
Bridging the Performance Gap for Copy-based Garbage
Collectors atop Non-Volatile Memory

Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang
Institute of Parallel and Distributed Systems

Shanghai Key Laboratory for Scalable Computing Systems
Shanghai Jiao Tong University

Abstract
Non-volatile memory (NVM) is expected to revolutionize the
memory hierarchy with not only non-volatility but also large
capacity and power efficiency. Memory-intensive applica-
tions, which are often written in managed languages like Java,
would run atop NVM for better cost-efficiency. Unfortunately,
such applications may suffer from performance slowdown
due to the unmanaged performance gap between DRAM and
NVM. This paper studies the performance of a series of Java
applications atop NVM and uncovers that the copy-based
garbage collection (GC), the mainstream GC algorithm, is an
NVM-unfriendly component in JVM. GC becomes a severe
performance bottleneck especially when memory resource is
scarce. To this end, this paper analyzes the memory behavior
of copy-based GC and uncovers that its inappropriate usage
on NVM bandwidth is the main reason for its performance
slowdown. This paper thus proposes two NVM-aware opti-
mizations: write cache and header map, to effectively man-
age the limited NVM bandwidth. It further improves the GC
performance with hardware instructions like non-temporal
memory accesses and prefetching. We have implemented the
optimizations on two mainstream copy-based garbage collec-
tors in OpenJDK. Evaluation with various memory-intensive
applications shows that our optimizations can improve the
GC time, application execution time, application tail latency
by up to 2.69×, 11.0%, and 5.09×, respectively.

CCS Concepts: • Software and its engineering → Run-
time environments; • Hardware → Memory and dense
storage.

Keywords: Non-Volatile Memory, Java Virtual Machine,
Garbage Collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’21, April 26–28, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8334-9/21/04. . . $15.00
https://doi.org/10.1145/3447786.3456246

ACM Reference Format:
Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang. 2021. Bridging
the Performance Gap for Copy-based Garbage Collectors atop Non-
Volatile Memory. In Sixteenth European Conference on Computer
Systems (EuroSys ’21), April 26–28, 2021, Online, United Kingdom.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3447786.3456246

1 Introduction
Commercialized non-volatile memory (NVM) devices, such
as Intel Optane DC PM [22], promise large memory capacity,
energy efficiency, and low per-GB cost, making them a sup-
plement to traditional DRAM devices. Thanks to NVM, data
centers can embrace a hybrid memory architecture to benefit
from both the access speed of DRAM and the large capacity
of NVM. It is anticipated that applications will execute atop
NVM.

Due to the portability and productivity of managed lan-
guages, many memory-intensive applications are written in
those languages and thus running atop the corresponding
language runtime. To meet the eager memory demands of
applications, language runtimes have provided support for
alternative memory devices. For example, the HotSpot Java
Virtual Machine (JVM) has allowed creating a data heap
from NVM. Afterward, applications can directly manipulate
Java objects on the NVM device. Note that the NVM sup-
port merely increases the memory capacity and provides no
persistence guarantee.

Unfortunately, prior work [24, 42] has shown that a signifi-
cant performance gap stands between NVM and DRAM. First,
the access latency of NVM, regardless of types (read/write)
and patterns (random/sequential), is larger than DRAM. Sec-
ond, the NVM bandwidth is much smaller than DRAM (re-
gardless of access patterns) and much more sensitive to work-
loads. When the number of write operations increases, the
overall bandwidth will dramatically decline. Although pre-
vious work [9–11, 18, 20, 24, 25, 27, 42] has analyzed and
optimized the performance of various workloads atop NVM,
the performance with managed runtimes is less known. There-
fore, this work studies the performance of a series of Java
memory-intensive applications with NVM. The observation
is that the garbage collection (GC) performance in JVM dra-
matically drops. The mainstream GC in JVM is copy-based
and has a large demand for memory bandwidth to conduct

343

https://doi.org/10.1145/3447786.3456246
https://doi.org/10.1145/3447786.3456246
https://doi.org/10.1145/3447786.3456246
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447786.3456246&domain=pdf&date_stamp=2021-04-21

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

massive object traversal and copying, which cannot be satis-
fied due to the shortage and instability of NVM bandwidth.
As a result, the accumulated GC time can be prolonged by up
to 8.25× and thus contributes to nearly 20% of the execution
time for memory-intensive applications.

To bridge the performance gap between DRAM and NVM
for managed runtimes, this work mainly studies the perfor-
mance of Garbage First Garbage Collector (G1GC), the de-
fault garbage collector of OpenJDK. We uncover two prob-
lems that hinder G1GC from gaining better performance atop
NVM. First, the GC algorithm of G1GC mixes write opera-
tions with reads. In G1GC, GC threads copy objects (write
operations) when they are traversing the heap (read opera-
tions), which results in a mixed workload and hurts the over-
all NVM bandwidth. Second, G1GC generates many random
write operations during object copying. For each reference in
a live object, it has to be updated twice during GC, while the
second update is a random write. Furthermore, each object
header will also be modified twice. Those write operations
further affect the NVM bandwidth.

To solve the problems above, this work proposes to re-
design the original copy-based algorithm. First, the algorithm
should be split into multiple sub-phases to avoid mixing read
operations with writes. Second, the number of write opera-
tions atop NVM should be minimized to sufficiently leverage
its bandwidth. To achieve those two goals, this work intro-
duces two optimizations: write cache and header map. The
write cache temporarily stores live objects in DRAM and
flushes them into NVM at the end of GC. With the write cache,
G1 is split into a read-mostly sub-phase and a write-only sub-
phase to separate NVM reads from writes. Meanwhile, the
header map stores the updates to headers in a DRAM-based
hashmap and thus eliminates unnecessary NVM writes.

This work implements the NVM-friendly mechanisms on
G1GC in the HotSpot JVM of OpenJDK 12, which already
provides preliminary NVM support for applications. To fur-
ther optimize the performance of G1GC atop NVM, we use
the off-the-shelf hardware features, such as non-temporal
instructions and software prefetching. We show that non-
temporal instructions are suitable for copy-based GC and
can be leveraged to reduce the memory overhead of the write
cache. Furthermore, software prefetching instructions are also
helpful to improve the locality of GC traversal. We also im-
plement our optimizations on another copy-based garbage
collector (Parallel Scavenge, PS) to show that they are not
limited to a specific GC algorithm.

We evaluate our NVM-friendly GC with memory-intensive
workloads, including applications in Spark [44], Cassan-
dra [19], and the Renaissance [32] benchmark suite. The
results show that our optimized G1 scales better compared
with the baseline and improve the GC pause time by up to
2.69×. Thanks to shorter GC pauses, our optimizations can
improve the application execution time by up to 11.0% and
reduce the tail latency by as much as 5.09×.

To summarize, the contributions of this work include:

• Comprehensive analysis of copy-based GC atop real
NVM devices, including performance evaluation on
pause time, bandwidth, and scalability, and step-by-
step analysis of the GC algorithm.
• NVM-friendly optimizations, including write cache

and header map, to increase the available NVM band-
width during GC and eliminate unnecessary write oper-
ations.
• An NVM-friendly implementation on the default G1

garbage collector on the HotSpot JVM, which is ac-
celerated with off-the-shelf hardware features like non-
temporal instructions and software prefetching.
• A performance evaluation with various memory-

intensive workloads to showcase the improvement in
GC pause time and application performance.

The rest of this paper is organized as follows. Section 2
introduces the background of G1GC and analyzes its perfor-
mance atop NVM. Section 3 uncovers the NVM-unfriendly
problems in G1 and proposes corresponding optimizations.
Section 4 discusses details on implementing an NVM-aware
garbage collector and shows how to leverage hardware fea-
tures to further optimize its performance. Section 5 evaluates
the performance of our NVM-aware GC, Section 6 discusses
related work, while Section 7 concludes.

2 GC Performance Analysis on NVM
Copy-based garbage collectors sort out the data heap by copy-
ing live objects together. The resulting heap consists of a
contiguous free space for subsequent memory allocation. In
this way, copy-based collectors get rid of complicated issues
like fragmentations and free lists, and a heap allocation would
be ultra-fast by manipulating a pointer which indicates how
much free memory is left (known as bump pointer). Due to its
neat and efficient design, copy-based GC is popular in man-
aged runtimes. Most collectors in the HotSpot JVM of Open-
JDK adopt a copy-based algorithm, such as Parallel Scavenge
(PS), Garbage-First (G1) [12], and Shenandoah [13]. This
work will take G1 as an example to introduce the workflow
of copy-based collectors.

2.1 Garbage-First Garbage Collection
Garbage-First Garbage Collection (G1) is the default collec-
tor in the HotSpot JVM starting from OpenJDK 9 [30]. G1
is a partially-concurrent copy-based collector. It embraces a
generational design [38] and consists of two spaces: young
space and old space. The young space serves the allocation
requests from application threads (known as mutators), while
the old space stores objects which have survived many col-
lections. The collection algorithm in G1 is three-fold. Young
GC collects the young space in a stop-the-world (STW) fash-
ion; mixed GC identifies live objects in a concurrent marking
phase and copies a part of them for memory reclamation

344

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

with an STW pause; full GC pauses mutators to collect the
whole heap. Note that the full GC algorithm only stands as
a bottom-line for G1. Only when the other two algorithms
prove inefficient to reclaim memory should the full GC be
triggered. In our evaluation, no full GC is observed for various
memory-intensive workloads. Even the mixed GC happens
much more rarely than the young GC, and its copy phase is
quite similar to that in the young GC. Therefore, this work
will mainly focus on the young GC algorithm in G1.

The basic memory management unit in G1 is called a re-
gion. Each region contains a remembered set, recording ref-
erences that lay in the old space and point to objects within
this region. During young GC, objects referred to by the
remembered set will be treated as live. Those objects will
therefore be copied to other regions and traversed to find
more live objects. The copy-and-traverse phase is the most
time-consuming part of G1.

In the copy-and-traverse phase, GC threads should process
all regions in the young space and move live objects out (also
known as evacuation). Each GC thread is also assigned with
a region (known as survivor region) to which live objects
will be copied.1 When the region is filled up, the GC thread
will request a new survivor region. To process a region in
the young space, GC threads will scan all references in the
corresponding remembered set, as objects pointed by those
references are treated alive. For each reference, a GC thread
locates its referent (the referred object), copies the referent
to the survivor region, and updates the reference with the
referent’s new address. Afterward, the GC thread needs to
traverse all references stored in the referent since objects
referred to by them are also alive. Those references are pushed
into a per-thread working stack for further processing.

During region processing, it is possible that multiple ref-
erences point to the same object. To avoid repeated copying,
G1 adopts a technique named forwarding pointers. When an
object has been copied, the GC thread will install its new
address to the header of its old copy. If other references also
point to this object, the corresponding GC thread will find
the forwarding pointer in the header and directly modify the
reference with the stored address. The forwarding pointer is
installed with an atomic instruction to ensure that only one
GC thread succeeds in copying the object.

2.2 Performance analysis atop NVM
We have conducted a series of experiments to understand
how memory-intensive applications and copy-based GC will
behave on NVM. The OpenJDK version is 12.0.1, which
has supported allocating Java heap from alternative memory
devices [31]. During the evaluation, we leverage the option -
XX:AllocateHeapAt to allocate the heap onto the Intel Optane
DC PM devices and compare it with the baseline, which

1Some live objects will be directly copied to regions in the old space, but it
rarely happens.

allocates its heap on DRAM. In this work, we only consider
scenarios where NVM is used for capacity considerations, so
we neglect the runtime overhead for persistence guarantee
(e.g., the cost of cache flushing instructions).

As for workload, we first choose two applications in Spark:
page-rank and kmeans. Those two have been used by prior
work to study the runtime behavior in a heterogeneous mem-
ory environment [39]. We also extract four memory-intensive
applications from the recently released Renaissance bench-
mark [32], which contains various workloads like machine
learning, graph processing, and software transactional mem-
ory. The detailed experiment setup is shown in Section 5.1.
We have two important findings from the evaluation.

NVM has a larger impact on the performance of GC
compared with applications. Figure 1 shows the GC perfor-
mance for all six applications when replacing DRAM with
NVM. One may expect that the slowdown should be similar
to the access latency gap between DRAM and NVM (2-3×).
However, the result shows the GC pause time actually in-
creases by 2.02×-8.25× with NVM (averaging 6.53×). In
contrast, the application execution time without GC is less
affected by NVM. For the above six applications, when all
the Java heap has been put onto NVM, the execution time
without GC is increased by 2.68× on average, and some ap-
plications such as movie-lens have similar execution time to
those running on DRAM.

GC becomes a more severe bottleneck when running
atop NVM. The duration of GC pauses is vital especially for
memory-intensive applications. When running with NVM,
since the GC performance is significantly affected, GC pauses
will consume a higher proportion of the overall time. For the
above applications, GC pause time represents 3.0% of the
execution time on DRAM. However, when it is migrated on
NVM, the ratio grows to 6.3%. For the page-rank application
in Spark, 17.6% of execution time is occupied by GC. In a
memory-hungry configuration where the heap size is smaller,
optimizing GC for NVM may become even more important.

There are two reasons to explain why the copy-based GC
shows unsatisfying performance. First, the copy-and-traverse
phase in GC often exhibits worse locality than normal exe-
cution. Since references in the remembered set come from
different regions throughout the heap, manipulating them will
introduce random read and write operations. Furthermore,
when traversing the references inside a live object, since their
referents can reside anywhere in a heap, the traversal also
results in random memory accesses. When the locality is
poor, the possibility of cache-miss increases and the JVM
has to suffer from a higher penalty when fetching cache lines
from the NVM devices. Second, the copy-based GC involves
excessive memory operations and easily saturates the mem-
ory bandwidth of NVM. As prior work suggests [24, 42],
the NVM bandwidth is smaller than DRAM. Worse still, its
bandwidth is not stable and sensitive to the workloads. When
the number of write operations increases, the overall NVM

345

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

als
kmeans

log−regression

movie−lens

page−rank

scala−stm−bench7
dram nvm dram nvm dram nvm dram nvm dram nvm dram nvm

1000

2000

3000

T
im

e
 (

s
)

app gc

Figure 1. The application and GC time when replacing
DRAM with NVM

bandwidth dramatically declines. Since the locality problem
is the inherent limitation of copy-based GC, this work will
mainly focus on the bandwidth issue (Section 4.3 will further
discuss locality).

2.3 Detailed bandwidth analysis
We have studied the NVM bandwidth when running with
different numbers of GC threads. The application is page-rank
in Spark, and the bandwidth statistics are collected with the
Intel PCM tool. We also run those applications atop DRAM
and collect the bandwidth data for comparison.

Figure 2 shows the consumed bandwidth of the page-rank
benchmark for DRAM and NVM respectively. The solid ver-
tical lines demarcate the time intervals when copy-based GC
is active. According to Figure 2a, the write bandwidth for
DRAM during GC significantly increases due to massive ob-
ject copying, and so does the overall bandwidth. However,
the results are quite different in the NVM case (Figure 2b).
Although GC threads have a large appetite for the bandwidth,
the overall bandwidth dramatically drops. This phenomenon
can be explained by three reasons. The primary one is that
NVM bandwidth is quite sensitive to workloads. When the
number of write operations increases, the overall bandwidth
will be strongly affected and decline. This problem is possibly
caused by NVM’s asymmetric bandwidth: its peak read band-
width is much larger than the peak write bandwidth [20, 24].
Other NVM technologies like phase-change memory (PCM)
also have similar problems [34]. Furthermore, the random
memory access pattern and contentions between GC threads
are also harmful to the overall bandwidth.

To study the relationship between the shortage of NVM
bandwidth and the performance of copy-based GC, we further
conduct a scalability test by varying the number of GC threads
for the page-rank applications. Adding GC threads can the-
oretically increase the collection parallelism and reduce the
GC time. However, as shown in Figure 2c, when the number
of GC threads exceeds 8, the NVM bandwidth barely changes.

Consequently, the copy-based GC is non-scalable with eight
or more threads. On the contrary, GC can scale with more
threads when running on DRAM as the consumed bandwidth
can continuously increase (Figure 2d). The result confirms
the importance of NVM bandwidth to the GC performance.

The NVM bandwidth shortage problem can also be used
to explain the performance variance among different appli-
cations. Figure 3 shows the consumed NVM bandwidth of
als during GC is larger than that during application execu-
tion, which is similar to the curve in the DRAM setting. This
suggests that the NVM bandwidth is not saturated when GC
is not active, so the application time is not affected much
compared with page-rank (see Figure 1).

2.4 Similarities in other copy-based collectors
Although copy-based collectors have different design goals,
they share similarities in design. For example, Shenan-
doah [13] is designed as a mostly-concurrent garbage col-
lector to reach low GC pauses, but it also divides its heap into
equal-sized regions as G1 does. When GC is triggered, GC
threads in Shenandoah also allocate a thread-local buffer to
evacuate live objects. Thread-local buffers are also used in
the copy-based young GC algorithm of PSGC to store newly-
copied objects. Furthermore, those collectors also install for-
warding pointers in the object header. Due to the similarities
among copy-based collectors, NVM-friendly optimizations
on G1 may also be beneficial to other collectors.

3 Design
Since the shortage and instability of NVM bandwidth is
the culprit of inefficient garbage collections, this work an-
alyzes the memory behavior of the time-consuming copy-and-
traverse phase. It then proposes two optimization techniques
to maximize the available NVM bandwidth and improve the
GC performance.

3.1 Memory behavior analysis
As discussed in Section 2.1, each GC thread works with its
thread-local stack and repeats the following four steps in the
copy-and-traverse phase:

1. Fetch a reference from its thread-local working stack
and find its referent object (random read).

2. Copy the object to the survivor region (sequential
read/write).

3. Update the forwarding pointer in the old copy (random
write).

4. Update the reference with the new address of its refer-
ent (random write), and push references in the referent
to the working stack (sequential read).

This algorithm has two major problems when running on
NVM. First, it mixes read operations with writes. When GC
threads are in the copy-and-traverse phase, they will issue
both read and write operations to NVM. The write operations

346

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

25000

50000

75000

0 100 200 300

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read total write

(a) Bandwidth atop DRAM

0

5000

10000

15000

0 400 800
1200

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read total write

(b) Bandwidth atop NVM

2000

3000

4000

5000

6000

10

15

20

25

30

8 20 40

Number of Threads

A
v

g
.

B
a

n
d

w
id

th
 (

M
B

/s
)

G
C

 T
im

e
 (s

)

Bandwidth GC time

(c) Bandwidth vs. scalability (NVM)

0

20000

40000

60000

0

300

600

900

8 20 40

Number of Threads

A
v

g
.

B
a

n
d

w
id

th
 (

M
B

/s
)

G
C

 T
im

e
 (s

)

Bandwidth GC time

(d) Bandwidth vs. scalability (DRAM)

Figure 2. Bandwidth statistics for the page-rank application

0

10000

20000

30000

40000

0 10 20 30 40

Elapse Time (ms)

B
a

n
d

w
id

th
 (

M
B

/s
)

read total write

(a) Bandwidth atop DRAM

2500

5000

7500

0 30 60 90 120

Elapse Time (ms)

B
a

n
d

w
id

th
 (

M
B

/s
)

read total write

(b) Bandwidth atop NVM

Figure 3. Bandwidth statistics for the als application

will interfere with read operations and significantly reduce
the overall bandwidth. Second, it generates excessive NVM
writes for each object. As for a reference in the object, it needs
to be updated twice: the first time is object copying while the
second time is reference updating. The header should also
be updated twice to install the forwarding pointer. Those two
problems result in NVM bandwidth shortage and instability
during copy-based GC, so even a small number of GC threads
would saturate the bandwidth and become no longer scalable
even with more computing resources.

To this end, we propose that the original copy-based GC
algorithm should be reconstructed to unleash the NVM band-
width. First, the copy-and-traverse phase should be divided
into sub-phases to reduce the number of NVM writes over-
lapped with reads. Second, the write operations on NVM
should be minimized to leverage the NVM bandwidth to its
fullest. Keeping those two rules in mind, we provide two
optimization techniques: write cache and header map.

3.2 Write cache
We first introduce the write cache, which temporarily stores
survivor regions in DRAM. When a GC thread copies a live

object to the survivor region (step 2), it will instead copy the
object into a cache region on DRAM. The cache region will
absorb all NVM writes to survivor regions and only be written
back to NVM before GC ends.

The write cache divides the copy-and-traverse phase into
two sub-phases: read-mostly sub-phase and write-only sub-
phase. In the first read-mostly sub-phase, all write operations
on newly-copied objects will be absorbed by the write cache,
so the number of NVM writes is significantly reduced. In
the second write-only sub-phase, GC threads have finished
evacuating live objects, so they only need to simultaneously
write back the cache regions into NVM. In this way, NVM
writes and reads are separated into different sub-phases, and
the available NVM bandwidth will become more abundant.
Furthermore, by caching survivor regions in DRAM, random
reference updates (step 4) on newly-copied objects will not
occur on NVM. Instead, all NVM writes on the survivor
regions now become sequential write-back operations, which
can leverage the NVM bandwidth to its fullest.

Since the write cache reduces the number of NVM writes
for each GC cycle, it also introduces other benefits. First, the
reference updates on newly-copied objects become faster as
they are operated on DRAM. Second, the reduction on NVM
writes can also prolong the lifetime of NVM [2].

An issue introduced by the write cache is the address remap-
ping. When an object is copied in the copy-and-traverse phase,
the reference should be updated to its new address. However,
since the object is temporarily stored in the write cache, the
new address is a DRAM address, which becomes invalid after
GC. To resolve this problem, the new address for an object
on NVM should be determined even though it resides in the
write cache. Therefore, we introduce a region mapping, where
each cached DRAM region is related to an NVM region in
the Java heap. When a cached region is filled up, the GC
thread should allocate a new region in DRAM together with
a new survivor region in NVM. Afterward, the GC thread
will maintain a mapping between those two regions. Once an
object is copied into the write cache, the GC thread will use
the mapping to calculate its corresponding NVM address and
update the reference.

For some applications, the size of live objects is numerous,
so caching all of them would induce a considerable DRAM
footprint. Therefore, we provide an option to set the upper
bound of the write cache size. When the write cache is full,
the GC thread stops allocating new cache regions and directly
copies objects into NVM.

3.3 Header map
The write cache optimization has separated most NVM write
operations with NVM reads. However, GC threads still need
to update headers in the old copy (step 3) and references in
non-moved objects (step 4), which introduce random NVM
writes and affect the overall bandwidth. Although updating
the non-moved objects in the NVM is a must, updating the

347

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

headers is not necessary. Since the installation of forwarding
pointers is only useful during GC, we propose a header map
in DRAM to reduce write operations on NVM.

The header map is organized as a global lock-free hashmap
to support fast lookup and modification. Each entry in the
map contains two addresses: an object’s old address (key)
and new address (value). An alternative design would be
maintaining per-thread header maps. However, this design
is not suitable for state-of-the-art GC algorithms where all
threads are allowed to collect objects in any location of the
heap. To check if an object has been copied, a GC thread
may need to check all others’ thread-local hash tables, which
introduces even more overhead.

Since the DRAM consumption of our approach should be
moderate (otherwise allocating the whole heap on DRAM
might be a better choice), the header map embraces closed-
hashing so as to bound its DRAM footprint. Like the write
cache, we also provide an option to adjust the maximum
memory consumption of the header map. A larger header
map means that more forwarding pointers will be installed in
DRAM instead of NVM, so the NVM read bandwidth can be
further increased with fewer NVM writes.

Algorithm 1 shows the pseudo-code for the pointer instal-
lation. When a forwarding pointer should be installed, a GC
thread will first try putting it into the header map (Line 2). The
put operation starts by transforming the old address of an ob-
ject into an index with a hash function (Line 7). Afterward, it
scans the header map from the computed index. The scanning
phase is bounded: if the number of scanned entries exceeds a
preset threshold, the header map cannot find a free entry to
store the forwarding pointer, so the put operation will return
with a null value (Line 11-13). In this case, the GC thread
should install the forwarding pointer into the corresponding
header on NVM (Line 3). If the header map manages to find a
free entry (Line 16-19), the put operation will occupy it with
an atomic compare-and-swap (CAS) instruction (Line 20-21).
If the instruction fails, the free entry must be occupied by
other GC threads. Therefore, the GC thread should check if
others are processing the same object (Line 22). If so, the
GC thread waits until others finish installing the forwarding
pointer in the header map and then returns the value of the
pointer (Line 23-27). If other GC threads occupy the entry
for other objects, the put operation simply skips this entry
to find another free one (Line 28-30). If the CAS instruction
succeeds, the GC thread will install the forwarding pointer by
storing the new address of an object to the value field of the
entry (Line 31-32). During scanning, if the GC thread finds
that the forwarding pointer has been installed by others, it
will directly return with the value of the pointer (Line 35-39).

If a GC thread wants to check if an object has ever installed
a forwarding pointer, it needs to query the header map by
invoking the get API, which has a similar workflow to put.
After gaining an index with the hash function, the GC thread
conducts a bounded scanning to find if the forwarding pointer

is installed into some entry. The scanning threshold is the
same as that in put to ensure that every possible entry will
be searched. If the pointer has been installed, its value will
be returned, which stands for the new address of the queried
object. Otherwise, the get operation returns with a null value,
and the GC thread should check the object header on NVM to
ensure that the forwarding pointer has not been installed yet.

The main benefit introduced by the header map is to reduce
unnecessary write operations. Since the maximum read band-
width interferes with the write bandwidth, reducing writes
means that the available read bandwidth is enlarged to sup-
port more concurrent GC threads. When the number of GC
threads is small, the read bandwidth is not saturated, so the
header map brings less improvement. Worse still, since the
get operations may access both headers and the header map,
the latency can be larger than directly accessing NVM. There-
fore, the header map is only enabled when the number of GC
threads exceeds a threshold (8 by default).

Since the header map contents are only meaningful during
GC, they should be removed when GC ends. As the header
map size is relatively large, we leverage all GC threads to
empty it simultaneously, and the clean-up time is trivial com-
pared with the GC pauses.

4 Optimizations
To prove the effects of the aforementioned optimization tech-
niques, we have implemented them in G1 of the HotSpot
JVM. We also leverage off-the-shelf hardware features like
non-temporal instructions and software prefetching to further
improve the performance of G1GC.

4.1 Embracing non-temporal instructions
Architectures like x86 introduce non-temporal instructions to
mark memory accesses as lacking temporal locality. For ex-
ample, a memory write instruction may be issued by a logger
thread, which logs its current state and will be reused only
when the program runs into an unexpected error. Since the
memory is write-once and unused afterward, it is unnecessary
to load it into the cache. In this case, developers can leverage
non-temporal write instructions (e.g., MOVNTDQ in x86) to
write the value to the corresponding memory address while
bypassing the cache hierarchy. Since non-temporal write in-
structions can avoid cache pollution and reduce the memory
traffic, it is efficient to implement NVM writes. Neverthe-
less, non-temporal instructions still have two disadvantages.
First, its performance is not satisfying for small and random
writes. Second, since non-temporal instructions bypass the
cache hierarchy, they are not managed by the cache coherence
protocol, and users should carefully add fence instructions
to ensure correctness. Since copy-based GC contains many
small and random write operations, it cannot directly use
non-temporal instructions.

348

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

Algorithm 1 The pseudo code for installing a forwarding
pointer with the header map

1: function INSTALLPOINTER(𝑜𝑙𝑑𝑎𝑑𝑑𝑟, 𝑛𝑒𝑤𝑎𝑑𝑑𝑟)
2: if𝑚𝑎𝑝.𝑃𝑈𝑇 (𝑜𝑙𝑑𝑎𝑑𝑑𝑟, 𝑛𝑒𝑤𝑎𝑑𝑑𝑟) == 𝑁𝑈𝐿𝐿 then
3: UpdateHeader(𝑜𝑙𝑑𝑎𝑑𝑑𝑟, 𝑛𝑒𝑤𝑎𝑑𝑑𝑟)
4: end if
5: end function
6: function PUT(𝑜𝑙𝑑𝑎𝑑𝑑𝑟, 𝑛𝑒𝑤𝑎𝑑𝑑𝑟)
7: 𝑖𝑑𝑥 ← ℎ𝑎𝑠ℎ(𝑜𝑙𝑑𝑎𝑑𝑑𝑟)&ℎ𝑎𝑠ℎ_𝑚𝑎𝑟𝑘

8: 𝑐𝑛𝑡 ← 0
9: while 𝑇𝑅𝑈𝐸 do

10: 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
11: if 𝑐𝑛𝑡 > 𝑆𝐸𝐴𝑅𝐶𝐻_𝐵𝑂𝑈𝑁𝐷 then
12: return 𝑁𝑈𝐿𝐿

13: end if
14: 𝑖𝑑𝑥 ← (𝑖𝑑𝑥 + 1)&ℎ𝑎𝑠ℎ_𝑚𝑎𝑟𝑘

15: 𝑝𝑟𝑜𝑏𝑒𝑑_𝑘𝑒𝑦 ←𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑘𝑒𝑦
16: if 𝑝𝑟𝑜𝑏𝑒𝑑_𝑘𝑒𝑦 != 𝑜𝑙𝑑𝑎𝑑𝑑𝑟 then
17: if 𝑝𝑟𝑜𝑏𝑒𝑑_𝑘𝑒𝑦 != 0 then
18: continue
19: end if
20: 𝑐𝑚𝑝_𝑘𝑒𝑦 ← 𝑐𝑚𝑝𝑥𝑐ℎ𝑔(𝑜𝑙𝑑𝑎𝑑𝑑𝑟,
21: &𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑘𝑒𝑦, 𝑝𝑟𝑜𝑏𝑒𝑑_𝑘𝑒𝑦)
22: if 𝑐𝑚𝑝_𝑘𝑒𝑦 == 𝑜𝑙𝑑𝑎𝑑𝑑𝑟 then
23: while 𝑇𝑅𝑈𝐸 do
24: if𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑣𝑎𝑙𝑢𝑒 != 0 then
25: return𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑣𝑎𝑙𝑢𝑒
26: end if
27: end while
28: else if 𝑐𝑚𝑝_𝑘𝑒𝑦 != 0 then
29: continue
30: else
31: 𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑣𝑎𝑙𝑢𝑒 ← 𝑛𝑒𝑤𝑎𝑑𝑑𝑟

32: return 𝑛𝑒𝑤𝑎𝑑𝑑𝑟

33: end if
34: else
35: while 𝑇𝑅𝑈𝐸 do
36: if𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑣𝑎𝑙𝑢𝑒 != 0 then
37: return𝑚𝑎𝑝 [𝑖𝑑𝑥] .𝑣𝑎𝑙𝑢𝑒
38: end if
39: end while
40: end if
41: end while
42: end function

However, we find that non-temporal instructions perfectly
fit the write cache optimization. Since the write cache has
transformed small and random NVM writes into large sequen-
tial write-back operations, the non-temporal writes can be
used to improve the performance. As for the cache-coherence
issue, since non-temporal instructions are only issued in the

write-only sub-phase, a GC thread will not read objects writ-
ten back by others. Therefore, we only need to insert one
fence before GC ends for the correctness guarantee.

4.2 Asynchronous region flushing
As discussed in Section 3.2, since objects in the write cache
are flushed into NVM only before GC ends, the DRAM foot-
print can be quite large, especially when the number of live
objects is numerous. A straightforward method to reduce
the DRAM footprint is to asynchronously flush cached re-
gions into NVM and reclaim them in advance. However, prior
work [20] has reported negative results on this method. Al-
though asynchronous flushing can reduce DRAM consump-
tion, it introduces NVM write operations, which may lead to
less NVM bandwidth and worse GC performance.

Fortunately, embracing non-temporal instructions has
paved the way for asynchronous flushing. As shown in prior
work [24], using non-temporal writes can enlarge the avail-
able NVM bandwidth compared with normal ones in a mixed
workload. Therefore, when a region is ready for flushing,
a GC thread can write the contents therein to NVM with
sequential non-temporal instructions.

Another challenge of asynchronous flushing is to decide
when it is appropriate to flush a region into NVM. A strawman
design would be flushing a region once it is filled up, but this
approach fails to absorb subsequent reference updates to this
region. To determine if a region is ready for flushing, we
need to check if all references therein have been updated.
Instead of tracking all references in a region, we propose
an efficient tracking mechanism according to the processing
order of references (illustrated in Figure 4). Since copy-based
GC algorithms usually use a stack-based depth-first-search
(DFS) algorithm to traverse the heap, reference processing
will follow a last-in-first-out (LIFO) order. Therefore, when
the first reference of a region is pushed into the working
stack, the GC thread will memorize it as potentially the last
reference to be processed. As Figure 4a shows, suppose an
object with two references has been copied into a newly-
allocated region, the references should be pushed into the
working stack in left-to-right order (colored bars). In this case,
the leftmost reference will be memorized by the last field
of the region. When the GC thread pops and processes the
rightmost reference (changed to a white bar in Figure 4b), the
memorized reference remains unchanged. Afterward, when
the leftmost reference is popped (Figure 4c), the GC thread
finds that the region is not filled up, so it is open to accept
more live objects. Therefore, the GC thread updates the last
field to the leftmost reference of the object pointed by the
previously memorized reference. Finally, when the reference
stored in last is popped in Figure 4c, since the region is
full, all references have been processed. At this moment, the
GC thread can mark the region as ready so that it can be
asynchronously flushed into NVM. It is possible to track
references and flush objects in a finer granularity (e.g., 4KB

349

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

Region 0

last

Not Ready

(a) Memorizing the first pushed
reference

Region 0

last

Not Ready

(b) Popping others does not affect
the memorized one

Region 0

last

Not Ready

(c) The region is not filled up:
memorize another reference

Region 0

last

Ready

(d) The region is filled up: mark it as
ready for flushing

Figure 4. Our reference tracking mechanism for asynchronous flushing

pages), but it requires tracking more units and induces larger
maintenance overhead.

The last issue is that modern collectors provide a work-
stealing mechanism to achieve load-balance among multiple
GC threads. In G1, a GC thread can steal a reference from
others’ working stacks. This mechanism can break the LIFO
order of reference processing. Instead of proposing a more
complicated tracking algorithm to consider work-stealing,
we simply avoid asynchronous flushing on regions where
references have been stolen. This refinement still allows most
regions to be flushed asynchronously, as the work-stealing
phase has a short duration and affects only a small number of
regions.

4.3 Software prefetching
As analyzed in Section 2.2, the copy-based GC exhibits poor
locality, which will be exacerbated atop NVM due to a larger
miss penalty. To further confirm the poor locality of copy-
based GC, we have evaluated applications in Section 2 by
assigning them only 1/16 of the last level cache (LLC) with
the Intel Cache Allocation Technology (CAT). However, the
evaluation results show that GC time barely changes, sug-
gesting that copy-based GC cannot fully leverage cache re-
sources. Therefore, we propose reducing cache misses by
adding prefetching instructions.

Prefetching instructions (e.g., PREFETCH in x86) help
improve the program locality by fetching memory contents
to the cache in advance. With prefetching, subsequent mem-
ory accesses can hit in the cache, and the cache miss rate is
reduced. Prior work [3–5, 36, 45] has studied how to use soft-
ware prefetching to improve the program performance, but
none mentions the effect of prefetching on NVM. To this end,
this work first explores the benefit of prefetching with a micro-
benchmark. The micro-benchmark creates a large array on
DRAM or NVM and generates a series of indices to access the
array randomly. For each iteration, the benchmark reads the
content in the randomly-generated index and updates it. Since
the indices are pre-generated, we add prefetching instructions
to load the contents to the cache in advance. The following
table shows the evaluation results for both DRAM and NVM
with 40 million accesses. Although both DRAM and NVM
can benefit from prefetching instructions, the improvement
for NVM (3.05×) is significantly larger than that in DRAM
(1.58×). The result suggests that software prefetching can

boost application performance, especially for NVM-based
systems.

Configuration Results (s)
DRAM-noprefetch 1.513
DRAM-prefetch 0.958
NVM-noprefetch 4.171
NVM-prefetch 1.369

In copy-based GC, consider the steps of copy-and-traverse
mentioned in Section 3.1. When a reference is popped from
the working stack, the GC thread should fetch its referent,
which generates random read operations. The vanilla G1 col-
lector is aware of the locality problem and proposes to reduce
the miss penalty with software prefetching. When a refer-
ence is being pushed to the working stack, GC threads will
prefetch the data in the referent to the cache. Unfortunately,
since copy-based GC algorithms usually use DFS to traverse
the heap, the benefit of software prefetching is not stable. For
a reference that already resides in the stack, it has to wait
until all preceding references have been transitively traversed,
so the waiting time is quite non-deterministic. A possible ap-
proach to stabilize the waiting time is to adopt a queue-based
breadth-first-search (BFS) algorithm. Compared with DFS,
the order of reference processing in BFS is deterministic, so
GC threads can prefetch those which will be processed in
the near future. However, BFS is proved detrimental to the
locality of applications, as it tends to put irrelevant objects
together [28]. As a result, we reuse the software prefetching
strategy in G1 as it approximately loads the needed cache
lines with moderate overhead. Meanwhile, we also extend the
original prefetching instructions to consider the random read
operations on the header map.

4.4 Migrating to other collectors
As analyzed in Section 2.4, since copy-based collectors share
similarities in design, they may also benefit from NVM-aware
optimizations. Therefore, we have implemented our optimiza-
tions also in the Parallel Scavenge (PS) garbage collector.

PS is a stop-the-world (STW) generational collector in
OpenJDK, and it was used by default before OpenJDK 9. PS
also adopts copy-based young GC to collect its young space.
The young GC contains a similar copy-and-traverse phase,
but GC threads manage live objects in a smaller unit named
local allocation buffers (LABs). Furthermore, PS also allows

350

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

GC threads to directly copy objects without using LABs.
Therefore, we only cache regions which are contiguous in
the address space. As for the header map, since the pointer
installation logic in PS is similar to that in G1, we modify it so
that the forwarding pointers will be first stored into DRAM.

Due to unawareness of NVM, PS does not introduce any
software prefetching instructions during its young GC. To
this end, we add prefetching instructions when a reference
is pushed into the thread-local working stack. We also add
prefetching for the header map to mitigate the effect of cache
misses.

5 Evaluation
We mainly implement our optimizations on the G1 collector
in the HotSpot JVM with approximately 4,000 LoCs. The
version of JDK is 12.0.1.

5.1 Experiment setup
The evaluation is conducted on a machine with dual Intel
Xeon Gold 6238R CPUs (28 physical cores each, simultane-
ous multithreading enabled). Each CPU has 6 Intel Optane
DC PM devices, and each device contains 128GB NVM.
Since cross-NUMA NVM accesses will induce prohibitive
overhead, all experiments are bound to run on a single CPU
with the numactl command. To leverage NVM, we mount
all 6 NVM devices attached to a single CPU as a DAX file
system and adopt the -XX:AllocateHeapAt option to allocate
NVM from the file system. Frequency scaling is disabled to
stabilize the application performance.

We mainly use the vanilla G1 as the baseline. The number
of heap regions is set to 2048, which is the default setting in
G1. Since our optimizations consume more DRAM resources,
we also evaluate against an optimized version of G1 where
the extra DRAM regions are used to serve allocation requests
from application threads (Section 5.2).

We use applications from the recently-released Renais-
sance benchmark [32], Spark [44], and Cassandra [19].

Renaissance. Renaissance (the version is 0.10) contains
diverse applications to test various modules in JVM. We ex-
clude three applications from Renaissance due to duplicated
experiments in Spark (page-rank and scala-kmeans) and in-
compatibility with JDK 12 (db-shootout). For evaluated ap-
plications, the maximum heap size is set to 16GB while the
young space is 4GB. The maximum size of the header map
and the write cache is set to 512MB.

Spark. Spark (the version is 2.2.0) is a unified data pro-
cessing engine. Spark applications are memory-intensive as
they will generate quantities of immutable temporary datasets
during runtime [43]. We pick four different applications for
evaluation: page-rank, kmeans, connected-components (cc),
single-source-shortest-path (sssp). As for workload, we lever-
age the same datasets in Panthera [39], which also studies the
runtime behavior of Spark on NVM. Since Spark applications

target large datasets, the maximum heap is set to 256GB, and
the young space is 64GB. We also set the maximum size of the
header map and the write cache to 2GB and 8GB respectively.

Cassandra. Cassandra (the version is 4.0-beta2) is a
NoSQL database that allows low-latency access to persistent
data. We leverage its built-in testing tool named cassandra-
stress to evaluate its tail latency atop NVM. The workload
contains two phases: a write-only phase and a read-only phase.
The latency statistics are collected from the two phases re-
spectively. The heap configuration for Cassandra is the same
as those in Renaissance.

All presented results are averages of five runs with stan-
dard deviations as error bars (except for bandwidth and tail
latency). We do not add extra warm-up phases since evalu-
ated applications reinitialize themselves every time they are
executed.

5.2 GC time reduction
Figure 5 shows the reduction in GC time with our optimiza-
tions. 23 of 26 applications can benefit from our optimizations,
and the GC time can be reduced by 1.69× on average for all
applications (up to 2.69×). The remaining three applications
contain infrequent and short GC pauses, so enlarging the
NVM bandwidth is not useful for GC time reduction. The
write cache alone can improve the GC pause time by 1.17×
on average (up to 2.08×), mainly thanks to its reduction on
NVM writes and bandwidth-friendly NVM access patterns.

Figure 5 also provides the GC pause time for those ap-
plications running atop DRAM. The result shows that the
average performance gap for GC has shrunk from 4.21× to
2.28×, which is close to the inherent latency gap between
DRAM and NVM (2-3×). It suggests that although the NVM
devices suffer from shortage and instability in bandwidth, the
problems can be resolved with NVM-aware designs.

We also compare our approach with the mechanism where
DRAM is used as the young generation for allocation. As
illustrated in Figure 5, it outperforms our optimizations for
most applications. Using DRAM as allocation regions are
beneficial mainly because it introduces more DRAM accesses
during GC and mitigates the bandwidth shortage problem
for NVM. It is possible to merge this mechanism with our
optimizations by using DRAM for both allocation and GC,
and we leave this as our future work.

5.3 Bandwidth improvement
We have also evaluated the consumed NVM bandwidth during
GC. The number of GC threads is set to 56 threads to satu-
rate the bandwidth. As shown in Figure 6, our NVM-aware
optimizations can improve the NVM bandwidth by 55.0% on
average. Applications in Spark show relatively larger improve-
ment (69.3%) compared with those in Renaissance since their
GC traversal phase lasts longer and involves massive random
read and write operations on small objects in Spark RDDs.

351

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

1

5

20

50

200

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

sssp

G
C

 t
im

e
 (

s
)

+all +writecache vanilla vanilla−dram young−gen−dram

Figure 5. GC time for various applications. The lower the better

0

5000

10000

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

ssspA
v

e
ra

g
e

 B
a

n
d

w
id

th
 (

M
B

/s
) G1−Opt G1−Vanilla

Figure 6. NVM bandwidth during GC

The evaluation confirms that our optimizations enlarge the
available NVM bandwidth and improve the GC performance.

We further show the NVM bandwidth of three applica-
tions during GC by splitting it into read-bandwidth and write-
bandwidth. The chosen applications have different behaviors
during GC and thus exhibit different results on bandwidth
improvement. The left part of Figure 7 shows the bandwidth
after optimizations while the right part shows the vanilla one.

Page-rank. The read bandwidth of the page-rank bench-
mark strongly correlates with the write bandwidth. When the
write bandwidth decreases, the consumed read bandwidth

mostly increases. As shown in Figure 7a, the optimized ver-
sion reduces the write bandwidth and thus improves the read
bandwidth. Furthermore, since the write cache will only be
written back to NVM before GC ends, the write bandwidth
will reach its peak, which is much larger than that in the
vanilla version. As the write-back operations are conducted
sequentially with bandwidth-friendly non-temporal instruc-
tions, the peak write bandwidth is close to the upper bound
evaluated in prior work [24].

Naive-bayes. For the naive-bayes benchmark, the write
bandwidth in the vanilla version is similar to that in page-rank,
but the read bandwidth is larger (Figure 7d). It is because GC
in naive-bayes contains many copy operations on primitive
arrays, which induces sequential read operations on NVM and
sufficiently leverages the available bandwidth. Similarly, the
read bandwidth in the optimized version is also improved and
can reach as large as 26.5 GB/s (Figure 7c). Furthermore, the
write cache is also helpful by introducing sequential NVM
writes before GC ends. Since naive-bayes contains many
copy operations on primitive arrays, it is a write-intensive
application, so the write-only sub-phase is relatively longer
compared with page-rank, which is one of the main reasons
why the consumed bandwidth is greatly enlarged.

Akka-uct. Compared with the other two applications, the
average NVM bandwidth of akka-uct is still moderate with
our optimizations. This can be explained by excessive ran-
dom read operations and imbalance workload. As shown in

352

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

0

5000

10000

100 200 300 400

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(a) page-rank (optimized)

0

5000

10000

100 200 300 400

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(b) page-rank (vanilla)

0

10000

20000

0 100 200 300

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(c) naive-bayes (optimized)

0

10000

20000

0 100 200 300

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(d) naive-bayes (vanilla)

0

2500

5000

7500

0 100 200

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(e) akka-uct (optimized)

0

2500

5000

7500

0 100 200

Elapse Time (ms)

B
a
n

d
w

id
th

 (
M

B
/s

)

read write

(f) akka-uct (vanilla)

Figure 7. The split NVM bandwidth during GC for three
different applications

Figure 7e, although the write bandwidth in the first read-
mostly phase is close to zero, the read bandwidth is still
moderate. However, when the elapsed time exceeds 80 ms,
the read bandwidth dramatically decreases. After analyzing
the GC behavior of akka-uct, we find that it suffers from load-
imbalance, and most GC threads remain idle. Lastly, since the
number of live objects in akka-uct is limited, the write-only
phase finishes quickly and has little impact on the average
bandwidth during GC.

5.4 Application improvement
Figure 9 shows the improvement for applications in Renais-
sance and Spark. Since the execution time is fixed for Cassan-
dra, we provide a throughput-latency curve for performance
analysis.

Renaissance. Most applications in Renaissance show triv-
ial changes in execution time with/without our optimizations
since GC occupies an insignificant portion. However, as for
several GC-intensive applications, their execution time can
be reduced (e.g., scala-stm-bench7).

Spark. The completion time of all Spark applications is re-
duced thanks to shorter GC pauses. The improvement ranges
from 3.2% (cc) to 6.9% (sssp), which mainly relies on the
share consumed by GC in the overall execution time.

1

10

100

1000

50 100

Throughput (KQPS)

T
a
il
 L

a
te

n
c
y
 (

m
s
)

Opt−p95 Opt−p99 Vanilla−p95 Vanilla−p99

(a) Read operations

1

10

100

50 100

Throughput (KQPS)

T
a
il
 L

a
te

n
c
y
 (

m
s
)

Opt−p95 Opt−p99 Vanilla−p95 Vanilla−p99

(b) Write operations

Figure 8. The tail latency reduction for Cassandra

5

20

100

500

2000

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

sssp

A
p

p
li

c
a

ti
o

n
 t

im
e

 (
s

)

G1−Opt G1−Vanilla

Figure 9. Application time reduction

Cassandra. To evaluate the latency of Cassandra, we run
a client JVM in another socket on the same machine and send
read and write requests to the server. We vary the throughput
to draw throughput-latency curves for read and write opera-
tions in Figure 8. The results indicate our NVM-aware GC
can improve the p95 and p99 latency for both operations
under different throughput settings. In the largest through-
put setting (130,000 requests per second), our NVM-aware
GC can improve the p95 and p99 read latency by 5.09× and
4.88×. For write operations, the improvement is 2.74× and
2.54× respectively. Since our optimizations effectively reduce
GC pauses, they can shorten the worst-case waiting time for
requests and thus mitigate the long tail problem.

5.5 DRAM consumption vs. performance
Header maps. We have evaluated the GC performance when
varying the maximum size of the header map. As Figure 10
shows, GC pauses can be reduced for most applications when
increasing the header map size. With a larger header map,
fewer forwarding pointers are installed in NVM, which re-
duces NVM writes and further enlarges the available read
bandwidth for GC threads. However, when increasing the
maximum size from 512MB to 2GB, the improvement for
Renaissance applications is limited (3.3% on average). This
suggests that 512MB is enough to cache forwarding pointers
for applications with a 16GB heap. Some applications (such

353

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

1

5

20

50

200

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

sssp

G
C

 t
im

e
 (

s
)

512M 1G 2G

Figure 10. Results with different header map sizes

1

5

20

50

200

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

sssp

G
C

 t
im

e
 (

s
)

async sync sync−unlimited

Figure 11. Results with different write cache settings

as naive-bayes) have a low occupancy on the header map even
for the 512MB setting, so its DRAM footprint can be further
reduced. As for Spark applications, the average improvement
is larger (21.1%), and their occupancy on the 2G setting is
close to 100%, which suggests that larger header maps are
helpful for performance speedup.

Write caches. We evaluate the effect of write cache size
by removing its upper bound. Figure 11 shows that most
applications do not benefit from an unlimited write cache,
which suggests that the default setting (1/32 of the heap) is
enough for object caching. Exceptions are page-rank and
kmeans in Spark, which copy many small objects during GC.
With more DRAM resources, page-rank can be improved by
2.00× for GC time and 11.0% for application time compared
with vanilla G1.

Figure 11 also shows the GC performance with asynchro-
nous flushing enabled. Thanks to the non-temporal instruc-
tions, asynchronous flushing only induces a 6.9% slowdown
on average while timely reclaiming DRAM resources.

Cost-efficiency analysis. We use GC-improvement-per-
dollar to analyze the cost-efficiency of our optimizations.
This metric describes the GC time reduction (in seconds) by
adding one dollar to the cost budget. The baseline setting

0.0

0.5

1.0

1.5

akka−uct
als cc

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

km
eans

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

page−ra
nk

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

ssspG
C

 I
m

p
ro

v
e

m
e

n
t

p
e

r
D

o
ll

a
r dram G1−Opt

Figure 12. Cost-efficiency analysis

is using NVM to allocate the whole heap, and the per-GB
price for evaluated DRAM and NVM devices is 7.81 and 3.01
dollars respectively (2.59×).

Figure 12 shows the results by comparing our optimiza-
tions with directly using DRAM. Although directly using
DRAM can provide more performance improvement, our
optimizations are more cost-effective for most applications
as they improve the GC performance by only introducing a
limited amount of expensive DRAM resource. For memory-
intensive applications in Spark, the average GC-improvement-
per-dollar for our optimizations is 9.58× compared with that
when directly using DRAM. Even if considering the applica-
tion execution improvement introduced by allocating objects
from DRAM, our optimizations are still better than directly
using DRAM for Spark (1.14× on average).

5.6 Scalability
Figure 13 showcases the accumulated GC time for applica-
tions in Renaissance and Spark, with different numbers of
GC threads (1, 2, 4, 8, 20, 28, 56). When the number of GC
threads is limited (less than 8), the NVM bandwidth is not
saturated, and the vanilla G1 performs well. However, it fails
to scale with more computing resources. When adding more
cores, the accumulated GC time of G1 even increases for
some workload due to contentions on NVM bandwidth. Af-
ter adding the write cache optimization, the performance of
G1 becomes better and more scalable as fewer writes occur
on NVM. However, most applications can still only scale to
20 cores. With the header map optimization, random write
operations are further reduced, and G1 can even scale to 56
logical cores for most applications.

5.7 Improvement on other collectors
We also evaluate the improvement in PS, another copy-based
garbage collector. As shown in Figure 14, our optimizations
can also improve the performance of PS for applications in
Renaissance. The performance speedup ranges from 0.61×
(movie-lens) to 2.26× (reactors). Compared with G1, the

354

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

10

20

30

40

50

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(a) akka-uct

1

2

3

4

5

0 20 40

Number of Threads
G

C
 T

im
e

 (
s

)

+all +writecache vanilla

(b) als

2

4

6

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(c) chi-square

1.5

2.0

2.5

3.0

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(d) dec-tree

0.4

0.6

0.8

1.0

1.2

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(e) dotty

25

50

75

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(f) finagle-chirper

1.0

1.5

2.0

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(g) finagle-http

1

2

3

4

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(h) fj-kmeans

0.2

0.3

0.4

0.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(i) future-genetic

0.5

1.0

1.5

2.0

2.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(j) gauss-mix

0.5

1.0

1.5

2.0

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(k) log-regression

0.5

1.0

1.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(l) mnemonics

1

2

3

4

5

6

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(m) movie-lens

2

4

6

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(n) naive-bayes

10

20

30

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(o) neo4j-analytics

0.5

1.0

1.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(p) par-mnemonics

0.6

0.9

1.2

1.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(q) philosophers

4

8

12

16

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(r) reactors

0.1

0.2

0.3

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(s) rx-scrabble

0.5

1.0

1.5

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(t) scala-doku

50

100

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(u) scala-stm-bench7

2

4

6

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(v) scrabble

500

1000

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(w) page-rank

100

200

300

400

500

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(x) kmeans

100

200

300

400

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(y) cc

100

200

300

0 20 40

Number of Threads

G
C

 T
im

e
 (

s
)

+all +writecache vanilla

(z) sssp

Figure 13. GC scalability

improvement drops since the object copying in PS is more
irregular, and the write cache can absorb fewer NVM write op-
erations. We have also used PS to study the effect of prefetch-
ing, and Figure 14 shows that adding prefetch instructions
can reduce the GC pause time by 4.8% on average for PS.

6 Related work
6.1 Performance analysis on NVM
NVM devices have drawn great attention once it becomes
openly available. Prior work has studied its performance char-
acteristics and guided how to leverage them to implement

highly-efficient systems. Izraelevitz et al. [24] and Yang et
al. [42] pioneer in measuring the basic performance of Intel
Optane DC PM devices. Chen et al. [9] provide performance
analysis for key-value stores atop NVM and focus on resolv-
ing the mismatch between small random updates and the
persistence granularity in NVM. Their solution is batching
small write operations into larger ones, which is somewhat
similar to our write cache. Wu et al. [40] show that excessive
accesses on NVM are harmful to application performance
and propose to build snapshots on DRAM. Haria et al. [18]
study the performance of the Intel clwb instruction, which

355

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

5

20

akka−uct
als

chi−
square

dec−tre
e

dotty

fin
agle

−chirp
er

fin
agle

−http

fj−
km

eans

fu
tu

re
−genetic

gauss−m
ix

lo
g−re

gre
ssio

n

m
nem

onic
s

m
ovie

−le
ns

naiv
e−bay

es

neo4j−
analy

tic
s

par−
m

nem
onic

s

philo
sophers

re
acto

rs

rx
−scra

bble

scala
−doku

scala
−stm

−bench7

scra
bble

G
C

 t
im

e
 (

s
)

+all no−prefetch vanilla

Figure 14. GC time for PS

writes back a cache line into memory subsystems. They reveal
that current NVM devices can support no more than 16 con-
current cache line write-back operations. According to this
finding, they build Minimally Ordered Data structure (MOD)
to hide the flush latency. Hildebrand et al. [20] mainly focus
on the bandwidth characteristics of NVM to estimate the data
movement overhead between DRAM and NVM. Their work
also reports that although asynchronous data movement can
overlap data transfer with computation, its performance is
discouraging. Our work also studies the performance charac-
teristics of NVM, and some of our findings agree with prior
work. Nevertheless, we also share some new findings, includ-
ing the benefits brought by software prefetching instructions,
and that non-temporal instructions are helpful to improve
asynchronous data movement.

6.2 NVM support for Java
The thriving NVM technology stimulates studies on support-
ing NVM in Java. PCJ [21] allows Java programs to access
data in NVM managed by native libraries like NVML [23].
Espresso [41] pioneers in directly managing NVM data
as Java objects with crash-consistent memory management.
AutoPersist [35] proposes a reachability-based persistency
model in Java, where objects are automatically copied into
NVM with crash-consistency guarantees. GCPersist [40] in-
stead designs a GC-assisted lazy persistency model and in-
tegrates the NVM data persistency with copy-based garbage
collection. Their work mainly focuses on accelerating Java
persistent applications with NVM.

Another line of work uses NVM as a supplement to DRAM
to benefits from its large capacity and power efficiency. Open-
JDK supports allocating the whole Java heap from alternative
devices since JDK 10 [31]. Akram et al. [1, 2] uncover that
the NVM devices have limited write endurance and will wear
out quickly when running popular Java applications. There-
fore, they propose write-rationing GC to store read-mostly
objects in NVM devices to extend their lifetime. Panthera [39]
places infrequently-used datasets in big-data applications to

NVM to improve power efficiency while inducing moderate
runtime overhead. Our work also leverages NVM as an alter-
native memory device but mainly focuses on improving the
GC performance according to the bandwidth characteristics
of NVM.

6.3 GC optimizations
The performance of GC is crucial to managed runtime, so
plenty of work has analyzed its performance and proposed
corresponding optimizations. Gidra et al. [14–16] introduce
NUMA-aware optimizations into GC to reduce expensive
cross-node memory access and improve the GC performance.
Suo et al. [37] uncover the mismatch between the JVM syn-
chronization protocol and the OS scheduler. Qian et al. [33]
refine the work-stealing algorithm to improve the success rate
and load balance. Khanh et al. [29] and Gog et al. [17] pro-
pose to use region-based collection mechanisms according to
the memory behavior of big-data applications, while Bruno et
al. [6–8] embrace pre-tenuring to reduce unnecessary object
copying. Lebeck et al. [26] embrace a co-design between
GC and page swapping to achieve fast memory reclamation
for mobile platforms. Our work is aware of the shortage and
instability of NVM bandwidth and proposes techniques to
leverage the bandwidth to its fullest.

7 Conclusion
Non-volatile memory (NVM) technology is a good fit for
memory-intensive applications due to its byte-addressability
and large capacity. This work analyzes the runtime behav-
ior of various memory-intensive Java applications. It uncov-
ers that due to the shortage and instability of NVM band-
width, the garbage collector (GC) module becomes a seri-
ous performance bottleneck when running atop NVM. To
this end, this work proposes NVM-aware designs for GC
and further accelerate it with off-the-shelf hardware fea-
tures. The evaluation on memory-intensive applications shows
that an NVM-aware garbage collector can reduce the GC
pause time by up to 2.69×. The source code is available
at https://ipads.se.sjtu.edu.cn:1312/opensource/nvm-friendly-
gc.

8 Acknowledgement
We sincerely thank our shepherd Luís Pina and the anony-
mous reviewers for their insightful suggestions. This work is
supported in part by the National Natural Science Foundation
of China (No. 61925206). Mingyu Wu is the corresponding
author.

References
[1] Shoaib Akram, Jennifer Sartor, Kathryn McKinley, and Lieven Eeck-

hout. Crystal gazer: Profile-driven write-rationing garbage collection
for hybrid memories. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(1):1–27, 2019.

356

Bridging the Performance Gap for Copy-based Garbage Collectors atop NVM EuroSys ’21, April 26–28, 2021, Online, United Kingdom

[2] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven
Eeckhout. Write-rationing garbage collection for hybrid memories. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018, pages 62–77. ACM, 2018.

[3] Hassan Al-Sukhni, Ian Bratt, and Daniel A. Connors. Compiler-directed
content-aware prefetching for dynamic data structures. In 12th Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques (PACT 2003), 27 September - 1 October 2003, New Orleans, LA,
USA, pages 91–100. IEEE Computer Society, 2003.

[4] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ran-
ganathan. Classifying memory access patterns for prefetching. In
ASPLOS ’20: Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, March 16-20, 2020, pages
513–526. ACM, 2020.

[5] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu
Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. Asmdb:
Understanding and mitigating front-end stalls in warehouse-scale com-
puters. In Proceedings of the 46th International Symposium on Com-
puter Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019,
pages 462–473. ACM, 2019.

[6] Rodrigo Bruno and Paulo Ferreira. POLM2: Automatic profiling for
object lifetime-aware memory management for hotspot big data appli-
cations. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, Middleware 2017, Las Vegas, NV, USA, December 11-15,
2017, pages 147–160. ACM, 2017.

[7] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. NG2C:
Pretenuring garbage collection with dynamic generations for hotspot
big data applications. In Proceedings of the 2017 ACM SIGPLAN Inter-
national Symposium on Memory Management, ISMM 2017, Barcelona,
Spain, June 18, 2017, pages 2–13. ACM, 2017.

[8] Rodrigo Bruno, Duarte Patrício, José Simão, Luís Veiga, and Paulo
Ferreira. Runtime object lifetime profiler for latency sensitive big data
applications. In Proceedings of the Fourteenth EuroSys Conference
2019, Dresden, Germany, March 25-28, 2019, pages 28:1–28:16. ACM,
2019.

[9] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu
Shu. Flatstore: An efficient log-structured key-value storage engine
for persistent memory. In ASPLOS ’20: Architectural Support for Pro-
gramming Languages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020, pages 1077–1091. ACM, 2020.

[10] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. Lock-free
concurrent level hashing for persistent memory. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020,
pages 799–812. USENIX Association, 2020.

[11] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent mem-
ory and the rise of universal constructions. In EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020, pages
5:1–5:15. ACM, 2020.

[12] David Detlefs, Christine H. Flood, Steve Heller, and Tony Printezis.
Garbage-first garbage collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management, ISMM 2004, Vancouver,
BC, Canada, October 24-25, 2004, pages 37–48. ACM, 2004.

[13] Christine H. Flood, Roman Kennke, Andrew Dinn, Andrew Haley, and
Roland Westrelin. Shenandoah: An open-source concurrent compacting
garbage collector for openjdk. In Proceedings of the 13th International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, PPPJ 2016, Lugano,
Switzerland, August 29 - September 2, 2016, pages 13:1–13:9. ACM,
2016.

[14] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. Assess-
ing the scalability of garbage collectors on many cores. In Proceedings
of the 6th Workshop on Programming Languages and Operating Sys-
tems, PLOS@SOSP 2011, Cascais, Portugal, October 23, 2011, pages

7:1–7:5. ACM, 2011.
[15] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study

of the scalability of stop-the-world garbage collectors on multicores.
In Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, Houston, TX, USA - March 16-20, 2013, pages
229–240. ACM, 2013.

[16] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan
Nguyen. NumaGiC: A garbage collector for big data on big NUMA
machines. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015, pages
661–673. ACM, 2015.

[17] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek Gordon Mur-
ray, Steven Hand, and Michael Isard. Broom: Sweeping out garbage
collection from big data systems. In 15th Workshop on Hot Topics in
Operating Systems, HotOS XV, Kartause Ittingen, Switzerland, May
18-20, 2015. USENIX Association, 2015.

[18] Swapnil Haria, Mark D. Hill, and Michael M. Swift. MOD: Minimally
ordered durable datastructures for persistent memory. In ASPLOS

’20: Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, pages 775–788.
ACM, 2020.

[19] Eben Hewitt. Cassandra: the definitive guide. " O’Reilly Media, Inc.",
2010.

[20] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and
Venkatesh Akella. Autotm: Automatic tensor movement in heteroge-
neous memory systems using integer linear programming. In ASPLOS

’20: Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, pages 875–890.
ACM, 2020.

[21] INTEL. Persistent collections for java. https://github.com/pmem/pcj.
[22] INTEL. Intel® optaneTM dc persistent memory.

https://www.intel.com/content/www/us/en/architectureandtechnology/optane-
dc-persistent-memory.html, 2020.

[23] INTEL. pmem.io: Persistent memory programming. http://pmem.io/,
2020.

[24] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-
saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R
Dulloor, et al. Basic performance measurements of the intel optane dc
persistent memory module. arXiv preprint arXiv:1903.05714, 2019.

[25] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: reducing software
overhead in file systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages 494–508. ACM,
2019.

[26] Niel Lebeck, Arvind Krishnamurthy, Henry M. Levy, and Irene Zhang.
End the senseless killing: Improving memory management for mobile
operating systems. In 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020, pages 873–887. USENIX Asso-
ciation, 2020.

[27] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. Recipe: Converting concurrent DRAM indexes
to persistent-memory indexes. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019, pages 462–477. ACM, 2019.

[28] David A. Moon. Garbage collection in a large lisp system. In Proceed-
ings of the 1984 ACM Conference on LISP and Functional Program-
ming, LFP 1984, August 5-8, 1984, Austin, Texas, USA, pages 235–246.
ACM, 1984.

[29] Khanh Nguyen, Lu Fang, Guoqing (Harry) Xu, Brian Demsky, Shan
Lu, Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In 12th USENIX Symposium on

357

EuroSys ’21, April 26–28, 2021, Online, United Kingdom Yanfei Yang, Mingyu Wu, Haibo Chen, Binyu Zang

Operating Systems Design and Implementation, OSDI 2016, Savannah,
GA, USA, November 2-4, 2016, pages 349–365. USENIX Association,
2016.

[30] OpenJDK. Jep 248: Make g1 the default garbage collector, 2020.
[31] OpenJDK. Jep 316: Heap allocation on alternative memory devices,

2020.
[32] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-

boscq, Petr Tuma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. Re-
naissance: Benchmarking suite for parallel applications on the JVM. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019, pages 31–47. ACM, 2019.

[33] Junjie Qian, Witawas Srisa-an, Du Li, Hong Jiang, Sharad C. Seth,
and Yaodong Yang. Smartstealing: Analysis and optimization of work
stealing in parallel garbage collection for java VM. In Proceedings of
the Principles and Practices of Programming on The Java Platform,
PPPJ 2015, Melbourne, FL, USA, September 8-11, 2015, pages 170–
181. ACM, 2015.

[34] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In 36th International Symposium on Computer
Architecture (ISCA 2009), June 20-24, 2009, Austin, TX, USA, pages
24–33. ACM, 2009.

[35] Thomas Shull, Jian Huang, and Josep Torrellas. Autopersist: An easy-
to-use java NVM framework based on reachability. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26,
2019, pages 316–332. ACM, 2019.

[36] Seung Woo Son, Mahmut T. Kandemir, Mustafa Karaköy, and
Dhruva R. Chakrabarti. A compiler-directed data prefetching scheme
for chip multiprocessors. In Proceedings of the 14th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 2009, Raleigh, NC, USA, February 14-18, 2009, pages
209–218. ACM, 2009.

[37] Kun Suo, Jia Rao, Hong Jiang, and Witawas Srisa-an. Characterizing
and optimizing hotspot parallel garbage collection on multicore systems.
In Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018, pages 35:1–35:15. ACM, 2018.

[38] David M. Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical

Software Development Environments, Pittsburgh, Pennsylvania, USA,
April 23-25, 1984, pages 157–167. ACM, 1984.

[39] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur
Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. Panthera:
holistic memory management for big data processing over hybrid mem-
ories. In Proceedings of the 40th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2019, Phoenix,
AZ, USA, June 22-26, 2019, pages 347–362. ACM, 2019.

[40] Mingyu Wu, Haibo Chen, Hao Zhu, Binyu Zang, and Haibing Guan.
GCPersist: An efficient gc-assisted lazy persistency framework for
resilient java applications on NVM. In VEE ’20: 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, virtual event [Lausanne, Switzerland], March 17, 2020, pages
1–14. ACM, 2020.

[41] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu
Zang, and Haibing Guan. Espresso: Brewing java for more non-
volatility with non-volatile memory. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018, Williamsburg, VA,
USA, March 24-28, 2018, pages 70–83. ACM, 2018.

[42] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. An empirical guide to the behavior and use of scalable
persistent memory. In 18th USENIX Conference on File and Storage
Technologies, FAST 2020, Santa Clara, CA, USA, February 24-27, 2020,
pages 169–182. USENIX Association, 2020.

[43] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages 15–28. USENIX
Association, 2012.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston, MA, USA, June 22, 2010, page 95. USENIX
Association, 2010.

[45] Weifeng Zhang, Brad Calder, and Dean M. Tullsen. A self-repairing
prefetcher in an event-driven dynamic optimization framework. In
Fourth IEEE/ACM International Symposium on Code Generation and
Optimization (CGO 2006), 26-29 March 2006, New York, New York,
USA, pages 50–64. IEEE Computer Society, 2006.

358

	Abstract
	1 Introduction
	2 GC Performance Analysis on NVM
	2.1 Garbage-First Garbage Collection
	2.2 Performance analysis atop NVM
	2.3 Detailed bandwidth analysis
	2.4 Similarities in other copy-based collectors

	3 Design
	3.1 Memory behavior analysis
	3.2 Write cache
	3.3 Header map

	4 Optimizations
	4.1 Embracing non-temporal instructions
	4.2 Asynchronous region flushing
	4.3 Software prefetching
	4.4 Migrating to other collectors

	5 Evaluation
	5.1 Experiment setup
	5.2 GC time reduction
	5.3 Bandwidth improvement
	5.4 Application improvement
	5.5 DRAM consumption vs. performance
	5.6 Scalability
	5.7 Improvement on other collectors

	6 Related work
	6.1 Performance analysis on NVM
	6.2 NVM support for Java
	6.3 GC optimizations

	7 Conclusion
	8 Acknowledgement
	References

