
This paper is included in the Proceedings of the
2020 USENIX Annual Technical Conference.

July 15–17, 2020
978-1-939133-14-4

Open access to the Proceedings of the
2020 USENIX Annual Technical Conference

is sponsored by USENIX.

Platinum: A CPU-Efficient Concurrent
Garbage Collector for Tail-Reduction

of Interactive Services
Mingyu Wu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu Zang,

and Haibing Guan, Shanghai Jiao Tong University; Sanhong Li, Chuansheng Lu,
and Tongbao Zhang, Alibaba

https://www.usenix.org/conference/atc20/presentation/wu-mingyu

Platinum: A CPU-Efficient Concurrent Garbage Collector for Tail-Reduction of

Interactive Services

Mingyu Wu†‡, Ziming Zhao†‡, Yanfei Yang†‡, Haoyu Li†‡, Haibo Chen†‡, Binyu Zang†‡, Haibing
Guan†‡, Sanhong Li⋄, Chuansheng Lu⋄, Tongbao Zhang⋄

†Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
‡Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

⋄Alibaba Group

Abstract

The service-oriented architecture decomposes a mono-
lithic service into single-purpose services for better modu-
larity and reliability. The interactive nature, plus the fact of
running inside a managed runtime, makes garbage collec-
tion a key to the reduction of tail latency of such services.
However, prior concurrent garbage collectors reduce stop-
the-world (STW) pauses by consuming more CPU resources,
which can affect the application performance, especially un-
der heavy workload.

Based on an in-depth analysis of representative latency-
sensitive workloads, this paper proposes Platinum, a new
concurrent garbage collector to reduce the tail latency with
moderate CPU consumption. The key idea is to construct
an isolated execution environment for concurrent mutators
to improve application latency without interfering with the
execution of GC threads. Platinum further leverages a new
hardware feature (i.e., memory protection keys) to eliminate
software overhead in previous concurrent collectors. An eval-
uation against state-of-the-art concurrent garbage collectors
shows that Platinum can significantly reduce the tail latency
of real-world interactive services (by as much as 79.3%)
while inducing moderate CPU consumption.

1 Introduction

Today’s cloud environment is an enormous beast with quan-
tities of interconnected machines. To tame the beast, devel-
opers (1) break the traditional monolithic applications into
small and interactive services and (2) implement services
atop managed languages (such as Java, C#, and Go) to build
reliable, elastic and efficient systems. Unfortunately, a ten-
sion exists between those services and managed languages.
Services are designed as single-purpose and interactive ap-
plications to achieve low latency. It typically takes several
milliseconds and even sub-millisecond to complete a request
in interactive services. Meanwhile, managed languages like

Java introduce garbage collections (GC) to manage memory
resources automatically. However, mainstream garbage col-
lectors used in interactive services will introduce stop-the-
world (STW) events, where all application threads (known
as mutators) are forced to pause so that GC threads can scan
the heap for memory reclamation. The pause time is tens to
hundreds of milliseconds, which are usually one to two mag-
nitudes of the execution time for a single request in interac-
tive services. Therefore, STW pauses will affect the latency
of services and cause the long tail problem. Prior work has
observed that STW pauses have significant effects on tail la-
tency in latency-sensitive scenarios [19, 40].

There are mainly two ways to reduce the STW pause time.
Partially-concurrent collectors, such as G1 [11] and CMS,
suggests reducing STW pauses by restricting the size of col-

lection set in which objects need to be collected. However,
this solution will introduce more frequent collections and
larger accumulated STW pause time. Mostly-concurrent col-

lectors, such as Shenandoah [13] and ZGC [33], allow muta-
tors to run in nearly all GC phases. Those collectors are quite
effective in reducing the duration of STW pauses, but it re-
quires GC threads to run constantly and spend more comput-
ing resources coordinating with mutators. In summary, both
kinds of collectors achieve shorter STW pauses by occupy-
ing more CPU slices and thereby put more pressure on muta-
tors. When the workload becomes stressful, spending more
computing resources in GC may end up with even worse ap-
plication latency.

In this paper, we present a new garbage collector which
(1) reduces the tail latency of interactive services and (2)
induces moderate CPU consumption. To achieve this, we
first study the effect of GC on various latency-sensitive in-
teractive service scenarios, including production traces in Al-
ibaba, whose business applications rely heavily on JVM. We
further analyze state-of-the-art collectors and uncover their
problems respectively: idle computing resources in stop-the-

USENIX Association 2020 USENIX Annual Technical Conference 159

world pauses of partially-concurrent collectors and consider-

able runtime overhead in mostly-concurrent collectors. We
then describe the skewed memory write behaviors of interac-
tive service applications. We also discuss the development of
hardware to show opportunities for a brand-new design.

According to the analysis, this paper proposes Platinum,
which finds a sweet-spot in the design of concurrent collec-
tors. It leverages idle cores in STW pauses and grants them
to mutators to solve the idle computing resources problem.
It then provides an isolated execution model to minimize the
synchronizations between GC threads and mutators to reduce
the runtime overhead in prior mostly-concurrent collectors. It
further exploits recently-released hardware features (MPK)
to eliminate barriers, the primary source of software over-
head in traditional mostly-concurrent collectors. With Plat-

inum, GC threads and mutators can run together with little
interference with each other, so the latency and CPU utiliza-
tion are both satisfying.

Platinum is implemented atop the Parallel Scavenge
Garbage Collector (PSGC), a STW and throughput-oriented
collector used by default in the HotSpot JVM of OpenJDK 8.
Evaluation of various interactive service benchmarks show
that Platinum significantly improves the tail latency of ap-
plications (by up to 79.3% for 99th percentile latency) com-
pared with other concurrent collectors while preserving mod-
erate CPU utilization.

The contributions of this paper include:
• A comprehensive analysis of latency-sensitive interac-

tive services, including simulated industrial workload
with production traces, to understand the effect of GC
(Section 2).

• Platinum, a concurrent garbage collector that can re-
duce the tail latency for interactive services while pre-
serving moderate CPU consumption (Section 4).

• Experiments on different latency-sensitive scenarios to
confirm that Platinum can outperform other garbage col-
lectors on tail latency and CPU utilization for interactive
services (Section 5).

2 Analysis: when interactive services meet GC

In this section, we will analyze the effect of GC in interactive
services with production traces in Alibaba.

2.1 A page is multiple services

Alibaba has one of the world’s largest e-commerce platforms.
To serve an ocean of concurrent requests from a vast num-
ber of clients at any time, Alibaba has deployed its platform
atop a large scale of machines. Traditional monolithic appli-
cations are too cumbersome and thus not suitable to be dis-
tributed to many machines due to the prohibitive cost of de-
velopment and maintenance, so the developers from Alibaba
have split them into smaller, simple-purpose, and interactive
units, namely services. A service is much smaller to simplify
the deployment process, and it can also be replicated to en-

hance the availability of the overall platform.
Due to the complex business logic in Alibaba, every oper-

ation from users require the collaboration of various services.
For example (shown in Figure 1), when a user wants to check
out, she will request for the check-out page, where all items
in the shopping cart (cart service) will be combined together
so that the most cost-effective way to purchase them with
available coupons will be automatically computed (coupon
service). In addition, the check-out page also recommends
other items according to those in the cart and the user’s
prior purchase behaviors (recommendation service). Those
services also interact with each other, and they may commu-
nicate with the cache service for high-speed data fetching.

Since those services are mostly written in Java for relia-
bility, productivity, and compatibility, all of them will be af-
fected by GC. Alibaba has provided some workarounds to
mitigate the effect of GC. For example, when the recom-
mendation service is not responsive, the page render is ca-
pable of generating a simplified web page without any rec-
ommendation information for users. Unfortunately, not all
services can benefit from those optimizations. For example,
as for the coupon service, the latest-available coupons must
be included for computation. Otherwise, the users will fail
to purchase in the most cost-effective way. We have con-
ducted a series of tests to understand the role GC plays in
those latency-critical services. Note that a garbage collector
usually includes minor GC and major GC. The minor GC
collects a part of the heap while the major GC collects the
whole heap. Since major GC rarely happens in the scenario
of interactive services, this work will focus on the effect of
minor GC.

User

Coupon Cart
Recommen

dation

cache

cache

cache

“check-out”

Figure 1: A simplified model to shape the multi-services sce-
nario in Alibaba

2.2 STW pauses: the culprit for tail latency

Since garbage collectors will pause application threads for
memory reclamation, it will significantly affect the response
time of requests in interactive services. To better understand
the effect of GC, we leverage a simulated online environment
for analysis. The simulated environment is built with 120
service instances, each of which is deployed in a container.
All services are unmodified applications extracted from the
real industrial workload in Alibaba. During testing, those ser-
vices will be fed with requests at a given throughput. In our

160 2020 USENIX Annual Technical Conference USENIX Association

setting, the cluster will handle 200 user requests per second,
and this value is chosen to stress the coupon services. All re-
quests are traces collected from the production environment.
The default garbage collector for services is CMS (Concur-
rent Mark Sweep [28]), a classic concurrent collector intro-
ducing relatively long STW pauses.

To understand the relationship between application be-
havior and GC pause time, we add a new Java option -

XX:InstrumentedPauseTime to the vanilla OpenJDK 8. When
the value is not zero, JVM will add a sleep call at the
end of GC to extend the GC pause time. The duration of
sleeping time can be adjusted by modifying the value of -

XX:InstrumentedPauseTime. We are mainly interested in the
coupon service as it is latency-sensitive. Our findings are
listed below.

Stop-The-World (STW) pauses is a killer factor for the

tail latency. We exploit a scatter plot in Figure 2 to illustrate
the relationship between GC and request latency. Points in
the scatter plot stand for the completion time of a request
(measured in the server-side), while red vertical lines stand
for the start time of GC. As Figure 2 suggests, each GC cy-
cle will follow some stragglers, which significantly affect the
tail latency. Although the request latency could be influenced
by many factors such as network, disk I/O, and other collab-
orative services, GC is the one to dominate the tail latency.
Note that this experiment actually underestimates the effect
of GC on the request latency, as the statistics are collected
from servers, which overlook the queuing time in the client-
side. One can expect more requests are affected by GC if
each request can be tracked in the upstream services, which
is unfortunately not supported in the cluster environment.

0

50

100

150

0 10 20 30

Elapsed time (s)

R
e
q

u
e
s
t

L
a
te

n
c
y
 (

m
s
)

Figure 2: The relationship between STW pauses and request
latency in the coupon service. The collector is CMS

GC pause time shows a super-linear relationship with

tail latency. During the evaluation, we change the value of
-XX:InstrumentedPauseTime for all five coupon service in-
stances from 0 to 10ms and collect the log from them. Fig-
ure 3 shows the change in the request latency for a coupon
service instance in a cumulative distribution function (CDF)
form, compared with that in the vanilla setting. The result
suggests that the increased pause time has a magnified im-
pact on the tail latency: When the GC pause is added by 10
ms, the 99th percentile latency is increased by 11.435 ms,
and the 99.9th percentile latency is enlarged by 32.950 ms.
It is because requests in clients are generated at any time,

regardless of the running state of services. When the coupon
service instance is undergoing a garbage collection, the pend-
ing requests will gradually increase and queue up. Once GC
ends, a pending request cannot be processed until the preced-
ing ones are finished. If GC pauses are extended, those new-
comers must wait for not only a longer pause but also more
pending requests, so the tail latency will increase faster than
GC pauses.

In the real-world cooperative multi-services scenario
(such as the check-out case in Alibaba), the problem can
be deteriorated because all participating services may be af-
fected by GC. For example, Mass et al. [25] have observed
that Cassandra replicas on GC will hinder the whole stor-
age system from constructing a quorum, which leads to pro-
hibitive user-experienced latency. Therefore, GC pauses is a
key factor for tail latency reduction in interactive services.

0.95

0.96

0.97

0.98

0.99

1.00

60 90 120 150

Latency (ms)

P
e
rc

e
n

ti
le

Pause+10 Vanilla

Figure 3: The CDF of request latency for the coupon service
atop CMS

2.3 Is concurrent GC helpful?

Due to the detriment of STW pauses, interactive services
usually adopt concurrent GC for better application latency.
Concurrent GC can be roughly divided into two categories:
partially-concurrent collectors and mostly-concurrent col-

lectors. Partially-concurrent collectors, such as CMS (men-
tioned above) and G1 [11], allow the co-execution for muta-
tors and GC threads in only some phases of GC. Therefore,
they still introduce STW pauses, and they provide solutions
to further reduce them. Mostly-concurrent collectors, such
as ZGC [33] and Shenandoah [13], nearly eliminate STW
pauses so that mutators can run constantly. We study those
two kinds of collectors on interactive services respectively.

Partially-concurrent GC. As shown in Figure 2, the
tail latency problem exists in partially concurrent collectors
like CMS since they still pause mutators for collection. For-
tunately, partially-concurrent collectors usually provide op-
tions to adjust the duration of pauses. For example, CMS
allows users to adjust the size of the heap area required to
be collected, while G1 can be restricted with a pre-assigned
maximum pause time. After setting those options, partially-
concurrent collectors will adjust the heap layout to meet the
requirement.

We exploit G1 to study the effect of those adjustable op-
tions. G1 is a highly-tunable partially-concurrent collector
which becomes the default one since OpenJDK 9. It is a gen-
erational collector whose heap space consists of young space

USENIX Association 2020 USENIX Annual Technical Conference 161

and old space. Its GC algorithm contains three parts: minor

GC on the young space, mixed GC on the young space and
a part of the old space, and major GC on the whole heap.
The minor GC, which is stop-the-world, happens the most
frequently. To reduce the duration of pauses, G1 provides
an option -XX:MaxGCPauseMillis for users to control them.
Therefore, we launch the coupon service on G1 by setting
the option to various values (30ms, 40ms, 60ms) and evalu-
ate the performance respectively. This evaluation is single-
point, where only one coupon service is launched to process
requests. With the single-point evaluation, the latency can be
accurately collected from the client-side, including the afore-
mentioned queuing delay. The requests are sent in a fixed
throughput to simulate a stressful scenario (4000 requests per
second in our setting), and they are still real-world traces ex-
tracted from the online environment in Alibaba. The duration
for data collection is a minute.

Table 1 shows the statistics on GC and application for
different settings. With smaller MaxGCPauseMillis, both the
minimum and the average GC pause time are reduced. How-
ever, young GC is triggered much more frequently. It is be-
cause G1 controls the GC time by tuning the size of the
young space, which serves for memory allocation requests
from mutators. Since young GC is triggered when the mem-
ory resource in the young space is exhausted, its frequency
will increase when the young space shrinks. As a result,
although the per-GC pause time is cut down by lowering
MaxGCPauseMillis, the overall time consumed by GC grows
larger. With larger overall GC pause time, more application
requests are affected, and less computing resource is avail-
able for mutators. Therefore, the tail latency problem is not
resolved but becoming much more severe: the p99 latency
with the 30ms setting is 13X of that with 60ms. Besides,
the average CPU utilization in the 30ms setting is also in-
creased by 15.3% compared with the 60ms setting. This
experiment suggests that partially-concurrent GC achieves
shorter pauses by consuming more CPU resources, which
may end up with worse tail latency.

Metrics 30ms 40ms 60ms

Minimum GC pause (ms) 21.815 21.459 39.856
Average GC pause (ms) 34.441 40.724 48.491
The number of GC 550 392 111
p99 latency (ms) 1942.09 1389.99 148.85
Average CPU utilization 51.45% 50.81% 36.17%

Table 1: The statistics on GC and the coupon application with
different settings of G1GC

Mostly-concurrent GC. Compared with partially-
concurrent GC, mostly-concurrent GC allows mutators to
execute nearly all the time. Recently released mostly-
concurrent collectors, like ZGC and Shenandoah, claim to
have reduced GC pauses to several milliseconds regardless
of the heap size. In this work, we mainly study Shenandoah1,

1We exploit Shenandoah as a baseline in this paper as it provides back-

a mostly-concurrent garbage collector released in OpenJDK
12.

We launch the coupon service atop Shenandoah and eval-
uate it with the same setting as G1. After collecting the GC
log, we conclude that Shenandoah is very effective in reduc-
ing the pauses, and the average pause time is only 18.764 ms.
However, the latency of requests is prohibitive: the p99 la-
tency is over 3 seconds, which is 1.86X even compared with
the worst case in G1 (30 ms). We observed that the time when
GC threads are active is 53.05 seconds, which means that
GC threads are active nearly all the time. Meanwhile, the av-
erage CPU utilization reaches 83.05% (the peak utilization
reaches 96.74%), which suggests that GC threads consume
much more CPU resources than other collectors, and muta-
tors do not have enough CPU slices to sustain such a high
throughput. As a result, the p99 latency with Shenandoah
is not decreased but increased when encountering stressful
workload.

To conclude, both partially-concurrent GC and mostly-
concurrent GC are making a tradeoff between the duration of
GC pauses and the CPU efficiency. Shorter GC pauses mean
that GC threads will consume more computing resources and
thus affect the performance of mutators. We instead want to
build a garbage collector with both short pauses and moder-
ate CPU efficiency to support the interactive services.

3 Implications for a new GC design

Before proposing our design, we take a closer look at the
designs of prior concurrent garbage collectors to uncover
the opportunities to build a new garbage collector for our
goals: short GC pauses and moderate CPU utilization. We
then reveal the skewed memory write behavior in interac-
tive service applications, which is crucial to our design. We
also introduce memory protection keys (MPK), a recently re-
leased hardware feature, and suggest how collectors can ben-
efit from it.

3.1 Problems in concurrent garbage collectors

According to the behavior of mutators during GC, concur-
rent garbage collectors can be roughly divided into two cate-
gories. However, both of them have problems hindering them
from achieving both satisfying GC pause time and CPU effi-
ciency.

Idle computing resources for partially-concurrent col-

lectors. STW pauses in partially-concurrent collectors re-
quire all mutators to suspend and leverage all computing re-
sources to collect objects. This design avoids interferences
between mutators and GC threads, but it also results in idle
cores during GC due to its scalability issues.

There are two reasons why garbage collectors cannot scale
well. First, the collection algorithm is somewhat similar to

ward support to OpenJDK 8, a long-time-support version which is widely
leveraged in both industries (like Alibaba) and open-sourced projects.

162 2020 USENIX Annual Technical Conference USENIX Association

graph traversal: GC threads will start from some root ob-

jects and mark all reachable ones through references among
objects. The traversal is highly unpredictable as we do not
know how many references a thread will process in advance.
Therefore, collectors are prone to load-imbalance and often
turns to work-stealing to achieve dynamic balancing. How-
ever, work-stealing is also ineffective in that it has to search
for tasks from all other threads and contend with others dur-
ing task fetching. Prior work [37] shows that work-stealing
even causes performance slowdown in extreme cases. Sec-
ond, the scalability of collectors is affected by many factors.
Recent studies have shown that the NUMA architecture [17],
synchronization protocols [16], and even the Linux schedul-
ing mechanism [38, 40] could have a significant influence on
the GC scalability. Therefore, it is difficult to come up with
a general algorithm which is scalable for various scenarios.

Given those reasons, partially-concurrent collectors ex-
ploit a conservative mechanism where the number of GC
threads is smaller than that of cores. In OpenJDK, the num-
ber of GC threads by default is about five-eighths of the total
core count. This policy also works for STW collectors like
PSGC. The developers of OpenJDK explain their choice in
the comment of the source code: For very large machines,

there are diminishing returns for large numbers of worker

threads. Instead of hogging the whole system, use a fraction

of the workers for every processor after the first 8. This de-
fault setting mitigates performance degradation as the num-
ber of cores increases and has been used in prior GC stud-
ies [40]. However, it also results in idle cores during collec-
tion. Instead of searching for a perfectly scalable collection
algorithm, we want to introduce some concurrent mutators
to leverage those idle cores while still preserving the perfor-
mance of collectors. Note that introducing concurrent muta-
tors during GC will not hurt the overall CPU efficiency much,
as the duration of STW pauses only occupies a very small
portion of the whole application’s execution time in interac-
tive services.

Considerable runtime overhead for mostly-concurrent

collectors. Unlike partially-concurrent collectors, mostly-
concurrent ones allow mutators to run simultaneously with
GC threads nearly all the time to reduce the application la-
tency. However, GC threads and mutators must synchronize
with each other as they may modify the same objects simul-
taneously, which introduces overhead for both GC threads
and mutators. Besides, mostly concurrent collectors further
introduce barriers in mutators for GC invariant checking. A
barrier is a piece of code instrumented before specific in-
structions. For example, Shenandoah exploits read barriers

for mutators, meaning that mutators need to check the invari-
ants for every single read operation on references, no matter
if GC is active. Those two factors introduce significant run-
time overhead to the runtime. Therefore, although Shenan-
doah has been optimized through aggressive Just-In-Time
(JIT) compilation, it still causes a 24% slowdown for real-

world workload compared with G1 [13].

3.2 The skewed memory write behavior

Memory behavior of applications is quite crucial to GC per-
formance and thereby affect the design of collectors. For ex-
ample, the memory behavior of big-data processing work-
load is at odds with assumptions in traditional GC algorithms
and stimulates a series of big-data-friendly garbage collec-
tors [18, 31]. To this end, we study the memory behavior of
latency-sensitive services to explore new space for garbage
collector design.

Session-based execution model. Since services are in-
teractive, their execution can be divided into many sessions.
The service will process a request when a session starts and
generate a response before the session ends. Sessions are
mostly isolated from each other: a session will not try to ac-
cess the objects created by other sessions unless those objects
are globally visible through shared data structures. Therefore,
we presume that the memory behavior of those session-based
applications will be skewed, i.e., the memory accesses within

a session will fall into a very small range where the session

allocates memory. The memory range is referred to as work-

ing set in this paper. We have conducted an in-depth analysis
to validate this hypothesis.

Memory behavior analysis. To analyze the memory be-
havior of those session-based applications, we first need to
demarcate all sessions. We add two new JVM calls, Session-

begin and Sessionend, to achieve this goal. After Sessionbe-

gin is invoked, the JVM will track all memory the session
allocates. When Sessionend is called, the JVM will print out
the size of the overall allocated memory, which is the work-
ing set size for the current session.

Our hypothesis is that session-based interactive services
share similar memory behavior. To confirm this, we have
also studied three other applications: SpecJBB2015, a sim-
ulated online supermarket, Cassandra [9], a key-value store,
and ShopCenter, another interactive service used in Alibaba.
All of them will process requests from clients in sessions and
send responses back. Note that both ShopCenter and Coupon
leverage production traces for analysis. To profile their mem-
ory behavior, we instrument Sessionbegin right before the re-
quest is processed and Sessionend when the processing fin-
ishes.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

ratio of write accesses out of the working set

ra
ti

o
 o

f
s
e
s
s
io

n
s

Cassandra Coupon ShopCenter Spark SpecJBB

Figure 4: The CDF for the memory range of write accesses
in various applications

USENIX Association 2020 USENIX Annual Technical Conference 163

Figure 4 shows the CDF curve of memory writes for three
different interactive applications. As for the coupon service,
over 99.5% sessions have less than 3% writes out of their
working sets. The working set of a session usually spans sev-
eral megabytes, which is quite small compared to the Java
heap (typically tens to hundreds of gigabytes). The other ap-
plications share similar memory behaviors. For Cassandra,
even the worst case has 72.4% writes inside its own work-
ing set. Other kinds of applications, however, do not follow
this behavior. As for Spark, a big-data processing framework,
50% sessions (a session in Spark is defined as the process the
worker handles a task assigned by the master) have more than
46% writes out of their working sets.

This experiment confirms our hypothesis that memory
writes in sessions of interactive services are skewed. The
skewed memory write behavior opens up an opportunity for
optimization: since mutators mostly update objects inside
their working sets, they can run simultaneously aside GC
threads with rare interference if GC threads avoid reclaiming
their working sets. Since previous garbage collectors do not
put the skewed memory write behavior into consideration,
this finding motivates us to design a new garbage collector
to guarantee both satisfying latency and CPU utilization.

3.3 MPK and Garbage Collectors

Since barriers in concurrent GC are costly due to its high ex-
ecution frequency, some collectors [2, 4, 10] have turned to a
virtual-memory-based mechanism for a transparent and effi-
cient solution. The virtual-memory-based mechanism lever-
ages the access permissions on the page table entries and re-
lies on hardware to check the invariants. For example, a GC
thread can mark a virtual page as being-collected by setting
its permission as read-only. Mutators writing to this page will
trigger a page fault and execute synchronization-related op-
erations in a pre-registered handler. GC threads working on
other pages will have no overhead as no page fault is trig-
gered. This method can eliminate the need for the barrier
code, and it can also be used in other areas, such as software
transactional memory [1].

Unfortunately, threads in a process will share the same per-
missions on all page table entries. In the previous example,
if a GC thread also wants to modify the being-collected page,
which should be legal, it still suffers from a page fault. Those
false page faults impede collectors to implement an efficient
protection mechanism.

Intel MPK (Memory Protection Keys) is a hardware fea-
ture available recently in the SkyLake server CPUs. With
MPK, users can categorize virtual pages into different do-

mains, which will be denoted with special bits in the cor-
responding page table entries. Furthermore, they can man-
ually grant different permissions for each domain to differ-
ent threads through a special register. This hardware feature
makes it possible to support finer-grained thread-level iso-

lation by adjusting the permissions over domains for each

thread. Previous work has studied the usage of MPK in the
security area [14, 20, 35, 43], but it could also be leveraged
for performance consideration.

4 Design

According to our analysis, we build Platinum for both satis-
fying latency and CPU efficiency.

4.1 Overview

Platinum is built atop PSGC, a STW garbage collector in
OpenJDK. Compared with concurrent collectors, PSGC is
more CPU-efficient as it always pauses mutators during GC
to achieve maximum collection throughput. Nevertheless, it
still results in idle cores due to scalability issues. Platinum

inherits the generational design from PSGC to divide the
heap into young space and old space. The young space fur-
ther consists of three sub-spaces. The eden-space (usually
the largest sub-space) serves for allocation, while the other
twos, from-space and to-space, are used to store objects sur-
viving at least one GC cycle. Only objects having lived for
long will be copied into old space. It contains two GC algo-
rithms: minor GC for the young space and major GC for the
whole heap. Platinum mainly considers the minor GC while
leaving the major GC as future work.

Figure 5 illustrates the infrastructure of Platinum. The de-
sign highlights of Platinum include:

Sufficiently leveraging computing resources. Platinum

collects the cores not used by GC threads and grants them
to mutators for better application latency, hence resolving
the idle computing resources problem in partially-concurrent
GC.

Isolated execution between GC threads and mutators

through heap partition. According to the skewed memory
behavior in interactive services, Platinum partitions the heap
space so that GC threads and mutators can focus on process-
ing objects in different parts of the heap. This design min-
imizes the synchronizations between GC threads and muta-
tors, so the coordination overhead in mostly-concurrent col-
lectors is greatly reduced in Platinum.

Hardware-assisted barrier elimination. Platinum lever-
ages the MPK hardware feature to remove the need for soft-
ware barriers adopted in prior mostly-concurrent collectors.
This design further reduces the runtime overhead and im-
proves CPU efficiency. Platinum also exploits the RTM fea-
ture to ensure the atomicity of write operations in mutators.

4.2 Platinum in steps

Similar to the minor GC algorithm in PSGC, Platinum is
copy-based: GC threads will simultaneously scan the young
space for live objects and copy them to their new address.
The process of Platinum GC is mainly in three steps:

1. Initial marking. This step is somewhat similar to the
initial marking pause in G1 [11]. In the initial marking phase
of Platinum, GC threads will scan the runtime stack of muta-

164 2020 USENIX Annual Technical Conference USENIX Association

Collection Area Pinned Allocation

Eden Space

Idle cores

GC thread Mutators

From To Old Space

Collection Area

MPK

domain 0

MPK

domain 1

Figure 5: Overview of Platinum

tors to mark live objects. Those live objects on the stack will
be treated as root objects for further object copying. This step
is stop-the-world because the values on the stack are changed
quite frequently, and we want a stable state at the beginning
of a collection. It usually takes only a few milliseconds to
finish initial marking.

2. Concurrent scavenge. After initial marking, Platinum

will invoke mutators to resume their execution while GC
threads will concurrently scan the heap to identify and copy
live objects. Thanks to the isolated execution mechanism (de-
tailed in Section 4.4), GC threads and mutators will focus on
processing objects in different areas of the heap and hardly
interfere with each other. Therefore, GC threads can directly
copy live objects without considering the behavior of muta-
tors. This step occupies the most time of the whole GC pro-
cess in Platinum.

3. Stop-the-world scavenge. When GC threads have fin-
ished their work, Platinum will pause running mutators again.
Since some objects in mutators’ working sets are not pro-
cessed by GC threads in the concurrent scavenge step, they
may contain "stale" references to objects which have been
evacuated. Therefore, Platinum should scan those objects for
correctness guarantee. Since the number of objects is quite
small, this step will not take long.

With the above three steps, Platinum can: (1). improve the
application latency because mutators are allowed to run in
most time of GC; (2). avoid consuming too much CPU re-
sources because GC threads are isolated from mutators to
retain satisfying collection throughput. Therefore, Platinum

can take into account both latency and CPU efficiency at the
same time. We will introduce the core designs of Platinum

in the rest of this section.

4.3 Idle core collection

To make Platinum effective, the application should configure
the number of GC threads to be smaller than that of cores (or
directly adopt the default setting in OpenJDK). When Plat-

inum is initialized, it will automatically bind the GC thread
into different CPU cores. Other cores with no GC threads
running will be remembered by Platinum as idle cores.

When Platinum is not active, mutators are free to run on

any cores. When GC is triggered, Platinum will constrain
mutators to only choose idle cores for execution to avoid
contending computing resources with GC threads. This is
achieved by setting the affinity values of mutators with the
sched_setaffinity interface in Linux. Those affinity values
will be reset at the end of GC. This design ensures not only
idle cores are sufficiently used by mutators but also each GC
thread monopolizes its assigned core.

4.4 Isolated execution with heap partition

To achieve isolated execution between GC threads and muta-
tors, Platinum partitions the heap into three areas during GC
(shown in Figure 5). The first area, namely collection area,
will be collected by GC threads. The collection area covers
the most part of Java heap, including from-space, to-space,
old-space, and the largest part of eden-space.

The other two areas, in contrast, are used by mutators and
thus not collected in this GC cycle. Since write operations
of mutators fall into a very small range (see Section 3.2), we
use the pinned area to include objects which are highly pos-
sible to be modified by mutators in the near future. The last
part is the allocation area, which is used by mutators to allo-
cate new objects during garbage collection. Those newly allo-
cated objects should be considered alive and only be scanned
in the next collection cycle.

Figure 6 illustrates how the three areas work in Platinum.
During normal execution, Platinum will partition the eden-
space into two areas (Figure 6a). The larger one will serve
memory allocation requests from mutators while the smaller
one will be reserved. Platinum also adopts a bump pointer to
denote how much memory has been used.

When the bump pointer reaches the end of the allocation
area, GC will be triggered, and GC threads will become ac-
tive. In the initial marking phase, Platinum will partition the
eden-space into the three areas mentioned before (Figure 6b).
The reserved area in the normal execution will become the al-

location area where concurrent mutators create new objects
during GC. The larger one will be further split into collection

area and pinned area. GC threads will only collect the col-
lection area while mutators mainly modify the pinned area
and the allocation area. Compared with the collection area,
the pinned area resides close to the bump pointer. This de-
sign choice is based on the memory allocation mechanism
in JVM: each mutators will first allocate a segment from
the global heap, and then allocate memory from the segment
until it is filled up. Therefore, Platinum locates the pinned
area adjacent to the allocation area to contain the latest seg-
ments allocated by different threads. The size of the pinned
area is preset to a fixed proportion of the whole eden-space.
The default value is 1/128, which can include segments from
tens of mutators while inducing moderate pauses during the
stop-the-world scavenge step. Platinum also allows users to
tune this value for better performance. Users can leverage
the aforementioned Sessionbegin and Sessionend API to cal-

USENIX Association 2020 USENIX Annual Technical Conference 165

Allocation Reserved

bump pointer

Mutator

(a) The heap space is divided into
two areas during normal execution

Collection Allocation

bump pointer

Pinned

Mutator GC Threads

(b) GC starts: partition the heap
into three areas for isolated execu-
tion

Allocation Allocation

bump pointer

Reserved

Mutator

(c) GC ends: re-partition the heap
into two areas

Allocation Allocation

bump pointer

Reserved

Mutator

(d) When the bump pointer
reaches the end, it will "jump"
to the start address for memory
allocation

Figure 6: The heap layout in Platinum. The colored part stands for allocated memory.

culate the working set size for their applications during pre-
run, and modify the pinned area to a proper size accordingly.

During the concurrent scavenge step, GC threads will ap-
ply range checks to determine if an object falls into the col-
lection area before accessing it, and only those in the collec-
tion area will be processed. Those range checks avoid the
case where GC threads try to copy an object which muta-
tors are modifying. Since the collection area is consecutive,
range checks can be implemented with cheap comparison in-
structions and thus introduce little overhead. As a result, GC
threads and mutators are enforced to concentrate on process-
ing objects in different areas, which eliminates the need for
synchronization and thereby mitigates the runtime overhead.
For objects not processed during concurrent scavenge, they
will be scanned and updated in the subsequent stop-the-world
scavenge step.

Before GC ends, GC threads become inactive, and Plat-

inum should reorganize the eden-space (Figure 6c). Since a
part of the space has been occupied by live objects (pinned
and allocation area), Platinum will mark it allocated. The rest
of the space will still be partitioned into two areas, while the
reserved one will reside adjacent to the pinned area in the
last GC. The bump pointer will grow from the original allo-
cation area and goes to the start address once it reaches the
end (Figure 6d). When the allocation area is exhausted, a new
GC cycle is activated.

4.5 Hardware-assisted barrier elimination

Heap partition restricts GC threads to only process objects
in the collection area and thus reduces the coordination over-
head. However, since mutators are running Java code, they
are free to access any objects in the Java heap, including
those in the collection area, which violates the isolated ex-

ecution semantic. A traditional solution proposed by prior
concurrent collectors is to leverage barriers to detect and cor-
rectly handle those operations. A barrier is a piece of code in-
strumented before specific operations for the interest of GC.
For our problem, a garbage collector can adopt write barri-

ers, which instrument range check operations before every
write. As shown in Figure 7, for a field update operation (y.x

= z), the collector should insert a range check to ensure that
the address of the field (y.x) is not in the collection area. If
the range check fails, mutators should turn to a prepared slow

path (atomic_update) to update the field atomically to ensure
correctness.

1 // barrier code start

2 if (in_collection_area(y.x)) {

3 atomic_update(y.x, z);

4 }

5 // barrier code end

6 else {

7 // Field update

8 y.x = z;

9 }

Figure 7: An example of write barriers

As mentioned in Section 3, barriers can cause significant
overhead as they are instrumented with every specific in-
struction, no matter if GC is active. For write barriers, they
must be executed before every write operation, including in-
terpreter code, JIT code, and even part of native code inside
JVM. We instead provide a hardware-assisted solution atop
MPK to eliminate the write barriers.

To leverage MPK, Platinum divides the Java heap space
into two domains: GC domain and mutator domain. The GC

domain only contains the collection area, while the mutator

domain consists of the pinned area and the allocation area.
When threads are initialized, they will be granted with corre-
sponding permissions: mutators have read-write permissions
to the mutator domain and read-only permissions to the GC
domain; GC threads have read-write permissions for both
two domains. The permissions are fixed throughout the life-
cycle of a thread. On the other hand, the address ranges for
those two domains are changed with the three areas dynam-
ically. When the collector is inactive, the whole Java heap
space belongs to the mutator domain so that mutators are
free to access any objects. When GC starts, the collection
area should be put into the GC domain. Afterward, if concur-
rent mutators’ write operations fall into the GC domain, they
will trigger page faults, and thus no software barriers are re-
quired. Thanks to MPK, Platinum can automatically detect
write operations violating the isolated execution mechanism,
and the control flow will be transferred to a customized han-
dler to correctly process those operations. Although process-
ing a page fault is more costly than executing a software bar-
rier, the possibility of triggering a page fault in interactive
services is much smaller than that for software barriers, and

166 2020 USENIX Annual Technical Conference USENIX Association

the amortized overhead can be reduced.

x x’

a a

Mutator 1 Mutator 2

COPY

(a) Object x has been copied to x’

by GC threads, while two mutators
hold a reference to different copies

x x’

a a'

Mutator 1 Mutator 2

(b) Mutator 1 cannot timely read
the modification from mutator 2,
which violates the serializability

x x’

a a'

Mutator 1 Mutator 2

(c) Shenandoah exploits an indirec-
tion pointer so that accesses to the
old object will be forwarded to the
new one

x x’

a' a'

Mutator 1 Mutator 2

RTM

(d) Platinum instead updates both
two copies atomically by putting
the updates into the same hardware
transaction

Figure 8: The dual-copy problem and solutions

4.6 Handling violated writes

When a write operation from a mutator falls into the collec-
tion area, the customized handler will take over and temporar-
ily request for read-write permissions for the GC domain.
This request is safe as the code in the handler is totally con-
trolled by Platinum. Afterward, the handler is responsible to
simulate the original write operation on the mutator’s behalf
by modifying the corresponding object in the collection area.

However, the simulation process must be deliberately de-
signed as GC threads are concurrently copying those objects.
If an object has been copied, the old one and the copied one
will co-exist in the Java heap until GC ends. Since mutators
may still have references to the old object, the consistency be-
tween the two copies must be maintained. Consider the case
in Figure 8a where object x has been copied (say x’). Sup-
pose mutator 2 gains a reference to x’ and modifies a field
a in x’ (Figure 8b), the modification should be visible to all
mutators. However, if mutator 1 still holds a reference to x

and reads its content, it can only get a stale value of a. We
refer to it as the dual-copy problem, which breaks down the
serializability of the whole program.

Prior concurrent collectors have similar problems as they
also allow mutators to run in scenarios where two copies
of the same object are both visible in the heap. They lever-
age read barriers to force mutators always to access the
newest one. The implementation of read barriers has many
variants, and one of them is to use Brook’s style indirection
pointers [5] as Shenandoah [13] does. This solution requires
adding an extra field in the header of every Java object, which
stores a pointer to the newest copy of this object. As illus-
trated in Figure 8c, x points to x’ while x’ points to itself.
In this way, when mutator 1 tries to access x, the indirection
pointer of x will guide it to access x’ instead so that it can get
the updated value of a. This solution is simple and straight-

forward, but it introduces considerable overhead, as analyzed
in Section 3.1.

Rather than using read barriers, Platinum guarantees cor-
rectness by updating both copies in the customized page fault
handler. As shown in Figure 8d, Platinum keeps the added
field in Shenandoah to store a back pointer to the old copy.
For the old object, since the original PSGC will store a for-

warding pointer in its header referring to the new object, the
added field is useless. In the above example, when updating
x’, Platinum will locate x with the back pointer and update
the value of a for both x and x’. Even though mutator 1 re-
tains a reference to x, it can still fetch the updated content
by directly reading x. This mechanism certainly doubles the
write operations, but it relies on the observation that only a
few write operations from mutators will happen in the collec-
tion area, so the overhead will be trivial.

Prior work like Sapphire [21] also exploits similar mech-
anisms, but it struggles to make the updates atomic, i.e., the
updates to both copies should be visible to mutators simulta-
neously. Fortunately, recent hardware development has pro-
vided us with new opportunities for design. Platinum em-
braces the Restricted Transactional Memory (RTM) feature
by Intel, which guarantees the atomicity of a piece of code
by wrapping it into a hardware transaction. Since RTM re-
quires that the working set of the transaction should be small
(otherwise the abort rate will dramatically increase), we only
put the update operations into the hardware transaction to
construct a very small working set (less than 100 bytes). We
have also prepared a fall-back handler in case the transac-
tion fails. The handler retries the transaction in most cases,
but it will try to grab a global lock if the transaction fails for
many times (which happens very rarely). With RTM’s help,
Platinum can update both objects atomically and return to
normal execution, which provides a strong consistency guar-
antee and introduces moderate overhead.

5 Evaluation

Platinum is implemented in the HotSpot JVM of OpenJDK
8u141 with about 7,500 LoCs. We leverage three various ap-
plications for evaluation:

SpecJBB2015. SpecJBB2015 is a business benchmark
that simulates an online supermarket to process incoming
purchasing requests. Alibaba usually exploits it as a simpli-
fied example to simulate the online production environment.

Cassandra. Cassandra is an open-sourced key-value store
which is usually leveraged as a latency-sensitive application
by prior work [7, 40]. We leverage YCSB as the testbed,
but it is executed in a closed-loop model where a client will
not send a second request until its receives the response for
its last one. This model cannot reflect the fact that requests
have to wait until prior ones are finished. Therefore, we have
modified the execution model of YCSB to open-loop, where
clients send requests in a fixed throughput regardless of the
responsiveness of servers. The version of Cassandra for our

USENIX Association 2020 USENIX Annual Technical Conference 167

evaluation is 3.11.4.
Coupon. Coupon is an online interactive service used

in Alibaba, and we use it to confirm that Platinum actually
works in real applications.

We also compare the performance of Platinum against
other mainstream garbage collectors.

CMS. Concurrent-Mark-Sweep (CMS) is a classic
partially-concurrent garbage collector. Its major GC is con-
current, and the minor GC is stop-the-world. We leave CMS
untuned to show its original performance.

G1. G1GC (G1) is a highly-tunable partially-concurrent
garbage collector which prioritizes latency over throughput.
It is designed to replace CMS in the future versions of Open-
JDK. We have manually tuned the value of MaxGCPauseMil-

lis for performance consideration. Since G1 is an experimen-
tal collector in OpenJDK 8, we also try the later OpenJDK
9 for evaluation. However, OpenJDK 9 is not supported by
the coupon service and Cassandra, and our evaluation on
SpecJBB2015 shows similar results for those two versions.
Therefore, we only report the result for OpenJDK 8.

Shenandoah. Shenandoah is a work-in-progress mostly-
concurrent garbage collector. The application latency is quite
low, but the introduction of read barriers and other concur-
rent phases strongly affect CPU utilization.

0

100

200

5000 10000 15000 20000

Throughput (reqs/sec)

p
9

9
 L

a
te

n
c
y

 (
m

s
)

CMS G1−tuned Platinum Shenandoah

(a) low-throughput

200

400

600

20000 25000 30000 35000 40000

Throughput (reqs/sec)

p
9

9
 L

a
te

n
c
y

 (
m

s
)

CMS G1−tuned Platinum Shenandoah

(b) high-throughput

Figure 9: The p99 latency results on SpecJBB2015 for differ-
ent collectors with various throughput settings.

5.1 SpecJBB2015

We use the preset mode to evaluate SpecJBB2015 atop dif-
ferent collectors to understand its performance under vari-
ous levels of throughput. In Alibaba, different throughput
settings can be used to simulate different types of work-
load. The experiment is running on a physical machine with
dual Intel Xeon Gold 6138 CPUs (80 logical cores) and
16GB Java heap size. The number of concurrent GC threads
is set as the default value (53). We tune G1 with differ-
ent MaxGCPauseMillis values and find that it reaches the
shortest per-GC pause time when the value is 50ms, so we
adopt this value for evaluation (referred to as G1-tuned). Fig-
ure 9 shows the 99th percentile latency for Platinum, CMS,
G1, and Shenandoah. The results in Figure 9a show that
Platinum always performs better than CMS under moder-
ate throughput, and the 99th percentile latency is reduced
by 38.4%-79.3%. Platinum also achieves comparable perfor-
mance against our tuned G1. The improvement in latency
mainly thanks to the mostly-concurrent collection in Plat-

inum.

When the throughput becomes higher (shown in Fig-
ure 9b), G1 reaches its limit at 25000 requests per second. As
a mostly-concurrent collector, the latency of Shenandoah is
ultra-low in low throughput but dramatically rises when the
throughput is 17000 and also reaches its limit at 25000. Note
that G1 and Shenandoah shares a similar concurrent marking
algorithm, and the main difference in their design choices
is that G1 pauses mutators during collection while Shenan-
doah allows concurrent execution. Therefore, G1 has better
GC efficiency and performs better under high throughput,
while Shenandoah induces shorter pauses and performs bet-
ter under low throughput. In contrast, Platinum can sustain
the highest throughput of all collectors, thanks to the cost-
effective isolated execution model during concurrent collec-
tion.

We also measure the CPU utilization for collectors under
three different QPS settings (5000, 15000, 25000) to repre-
sent low, moderate, and high throughput. As Table 2 shows,
the CPU utilization of Platinum is only slightly higher than
CMS and better than both G1 and Shenandoah under all set-
tings. Since we did not tune CMS for application latency, it
reaches reasonable CPU consumption but far worse tail la-
tency compared against other collectors. When the through-
put reaches 25000, both G1 and Shenandoah show consider-
able CPU consumption compared with Platinum, which re-
sults in the severe tail latency problem (Figure 9b), while the
CPU utilization in Platinum is still moderate.

Name CMS G1 Shenandoah Platinum

Specjbb (qps=5000) 14.57% 16.53% 17.85% 15.11%
Specjbb (qps=15000) 31.77% 37.25% 43.03% 32.79%
Specjbb (qps=25000) 48.79% 77.66% 77.80% 50.56%
Cassandra (qps=80000, RI) 11.87% 14.35% 14.07% 12.99%
Cassandra (qps=80000, WI) 12.10% 15.97% 14.93% 13.79%
Coupon (qps=4000) 38.47% 36.17% 83.05% 34.50%

Table 2: The CPU utilization for four garbage collectors, with
different applications

5.2 Cassandra

We evaluate Cassandra under the same settings as
SpecJBB2015. Two different types of workload are lever-
aged for evaluation: (1) read-intensive workload (RI) with
76000 reads and 4000 updates per second; (2) write-intensive
workload (WI) with 40000 reads and 40000 updates per sec-
ond. We have also tuned G1 to achieve its best performance,
and the value of MaxGCPauseMillis is 10ms. Figure 10 illus-
trates the tail latency for both scenarios with CDFs. As for
the read-intensive workload, Platinum has comparable per-
formance with Shenandoah, and improves the 99th percentile
latency by 40.5% and 40.4% for CMS and our tuned G1 re-
spectively. In Platinum, the latency for 97.2% of requests is
less than 10ms, and the number is 9.5% and 3.2% larger than
G1 and CMS. The improvement drops for write-intensive
workload, and only 91.2% of requests finish in 10ms. This
can be explained by more violated writes from mutators due

168 2020 USENIX Annual Technical Conference USENIX Association

to more update operations on the globally-visible data struc-
tures. Nevertheless, the p99 latency of Platinum is compa-
rable with our best-tuned G1 and improved by 44.9% com-
pared with CMS.

All collectors show moderate CPU consumption in Cas-
sandra. It is because Cassandra is an I/O-intensive applica-
tion and spends much more time on accessing its storage
compared with other scenarios. Since our tuned G1 reduces
the application latency by greatly shrinking the young space
and increasing the accumulated GC time, it reaches the high-
est CPU utilization among all collectors.

Table 3 further shows GC-related statistics in 30 seconds
among different collectors in the read-intensive workload. It
also shows the results for three different settings in G1. The
untuned CMS has the least overall time among all collectors
(except for G1-100ms and G1-60ms), but its average pause
time is relatively large. As for G1, when setting MaxGC-

PauseMillis from 100 to 10, the overall GC time is enlarged
by 2.5X, which results in higher CPU consumption. Com-
pared with other collectors, Platinum reaches both satisfying
average GC pause time (close to Shenandoah) and overall
GC time (close to G1-100ms).

0.97

0.98

0.99

1.00

0 25 50 75 100

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum Shenandoah

(a) Read-Intensive

0.97

0.98

0.99

1.00

0 25 50 75 100

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum Shenandoah

(b) Write-Intensive

Figure 10: The CDF results for Cassandra under two differ-
ent workload

GC settings Average pause (ms) Overall time (ms) p99 latency (ms)

CMS 28.168 366.189 38.776
G1-10ms 16.144 1037.864 38.677
G1-60ms 38.998 775.032 62.794
G1-100ms 58.739 413.583 76.732
Shenandoah 3.97 522.499 27.700
Platinum 4.66 433.335 23.061

Table 3: GC and latency statistics for Cassandra RI

5.3 Coupon

We finally show the performance of Platinum on the coupon
service. Since we do not have enough physical MPK-enabled
machines to conduct the clustered evaluation in Section 2.2,
this evaluation still exploits the single-point environment
mentioned in Section 2.3 on a 96-core machine with 16GB
Java heap. The throughput is set to 4000 requests per second
to simulate stressful throughput in the production environ-
ment. Since we have studied the performance of G1 on the
coupon service before, the value of MaxGCPauseMillis is set
to 60ms.

Figure 11 shows the CDF generated according to the re-
sponse time of requests. The results indicate that Platinum

can mitigate the long tail problem, especially for p99 latency.
Thanks to the cost-efficient garbage collection, the p99 la-
tency in Platinum is improved by 66.8% and 23.5% for CMS
and G1. Since the real-world workload also contains requests
whose response time is greatly extended by lags in other re-
mote services, Platinum cannot help to improve them much
and result in slightly better p999 latency against other col-
lectors. The application latency for Shenandoah is very large
(for example, the 99th percentile latency is 3.6s), which is
out of range in Figure 11. Compared with statistics in Ta-
ble 1, the average pause time and GC count in Platinum is
7.247ms and 162 respectively.

As for CPU utilization, Platinum consumes 34.5% of over-
all CPU resources, which is the smallest among all collectors.
The CPU consumption is 1.67% and 3.97% smaller than G1
and CMS. As for Shenandoah, the CPU is close to saturated
(83.05%), which can explain why application latency is quite
large. To conclude, the evaluation results on all three applica-
tions confirm that Platinum finds a sweet spot between low
application latency and moderate CPU utilization.

0.95

0.96

0.97

0.98

0.99

1.00

100 200 300 400

Latency (ms)

P
e
rc

e
n

ti
le

CMS G1 Platinum

Figure 11: The CDF results for the coupon service

5.4 Breakdown analysis

Varying the pinned area size. Table 4 shows the runtime
statistics of the Cassandra-WI workload with different sizes
of the pinned area. When enlarging the pinned area, the aver-
age number of page faults for each GC cycle decreases, and
the tail latency can be slightly improved. However, since the
pinned area will only be reclaimed in the next GC cycle, en-
larging its size will reduce the available memory in the eden
space and increase the overall GC time. Therefore, users can
tune the size of the pinned area to reduce the tail latency ac-
cording to the application behavior.

Area size Overall GC time (ms) Avg. page faults p99 latency (ms)

1/128 1007.327 13738 43.038
1/32 1106.951 12137 41.391
1/16 1145.982 11879 43.773
1/8 1206.859 10237 39.619

Table 4: GC-related statistics for Cassandra WI

GC Performance breakdown. This experiment breaks
the accumulated GC time of Cassandra-WI into phases. As
shown in Figure 12, mutators are allowed to run concur-
rently with GC threads most of the time (78.3%). Since the
initial marking phase only scans the thread stacks, it lasts
shortly and only takes up 1.1%. Meanwhile, the STW scav-
enge phase accounts for 15.6% to modify the stale references

USENIX Association 2020 USENIX Annual Technical Conference 169

in the pinned area and the collection area.

0.00

0.25

0.50

0.75

1.00

GC phases

F
ra

c
ti

o
n

 o
f

to
ta

l
Concurrent

Initial

Other

STW

Figure 12: Phase-level breakdown for Platinum

The performance on Spark. We also evaluate the perfor-
mance of Platinum on Spark, with its built-in PageRank ap-
plication. Our evaluation shows that the execution time with
Platinum is 7.93% longer compared with G1. Since the mem-
ory and GC behavior in Spark is much different from inter-
active services, it induces more page faults and larger stop-
the-world pauses, which is the main reason for performance
slowdown.

6 Related Work

Reducing pause time. STW pauses introduced by garbage
collections have been studied for years. For STW garbage
collectors, some work aims to reduce the pause time by
sufficiently leveraging the computing resources. Gidra et
al. [15, 16, 17] study the performance of PSGC in NUMA
machines and provide NUMA-aware optimizations. Suo et
al. [40] and Qian et al. [37] refine the work-stealing algo-
rithm to offer a more scalable minor GC algorithm. Another
line of work focuses on designing new concurrent collectors
to co-run mutators with GC threads to reduce the pauses. In
the OpenJDK HotSpot JVM, the latency-aware G1GC [11]
has recently become the default collector, and two mostly-
concurrent collectors, ZGC [33] and Shenandoah [13], are
also attractive. Stopless [36] provides real-time GC support
while preserving lock-freedom and fragmentation control.
Österlund et al. [34] improve the pause time of G1GC with
a non-blocking handshake between threads. The design of
Platinum learns from those concurrent collectors to propose
a CPU-efficient solution.

The intensive usage of language runtime in the big data
area has stimulated studies on building big-data-friendly
garbage collector with low pauses. Nguyen et al. [31, 32] put
the data objects generated by the big data systems into segre-
gated spaces where objects are managed with separated GC
algorithms. Gog et al. [18] provide a similar region-based al-
gorithm but mainly for the CLR runtime. Bruno et al. [6, 7, 8]
divide the heap into many generations and pre-tenure objects
that are believed to live long through runtime analysis. Plat-

inum is built for reducing pauses for another kind of scenario:
latency-sensitive, session-based interactive services.

Hardware-assisted GC. Hardware features also affect the
design choices of garbage collectors. Prior work has studied
on improving the performance of GC with primitives avail-
able in commodity hardware. Belay et al. [3] leverage virtu-
alization technology to escalate Java runtime to the non-root

ring 0 mode and accelerate GC with VM page management.
Ugawa et al. [42] enhance the original Sapphire garbage col-
lector with the RTM feature, and Ritson et al. [39] explore the
usage of RTM in various collectors. Wu et al. [45] extend the
area of garbage collector from normal DRAM to non-volatile
memory (NVM) and studies crash consistency issues during
GC. Platinum leverages RTM and MPK features to build a
new concurrent garbage collector.

Except for commodity hardware, there is also a trend to
build customized hardware, or GC accelerators, for various
considerations. Azul Systems has built a customized system
including CPU, chip, board, and OS to run garbage collected
JVMs efficiently. Their GC algorithm is also largely modi-
fied to leverage those customized features [10, 23, 41]. Mass
et al. [26] build a hardware GC accelerator to achieves higher
GC throughput and lower power consumption.

Runtime optimization in distributed environments.

Distributed applications are running atop multiple runtimes
on different machines. Maas et al. [25, 27] show that GC
in a single JVM can have a magnified effect on the whole
applications and proposes policies to orchestrate GC among
different JVMs. Lion et al. [24] find frequent JVM re-start
in task-based workload and provides a JVM pool to skip
the time-consuming warm-up phase. Nguyen et al. [30] op-
timize the communication between JVMs by providing an
efficient serialization protocol, while Navasca et al. [29] al-
low Java threads to directly operate on the serialized byte
streams with compiler techniques. Wang et al. [44] propose
to dynamically change the memory limits of JVMs to fit the
cloud environment. Both Fang et al. [12] and Călin et al. [22]
leverage efficient spilling to reduce the memory footprint
of large data-parallel applications. Platinum also quantifies
the effect of GC in a distributed cloud environment and pro-
poses a hardware-assisted algorithm to optimize the GC per-
formance.

7 Conclusion

Latency and CPU efficiency are both essential for interactive
services. Unfortunately, traditional garbage collectors cannot
achieve both goals at the same time. This paper provides
Platinum, a collector allowing concurrent but isolated execu-
tion of mutators and GC threads, with hardware assistance.
The evaluation shows that Platinum significantly reduces the
tail latency while preserving moderate CPU utilization com-
pared with prior concurrent garbage collectors.

8 Acknowledgement

We sincerely thank our shepherd Gilles Muller and the anony-
mous reviewers for their insightful suggestions. This work is
supported in part by the National Natural Science Foundation
of China (No. 61672345, 61925206), the HighTech Support
Program from Shanghai Committee of Science and Technol-
ogy (No. 19511121100). Haibo Chen is the corresponding
author.

170 2020 USENIX Annual Technical Conference USENIX Association

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hardware. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 185–196, 2009.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In ACM SIGPLAN Notices, volume 23, pages
11–20. ACM, 1988.

[3] A. Belay, A. Bittau, A. J. Mashtizadeh, D. Terei, D. Mazières, and
C. Kozyrakis. Dune: Safe user-level access to privileged cpu features.
In Osdi, volume 12, pages 335–348, 2012.

[4] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly parallel garbage
collection. In PLDI, volume 91, pages 157–164. Citeseer, 1991.

[5] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In Proceedings of the

1984 ACM Symposium on LISP and functional programming, pages
256–262. ACM, 1984.

[6] R. Bruno and P. Ferreira. Polm2: automatic profiling for object
lifetime-aware memory management for hotspot big data applications.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Confer-

ence, pages 147–160. ACM, 2017.

[7] R. Bruno, L. P. Oliveira, and P. Ferreira. Ng2c: pretenuring garbage
collection with dynamic generations for hotspot big data applications.
ACM SIGPLAN Notices, 52(9):2–13, 2017.

[8] R. Bruno, D. Patricio, J. Simão, L. Veiga, and P. Ferreira. Runtime ob-
ject lifetime profiler for latency sensitive big data applications. In Pro-

ceedings of the Fourteenth EuroSys Conference 2019, page 28. ACM,
2019.

[9] A. Cassandra. Apache cassandra. Website. Available online

at http://planetcassandra. org/what-is-apache-cassandra, page 13,
2014.

[10] C. Click, G. Tene, and M. Wolf. The pauseless gc algorithm. In Pro-

ceedings of the 1st ACM/USENIX international conference on Virtual

execution environments, pages 46–56. ACM, 2005.

[11] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In Proceedings of the 4th international symposium on Mem-

ory management, pages 37–48. ACM, 2004.

[12] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible
tasks: Treating memory pressure as interrupts for highly scalable data-
parallel programs. In Proceedings of the 25th Symposium on Operat-

ing Systems Principles, pages 394–409. ACM, 2015.

[13] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin. Shenan-
doah: An open-source concurrent compacting garbage collector for
openjdk. In Proceedings of the 13th International Conference on Prin-

ciples and Practices of Programming on the Java Platform: Virtual

Machines, Languages, and Tools, page 13. ACM, 2016.

[14] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi. {IMIX}: In-
process memory isolation extension. In 27th USENIX Security Sym-

posium (USENIX Security 18), pages 83–97, 2018.

[15] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing the scala-
bility of garbage collectors on many cores. In Proceedings of the 6th

Workshop on Programming Languages and Operating Systems, page 7.
ACM, 2011.

[16] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scal-
ability of stop-the-world garbage collectors on multicores. In ACM

SIGPLAN Notices, volume 48, pages 229–240. ACM, 2013.

[17] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. Nu-
magic: a garbage collector for big data on big numa machines. In
ACM SIGARCH Computer Architecture News, volume 43, pages 661–
673. ACM, 2015.

[18] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ra-
malingam, M. Costa, D. G. Murray, S. Hand, and M. Isard. Broom:
Sweeping out garbage collection from big data systems. In 15th Work-

shop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[19] S. Han, S. Lee, S. S. Hahn, and J. Kim. Syncgc: A synchronized
garbage collection technique for reducing tail latency in cassandra.
In Proceedings of the 9th Asia-Pacific Workshop on Systems, page 20.
ACM, 2018.

[20] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott, K. Shen,
and M. Marty. Hodor: Intra-process isolation for high-throughput
data plane libraries. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), 2019.

[21] R. L. Hudson and J. E. B. Moss. Sapphire: Copying gc without stop-
ping the world. In Proceedings of the 2001 joint ACM-ISCOPE con-

ference on Java Grande, pages 48–57. ACM, 2001.

[22] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel.
Don’t cry over spilled records: Memory elasticity of data-parallel ap-
plications and its application to cluster scheduling. In 2017 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 17), pages 97–109,
2017.

[23] B. Iyengar, G. Tene, M. Wolf, and E. Gehringer. The collie: a wait-free
compacting collector. In ACM SIGPLAN Notices, volume 47, pages
85–96. ACM, 2012.

[24] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t
get caught in the cold, warm-up your jvm: Understand and eliminate
jvm warm-up overhead in data-parallel systems. In Proceedings of the

12th USENIX conference on Operating Systems Design and Implemen-

tation, pages 383–400. USENIX Association, 2016.

[25] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz. Taurus: A holis-
tic language runtime system for coordinating distributed managed-
language applications. ACM SIGOPS Operating Systems Review,
50(2):457–471, 2016.

[26] M. Maas, K. Asanović, and J. Kubiatowicz. A hardware accelerator
for tracing garbage collection. In Proceedings of the 45th Annual Inter-

national Symposium on Computer Architecture, pages 138–151. IEEE
Press, 2018.

[27] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz. Trash day: Coor-
dinating garbage collection in distributed systems. In 15th Workshop

on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[28] S. Microystems. Memory management in the java hotspot™ virtual
machine, 2006.

[29] C. Navasca, C. Cai, K. Nguyen, B. Demsky, S. Lu, M. Kim, and G. H.
Xu. Gerenuk: thin computation over big native data using speculative
program transformation. In Proceedings of the 27th ACM Symposium

on Operating Systems Principles, pages 538–553. ACM, 2019.

[30] K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky, and S. Lu. Sky-
way: Connecting managed heaps in distributed big data systems. In
ACM SIGPLAN Notices, volume 53, pages 56–69. ACM, 2018.

[31] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and
O. Mutlu. Yak: A high-performance big-data-friendly garbage col-
lector. In Proc. the 12th USENIX Conference on Operating Systems

Design and Implementation, 2016.

USENIX Association 2020 USENIX Annual Technical Conference 171

[32] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. Xu. Facade: A com-
piler and runtime for (almost) object-bounded big data applications. In
ASPLOS, 2015.

[33] OpenJDK. ZGC - The Z Garbage Collector.
https://openjdk.java.net/projects/zgc/, 2019.

[34] E. Österlund and W. Löwe. Block-free concurrent gc: stack scanning
and copying. In Proceedings of the 2016 ACM SIGPLAN International

Symposium on Memory Management, pages 1–12. ACM, 2016.

[35] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. libmpk: Software
abstraction for intel memory protection keys (intel {MPK}). In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC}
19), 2019.

[36] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a
real-time garbage collector for multiprocessors. In Proceedings of the

6th international symposium on Memory management, pages 159–172,
2007.

[37] J. Qian, W. Srisa-an, D. Li, H. Jiang, S. Seth, and Y. Yang. Smartsteal-
ing: Analysis and optimization of work stealing in parallel garbage
collection for java vm. In Proceedings of the Principles and Practices

of Programming on The Java Platform, pages 170–181. ACM, 2015.

[38] J. Qian, W. Srisa-An, S. Seth, H. Jiang, D. Li, and P. Yi. Exploiting fifo
scheduler to improve parallel garbage collection performance. ACM

SIGPLAN Notices, 51(7):109–121, 2016.

[39] C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring garbage collec-
tion with haswell hardware transactional memory. In ACM SIGPLAN

Notices, volume 49, pages 105–115. ACM, 2014.

[40] K. Suo, J. Rao, H. Jiang, and W. Srisa-an. Characterizing and optimiz-
ing hotspot parallel garbage collection on multicore systems. In Pro-

ceedings of the Thirteenth EuroSys Conference, page 35. ACM, 2018.

[41] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent
compacting collector. ACM SIGPLAN Notices, 46(11):79–88, 2011.

[42] T. Ugawa, C. G. Ritson, and R. E. Jones. Transactional sapphire:
Lessons in high-performance, on-the-fly garbage collection. ACM

Transactions on Programming Languages and Systems (TOPLAS),
40(4):15, 2018.

[43] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg. {ERIM}: Secure, efficient in-process iso-
lation with protection keys ({MPK}). In 28th {USENIX} Security

Symposium ({USENIX} Security 19), pages 1221–1238, 2019.

[44] J. Wang and M. Balazinska. Elastic memory management for cloud
data analytics. In 2017 USENIX Annual Technical Conference

(USENIX ATC 17), pages 745–758, Santa Clara, CA, 2017. USENIX
Association.

[45] M. Wu, Z. Zhao, H. Li, H. Li, H. Chen, B. Zang, and H. Guan.
Espresso: Brewing java for more non-volatility with non-volatile mem-
ory. In ACM SIGPLAN Notices, volume 53, pages 70–83. ACM, 2018.

172 2020 USENIX Annual Technical Conference USENIX Association

	Introduction
	Analysis: when interactive services meet GC
	A page is multiple services
	STW pauses: the culprit for tail latency
	Is concurrent GC helpful?

	Implications for a new GC design
	Problems in concurrent garbage collectors
	The skewed memory write behavior
	MPK and Garbage Collectors

	Design
	Overview
	Platinum in steps
	Idle core collection
	Isolated execution with heap partition
	Hardware-assisted barrier elimination
	Handling violated writes

	Evaluation
	SpecJBB2015
	Cassandra
	Coupon
	Breakdown analysis

	Related Work
	Conclusion
	Acknowledgement

