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Abstract

RDF systems arewidely used to store public knowledge bases

and process SPARQL queries. A large number of such sys-

tems have been proposed in the recent literature to provide

low latency and high throughput for concurrent query pro-

cessing over large RDF data. We perform an in-depth anal-

ysis on three key components (cardinality estimation, cost

model, and plan enumeration) of the query optimizer to re-

veal the main issues and challenges on the accuracy and

performance for traditional approaches. This calls for a re-

think of how to build an accurate and fast query optimizer

for modern RDF systems. We introduce a type-centric ap-

proach to enhance the accuracy of cardinality estimation

prominently, which naturally embeds the lineage of corre-

lated query conditions (triple patterns) into existing type

system of RDF data. The preliminary results show that our

approach greatly improves the accuracy of query optimiza-

tion by several orders of magnitude compared to state-of-

the-art approaches and provides a better overall performance

by reducing execution time or optimization time.
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Fig. 1: The classical query optimizer architecture.

1 Introduction

Many public knowledge bases [1, 6, 7, 10, 15] are represented

and stored as RDF (ResourceDescription Framework) graphs,

where users can issue structured queries on such graphs

using SPARQL. Much recent research [8, 16] has been de-

voted to developing scalable and high performance systems

to process SPARQL queries on RDF data by using scan-join

or graph-exploration approach.

The query optimization aims to �nd an optimal query

plan such that the execution time is minimized, which is

crucial for query performance. While this is one of the most

studied problems in the database community, the schema-

free nature of RDF data and the emerging graph-exploration

scheme for query processing introduce new challenges to

generate appropriate statistics, estimate pertinent results, and

predict execution time accurately.

In this paper, we �rst investigate the three main compo-

nents of the classical query optimizer architecture, as shown

in Fig. 1, to reveal the main issues and challenges on the ac-

curacy and performance for existing approaches. For cardi-

nality estimation, the correlation among all of query condi-

tions is crucial to the accuracy, and the statistics and esti-

mation based on two correlated predicates [8, 11, 16] will

incur tremendous error on the estimated results. For cost

model, the mature model [8, 11] for scan-join approach does

not apply to emerging graph-exploration approach, while

the initial linear model [16] for graph-exploration approach

is not competent for the performance prediction, even just

on a single machine. For plan enumeration, with the perfor-

mance improvement by leveraging advanced software and

hardware techniques (e.g., full-history pruning and RDMA [13]),

https://doi.org/10.1145/3265723.3265729
https://doi.org/10.1145/3265723.3265729
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Fig. 2: A sample RDF graph (G).

the cost to enumerate the whole plan space may become

a major part of the overall query time for selective (light)

queries, even using dynamic programming.

We describe Wukong+P, an RDF/SPARQL-speci�c query

optimizer for graph-exploration systems. It employs a novel

type-centric approach to estimate the results (cardinality)

of query accurately. Based on the observation that the same

type of vertices commonly has a similar combination of pred-

icates. Wukong+P embeds the lineage of correlated triple

patterns explored so far into the predicate type and passes

it on to the next graph exploration.

Wehave implemented a preliminary version ofWukong+P

based on Wukong [13]. As an ongoing project, we mainly

evaluate the accuracy of cardinality estimation for running

a single query on LUBM [2] dataset. Compared to state-of-

the-art approaches [8, 16], the preliminary results show that

our approach can greatly enhance the accuracy by several

orders of magnitude and improve the overall performance

by up to 2.32X. The average gap between optimal and se-

lected plans is limited to about 2%.

2 Background and Related Work

An RDF dataset is a graph (aka RDF graph) composed by

triples, where a triple is formed by 〈subject ,predicate,object〉.

A triple can be regarded as a directed edge (predicate) con-

necting two vertices (from subject to object). Fig. 2 illustrates

a part of the sample graph (G) and the summary of the whole

graph. There are three categories of edges linking six types

of vertices. SPARQL, a W3C recommendation, is the stan-

dard query language for RDF datasets. The major part of

SPARQL queries is as follows:

Q := SELECT RD WHERE GP

where, GP is a set of triple patterns and RD is a result descrip-

tion. Each triple pattern (TP) is of the form 〈subject ,predicate,

object〉, where each of the subject, predicate and object may

denote either a variable (e.g., ?X) or a constant (e.g., type).

The result description contains a subset of variables in GP.

Given an RDF data graph, the SPARQL query searches on

the graph for a set of subgraphs, each of which matches all
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INS

ty ty

Query 
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utSELECT ?X ?Y ?Z WHERE {

?X type INS .       
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?Y type LAB .       
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Fig. 3: A sample SPARQL query (Q).

triple patterns by binding pattern variables to values in the

graph. For example, the queryQ in Fig. 3 asks for all projects

(?Z) that were undertaken (ut) by a laboratorywhich is a sub-

organization (so) of an institute. The possible binding over

the part of graph G in Fig. 2 is only Pro5. Note that the ex-

ecution order of triple patterns (i.e., plan) will only impact

the performance (much), not the result of the query. There-

fore, the RDF system normally relies on the query optimizer

to enumerate the valid execution orders to �nd an optimal

query plan (i.e., minimal execution time) from semantically

equivalent plan alternatives, such as PL1 and PL2 in Fig. 4.

According to di�erent plans, the optimizer estimates the car-

dinality (e.g., the number of intermediate results) of the plan

based on the statistical synopses of RDF data and predicts the

execution time of the plan with a cost model (see Fig. 1).
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Fig. 4: Two sample plans (PL1 and PL2).

In existing state-of-the-art RDF systems, there exist two

representative approaches to store RDF datasets and handle

SPARQL queries: the scan-join mechanism on triple store [3,

8, 11] and the graph-explorationmechanism on graph store [4,

13, 16].

Scan-join approach.The scan-join systems, like RDF-3X [11]

and TriAD [8] store RDF data as a set of triples in relational

tables and leverage scan-join operations to process SPARQL

queries. It entails a single range scan for each triple pat-

tern to gain variable bindings and joins the related bindings

of the individual patterns to generate the �nal results. For

such systems, the query optimizer [8, 11] enumerates plans

with di�erent orders of join operations on triple patterns.

For each plan, it estimates the size of intermediate results

of join operations (i.e., the number of rows) as the cardinal-

ity and predicts the execution time based on the cost of dif-

ferent join operations (e.g., hash and merge join) and data

transferring by network connections.

The RDF-speci�c statistical synopses mainly contain two

types of statistics for scan and join operations respectively.

First, the number of distinct 1-pre�xes1 (i.e., the number

of triples with the same predicate) is used to estimate the

1For brevity, we skip the statistics for the number of distinct 2-pre�xes,

which demands incredible memory space .
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Fig. 6: The cardinality estimation on two plans in scan-join

systems.

cardinality of a single triple pattern, namely the scan statis-

tics. Second, the number of join partners (i.e., the number of

triples for a predicate pair) is used to estimate the cardinality

of the join condition on two triple patterns, namely the join

statistics. Four cardinalities are precomputed for every pred-

icate pairs joined on subjects or objects. Fig. 5 shows a part

of statistics on the sample graph adopted by scan-join sys-

tems. For example, so’s scan cardinality is 3000, which can

be used to estimate the cardinality of TP2 (〈?Y , suborд, ?X 〉)

for Q. As only the objects of so triples and the subjects of

ty
I N S

triples may combine together, the so’s join cardinality

with ty
I N S

for O = S is 300, and the rest are 0.

To estimate the cardinality of an entire query plan, the op-

timizer assumes independence among the join of triple pat-

terns and estimates the cardinality of intermediate results

gained from the join between two triple patterns recursively,

which can be formalized as

Card(TP1,2) = Card(TP1) ×Card(TP2) × Sel(p1,p2, JP ) (1)

where Card(TP1) and Card(TP2) denote the cardinality of

triple pattern TP1 and TP2, respectively. Sel(p1,p2, JP ) de-

notes the join selectivity of the predicate pair (p1, p2) asso-

ciated with the triple patterns TP1 and TP2, which can be

formalized as

Sel(p1,p2, JP ) =
JoinCard(p1,p2, JP )

Card(p1) ×Card(p2)

where JoinCard(p1,p2, JP ) denotesp1’s join cardinality with

p2 for the way of join partners (p1, p2) (e.g. S = O). For exam-

ple (see Fig. 6), the cardinality of the �rst two triple patterns

(TP1 and TP2) for PL1 is 300, where the cardinality of TP1

(Card(TP1)) and TP2 (Card(T2)) are 10 and 3000, and the join

selectivity Sel(typeI N S , so, S = O) is 300
10×3000
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Based on Equation (1), the cost of an entire plan that is

the sum of a speci�c order of triple patterns 〈TP1, ...,TPN 〉.

The cardinalities of every scan and join operations are fed

into the cost model, which is brie�y proportional to the car-

dinalities with di�erent join operations and the cost of ship-

ping intermediate results. The function parameters need to

be measured for a given hardware setting. Finally, a bottom-

up dynamic programming (DP) algorithm is used to deter-

mine the order of triple patterns that yield the minimal cost.

At each DP step, the optimizer calculates the cost of the par-

tial plan considered so far and prunes if the current branch

cannot gain the minimal cost any more.

Graph-exploration approach. Instead of joining triple ta-

bles, graph exploration on the native graph form is proposed

as a new primitive to process the SPARQL queries [4, 12, 13],

which starts from a set of vertices and conducts a sequence

of graph explorations to generate bindings for each triple

pattern. The initial optimizer from Trinity.RDF [12] is in-

spired by the relational optimizer [11] for the scan-join ap-

proach, whichmodels an execution plan as a graph traversal

and focuses on the order of directed explorations via pred-

icate (edge). The optimizer uses the size of intermediate re-

sults of graph exploration (i.e., the number of paths) as the

cardinality and follows the proportional cost model and the

DP-based plan enumeration.

The RDF-speci�c statistical synopses mainly contain two

types of statistics associated with predicates for graph explo-

ration. First, the optimizer precomputes the number of dis-

tinct subjects (Cs (p)), objects (Co (p)), and triples (C(p)) for

each predicate p. Second, the correlation Cor (p1,p2, EP ) be-

tween predicate pairs (p1,p2) is estimated to denote the num-

ber of distinct vertices with both two predicates (p1 and p2)

as its incoming/outgoing edges (four combinations selected

by EP ). Fig. 7 illustrates a part of statistics on the sample

graph (G) adopted by graph-exploration systems.
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for (a) TriAD and (b) Trinity.RDF using L1 on LUBM-2560.

The optimizer assumes the cardinality of an entire query

plan as the sum of the cardinality of exploring triples with

the predicate p, which is estimated as the size of the inter-

mediate results (R(p)). Given the binding size of subjects (as-

sume the source vertices) in a triple exploration (B(s)), R(p)

and B(o) (assume the binding size of objects) can be formal-

ized as

R(p) = B(s) ×
C(p)

Cs (p)
, B(o) = B(s) ×

Co (p)

Cs (p)

Further, the binding size of B(s) is a�ected by the last re-

lated triple pattern already explored. For exploring triples

with the predicate p2 from the triples with the predicate p1,

the correlated binding size B́(v) can be predicted by the cor-

relation statistics.

B́(v) = B(v) ×
Cor (p1,p2,EP )

C(p1)

For example (see Fig. 8), the cardinality of exploring the

triple pattern 〈?Y , type, LAB〉 in PL1 is 20, where the last

binding size B(?Y ) is 300 and the correlation statisticCor (so,

ty
LAB
,←→) is 200. C(so), C(ty

LAB
), and Cs (tyLAB ) are 3000,

200, and 200 respectively.

Finally, a proportional cost model is adopted to predict

the execution time, which is a linear combination of the car-

dinalities for computation cost and the size of bindings for

communication cost. Besides, the dynamic programming al-

gorithm is also used in plan enumeration.

3 Analysis of Query Optimization

This section presents an in-depth analysis on the accuracy

and performance issues of query optimization.

Cardinality estimation. The main weakness of existing

approaches is that they simply assume the independence

among triple patterns and only consider at most two cor-

related predicates. However, we observe that the correlation

among all of triple patterns is crucial to the accuracy of cardi-

nality estimation. For example, consider two plans PL1 and

PL2 in Fig. 4, the cardinalities in both scan-join and graph-

exploration estimation are incorrect and reverses the rel-

ative result. The true cardinality of PL2 should be better.
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tion time. (b) The di�erent cases with the same cardinality.

According to the statistical synopses, given 3000 vertices

have the predicate so, only 200 of them also have the predi-

cate tyLAB . Consequently, given 300 vertices (?Y), the inter-

mediate results becomes 20. But, the possibility of being a

LAB is 200
300 , for the sub-organization of INS. Fig. 9 shows the

true and estimated cardinality for di�erent plans of a single

query (L1) on LUBM-2560. The deviation in both two state-

of-the-art systems, TriAD [8] (scan-join) andTrinity.RDF [8]

(graph-exploration), is extremely high.2 More importantly,

this is a fundamental problem of approaches that estimate

the cardinality based on the correlated predicates. A straight-

forward solution is to keep more statistics for three or more

correlated predicates. However, the size of statistics would

rapidly increase beyond the memory capability, and it is im-

possible to precompute all the dependencies between multi-

ple predicates due to the schema-free nature of RDF data.

Cost model. The cost model for the scan-join approach

has been well-studied, which thoroughly considers di�erent

join operations and the cost of data transferring. Unfortu-

nately, it is quite di�cult or impossible to attach scan-join’s

cost model to the graph-exploration approach directly. The

initial cost model [12] for graph-exploration brie�y uses a

linear combination of the cardinalities for computation cost

and the size of bindings for communication cost. To reveal

the importance and necessity of an appropriate cost model,

Fig. 10(a) compares the true cardinality and the execution

time for the same plan. For brevity, we run the query (L1) on

LUBM-2560 using a single machine to eliminate the commu-

nication cost. It is obvious that the cardinality alone is not

su�cient to predict the execution time exactly. Fig. 10(b) fur-

ther illustrate several cases with the same cardinality but

di�erent computation cost.

Plan enumeration. The optimization time (PLAN) has not

received much attention since it is negligible compared to

the execution time (EXE) in traditional systems like TriAD

(see Table 1). However, with the dramatical performance

2Detailed experimental setup can be found in Section 6. Note that Fig. 9(a)

only shows the results of the �rst 250 plans as the plan space of scan-join

approach is extremely large.
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Table 1: A comparison of optimization time and execution

time (msec) for di�erent queries on LUBM-2560.

#TP #PLAN
TriAD Wukong

EXE PLAN EXE PLAN

L1 6 2496 621 0.46 429 0.34

L2 2 4 128 0.18 102 0.01

L3 6 2496 413 0.44 629 0.31

L4 5 480 19.9 0.36 0.06 0.09

L5 2 2 2.6 0.17 0.04 0.01

L6 4 28 30.8 0.30 0.33 0.02

L7 6 2496 2,654 0.48 555 0.37

improvement by leveraging advanced software and hard-

ware techniques, the optimization time may occupy a no-

table fraction of the overall query time for selective (light)

queries (e.g., L4 in Table 1). Moreover, we observe that the

optimization time has nothing to do with the execution time

but with the complexity (i.e., the number of triple patterns) of

the query. This is a typical dilemma that the heavy query de-

mands an optimal plan by thorough optimizing but the light

query demands an acceptable plan by e�cient optimizing.

Besides, the execution time is not known in advance.

4 Type-centric Estimation

Observations. To overcome the fundamental problem of

approaches that estimate the cardinality based on the cor-

related predicates, the query optimizer needs to �nd an e�-

cient way to embed the lineage of correlated triple patterns

explored so far and pass it on to the next graph exploration.

Fortunately, the predicate type is a perfect candidate. W3C

has provided a set of uni�ed vocabularies (as part of the RDF

standard) to encode the rich semantics, where the predicate

type (short for rdfs:type) provides a classi�cation of vertices

of an RDF graph into di�erent groups. We observe that the

same type of vertices commonly has a similar combination of

predicates. For example, in Fig. 2, the instance of LAB has

three predicates: so, ut, and tyLAB . Therefore, the combina-

tion of predicates in triple patterns can be used to deduce the

type of bindings, which may have multiple candidates with

di�erent probabilities. On the other hand, the combination

of the type of bindings and the predicate in next triple pat-

tern can also be used to deduce the number and the type of

next bindings. Moreover, if the predicate type appears in the

triple pattern of a given query, which is common (e.g., Q in

Fig. 3), it will directly improve the overall accuracy of the

estimation.

Type-based statistical synopses. Based on above obser-

vation, it makes sense that the type-centric approach uses

the correlation statistics of type and predicates as the sta-

tistical synopses. Two kinds of type-based statistics are pre-

computed during loading RDF data: Type-formation sta-

tistics: for each predicate p, Wukong+P precomputes the
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Fig. 11: A part of statistics used by Wukong+P.

type-formation array for the subjects/objects, namelyCs (p)/

Co (p), which returns the type composition and the number

of subjects/objects. In Fig. 11, Cs (so) returns an array of the

type composition and the number of subjects. The total num-

ber of subjects is 3000, where ty
DEP

has 2700, ty
LAB

has 200,

and ty
RG

has 100. These statistics are usually used to explore

the �rst triple pattern of the plan. Type-derivation statis-

tics: for each correlated predicate p and type , Wukong+P

precomputes the type-derivation array for the subjects/ob-

jects, namelyCs (type,p)/Co (type,p), which returns the type

composition and the number of subjects/objects, when ex-

ploring the vertex (object/subject) with a deduced type along

with a given predicate p. In Fig. 11, Cs (ty
I N S
, so) returns an

array of the type composition and the number of subjects.

The total number of subjects is 300, where ty
RG

has 100 and

ty
LAB

has 200. These statistics are used to explore a triple pat-

tern with a given predicate p from vertices with a deduced

type .

Type-centric cardinality estimation.Wukong+P still uses

the size of intermediate results of graph exploration (i.e., the

number of paths) as the cardinality and estimate the cardi-

nality for each exploration along with triple patterns of the

plan, which can be formalized as

Cardres (TPk ) =

n∑

i=1

{Cardty (ty(k−1,i))

×

∑
Cs/o (ty(k−1,i), pk )[j]

Cs (ty(k−1,i))
} (2)

=

n∑

i=1

Cardty (ty(k,i)) (3)

Cardres (start ) =





∑n
i=1Cs (p1)[i] start == s1∑n
i=1Co (p1)[i] start == o1

1 start == const

(4)

whereCardres (TPk ) denotes the result cardinality of the kth

triple pattern, and Cardty (ty(k,i)) denotes the cardinality of

the ith type in the result of the kth exploration.Cs (ty(k−1,i))

denotes the number of vertices having such type from sta-

tistics.

For the �rst triple pattern of the plan, there exist two

kinds of start points we can choose. For starting from a vari-

able, the cardinality is estimated using Equation (4) by look-

ing up the type-formation statistics (Cs (p) orCo (p)). For start-

ing from a constant, the type of the constant is required for
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Fig. 12: The estimated and true results of two plans in

Wukong+P.

the further estimation, and can be obtained from RDF data.

For the following exploration, the type-derivation statistics is

used to estimate the result cardinality of the next bindings

(see Equation (2)).

Intuitively,
Cs/o (ty(k−1, i ), pk )[j]

Cs (ty(k−1, i ))
estimates the number of bind-

ings with the type inCs/o (ty(k−1,i), pk )[j] explored from the

vertices with the type ty(k−1,i). By multiplying the cardinal-

ity of the source vertex with the type ty(k−1,i), we can derive

the type cardinality of the target vertex with the speci�c

type in Cs/o (ty(k−1,i),pk )[j]. Finally, the Equation (2) can be

deduced to the Equation (3) by combining the bindings with

the same type.

Fig. 12 shows an example for the cardinality estimation

in Wukong+P. For PL1, the cardinality of ?X in the �rst ex-

ploration could be obtained directly from Cs (tyI N S
) . Next,

the triples with the predicate so are explored from ?X, the re-

sult cardinality in this exploration is able to estimate using

Equation (2) based on type-derivation statistics from Fig. 11.

The total number of ty
I N S

is 10. The type-derivation statistics

show that the total number of ty
RG

and ty
LAB

derived from

ty
I N S

along with so edge is 300. Thus, each ty
I N S

has 100
10

vertices with the type ty
RG

and 200
10 vertices with the type

ty
LAB

. Therefore, the result cardinality in this exploration is

300 using Equation (3) to combine the type cardinalities. In

the third exploration, all ty
RG

is pruned due to not matching

the triple pattern. In the last exploration, the predicate ut is

explored and the �nal result cardinality is pruned to 20.

As we can see, the third exploration in PL1 drops the 100

of 300 results, which matches with the case in real query

processing. But both scan-join and graph-exploration sys-

tems severe under-estimate the prune ratio as 200
3000 . This is

because Wukong+P embed the dependencies into the pred-

icate type, while existing systems only consider two corre-

lated predicates.

No type and multiple types. In rare cases, some vertices

may have no type . Wukong+P will assign a new virtual type

to them according to the combination of their predicates.

On the other hand, some vertices may have multiple types .

Table 2: A summary of RDF datasets.

Dataset #Triples #Subjects #Objects #Predicates

LUBM-2560 352 M 55 M 41 M 17

LUBM-10240 1,410 M 222 M 165 M 17

Wukong+P will also assign a new virtual type to them ac-

cording to the combination of their types . The virtual type

will be calculated separately, except that the type cardinal-

ity of this virtual type will not be pruned if the given type

in the triple pattern belongs to the virtual type.

5 Future Work

Wukong+P is still an ongoing project, we plan to solve the

following issues in future:

Costmodel.Weneed a new costmodel for graph-exploration

systems to consider new features [13], including key-value

lookups, full-history pruning, in-place and fork-join execu-

tion mode. Inspired by symbolic execution, we plan to feed

the complete history of estimated cardinalities and other

information (e.g., path pruning) as the history table (inter-

mediate results) into a mimic graph exploration, which pro-

vides the detailed behavior of query processing. Furthermore,

unlike prior work [12], Wukong+P expects to predict an ab-

solute execution time instead of a relative number. Thus, we

will make a tool to measure (only once) the parameters of

the cost model for a given hardware and benchmark setting.

Plan enumeration. As shown in Table 1, the optimization

time may become the bottleneck for light queries (e.g., L4).

Currently, Wukong+P will try to estimate one plan selected

by some heuristics (e.g., start from the constant of a triple

pattern) �rst and then use a �xed threshold to classify the

query into two kinds, heavy or light. Wukong+P will enu-

merate all of the plans to �nd the optimal one for heavy

queries and directly choose the �rst plan for light queries.

We plan to use a budget-based mechanism for plan enumer-

ation. The optimization budget is the user-de�ned rate of

the least execution time predicted so far. Wukong+P will

enumerate and predict plans till the budget runs out or the

optimal plan has been found.

6 Preliminary Results

Experimental Setup. All evaluations were conducted on a

24-core Intel machine, which has two 12-core Xeon E5-2650

v4 processors and 128GB DRAM.We dedicate one processor

to run up to 10 worker threads, and use a single thread to

generate requests and perform query optimization. We use

2 datasets of Leigh University Benchmark (LUBM) [2] (see

Table 2) and the queries were widely used by many RDF

systems [5, 8, 13, 14, 16, 17]. We compare the accuracy and



Optimizer for �ery Processing on Graph Store APSys ’18, August 27–28, 2018, Jeju Island, Republic of Korea

10
6

10
7

10
8

10
9

10
6

10
7

10
8

10
9

T
ru

e

Estimated

Trinity.RDF (emulated)
Wukong

10
6

10
7

10
8

10
9

10
10

10
6

10
7

10
8

10
9

10
10

T
ru

e

Estimated

Trinity.RDF (emulated)
Wukong

Fig. 13: A comparison of cardinality estimation between

Wukong+P and Trinity.RDF using L1 on (a) LUBM-2560

and (b) LUBM-10240.

Table 3: Q-error for cardinality estimation.

LUBM-2560 Median 90th 95th MAX

TriAD 6.810 56.584 81.099 474.262

Trinity.RDF 1.785 12.928 18.755 255.952

Wukong+P 1.001 1.002 1.002 1.004

performance of Wukong+P against two state-of-the-art ap-

proaches, TriAD [8] and Trinity.RDF [12]. Since the source

code of Trinity.RDF is not available, we implemented its

query optimizer on Wukong [13]. To measure the accuracy

of cardinality estimation across di�erent systems, we use

the q-error [9], which denotes the factor by which an esti-

mated cardinality di�ers from the true one. The closer the

q-error is to 1, and the more accurate the optimizer is.

Cardinality estimation. We �rst compare the estimated

cardinality between Trinity.RDF and Wukong+P using all

plans (2496) of L1 on LUBM-2560 and LUBM-10240. The

sum of the intermediate results in each graph exploration is

recorded as the true cardinality. As shown in Fig. 13, the es-

timated cardinalities in Trinity.RDF extremely deviate from

the ideal line, where the estimated and true cardinality are

equal. The estimated cardinalities of Wukong+P are very

close to the ideal result on both two datasets, which con-

�rms the bene�ts of the type-centric approach. Table 3 shows

the median (50th), 90th, 95th and max (100th) percentiles of

the q-error for the cardinality estimation using all plans of

L1 on LUBM-2560. Wukong+P can achieve negligible errors

thanks to the type-centric approach. The max q-error is still

quite close to the optimal value. For TriAD and Trinity.RDF,

both of them produce very high q-error (up to 474X devia-

tion).

Query performance. To further study the e�ectiveness of

Wukong+P, we compare the selected and optimal execution

time using LUBM-2560. ForWukong,we execute all possible

plans for all queries to �nd the optimal plan (OPT) with the

least execution time. Note that we can not achieve the op-

timal plan for TriAD since it is not very stable for repeated

execution. As shown in Table 4, Wukong+P can choose the

optimal or near-optimal plan in most cases. For L3 and L7,

Table 4:A comparison of optimal and selected performance

(msec) on LUBM-2560. EXE|PLAN denote the execution and

optimization time. OSDI16 denotes the execution time pub-

lished in original Wukong paper [13].

TriAD
Wukong

OPT OSDI16 Trinity.RDF Wukong+P

L1 621|0.46 427 754 429|0.34 428|1.42

L2 128|0.18 102 103 102|0.01 102|0.01

L3 413|0.44 270 274 629|0.31 270|1.06

L4 19.9|0.36 0.06 0.09 0.06|0.09 0.06|0.01

L5 2.6|0.17 0.04 0.05 0.04|0.01 0.04|0.01

L6 30.8|0.30 0.26 0.29 0.33|0.02 0.29|0.01

L7 2,654|0.48 288 608 555|0.37 299|0.84

GM 104.8|0.32 8.01 10.78 10.28|0.07 8.18|0.07

Wukong+P outperforms Trinity.RDF due to the accurate car-

dinality estimation. For L1, Trinity.RDF can also choose the

near-optimal plan even using a very inaccurate estimator,

since the minimal cost plan coincidentally has low execu-

tion time. However, the secondminimal cost plan has nearly

3X slowdown performance. For light queries (L4, L5 and

L6), Wukong+P can also provide comparable performance

with near-optimal plans even only enumerate a single plan,

thanks to the heuristic mechanism. As expected, the plan

time is much smaller than that of Trinity.RDF. Therefore,

the overall performance in Wukong+P is still better than

Trinity.RDF.

Comparingwith the number in originalWukong paper [13]

(OSDI16), which uses a heuristic method to choose the plan

manually, Wukong+P can still outperform it, especially for

heavy queries (e.g., L1 and L7), which have large plan space.

Hence, the statistic-based optimizer is critical to improve the

performance for RDF systems.

7 Conclusion

This paper proposes a novel type-centric approach for the

cardinality estimation, which embeds the lineage of corre-

lated query conditions into the predicate type. The prelimi-

nary results show thatWukong+P can improve the accuracy

of query optimization by several orders of magnitude com-

pared to state-of-the-art approaches.
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