furthur binary search within a error-bounded range to
actually find the correct position (Section 2.1). In the case
when a group’s next pointer is not null, which indicates
previously a group had been split into two groups, XIndex
needs to follow the pointer to find the correct group. When
looking up the key within a group’s data_array (Line 3),
XIndex also leverages the corresponding learned model.

After looking up data_array, the procedures diverge. For
get, if XIndex finds a record matching the requested key
(Line 5) in data_array, then it tries to read a consistent value

Algorithm 3: Two-Phase Compaction
1 compact(group):
2 /* phase 1 */
3 group.buf_frozen← true
4 rcu_barrier()
5 group.tmp_buf ← allocate new delta index
6 new_group← allocate new group
7 new_group.data_array← merge(group.data_array,

group.buf )
8 new_group.buf ← group.tmp_buf
9 train new_group’s models with new_group.data_array

10 init new_group’s other fields
11 old_group← group
12 atomic_update_reference(group, new_group)
13 rcu_barrier()
14 /* phase 2 */
15 for each record in new_group.data_array
16 replace_pointer(record)
17 rcu_barrier()
18 reclaim old_group’s memory

with read_record helper function (Line 6). An empty result
indicates a logically removed record. In this case, get proceed
to search buf (Line 7-8), and then search the temporary delta
index if tmp_buf is not null (Line 9-10). A get request returns
as soon as a non-empty result is fetched, otherwise it returns
empty. For put and remove, similar to get, if a matching record
is found inside data_array (Line 17), XIndex first tries to
update/remove the record in-place (Line 18). If XIndex cannot
perform in-place update/remove, then it proceeds to operate
on buf and optionally tmp_buf. Unlike get operations, put
requests only access buf when frozen_buf flag is not set.
For scan, XIndex first locates the smallest record that is ≥
requested key, and then consistently reads n consecutive
records.
We elaborate the details of put, remove and helper func-

tions in conjunction with concurrent background operations
in Section 4, since most subtleties stem from consistency
consideration.

3.4 Compaction
To ensure consistency in face of concurrent operations (Sec-
tion 2.2), XIndex divides the compaction into two phases,
merge phase and copy phase (Algorithm 3).

In the merge phase, XIndex merges a group’s data_array
and buf a new sorted array in which values are pointers to
existing records. XIndex first sets the old group’s buf_frozen
flag to stop newly issued puts inserting to buf (Line 3). Then
XIndex initializes tmp_buf to buffer insertions during com-
paction (Line 5). Afterwards, it creates a new group (Line 6)
and merges the old group’s data_array and buf into the
new group’s data_array (Line 7). Furthermore, the values
in the new group’s data_array are references to records in
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Algorithm 4: Group Split
1 split(group):
2 /* step 1 */
3 g_a′, g_b′← allocate 2 new group
4 {g_a′, g_b′}.{data_array, buf}← group.{data_array, buf}
5 g_a′.pivot← group.pivot
6 g_b′.pivot← group.data_array[group.array_size / 2]
7 g_a′.next← g_b′

8 init other fields of g_a′ and g_b′

9 old_group← group
10 atomic_update_reference(group, g_a′)
11 /* step 2.1, merge phase */
12 {g_a′, g_b′}.buf_frozen← true
13 rcu_barrier()
14 {g_a′, g_b′}.tmp_buf ← allocate new delta indexes
15 g_a, g_b← allocate 2 new groups
16 tmp_array← merge(old_group.data_array,

old_group.buf )
17 {g_a, g_b}.data_array← split(tmp_array, g_b′.pivot)
18 {g_a, g_b}.buf ← {g_a′,g_b′}.tmp_buf
19 train {g_a, g_b}’s models with {g_a, g_b}.data_array
20 {g_a, g_b}.pivot← {g_a′, g_b′}.pivot
21 g_a.next← g_b
22 init g_a’s and g_b’s other fields
23 atomic_update_reference(group, g_a)
24 rcu_barrier()
25 /* step 2.2, copy phase */
26 for each record in {g_a, g_b}.data_array
27 replace_pointer(record)
28 rcu_barrier()
29 reclaim {old_group, g_a′, g_b′}’s memory

either data_array or buf of the old group. The is_ptr flags
are set to true. During merging, XIndex skips the logically
removed records. The old group’s tmp_buf is re-used as
the new group’s buf (Line 8). After training linear models
(Line 9) and initializing the remaining metadata of the new
group (Line 10), we atomically replace the old group with the
new one by changing the group references in root’s groups
(Line 12).

In the copy phase, XIndex replaces each reference in the
new group’s data_array with the latest record value (Line 16).
The replacement is performed atomicallywith replace_pointer
helper function (Section 4). XIndex uses rcu_barrier (Line 17)
to wait for each worker to process one request, so the old
group will not be accessed after the barrier. Then it can safely
reclaim the old group’s memory resources (Line 18).

3.5 Structure update
XIndex adjusts its structure at runtimewithmodel split/merge,
group split/merge and root update operations. XIndex lever-
ages these operations to adapt to dynamic workloads (Sec-
tion 5).

Model split/merge updates a group with a increased or
decreased number of models to index data_array. For model
split, XIndex first creates a new group with all the fields
copied from the orginal group except model_n and models.
Then, it increments model_n by one, reassigns data to each
model and retrains them. At last, XIndex atomically updates
the group reference in root’s groups to the new group. For
model merge, it essentially performs a reverse procedure of
model split.

Group split replaces a group with two new groups each
containing half data of the old group (Algorithm 4). There
are two steps in group split. In step 1, XIndex creates two
intermediate groups, g_a′ and g_b′ (Line 3), to logically split
the old group. g_a′ and g_b′ share the same data_array and
buf with the old group (Line 4). However, they have different
pivot keys (Line 5-6) and g_b′ is linked to g_a′’s next field
(Line 7). Therefore, requests can be directed to and served
by different groups accordingly though the data is shared.
At the end of step 1, XIndex replaces the old group with
g_a′ (Line 10). In step 2, XIndex creates two final groups, g_a
and g_b, to physically splits the shared data. Since naively
copying the data can easily cause inconsistency (Section 2.2),
XIndex employ a procedure similar to compaction which in-
cludes a merge phase and a copy phase. In the merge phase,
XIndex merges old group’s data_array and buf into a tem-
porary array of references (Line 16) while buffers inserts
in tmp_buf s (Line 14). Then XIndex splits the temporary
array by g_b′.pivot and attach the results to g_a and g_b
(Line 17). In the copy phase, the references are replaced with
concrete values (Line 27). Finally, XIndex replaces g_a′ with
g_a whose next points to g_b (Line 10). The new groups are
linked to batch changes to the root’s groups array, so that
XIndex can reduce the retraining frequency of root’s model.

Group merge replaces two consecutive groups with one
new groups containing both groups’ data. Similar to group
split, group merge includes a merge phase and a copy phase.
In the merge phase, both groups’ data_arrays and buf s are
merged together while inserts are buffered in a single shared
tmp_buf. In the copy phase, the merged references are re-
placed with concrete values. For brevity, we omit the pseu-
docode for group merge.

Root update flattens root’s groups to reduce pointer ac-
cess cost, retrains and conditionally adjusts the RMI model to
improve prediction error. During root update, XIndex creates
a new root node with a flattened groups and retrains the RMI
model. After a new root is initialzied, XIndex replaces the
global root pointer atomically and reclaims the memory of
the old root with rcu_barrier.

4 Concurrency
XIndex achieves high scalability on multicore platform using
Two-Phase Compaction, along with classic techniques such
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Algorithm 5: Helper functions
1 read_record(rec):
2 while true
3 ver ← rec.ver
4 removed, is_ptr, val← rec.{removed, is_ptr, val}
5 if !rec.lock && rec.version = ver
6 if removed
7 val← empty
8 else if is_ptr
9 val← read_record(DEREF(val))

10 return val
11

12 update_record(rec, val):
13 lock(rec.lock)
14 succ← false
15 if rec.is_ptr
16 succ← update_record(DEREF(rec.val), val)
17 else if !rec.removed
18 rec.val← val
19 succ← true
20 rec.version ++
21 unlock(rec.lock)
22 return succ
23

24 replace_pointer(rec):
25 lock(rec.lock)
26 ref.val← read_record(DEREF(rec.val))
27 if ref.val = empty
28 rec.removed ← true
29 rec.is_ptr ← false
30 rec.version ++
31 unlock(rec.lock)

as fine-grained locking [2, 20, 24], optimistic concurrency
control [3, 4, 20] and RCU [21].

The correctness condition of XIndex can be described as “a
get(k) must observe the latest committed4 put(k, v)”, namely,
linearizability [13]. A get should always returns a correct
value regardless of concurrent puts. When there is a con-
current put, the get can returns either the old value or the
new value, indicating the put commits after or before the get
respectively. We first discuss the coordination between read-
ers and writers without concurrent background operations,
then discuss interleaving with concurrent background oper-
ations, and finally provide a proof sketch of the correctness
condition. The formal proof can be found in the extended
version [XXX].

For brevity, we treat remove as a special put which updates
existing records’ removed flag. We further omit group merge
and root update in the discussion, as the reasoning resembles
compaction’s and group split’s. In XIndex, compaction and

4A put commits when its effect becomes visible to others.

structure updates are performed by dedicated background
threads sharing no conflicts, thus avoiding concurrency is-
sues due to their interleavings.

4.1 Writer-writer coordination
XIndex ensures that conflicting writers, put/removes with the
same key, are atomic with the per-record lock in data_array
and the concurrent delta index. All writers first try to up-
date a matching record in data_array (Line 18, Algorithm 2),
and the per-record lock is acquired to prevent interleaving
with concurrent writers (Line 13, Algorithm 5). If updating
data_array is not feasible, writers then operate on the delta
index (Line 21, Algorithm 2), and the concurrent data struc-
ture coordinates concurrent writers to achieve atomicity. In
the basic version, we use stx::Btree protected by a single
read-write lock as delta index. We improve its scalability
with fine-grained concurrency control as an optimization
(Section 6).

4.2 Writer-reader coordination
XIndex ensures reader atomicity in face of concurrent writ-
ers with locks and versions in data_array and the concurrent
delta index. A get first try to read a value from data_array
(Line 6, Algorithm 2). It first snapshots the version number
before reading the value (Line 3-4, Algorithm 5). After the
value is fetched, get validates if the lock is being held (to
detect concurrent writer) and if the current version num-
ber matches the snapshot (to detect inconsistent or stale
result)[Line 5, Algorithm 5]. If the validation fails, the get
repeats the procedure until a successful validation so the re-
sult is consistent and latest. If reading from data_array is not
feasible, it then try to read from the delta index (Line 8, Algo-
rithm 2). The concurrent delta index ensures the atomicity
of concurrent operations.

4.3 Interleving with background operations
With the presence of background operations, XIndex ensures
that the effects of writers are preserved and can always be
correctly observed by readers. Space constraints preclude a
full discussion, but we mention two important conditions:
1) no successful put will be lost, and 2) no duplicate records
(records with the same key) will be created5.

To ensure no lost put, the key is to perform data movement
in two phases, the merge phase and the copy phase, to pre-
serve concurrent modifications. During the merge phase, the
all records in old group’s data_array and buf can be correctly
referenced in new group’s data_array (Line 7, Algorithm 3
and Line 16, Algorithm 4). This is because insertions to old
group’s buf is forbitted by the buf_frozen flag (Line 3, Algo-
rithm 3 and Line 12, Algorithm 4). In the copy phase, those

5Duplicate records do not directly violate correctness, as long as we enforce
a freshness ordering, data_array ≽ buf ≽ tmp_buf, where data_array has
the latest version. However, doing so requires non-trivial efforts.
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references can be atomically replaced with latest values by
replace_pointer, since it uses the per-record lock to coor-
dinate with concurrent writers (Line 25, Algorithm 5). To
ensure all concurrent writers uses the same lock, XIndex
places rcu_barrier before copy phase (Line 13, Algorithm 3
and Line 24, Algorithm 4), which waits for all writers (and
readers) to each process one request. Therefore, later con-
flicting puts are sure to observe the new group and use the
same lock in new group’s data_array. In addition, concurrent
inserts are preserved in the shared temporary delta index
(Line 8, Algorithm 3 and Line 18, Algorithm 4).

To ensure no duplicate records, XIndex avoids insertions
to different delta indexes, namely buf and tmp_buf. XIndex
only initializes tmp_buf until all writers observe a frozen buf
using the rcu_barrier (Line 3-5, Algorithm 3 and Line 12-14,
Algorithm 4). Therefore, whenever tmp_buf is used to serve
requests, the buf is sure to be read- and update-only.

4.4 Proof sketch
XIndex formally provides the correctness condition by ensur-
ing the following inductive invariants. I1) If there is a put(k,
v) committed, then there is exactly one record with key k in
XIndex; I2) The there is a record with key k in XIndex, then
its value equals the value of the last committed put(k, v); and
I3) The there is a record with key k in XIndex when a get
commits, then the get returns the value of the record.
For I1, in addition to no duplicate records guarantee we

discussed in Section 4.3, XIndex ensures that new record
will be created by put if no record currently exists yet. This
is obvious as such put will invoke insert_buffer (Lines 21
and 27, Algorithm 2), and the concurrent delta index will
handle the record creation. For I2, the key is to ensure that
no put will be lost as we discussed in Section 4.3. For I3,
the key is to let get and put have the same lookup order
(data_array→buf→tmp_buf ). Since only the latter place
(buf when tmp_buf is null, otherwise tmp_buf ) is insertable,
a get returning an empty result only indicates that the put
that creates the record has not yet finished. Therefore, a get
can fetch the value correctly.

5 Adjusting XIndex at runtime
To reduce the performance variation, XIndex adjusts its struc-
ture according to runtimeworkload charactersitics. The basic
idea is to keep both error bound and delta index size small
with structure update operations (model split/merge, group
split/merge and root update). Several background theads pe-
riodically checks error bound and delta index size of each
group and perform corresponding operations accordingly
(Figure 5).

First, XIndex leverages model split to lower the error
bound and model merge to reduce the cost of finding the
right model in a group. Specifically, when a group’s model
error bound > e (error bound threshold) and its number of

models < m (model number threshold), XIndex will do model
split. When a group’s model error bound ≤ e × f and the
number of models > 1, XIndex will perform model merge. e ,
m and f ∈ (0, 1) are parameters specified by users.

To keep the delta index size small and further reduce
the error bound, XIndex perform group split; meanwhile,
group merge is used to reduce the cost of locating groups.
Specifically, if a group’s delta index size > s (delta index size
threashold), XIndex will split the group. When a group’s
model error bound > e , but the number of models =m, XIn-
dex will also perform group split. Group merge is performed
when both the following two conditions hold: 1) two neigh-
boring groups’ error bounds ≤ e × f ; and 2) their delta index
sizes ≤ s × f . s is a parameter specified by users.

XIndex periodically updates the root to reduce the access
cost. Newly created groups are linked to next pointers of the
previous group, which increases the overhead of locating
groups. XIndex first creates a new rootwith a flattened groups
array and then retrains its 2-stage RMI model. During root
update, if the error bound > e , XIndex will increases the
number of 2nd stage models6. If the error bound ≤ e × f ,
XIndex reduces models.

6 Optimization
Scalable delta index. In the basic version, XIndex uses
stx::Btree protected by a global read-write lock as its delta
index. This limits the scalability when concurrent writers
insert records to the same group. One possible solution is
directly using Masstree as delta index. However, Masstree
provides unnecessary functionalities such as supporting vari-
able length, multi-colunm values and echo-based memory
reclaimation. Thus, we implement a scalable delta index with
a simplified design — each index node has a version to ensure
that a get request can always fetch consistent content of the
node and a lock to protect node update and split.

Sequential insertion. Sequential insertion is a common
pattern in real-world workloads such as periodically check-
pointing. For such cases, user can provide hints to XIndex
so that XIndex can pre-allocate space to allow appending
records directly to data_array and conditionally retrain mod-
els. Specifically, each group maintains an additional capacity
field and a per-group lock. Only when XIndex detects the
sequential insertion pattern, will it use the lock to coordi-
nate concurrent sequential insertions. Otherwise, the lock
is not used thus the scalability of XIndex is intact. Since
many sequential insertion workloads have relatively static
data distribution, XIndex only retrains models when current
model cannot generalize to newly appended data, namely
the error bound exceeds the threshold.

6The number of models stops increasing when it reaches a given limit.
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Figure 5. Dynamic adjustment procedure illustration

7 Evaluation
We evaluate XIndex with complex workloads as well as
micro-benchmarks of different characteristics, and compare
it against state-of-the-art systems.

Benchmarks.We develop a TPC-C (KV) benchmark by
implementing TPC-Cwith only get and put operations, which
is the same as [20]. We assign 8 distinct warehouses to each
thread as their local warehouse for evaluation. Since XIndex
does not support transactions, in order to avoid the impact
of transaction abortions due to conflicts, we eliminate the
conflicts by manipulating each thread to execute remote
transactions on one of their own local warehouses. TPC-C
(KV) benchmark can evaluate index systems under data and
query distribution of real-world database workload while not
requiring transaction support. YCSB includes six representa-
tive workloads (A-F) with different access patterns: update
heavy (A), readmostly (B), read-only (C), read latest (D), short
ranges (E) and read-modify-write (F). For YCSB, besides its
default data distribution, we also evaluate with a real-world
dataset OpenStreetMap [6]. For micro-benchmarks, we eval-
uate the performance under workloads with fixed read-write
ratios (Section 7.2), under dynamic workloads (Section 7.3).
We also analyze different factors that affect the performance
in Section 7.4. All datasets used are listed in Table 2. The
default dataset size is 200M unless otherwise noted, and each
record has 8 bytes key and 8 bytes value by default.

Counterparts. stx::Btree [1] is an efficient, but thread-
unsafe B-tree implementation. Masstree [20] is a concurrent
index structure that hybrids B-tree and Trie. When the key
size is 8 bytes, Masstree can be regarded as a scalable con-
current B-tree. Wormhole [24] is a concurrent hybrid index
structure that replaces B-tree’s inner nodes with a hash-
table encoded Trie. The learned index [15] is the original
learned index. “learned+∆” is the learned index attached
with a Masstree as delta index which buffers all writes.

Configuration&Testbed.We implement XIndex in C++,
and configure 1 out 12 threads as dedicated background
threads. For evaluation, we set the error bound threshold
(e) to be 32 and the delta index size threshold (s) to be 256.
The f parameter is set to 1

4 throughout all the experiments.

Name Description

linear Linear dataset with added noises
normal Normal distribution (µ = 0, σ = 1), scaled to

[0, 1012]
lognormal Lognormal distribution (µ = 0, σ = 2), scaled to

[0, 1012]
osm Longitude values of OpenStreetMap locations

scaled to [0, 3.6e9]

Table 2. Datasets. For linear dataset, we first generate keys
{i×A | i = 1, 2, . . . }, then add a uniform random bias ranging
in [−A/2,A/2] for each key, whereA = 1e14/dataset size. All
keys are integers.

For the learned index, we test different configurations and
picked the best one — 250k models in the 2nd stage.7 For
“learned+∆”, we use the same background threads as XIn-
dex for compaction. For stx::Btree, Masstree and Wormhole,
we directly run their source code with the default setting.
For each experiment, we first warmup all the systems and
present steady state results. The experiment runs on a server
with two Intel Xeon E5-2650 v4 CPU, and each CPU has 12
cores. The hyperthreading is disabled during evaluation.

7.1 Performance Overview
TPC-C (KV). Figure 6 shows the performance comparison
with different numbers of threads. Wormhole is excluded
because the Wormhole implementation we used does not
support multiple tables while TPC-C (KV) requires them.
XIndex outperforms Masstree by up to 67% with 24 threads.
First, the data generated in TPC-C (KV) are a multidimen-
sional linear mappings. Therefore, the learned models could
obtain a good approximation. Second, 64% of the write oper-
ations update existing records. Thus they can be efficiently
executed in-place. Lastly, 34% of the write operations per-
form sequential insertion, which can be improved by the
optimization (Section 6).

YCSB.We use both the default data distribution as well as
osm dataset, and 24 threads for the experiment. As shown in
7The candidates’ model number ranges from 50k to 500k (step is 50k).
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Figure 8. Read-write throughput.

Figure 7, for workload A, B, E, and F, XIndex demonstrates
superior performance advantage. This is because these work-
loads are read- and update-intensive. For workload C, which
is read-only, XIndex is worse than the learned index by 19%
because of the design to support writes. For workload D,
XIndex performance is worse than the other systems by up
to 30%. The reason is that workload D tends to read recently
inserted records that might not have been compacted, which
brings overheads for read operations. With osm dataset, the
results are similar. However, because of the complex real-
world data distribution, the advantage of XIndex is reduced.

7.2 Performance with writes
To further evaluate the performance of writes, we config-
ure the workloads with different read-write ratio. The ratio
among different type of writes are constant: 1:1:2 for insert,
remove, and update to keep the dataset size stable.

Scalability. Figure 8 shows the scalability with 10%writes
using normal dataset. Overall, XIndex achieves the best per-
formance among all systems. With 24 threads, XIndex scales
to 17.6× of its single-thread performance, which is 30% higher
than Wormhole. “learned+∆” has the worst performance be-
cause of its inefficient compaction, which severely degrades
the read performance.

Performancewith differentwrite ratio. Figure 9 shows
both throughput and latency with different write ratios with
a single thread and 24 threads. XIndex has the best perfor-
mance for all the listed write ratios, though the advantage
tends to diminish with larger write ratios. For latency, XIn-
dex achieves the lowest latency as most requests (80%) can
be served without accessing the delta indexes.

7.3 Performance of dynamic workload
Query distribution. For dynamic workload, we first evalu-
ate performance when the query distribution is non-uniform.
To control the skewness, wemake theworkload’s 90% queries
access hotspot of different sizes (the hotspot ratio). All hotspots
are ranges that start from the same key but ends differently.
The smaller the hotspot is, the more skewed the query dis-
tribution is. Figure 10 shows the throughput with different
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Figure 9. Read-write throughput and read latency with
normal distribution. (T means the number of threads)
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Figure 10. 24-thread read throughput in skewed query dis-
tribution.

skewness level under normal and lognormal dataset. All sys-
tems except for the learned index see a performance improve-
ment when the skewness level rises since the skewed query
distribution brings a more friendly memory access locality.
However, due to the learned index’s large error bound in the
hotspot, the learned index could perform even worse than
stx::Btree and Wormhole. For lognormal dataset, when the
hotspot ratio decreases under 5%, the increase of hot models’
error bound slows down, thus we can observe a slight perfor-
macne improvement of the learned index due to improved
locality.
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Figure 11. Read-write throughput and times of XIndex’s
group split and merge under dynamic workload.

0

10

20

30

 8 16 24  40  64  128

T
h

ro
u

g
h

p
u

t 
(1

0
6
 o

p
s
/s

)

Value Size (Byte)

XIndex
Learned+∆

Wormhole
Masstree

Figure 12. Read-write
throughput of varying value
size.

10

20

30

40

50

 0  200  400  600  800  1000

Lognormal Distribution

R
e

a
d

 T
h
ro

u
g

h
p
u

t 
(1

0
6
 o

p
s
/s

)

Dataset Size (M)

XIndex
learned index

Wormhole
Masstree
stx::Btree
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of varying dataset size.

Data distribution. We then evaluate XIndex under the
workloadwhose data distribution and read-write ratio will be
dynamically changed at runtime. As a baseline, we also run
XIndex without background group split and merge. Figure 11
shows the throughput and the number of XIndex’s group
split andmerge under this workload using one worker thread
and one background thread.

Both XIndex and baseline are initialized with 50M normal
dataset, and the initial read-write ratio is 90:10. In the begin-
ning, they have similar performance. At the 20-th second, the
write ratio becomes 100% (half inserts and half removes), we
remove all existing keys and insert with 50M linear dataset.
From this point, both throughput of baseline and XIndex
begin to degrade due to the increase of write ratio and the
dramatical changes of data distribution. While for XIndex,
background threads begin to do group split to reduce the
error of the group and size of delta index, so we can see the
throughput starts to increase at the 30-th second.

At the 120-th second, XIndex finishes dataset shifting, and
at the 170-th second, baseline ends shifting. Afterward, the
read-write ratio is 90:10 and keys follow linear distribution.
XIndex’s background thread detects that both the size of delta
index and the error bound of group is small after the shift-
ing, so it invokes lots of group merge to reduce the number
of groups. Overall, XIndex shows up to 140% performance
improvement during and after the change of workload.

7.4 Other factors
Value size. We evalute the performance of XIndex with
different value size under normal dataset with 24 threads. The
read-write ratio is 90:10 and the value contains 8-128 random
generated bytes. The result is shown in Figure 12. With
the increase of value size, the performance of all systems is
reduced due to the large memory consumption. Nevertheless,
XIndex has the largest performance drop. This is beacuse
the overhead of data copying during compaction (128B’s
overhead is 13.5x larger than 8B’s).

Dataset size. Figure 13 shows the performance of XIndex
with different dataset size under lognormal dataset using 24
threads. As dataset size increases, both the learned index
and XIndex show large performance advantage over other
systems. However, the performance of the learned index’
degrades significantly because its error grows as the size in-
creases. In contrast, XIndex adjusts its structure to maintain
small model error bounds. Therefore, for large dataset sizes,
XIndex can achieve similar performance with the learned
index.

8 Discussion
Inlined values vs. separated values.XIndex directly stores
raw values in data_array, i.e., inline values. Compared with
another popular approach [19, 22] where values are stored in
a separate storage (separated values) and only the pointers
are inline, our approach reduces costly raw DRAM latency
for queries. On the one hand, separating values can reduce
compaction cost for large values since only pointers need
copying, and reduce the complexity of compaction scheme
since stale copy of values is eliminated by design. On the
other hand, it incurs forbiddingly high compaction cost since
XIndex then needs additional memory accesses to check if
the value has been logically removed and is ready for garbage
collection. To avoid such cost, we can store the status such
as the removed flag beside the value pointer in data_array.
Then, Two-Phase Compaction is required to ensure that no
change to status will be lost.

Limitations. First, when the dataset is small, other index
structures (e.g., stx::Btree) can outperformance XIndex for
the model computation cost and the cost to traverse the
two-layer structure. Second, with long keys, the overhead
of model training and inference will increase significantly,
which can affect the efficiency of XIndex. For 64B key, there
can be up to 50% performance degradaion compared with
8B key. We leave the design of a more flexible strucutre for
variable-scale workloads and reducing the cost of long keys
as future work.

9 Related Works
There has been works that extend or build system upon
the learned index. Many works extend the learned index to
support writes requests. ALEX [9] achieves this by leaving
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gaps in a sorted array for inserting new data. AIDEL [18]
handles insertions by attaching a sorted list for each record in
the sorted array. Nevertheless, these works lacks the support
for concurrency. PGM-index [11] extends the learned index
to optimize the structure with respect to given space-time
trade-offs. It recursively constructs the index structure and
provides an optimal number of linear models. Comparing
with PGM-index, XIndex adjusts its structure at runtime,
does not assume a already known query distribution. SageDB
[14] is a database that propose to leverage the learned index
for data indexing as well as for speeding up sorting and
join. FITing-Tree [12] indexes data with a hybrid of B-tree
and piece-wise linear function, making it a variant of the
learned index. It supports insertions and provides strict error
guarantees. Comparing with FITing-Tree, XIndex is a fully-
fledged concurrent index structures and adapts the structure
to both data and query distribution at runtime.
Classic concurrency techniques have long been used in

concurrent data structures. Masstree [20] is a trie-like con-
catenation of B-trees and uses fine-grained locking and op-
timistic concurrency control to achieve high performance
under multi-core scenarios. It carefully craft its protocol to
improve efficiency for reader-writer coordination. Worm-
hole [24] is a variant of B-tree that replaces B-tree’s inner
nodes with a hash-table encoded Trie. It uses per-node read-
write locks to coordination accesses to leaf nodes and uses a
combination of locking and RCU mechanism to perform in-
ternal node updates. Bonsai tree [5] is a concurrent balanced
tree. It allows reads to proceed without locks in parallel with
writes by using RCU mechanism, though a single write lock
is still required to coordinate writes. HOT [2] is a trie-based
index structure which aims to reduce the height of the trie.
It uses per-node locks to coordinate writes and uses copy-
on-write to allow reads to proceed with no synchronization
overhead. The Bw-Tree [8, 17] is a completely lock-free B-
tree and achieves its lock-freedom via copy-on-write (COW)
and compare-and-swap (CAS) techniques. Building up on
existing works, XIndex leverages fine-grained locking and
optimistic concurrency control to coordination accesses to
individual records and uses RCU mechanism to eliminates
interference with queries and writes due to background com-
paction and structures updates.
Dynamic data and query distributions are common in

real-world workloads. While XIndex strikes to reduce perfor-
mance variation between records, many works distinguish
hot and cold data and further optimize the performance for
hot data. Hybrid index structure [25] uses different storage
schemes for hot keys and cold keys. Storage systems such as
H-Store [7], COLT [23] are designed to detect the hotness
and manage data accordingly in a self-tuning process.

10 Conclusion
In this paper, we introduced XIndex, a concurrent and flexible
index structure based on the learned index. XIndex achieves
high performance on multi-core platform via a combination
of the innovative Two-Phase Compaction and a number of
classical concurrency techniques. Futhermore, it can dynami-
cally adjust its structure according to the runtime workloads
to maintain competitive performance. Extensive evaluation
demonstrates that XIndex can have a performance advan-
tage by up to 3.3× and 4.4×, compared with Masstree and
Wormhole, respectively.
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