
TreeSLS: A Whole-system Persistent Microkernel with
Tree-structured State Checkpoint on NVM

Fangnuo Wu1,2, Mingkai Dong1,2, Gequan Mo1, and Haibo Chen1,2
1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

2Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
Whole-system persistence promises simplified application
deployment and near-instantaneous recovery. This can be
implemented using single-level store (SLS) through peri-
odic checkpointing of ephemeral state to persistent devices.
However, traditional SLSs suffer from two main issues on
checkpointing efficiency and external synchrony, which are
critical for low-latency services with persistence need.
In this paper, we note that the decentralized state of

microkernel-based systems can be exploited to simplify
and optimize state checkpointing. To this end, we propose
TreeSLS, a whole-system persistent microkernel that sim-
plifies the whole-system state maintenance to a capability
tree and a failure-resilient checkpoint manager. TreeSLS fur-
ther exploits the emerging non-volatile memory to minimize
checkpointing pause time by eliminating the distinction be-
tween ephemeral and persistent devices. With efficient state
maintenance, TreeSLS further proposes delayed external vis-
ibility to provide transparent external synchrony with little
overhead. Evaluation on microbenchmarks and real-world
applications (e.g., Memcached, Redis and RocksDB) show
that TreeSLS can complete a whole-system persistence in
around 100 `s and even take a checkpoint every 1ms with
reasonable overhead to applications.

CCSConcepts: • Software and its engineering→Operat-
ing systems; Checkpoint / restart; • Computer systems
organization→ Reliability; Secondary storage organiza-
tion.

Keywords: Single-Level Store, Microkernel, Non-volatile
Memory, Checkpoint/Restore, Transparent Persistence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’23, October 23–26, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0229-7/23/10. . . $15.00
https://doi.org/10.1145/3600006.3613160

ACM Reference Format:
Fangnuo Wu, Mingkai Dong, Gequan Mo, and Haibo Chen.
2023. TreeSLS: A Whole-system Persistent Microkernel with Tree-
structured State Checkpoint on NVM. In ACM SIGOPS 29th Sym-
posium on Operating Systems Principles (SOSP ’23), October 23–
26, 2023, Koblenz, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3600006.3613160

1 Introduction
Prevailing operating systems run on main memory and store
data persistently in storage via files, following a conven-
tion formed in early systems where memory is fast, byte-
addressable but volatile, and disks are non-volatile but slow
with block interfaces. Consequently, applications move data
back and forth between a two-tiered memory-storage hier-
archy. Such a design may lead to bugs in complicated data
persistence operations, e.g., crash consistency bugs in file
systems [50, 67, 79] and in applications using these file sys-
tems [58], as well as performance degradation of data swap-
ping between memory and storage [13].
Single-level store (SLS) is proposed to liberate applica-

tions from the complicated and error-prone data persistence,
while providing near-instantaneous recovery. Unlike tradi-
tional systems exposing storage via file systems, SLS sug-
gests using checkpointing to extend the memory layer down-
wards to include the disks, managing data (both permanent
and ephemeral) and system state together with transpar-
ent persistence. As a result, applications execute and store
data in the “single-level” memory while the operating sys-
tem automatically persists data. Several systems in the past
decades [12, 33, 40, 48, 62, 66, 68, 71, 74] have proposed the
design and implementation of SLS on traditional storage
devices. A recent system called Aurora [72, 73] further de-
monostrates how SLS designed for fast NVMe devices can
mitigate the performance issues.

Despite the performance improvement of storage devices,
the use of SLS is still limited by its high performance overhead
and external synchrony issue [54] (further explained in §2.4).
Existing SLSs eliminate the complexity of writing persistent
applications by providing an illusion of single-level stor-
age on top of runtime memory (DRAM) and storage (disks)
with software checkpointing. Though such an illusion hides
the significant differences of runtime memory and storage
in both access speed and access granule (byte vs. block), it

https://doi.org/10.1145/3600006.3613160
https://doi.org/10.1145/3600006.3613160

exacerbates the performance overhead caused by write am-
plifications, and increases the risk of data loss due to limited
checkpoint frequency.
On the other hand, modern applications heavily rely on

immediate persistence of external visible operations, i.e., ex-
ternal synchrony, to provide services to external entities like
a client. Existing SLSs provide custom APIs for applications
to ensure external synchrony. However, nontrivial efforts1
are required to modify applications to accommodate the APIs
for correct data persistence, which contradicts SLS’s orig-
inal intention of liberating applications from error-prone
persistence operations.

The emergence of fast, byte-addressable non-volatile mem-
ory (NVM) presents promising features as a storage device
to implement SLS with minimized performance overhead.
NVM combines storage-like durability with DRAM-like byte-
addressability and access performance, forming a single-level
storage device that enables fast and direct manipulation of
persistent data.
Unfortunately, even with a single-level storage device,

implementing an efficient SLS still faces challenges since
running on persistent memory does not make the whole
system persistent naturally. Although recent techniques like
Intel eADR [3] can guarantee the eventual persistence of
data in CPU cache, data stored in CPU registers and device
registers can still be lost upon power failures. As a result,
software techniques like checkpointing are still required to
guarantee the persistence of consistent whole-system state.
Unlike traditional checkpointing techniques that prepare
consistent state in memory and flush to storage in batch,
NVM acts as both runtime memory and storage, making
efficient checkpointing even more complicated. Meanwhile,
as external synchrony becomes more prevalent in modern
applications, it becomes necessary to provide transparent
external synchrony, without forcing applications to use the
error-prone journaling mechanism.
In this paper, we propose TreeSLS, an efficient SLS on

NVM with whole-system persistent microkernel. TreeSLS
builds on the principle of microkernel, which keeps kernel
functionalities as minimal as possible and pushes most sys-
tem services, e.g., drivers, network stacks and file systems,
to the user space. Based on the observation that state-of-the-
art microkernels [41, 66] pervasively uses capabilities [26]
to manage kernel objects (like seL4’s capability deviation
tree), TreeSLS organizes whole-system state in a capability
tree for efficient incremental state checkpointing. It further
designs an in-kernel failure-resilient checkpoint manager
to manage the use of non-volatile memory. The checkpoint
manager uses journaling to protect itself from failures, and
whole-system checkpoints are taken on the tree to ensure a

1The Aurora paper reports that 109 SLOC additions are sufficient for
RocksDB. However, such small code changes are largely due to the ex-
isting logging mechanism in the RocksDB design.

runtime view is available to run applications while a consis-
tent view is always persisted to deal with unexpected power
failures.
TreeSLS proposes NVM-oriented checkpointing on the

capability tree to reduce the stop-the-world pause time. To
further reduce the runtime overhead caused by page faults
and memory copying, TreeSLS proposes hybrid copy to track
hot pages and conduct cross-DRAM/NVM migration and
speculative page copy.
With the extreme high checkpoint frequency (e.g., one

checkpoint per millisecond) enabled by efficient checkpoint-
ing, TreeSLS also provides application-transparent external
synchrony via delayed external visibility. Such an approach
offloads the complexity of external synchrony to the system
services such as drivers, while liberating applications from
writing efficient and correct persistence code.

We evaluate TreeSLS on a series of well-known applica-
tions to show that TreeSLS can successfully and efficiently
checkpoint the whole system every 1ms under various sce-
narios. We also conduct experiments with memory servers
(e.g., Redis and Memcached) and to demonstrate that real-
world applications running on TreeSLS can benefit from the
simplified persistence model and fast whole-system check-
pointing. TreeSLS can achieve up to 2.2× throughput of Redis
with original AOF function enabled, and achieves 2.4× and
2.5× throughput of Aurora’s journaling API and RocksDB’s
WAL, respectively.

In summary, the paper makes the following contributions.
• The first NVM-based single-tier SLS that organizes whole
system state in a capability tree and the checkpoint man-
ager under the microkernel architecture.

• Efficient whole-system checkpointing consisting of NVM-
oriented checkpoint methods to reduce the stop-the-world
checkpointing time and hybrid copy to reduce runtime
overhead.

• Transparent external synchrony with delayed external vis-
ibility based on the high checkpointing frequency enabled
by TreeSLS.
The source code and further information about TreeSLS

are at https://ipads.se.sjtu.edu.cn/projects/treesls.html.

2 Background and Motivation

2.1 Memory-storage Hierarchy

As shown in Figure 1, there have been various approaches
to providing persistence and crash consistency for appli-
cations. Prevailing operating systems run in volatile main
memory (DRAM) and move data to non-volatile storage de-
vices (disks) to guarantee persistence. Applications also run
with runtime data in DRAM and leverage filesystem APIs
to persist and retrieve data in storage. However, data move-
ment between DRAM and persistent storage is costly and
(de-)serializations are required when the data formats in

https://ipads.se.sjtu.edu.cn/projects/treesls.html

App-implemented
Persistence

hi
gh

O
ve

rh
ea

d

Persistence Efforts

lo
w

transparent complicated

+ Journal API

TreeSLS
(this paper)

Prior Single Level Store

Persistence with
Libraries/Compilers

KeyKOS/EROS, Fluke, Aurora, etc.

NVThreads, PMThreads,
Twizzler, etc.

Figure 1. Methods to provide persistence for applica-
tions. TreeSLS aims to provide low-overhead, transparent
persistence for applications.

DRAM and storage are different. Further, applications need
to guarantee the persistence of application data and its crash
consistency via mechanisms such as journaling, which are
usually complicated and error-prone.
2.2 Single-Level Store

The single-level store (SLS) model [12, 40, 71] offers an alter-
native approach to providing a single-tier storage abstraction
for applications, where every object in the system can be uni-
formly accessed. It extends the memory layer downwards to
include the disk level and removes the file system abstraction.
With this persistence provided, programmers can write appli-
cations with no persistence-related code under the assump-
tion that the system never crashes. Existing applications
designed for memory can also gain persistence support trans-
parently with SLS. For example, in-memory key/value stores
(e.g., Memcached) in cache servers, which serve as fast caches
to the backend database, can benefit from the transparent
persistence of SLS to avoid hours of warm-up time [31, 49]
after a reboot caused by power failures. Due to SLS’s promise
of simplified programming and transparent recovery, much
work [12, 15, 23–25, 33, 38, 48, 62, 63, 65, 66, 68, 71, 74] has
treated all objects as in-memory and transparently convert
objects between in-memory and on-disk representations.
However, the performance of such work is highly limited
by the devices available at that time and their checkpoint
can only be taken at minute-level intervals. Recently, the
high-performance storage devices brings up the SLS concept
again [52, 72, 73].
2.3 Limitations of Existing SLSs

Though named as single-level store, most prior SLSs actually
build upon the two-tiered architecture of runtime memory
and storage, and provide the single-level persistence illusion
with software checkpointing. Despite the performance im-
provement of storage devices, these SLSs still suffer from
limitations due to the two-tiered architecture.

Figure 2 shows the architecture of two representative sys-
tems: (a) EROS [66], a capability-based microkernel with
system-wide checkpointing to provide transparent persis-
tence; (b) Aurora [73], a modern SLS for UNIX OSs on fast
NVMe devices. These SLSs need several additional cache

runtime

backup
(with hierarchy)

process cache

object cache

checkpoint area
(append-only)

home location

Storage
(Disk)

Main
Memory
(DRAM)

Cache

inconsistent state

consistent state

process cache

EROS

NULL

object cache

process cache

inconsistent
backup

Main Memory (NVM)

Aurora TreeSLS

consistent
backup

 recoverable
state and cache

Figure 2. Architectures of prior SLSs and TreeSLS. Prior
SLSs build an illusion of single-level storage upon the volatile
runtime and persistent disks or SSDs. TreeSLS builds on the
single-tier NVM acting as both runtime memory and stor-
age. DRAM can store recoverable state and cache frequently
accessed pages in NVM.

layers upon non-volatile storage devices since CPUs cannot
directly access on-disk data. Objects in EROS are cached at
two levels of abstraction: process cache and object cache.
Both layers are write-back caches of the on-disk objects and
are flushed when the objects they cache are invalidated. In
Aurora, though using modern high-performance storage, ob-
jects still need to be put in DRAM and flushed to persistent
devices. The unmatched interface of runtime memory and
storage leads to inefficiency in two aspects:
• Write-amplification incurs performance degradation. CPUs
manipulate runtime data (e.g., objects) in bytes, while data
are persisted to storage in blocks. Thus, a small change in
runtime data will cause the persistence of a whole block,
which causes write amplification. Although EROS lever-
ages an append-only checkpoint area and Aurora adopts
batching, the write amplification still causes non-trivial
overhead .

• Limited checkpoint frequency exposes more data loss at risk.
As accessing storage is much slower than DRAM, prior
SLSs take a checkpoint by stopping the world and copying
dirty data to dedicated DRAM buffers. Such data is flushed
to storage asynchronously by background threads which
run concurrently with applications after the checkpoint-
ing. Such asynchronous checkpointing reduces the stop-
the-world pause time, but excludes immediate persistence
and greatly limits the checkpointing frequency. Since the
checkpoint is incomplete before all dirty data is persisted,
the next checkpoint cannot be taken. As all non-persisted
updates after a checkpoint will be lost upon power failures,
limited checkpoint frequency is likely to cause more data
loss. This further complicates the approach to the external
synchrony issue (§2.4).

2.4 External Synchrony

External synchrony [54] refers to the synchronization of state
inside/outside the SLS system. In current SLSs, updates af-
ter the latest checkpoint are subject to data loss until the
next checkpoint is taken. Such a data loss window may be
acceptable for many applications decades ago when SLS was
first proposed, such as word processing applications [42].
However, it is insufficient for the correctness of applications
exposing state to external systems, which are very common
in modern data centers. For example, a key-value store server
needs to guarantee the persistence of a stored key-value pair
once it has responded to clients. Databases are expected to
guarantee the persistence of modifications once the transac-
tion commitment is replied to users.
To handle such external synchrony issues and make such

applications correct, prior SLSs provide additional mecha-
nisms (usually journaling APIs) for applications to use. This,
however, brings the applications back to the complexity of
writing persistence code correctly, contradicting SLSs’ origi-
nal intention.

2.5 Rethinking SLS in the Context of NVM

The emerging non-volatile memory (NVM) technology com-
bines DRAM-like byte-addressability and accesses perform-
ingwith storage-like durability and large capacity. It is a good
match for SLS as its promising features make SLS more effi-
cient: CPUs can now easily manipulate data on non-volatile
storage devices directly at byte-granularity.
However, simply equipping servers with NVM cannot

guarantee the persistence of all transient state upon failures.
With the availability of techniques like Intel eADR [3], data
in the CPU cache can be eventually flushed to NVM and
thus persisted in case of power failures. However, data in
CPU registers and device registers can still be lost. Conse-
quently, although NVM provides a single-level device for
SLS, running systems on NVM does not make the whole
system persistent naturally, and implementing an efficient
SLS still faces several challenges.
• Checkpointing is still required and has to be optimized for
NVM to maintain consistency between runtime data and
checkpoint data. Since data in registers is ephemeral, soft-
ware checkpointing is still required to guarantee the per-
sistence of consistent whole-system state. However, un-
like existing SLSs that prepare consistent state in mem-
ory and flush to storage in batch, an SLS on NVM can
leverage the single-level device (i.e., NVM) as both run-
time memory and storage. This reduces unnecessary data
movements (especially movements for persistence) and
write-amplification issues. In exchange, to ensure a consis-
tent checkpoint is always available, the relation between
runtime data and checkpoint data needs to be carefully
maintained, as the same page can be used by the runtime
and checkpoint simultaneously.

pages
checkpoint mgr
(memory mgr)ke

rn
el

us
er

sp
ac

e

proc
mgr

fs
mgr

user applications

net
driver

Capbility Tree

...

IPC sched

app driver

fs mgr

proc mgr

NVM

cached
pages
DRAM

global
meta

Figure 3. Architecture of TreeSLS. TreeSLS is an NVM-
based microkernel SLS with hot pages cached on DRAM.
TreeSLS’s persistent state consists of a failure-resilience
checkpoint manager managing the space, and a capability
tree encapsulating whole-system state.

• Transparent external synchrony is required for modern ap-
plications. Modern applications heavily rely on external
synchrony to provide services to others. It is cumbersome
to force applications to accommodate the customized APIs
for external synchrony, as writing correct persistence code
with these APIs is still non-trivial and error-prone. Trans-
parent external synchrony can add persistence transpar-
ently to existing and new applications, even if they are
designed and implemented with no persistence in mind.

3 Overview of TreeSLS
TreeSLS is a single-level store system that exploits the proper-
ties of microkernel architecture and NVM to provide whole-
system persistence.With its high-frequency checkpoint, im-
mediate persistence and transparent external synchrony,
TreeSLS takes a large step towards practical SLS systems.

Figure 3 shows the architecture of TreeSLS. TreeSLS
adopts the microkernel architecture that minimizes kernel
functionalities (e.g., IPC, scheduler, checkpoint manager)
and puts most system services to the user space. Thanks to
the use of NVM, TreeSLS essentially eliminates the distinc-
tion between persistent and ephemeral devices and is thus a
single-tier single-level store.

For efficient whole-system persistence, TreeSLS needs to
address two issues: 1) how to efficiently capture the whole-
system state; 2) how to efficiently checkpoint the whole-
system state. TreeSLS exploits the capability tree and the
checkpoint manager to address them accordingly.

The Capability Tree. Capability-based systems [9, 32, 41,
46–48, 64, 70] usually group all capabilities into a capability
derivation tree. System resources are represented by objects
and a capability is an object reference with a set of access
rights.
We observe that the capability tree essentially captures

all state of the running systems (excluding the NVM space
allocation state managed by the checkpoint manager itself).
Hence, to achieve whole-system persistence, TreeSLS can
essentially follow the capability tree to checkpoint all such
state during checkpointing. Furthermore, the capability tree

is a better abstraction for SLS since checkpointing a tree
structure is simpler and more straightforward than building
SLS on monolithic kernels, which requires special designs on
complicated kernel objects or POSIX objects. For example,
taking a checkpoint of file systems in a monolithic kernel
requires finding FD tables, dentry-cache, and inode-cache,
and preserving relations among these structures. In com-
parison, a microkernel usually maintains these structures in
user-space file system services. The checkpoint procedures
do not need to know such structures and their relations and
can treat them as normal runtime data of applications.
Further, TreeSLS may also leverage the runtime state of

the capability tree for efficient incremental checkpointing,
i.e., by skipping state intact since the last checkpoint. Some
derived state of other kernel services (IPC and scheduler)
does not need to be persisted, as TreeSLS can recover such
state from the capability tree, e.g., adding all threads to the
scheduler’s queue.
Figure 4 illustrates a graphical representation of the ca-

pability tree and Table 1 shows the detailed information of
each capability-referred object. Every user-space process
(application or system server) consists of a sub-tree in the
capability tree (as shown in Figure 3). All allocated system
resources can be reached from the Root Cap Group. TreeSLS
thus leverages a tree-structured state checkpoint approach
based on the capability tree (§4).

The CheckpointManager. The checkpoint manager is re-
sponsible for taking checkpoints and managing NVM space
for the runtime objects and checkpoints. As an NVM alloca-
tor, the checkpoint manager uses a buddy system to manage
all NVM resources in TreeSLS. Both the runtime data and
checkpoints are stored in the space allocated by the check-
point manager. Slab systems are also used to facilitate the
allocation of small fixed-sized objects. Metadata of both the
buddy system and slab systems are stored on NVM (the
global metadata area in Figure 3).

To avoid bootstrapping issues (i.e., checkpointing state of
the checkpoint manager) and facilitate efficient access to the
capability tree, the checkpoint manager is designed as a stan-
dalone in-kernel module, whose state is not checkpointed.
However, since its state is critical metadata of the whole
system, the checkpoint manager needs to be failure-resilient
to recover from power failures at arbitrary times. As struc-
tures of the checkpoint manager are already stored on NVM,
TreeSLS only needs to prevent in-flight operations from cor-
rupting state of the checkpoint manager in case of failures.
Thus, TreeSLS leverages redo/undo journaling to maintain
the crash consistency of the checkpoint manager. On reboot
after a power failure, TreeSLS first applies the journal to
recover the checkpoint manager to a consistent state, and
then recover the whole system with the checkpoints.

An Overview of Checkpoint/Restore Procedure. Fig-
ure 5 shows the overall whole-system checkpoint/restore

Root Cap Groups

VM Space Thread Cap Groups...PMO

VM Space Thread PMO

Cap
Groups

...

IPC Conn Cap Groups

Notification IPC Conn

Figure 4. The capability tree of TreeSLS. All system re-
sources (capability-referred objects) are grouped into a ca-
pability tree in TreeSLS. Every user-space process is made
up of a subset of the capability tree, and checkpointing the
capability tree is equal to checkpointing the whole system.

Table 1. List of capability-referred objects in TreeSLS.

Object Description
Cap Group a group of capabilities
Thread thread (state & scheduling context)
VM Space a list of virtual memory regions
PMO a set of physical memory pages
IPC Connection for processes communication
Notification for synchronization (like semaphores)
IRQ Notification a hardware signal sent to the processor

Runtime
Capability Tree

Backup
Capability Tree

2
ckpt root

Checkpoint Metadata

status

...

success

4

alloctor
metadata

Checkpointed object (NVM)
Runtime object (NVM)

Runtime cached object (DRAM)

version=6

6

v=6

v=5 v=3/5 v=4/5

sub list sub list

Dual-function Active Page List

...sub list

Core

Core

... IPI

Core

Core

1 5
3

7

Figure 5. The checkpoint/restore procedure.

procedure. ❶ A leader CPU core sends IPI requests to all
other cores to force them into a quiescent state. Notably, in-
terrupts are disabled in the kernel space, so the IPI will not
interrupt a core modifying object state in the kernel. ❷ After
all cores respond, the leader takes a checkpoint of the current
runtime capability tree to form a backup capability tree. This
step does not copy user-space memory pages. Instead, all
these pages are marked as read-only in the page table. ❸ In
parallel to the leader core checkpointing the capability tree,
other cores speculatively copy a certain set of page objects,
which is further explained in §4.3. ❹ Atomically mark the
checkpoint as complete and increment the global version
number of checkpoints, which is a commit point making the
new checkpoint in effect. This state is maintained in a global
metadata area on NVM. ❺ The leader core sends IPI requests
to other cores to inform them to resume execution. ❻ At
runtime, page faults are triggered when processes modify
their memory pages. In the handler, the memory page will be
duplicated to the backup capability tree, finishing the copy-
on-write procedure. ❼ The restore procedure rolls back the

whole system by reviving state of the backup capability tree
to restore the runtime capability tree. The only state not cap-
tured by the tree is that of the checkpoint manager. During
the recovery, malloc/free operations after the last checkpoint
are identified and rolled back by comparing system’s state at
crash with the last checkpoint’s state. The latest malloc/free
might be partially conducted, resulting in corruption of the
buddy/slab system’s state. TreeSLS uses journaling to ensure
the atomicity of the in-flight allocator operations.

Correctness. The checkpoint is taken with the system in
a quiescent and consistent state. All cores except the leader
core are interrupted either from the user space or at the
boundaries of syscalls. Thus, no core is actively modifying
the kernel state, allowing TreeSLS to checkpoint consistent
kernel state. All system state is captured by the capability
tree, except for the state of the checkpoint manager, which
is protected by journaling. The integrity of the capability
tree and the consistency of checkpointed state guarantee the
correctness of the checkpoint procedure.

4 Tree-structured State Checkpoint

4.1 Checkpointing the Capability Tree

To checkpoint the capability tree, TreeSLS duplicates all ob-
jects in the tree to form a backup capability tree. Since an
object can be referred by multiple cap groups, TreeSLS main-
tains a capability object root (ORoot) structure for each unique
object to avoid redundant checkpointing. ORoot records
the addresses of the runtime object and the corresponding
backup objects (if present), and each object contains the field
pointing to its ORoot. With ORoot, TreeSLS can quickly find
the runtime object or the backup objects of any given object.

Next, we describe how each kind of object is checkpointed
to the backup capability tree. The specific checkpoint strat-
egy for each object primarily follows several considera-
tions. First, small-sized and frequently updated objects (e.g.,
Thread) are directly copied to the new checkpoint during
checkpointing since the copying is quick. Second, large-sized
and slowly changing objects (i.e., memory pages) are asyn-
chronously copied during runtime. Third, objects that can be
rebuilt (e.g., page tables) are not included in the checkpoint,
which trades restore time for faster checkpointing.

Cap Group. A cap group is an array of capabilities; each
capability consists of a pointer to the runtime object and
the access rights. To checkpoint a cap group, TreeSLS first
allocates space for the cap group in the backup capability
tree, and copies the capabilities to the backup cap group. For
convenience, the backup capability stores the pointer to the
corresponding ORoot, instead of the backup object.

For each capability, TreeSLS finds the runtime object and
the corresponding ORoot. If the corresponding ORoot is
absent, it means that the runtime object is newly created
and TreeSLS will initialize the ORoot for it. By inspecting

the backup object in the ORoot, TreeSLS knows whether
the runtime object has been checkpointed in this round of
checkpointing. If not, TreeSLS recursively checkpoints the
object according to its type.

Thread. To checkpoint a Thread object, TreeSLS allocates
space and copies the thread context (e.g., registers and sched-
uling state) to the backup tree. As all CPU cores are trapped
in the kernel when taking the checkpoint, all state of user-
space threads has been consistently saved on NVM. Thus,
we can safely copy them to the backup tree.

IPC Connection, Notification and IRQ Notification.
These objects are used for inter-process communication and
synchronization. We directly copy them to the backup capa-
bility tree.

VM Space and Page Tables. VM Space records a list of
accessible virtual memory regions and a page table structure
for the space. Each virtual memory region is backed by a
physical memory object (PMO). To checkpoint VM Space,
TreeSLS duplicates the list of virtual memory regions to the
backup tree, and ignores the page table structure as the page
tables can be rebuilt after recovery.2 During a recovery, an
empty page table is created for each process. Afterwards,
page accesses from applications will trigger page faults and
the handler will use the fault address to find the physical
page from the recovered VM Space’s virtual memory region
and its corresponding PMO, and add the mapping to the page
table. To further improve the efficiency, TreeSLS puts the
page tables on DRAM as they do not need to be persisted.
Also, TreeSLS will reuse the virtual memory region list for
VM Space in subsequent checkpoints.

PMO and Memory Pages. PMO records a set of physical
memory pages organized by a radix tree. PMO is the most
special object, since it is usually large in volume and possibly
only a subset of pages are modified. To checkpoint a PMO,
TreeSLS duplicates the radix tree to the backup capability
tree, and handles memory pages differently.
During the first checkpoint of a new process, TreeSLS

marks all pages as read-only in the page table. A page fault
will be triggered when a page is modified. In the page fault
handler, TreeSLS will duplicate this page and update the
pointer in the backup PMO’s radix tree. In the subsequent
checkpoint, pages are marked as read-only again to track
subsequent modifications.
Note that the asynchronous copying of pages does not

delay the persistence of checkpoint: the checkpoint of PMO
is persisted once the radix tree is copied to the backup tree,
since the runtime pages on NVM can be used after power
failures. Similar to VM Space, TreeSLS reuses the radix tree
in subsequent checkpoints to avoid constructing the tree
from scratch.

2We use “recovery” and “restore” interchangeably in the paper.

Other State. Some state is not managed in the capability
tree, but still contributes to the overall system integrity and
is necessary for checkpointing. This includes components
like kernel buffers and copy-on-write related bits in the page
table. We identify and include them in the capability tree as
special nodes.

4.2 Consistency with Versioning

To handle unexpected power failures, TreeSLS needs to guar-
antee that there is always a consistent checkpoint. Existing
approaches use runtime pages as the volatile cache and main-
tain two persistent pages as the backups, which consumes un-
necessary memory and incurs unnecessary memory copies.
Considering that physical memory objects (PMOs) are

the objects with a large number of memory pages, TreeSLS
leverages the runtime page as one backup and allocates at
most one additional backup for checkpoints. For each other
object, TreeSLS maintains two backups (i.e., checkpoints)
besides the runtime copy. In both cases, TreeSLS attaches
a version number for each backup and maintains a global
version number to guarantee consistency efficiently.

As shown in Figure 6(a), we use a checkpointed radix tree
to maintain the hierarchy of pages for each checkpointed
PMO. The leaf node of the tree is represented by a structure
called checkpointed page (CP), which maintains the version
number and the address of the backup page. Unlike other
objects having two backups, each page in PMO has zero
(address=NULL) or one backup page in the checkpointed
radix tree, as NVM enables runtime pages to be used in the
consistent checkpoint.
Specifically, supposing the global version number is 5,

three cases can happen upon failures (Figure 6(a)): ❶ The
backup version number is equal to the global version number,
meaning that we saved data 𝐴 to backup with version=5 in
the page fault handler and the page was then modified to
𝐴′. Thus, the page should be restored with the content of
the backup page (𝐴 in this example). ❷ A smaller backup
version number infers that data in the runtime page (𝐵′) have
not been modified since the last checkpoint; thus, we should
recover using data in the runtime page (𝐵′). ❸ An empty
backup means that the page is never modified and thus not
checkpointed, and we will recover with data in the runtime
page (𝐶).

In summary, TreeSLS only needs to recover pages whose
backup version number is equal to the global version number,
and keep other pages unchanged during the recovery.

4.3 Checkpointing Memory Pages with Hybrid Copy

Besides reducing the stop-the-world checkpointing over-
head, TreeSLS needs to reduce the runtime overhead of SLS,
especially in high-frequency checkpointing scenarios. As we
evaluate in §7.4 and show in Figure 10, when the checkpoint

is taken at the interval of 1ms, the runtime overhead is sub-
stantial and most runtime overhead is caused by page fault
handling and the page copying in the handler.

4.3.1 Methods to Copy Pages. To reduce the overhead
caused by page copying, we studied four possible methods
(shown in Figure 7).
• Stop-and-copy copies all modified pages to the backup in
the stop-the-world (STW) checkpointing. It is the simplest
method, but will stop the world for a long time to copy all
pages.

• Speculative stop-and-copy speculatively copies dirty pages
before the STW checkpointing is taken, to reduce the STW
time. If the speculatively copied pages are modified again
before the checkpointing, these pages need to be copied
again during STW checkpointing.

• Copy-on-write. Stop-and-copy and speculative stop-and-
copy guarantee the backup is generated before the STW
checkpointing completes; thus, runtime pages are free
to be modified after the STW checkpointing. The copy-
on-write method, however, marks the page as read-only
and delays copying the page to the backup until the page
is about to be modified. It moves the overhead from the
checkpointing to the later runtime, with the cost of page
fault handling and possible lock contentions among page
faults. Note that for DRAM-based systems, this method
will delay the availability of checkpoints since runtime
data will be lost upon failures; for TreeSLS, the checkpoint
is ready for failures after the STW checkpointing since
runtime data are persisted on NVM.

• Speculative copy-on-write speculatively copies pages that
are likely to be modified before page faults are triggered as
in copy-on-write. A successful speculation will avoid page
faults and move page copying overheads out of the critical
path. A false speculation introduces unnecessary page
copying, wasting CPU cycles and possibly contending
running applications.

4.3.2 HybridCopy. Tomove runtime page faults and page
copying out of the critical path, we propose the hybrid copy
method, which combines multiple methods and DRAM/NVM
migration according to two observations.
First, as most applications have access locality, a set of

hot pages is modified nearly in every checkpoint. We can
migrate these hot pages to DRAM for faster access and stop-
and-copy them as they are likely to be modified in the next
checkpoint. Copying hot pages before they trigger copy-
on-write is a form of speculative copy. Second, during the
stop-the-world checkpointing, CPU cores not involved in the
main checkpointing procedure can conduct stop-and-copy
operations in parallel without introducing extra overhead.
With hybrid copy, TreeSLS identifies hot pages and mi-

grates (i.e., copies) them to DRAM. TreeSLS checkpoints
these hot pages on DRAM with stop-and-copy and the rest

root

node node

node node
version
paddrCP CP CP

A'

A

B'

NULL

C

B
v=5

2 31

...

v=3 v=0

ru
nt
im

e
ba

ck
up

(a) Checkpointed Radix Tree

...version
paddr

version
paddr

v=0

same
with old

A B

B
v=5

A
v=4

B

A
v=4

B
v=0

CPP

root

node

node node

CPP CPP

...

A

D

C

D
v=8

v=7

NVM-to-DRAM DRAM-to-NVMno migration

ba
ck

up
ru

nt
im

e

v=0

D

D
v=8

D

D

D

D
v=8

v=8

v=5 v=20

(b) Extended Checkpointed Radix Tree
Figure 6. Checkpointed structures formemory pages. (a) shows the structure for original copy-on-write-only checkpointing
method (show in §4.2). (b) shows the extended structure for hybrid checkpointing method (show in §4.3.3). The red color
indicates this page has the correct version belonging to the current checkpoint.

ckptn+1

stop-and-copy

Timeline

ckptn-1 ckptn

C

page
modified

Methods

SC Cspec. stop-and-copy
copy-on-write

spec. copy-on-write SC

page fault
on write

hybrid copy CC

C

C

Figure 7. Existing methods on checkpointing memory
pages. “C” stands for memory page copy and “SC” represents
speculative page copy. The hybrid copy in TreeSLS leverages
the idea of speculative copy-on-write and additionally uses
stop-and-copy for hot pages that are migrated to DRAM.

pages on NVM with copy-on-write. Note that hybrid copy
echos the high-level idea of speculative copy-on-write: pre-
dicting pages that are likely to be modified and copying them
before the actual copy-on-write.

TreeSLS introduces a dual-function active page list to track
hot pages and implement the migration. When a page fault is
triggered, we increase the page’s hotness value, and append
the page to the list when its hotness exceeds the threshold.
During checkpointing (step ❸ in Figure 5), all cores except
the leading core will traverse a sub-list of the active page list.
In the traverse, dirty DRAM pages will be copied to complete
stop-and-copy. Additionally, newly appended pages since the
last checkpointing are migrated to DRAM. Pages that have
not been accessed for excessive times will be migrated back
to NVM and removed from the list. Hotness values of these
removed pages will be cleared.

4.3.3 Extended Versioning. To support hybrid copy, the
structure of the checkpointed radix tree needs to be modified
as DRAM-cached pages need two backups: one for in-flight
checkpointing and the other for a consistent checkpoint. As
shown in Figure 6(b), TreeSLS extends the original check-
pointed page (CP) structure to checkpointed page pairs (CPP)
structure to maintain two backups.

When nomigration happens, TreeSLS uses the first pointer
to point to the backup page and the second to the runtime
page. Both pages are stored in NVM.

During the NVM-to-DRAM migration, TreeSLS allocates
a DRAM page and copies runtime page’s data to it. TreeSLS

then updates the runtime page table to let the DRAM page
become the runtime page. TreeSLS sets the version of the
runtime page in NVM to the global version so that it becomes
the latest backup page. Then, the two NVM backup pages
can be used alternatively to save the DRAM runtime page’s
data during the checkpointing.
For the DRAM-to-NVM migration, as the migration hap-

pens only when the page has not been modified for several
checkpoints, it is guaranteed that the runtime page data are
identical to one of the backup page data. TreeSLS makes sure
that the second backup page contains the latest data by copy-
ing from the runtime page if necessary. We set the second
backup’s version to zero and update the runtime page table
to let the second backup page become the runtime page.
The migration is resistant to failures using the following

rules in recovery: if a backup’s version is equal to the global
version, this backup is used for recovery; otherwise, if the
second backup version is zero, the second backup is used;
otherwise, the backup with a higher version is used. Such a
rule is compatible with the rules before, when the runtime
page is treated as the second backup with version zero.

5 Transparent External Synchrony
To support external synchrony, an SLS should make sure that
the state changes caused by a request are persisted before
sending responses to external systems. With high-frequency
checkpointing, TreeSLS archives this by delaying external
visible operations (e.g., sending network packets) until a
checkpoint is taken. This can be implemented transparently
to applications by allowing user-space services (e.g., net-
work drivers) to register a checkpoint callback, which will
be invoked at the end of each checkpointing, and a restore
callback, which is invoked at the end of recovery. TreeSLS
also provides an eternal PMO, which is a special kind of PMO
that will not be rolled back during recovery.
Figure 8 shows how TreeSLS can support external syn-

chrony in the network driver with modified ring buffers (e.g.,
queues in NVMe). Taking the send queue as an example,
the ring buffer and the three pointers are stored in eternal
PMOs. To send a message (𝑚𝑠𝑔2), the message is appended
to the ring buffer and the writer is updated (Figure 8(a)). The
message is not available to be sent. When a checkpoint is
taken, the checkpoint callback of the user-space network

visible writer

writer

reader

msg0 msg1 msg2

(a) Running

msg0 msg1 msg2

reader

writer

visible writer

(b) Checkpoint Finish

msg0 msg1 msg2 msg3

reader visible writer

writer

(c) Crashed

msg0 msg1 msg2

reader visible writer

writer

(d) Restored
Figure 8. Ring buffer for external synchrony.

driver is invoked and will update visible writer (Figure 8(b))
to indicate that𝑚𝑠𝑔2 can be sent since all state it depends on
has been checkpointed.
In case of power failures, the restore callback is invoked

and executes actions based on the state of the ring buffer at
the crash (as the ring buffer is stored on an eternal PMO, its
state is not rolled back). The driver can discard newmessages
since the last checkpoint (𝑚𝑠𝑔3 in the Figure 8(c)) as the ap-
plication sending the message is rolled back and will re-send
the message. Note that the reader pointer is not rolled back
since the message has already been sent to the hardware. The
driver needs to check whether this message is actually sent
by the hardware. The driver also needs to record hardware
configurations in eternal PMOs so that it can restore the hard-
ware state after recovery, and can resume communication
with external systems.

TreeSLS’s transparent external synchrony delays com-
munications with external systems till the next checkpoint.
Thus, the checkpointing frequency needs to be sufficiently
high, to avoid adding too much delay to the communication.
Though TreeSLS requires the drivers to be modified using
TreeSLS’s APIs, applications can gain the external synchrony
with no modification. In current TreeSLS implementation,
we implemented the external synchrony in a network server
that handles communications between clients and servers
on the same machine. We are working on implementing the
external synchrony in real network drivers.

6 Implementation
We implemented TreeSLS on top of ChCore [10, 19], which
is an educational multicore microkernel that supports POSIX
APIs throughmusl-libc [11]. Like prior microkernels, ChCore
adopts capability-based access control. ChCore contains
~21 k LOC in the kernel space, including IPC, scheduling,
and memory management. The OS services in the user space
include a process manager, file system servers and drivers.

TreeSLS adds ~5 k LOC in the kernel space, including ~3.3 k
LOC in a module for checkpoint/restore, ~1.2 k LOC in mem-
ory allocator, andmodifications to other modules (IPI, syscall,
etc.). In the user space, we modify the network server to im-
plement external synchrony (~500 LOC).

7 Evaluation
In this section, we evaluate TreeSLS with microbenchmarks
and several applications to answer the following questions:
• Does TreeSLS function well in various scenarios? (§7.2)
• How much time does a checkpoint take? (§7.3)
• How do checkpoints in TreeSLS affect the performance of
running applications? (§7.4)

• How do real applications perform on TreeSLS? (§7.5)
7.1 Environment Setup

We run all experiments on a machine with dual Intel® Xeon®
Gold 6330 CPUs with eADR support. CPU frequency is fixed
at 2.0 GHz with Hyperthreading enabled and Turbo Boost
disabled. TreeSLS runs on one NUMA node, with 256GiB
DDR4 DRAM and 1 TiB Intel® Optane™ Persistent Memory.

We choose several well-known applications from various
domains in the evaluation, including computing applications
(Phoenix-2.0 test suite [60]), in-memory key-value stores (
Redis-6.0.8 [6] and Memcached-1.6.21 [5]), persistent key-
value stores (LevelDB-1.23 [4] and RocksDB-6.6 [7]), and
databases (SQLite3 [8]). We compare TreeSLS with Linux
Kernel 5.4 and Aurora [73].
7.2 Functional Tests

We tested self-implemented simple test programs (hello world,
ping-pong and simple key-value stores) and the real-world
applications listed in §7.1. We manually crash and reboot the
system while running these programs. After reboot, these
programs can continue running with expected behaviors,
indicating that TreeSLS functions well.
7.3 Stop-the-world Checkpointing

Stop-the-world (STW) checkpointing is a major source of
performance overhead in TreeSLS. In this subsection, we will
first demonstrate the time of taking a checkpoint on different
types of objects; we will then examine the overall overhead
of STW checkpointing when running a workload, and how
different types of objects contribute to this overhead.

As overhead may vary with different running workloads,
we tested different workloads and detailed the object count
and memory usage of each workload in Table 2. The default
workload is the system running no additional workloads,
i.e., only the system services are running in the system. We
show default for reference and object counts of all other
workloads are relative to default. It is worth mentioning that
an application’s checkpoint size (Ckpt) is much smaller than
its runtime memory consumption (App), since NVM’s persis-
tence allows TreeSLS to use runtime pages in the checkpoint
as long as they are not changed since the checkpoint.
All experiments running in this subsection are config-

ured with 1000Hz checkpointing, i.e., taking a checkpoint
per millisecond. SQLite and LevelDB are single-threaded,
SQLite conducts a mixed read/insert/update/delete bench-
mark, while LevelDB utilizes the fillbatch workload in

Table 2. Details of different workloads. Default is the
system running with no workloads. Object counts in other
workloads are relative to default. Thanks to NVM’s persis-
tence, TreeSLS can include runtime pages in the checkpoint
and thus an application’s checkpoint size (Ckpt) is smaller
than its runtime memory consumption (App). No IRQ object
appears during the test.

Workload Object Composition (Count) Size (MiB)
C.G. Thread IPCNoti. PMOVMS App Ckpt

A. Default 6 27 9 7 71 6 n/a n/a
B. SQLite +1 +4 +3 +0 +14 +1 1015 161
C. LevelDB +1 +5 +3 +2 +18 +1 230 77
D. WordCount +1 +12 +3 +8 +31 +1 238 160
E. KMeans +1 +12 +3 +9 +24 +1 15 134
F. Redis +2 +77 +60 +6 +262 +2 129 316
G. Memcached +2 +42 +19 +17 +154 +2 303 187

Default
SQLite

LevelDB

WordCount
KMeans

Redis

Memcached
0

25

50

75

100

Ch
ec
kp

oi
nt
 T
im

e
(μ
s)

IPI

Others

Cap Tree

Hybrid Copy

(a) Time Breakdown of the STW Checkpointing

Default
SQLite

LevelDB

WordCount
KMeans

Redis

Memcached
0

25

50

75

Ch
ec
kp

oi
nt
 T
im

e
(μ
s) Cap Group

Thread

IPC

Notification

PMO

VMSpace

(b) Breakdown of Checkpointing Capability Tree
Figure 9. Breakdown of checkpointing.

dbbench. WordCount and KMeans are 8-threaded with
100MiB dataset and 10 k data points for each. Redis and
Memcached execute SET benchmark with 8-threaded clients
(clients were also checkpointed), while Memcached itself
operates with 4 threads.

Breakdown of Checkpoint. Figure 9(a) shows the time of
taking an incremental STW checkpoint under various work-
loads and the breakdown. Two bars are given for each work-
load: the left bar indicates the time used by the main check-
pointing procedure, including handling IPIs (IPI), checkpoint-
ing the capability tree (Cap Tree) and others (Others); the
right bar shows the maximal time used by other cores doing
the hybrid copy, which is in parallel with the main check-
pointing procedure. With no workload (Default in the fig-
ure), the STW time is as low as ~25 `s. Two single-threaded

Table 3. Checkpoint/Restore time of a single object.

Time (𝝁s) Incr Ckpt Full Ckpt Restore
Min Max Min Max Min Max

C.G. 0.82 3.28 2.87 17.67 5.65 20.04
Thread 0.15 0.29 0.56 1.41 1.33 1.49
IPC 0.03 0.05 0.08 0.47 0.10 0.19
Noti. 0.10 1.45 0.05 0.20 0.10 0.18
PMO 0.03 0.03 842.91 4082.75 18.95 123.67
VMS 0.41 1.68 144.28 180.50 6.47 26.57

workloads, SQLite and LevelDB, have similar low time con-
sumption, and more complex multi-threaded applications
finish checkpointing in around 100 `s.

Figure 9(b) further breaks down the time of checkpointing
the capability tree according to object types. Most objects
can be quickly copied during the STW checkpointing as
their sizes are small. Checkpointing Cap Group and Thread
is costly for workloads with a large number of objects and
threads. VM Space’s checkpointing also contributes to the
overall time as it involves marking all newly-changed pages
as read-only.

Checkpoint/Restore of a Single Object. Table 3 further
presents the time of checkpointing and restoring a single
object of different types in Figure 9(b). During the first two
rounds of checkpointing, a complete object snapshot is taken,
which involvesmemory allocation and initial object structure
building. Subsequent checkpoints are incremental and reuse
many of the already established object structures. Thus, we
show the full checkpoint time (Full Ckpt) and incremental
checkpoint time (Incr Ckpt) separately in the table. For both
checkpoints, we give the minimal and the maximal time we
collected from all workloads.
Thanks to the microkernel minimizing in-kernel state,

the longest time to incrementally checkpoint an object is
3.28 `s and most objects can be incrementally checkpointed
at nanosecond-scale. The full checkpoint time is longer be-
cause it involves constructing the backup object from scratch.
For example, a full checkpoint of PMO takes up to 4ms to
save the radix trees of multiple files (i.e., the 100MiB data file
used in the Phoenix benchmark.). The full time is acceptable
as it only occurs at the beginning. The time of restoring is
also acceptable.
The cost of checkpointing and restoring certain types of

objects (Cap Group, PMO, and VM Space) is related to the
object sizes. For example, because the Cap Group object
maintains a table of capabilities, having a large table would
increase the cost of checkpointing and restoring Cap Group.
This also applies for PMOs and VM Spaces due to their radix
trees and virtual memory region lists.

7.4 Runtime Overhead

Besides the overhead of creating checkpoints, TreeSLS in-
troduces page faults and page copying during the normal

Memcached Redis KMeans PCA
0

1

2

3

4

5

N
o
rm

a
liz

e
d
 R

u
n
 T

im
e base (no checkpoint)

+ checkpoint

+ page fault

+ page memcpy

+ hybrid copy

Figure 10. Breakdown of runtime overhead and effect
of hybrid memory checkpoint.

Table 4. Effect of hybrid memory checkpoint.
Memcached Redis Kmeans PCA

of runtime page faults 182 11 9 279
of dirty cached pages 156 89 197 34
of cached pages 395 241 431 253
Ratio of page faults eliminated 46% 89% 95% 11%
Dirty rate in cached pages 40% 33% 37% 13%

execution of applications. In this section, we demonstrate
the overall performance overhead to applications.
Hybrid Memory Checkpoint. Figure 10 breaks down

the runtime overhead. We choose several memory-intensive
workloads. The configuration of each workload is the same
with §7.3. PCA is also 8-threaded and performs on a ma-
trix with 1 k rows and 1 k columns. The sophisticated STW
checkpointing (+checkpoint) brings marginal overhead. Most
overhead comes from the page fault handling (+page fault)
and page copy (+page memcpy). The hybrid memory check-
point (+hybrid copy) does reduce the overhead by up to 49%.
The recall and precision of the hybrid copy are further

detailed in Table 4. Taking Memcached as an example, 395
pages are cached in DRAM as hot pages; 40% (156 pages) of
these pages are actually modified between two checkpoints.
On the other hand, 46% (156 pages) of all 338 modified pages
are marked as hot pages and speculatively copied during the
STW checkpointing; the rest 182 pages cause page faults.
The result shows that hybrid copy effectively caches hot
pages and reduces page faults in runtime.
Checkpoint Frequency. Figure 11 presents the P50 and

P95 latency of SET/GET operations on 10 million keys sent
from an 8-threaded client to an 8-threaded Memcached
server. Taking checkpoints increases the operation latency.
When the checkpoint interval is less than 10ms, the latency
increases as the checkpoint interval decreases. The client
and server employ a machine-local, UDP-like communica-
tion, leading to `s-scale latencies, and TreeSLS with a 1 ms
checkpoint interval introduces an extra latency of 11–160 `s.
External Synchrony. Figure 12 gives the runtime over-

head caused by external synchrony. The test involves 50
clients concurrently setting 10 million 1024-byte keys to a
Redis server. To mitigate the performance impact caused by
clients blocking and waiting for a reply, each client sends

1 510 50
Checkpoint Interval (ms)

0

50

100

150

La
te
nc
y
(μ
s)

(a) SET

1 510 50
Checkpoint Interval (ms)

0

50

100

La
te
nc
y
(μ
s) P50-TreeSLS

P50-baseline

P95-TreeSLS

P95-baseline

(b) GET
Figure 11. Latency overhead of Memcached SET and
GET with TreeSLS’s different checkpoint frequencies.

Baseline TreeSLS TreeSLS-ExtSync

1 5 10
Checkpoint Interval (ms)

0

5

10

15

L
a
te

n
c
y
 (

m
s
)

(a) P50 Latency

1 5 10
Checkpoint Interval (ms)

0

100

200

300

T
h

ro
u

g
h

p
u

t
(K

o
p

s
/s

)

(b) Throughput
Figure 12. Runtime overhead of Redis SET benchmark
with or without external synchrony support.

32 requests in a batch at a time. The results reveal that de-
laying sending responses to clients increases latency by ap-
proximately one checkpoint interval. Despite increasing the
concurrency, the blocking of clients on the critical path still
negatively impacts the overall throughput.
7.5 Real-world Applications

TreeSLS provides an effective alternative for servers lack-
ing inherent persistence guarantees (e.g. Memcached) to
easily achieve strong persistence guarantees without self-
implementing mechanisms. To show TreeSLS’s effective-
ness, we compare checkpoint overhead in TreeSLS with
customized persistence mechanisms like the write-ahead
logging (WAL) for in-memory key-value stores and on-disk
log-structured merge (LSM) tree structures.

By taking checkpoints every 1ms, TreeSLS can seamlessly
and transparently persist applications with only a 1ms delay
in latency (to support external synchrony). Since the client’s
concurrency becomes a bottleneck when enabling external
synchrony, i.e., clients in benchmarks block and wait for
replies, the following tests were conducted with external
synchrony disabled.
7.5.1 In-memory Key-Value Stores. We use the
YCSB [22] benchmark to evaluate the performance of using
TreeSLS to persist Redis transparently. Four configurations
are used in the evaluation: Redis with no persistence guaran-
tee on TreeSLS (TreeSLS-base) and Linux (Linux-base); Redis
transparently persisted by TreeSLS with 1ms checkpointing

Workload A

Workload B

Workload C

100% Update

100% Insert
0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(K

T
P

S
)

TreeSLS-base

TreeSLS-1ms

Linux-base

Linux-WAL

Figure 13. Runtime overhead of YCSB on Redis.

(TreeSLS-1ms), and Redis persisted by its original WAL on
Linux (Linux-WAL). For fairness, Redis on Linux is built
with musl-libc, and Ext4-DAX [2] is used to store the WAL
on Intel® Optane™ PM for Linux-WAL.

Figure 13 shows the throughput of the four configurations
on different workloads. For the write-intensive workload
(100% Update and 100% Insert), TreeSLS-1ms causes 18% to
21% degradation of throughput, while Linux-WAL reduces
the throughput by 64% to 78% compared with Linux-base.
TreeSLS-1ms’s absolute throughput is 1.9× to 2.2× of Linux-
WAL. This is because Linux-WAL writes an operation log in
theWAL for each write operation, and such an extra write on
the critical path slows down the performance. In comparison,
in the checkpointing of TreeSLS, newly created pages are
checkpointed by being marked as copy-on-write without
actual page copying, and repeatedly changed pages between
checkpoints are copied only once.

For workload with 50% read and 50% write (Workload A),
TreeSLS-1ms still performs better than Linux-WAL by 28%.
Compared with the corresponding baselines, TreeSLS-1ms
causes 27% overhead, and Linux-WAL performs worse by
42%. For read-intensive workloads (95% read inWorkload B
and 100% read in Workload C), TreeSLS-1ms performs worse
than Linux-WAL, since Linux-WAL records nothing for read
operations, while TreeSLS still needs to make system-level
checkpoints, causing performance degradation of 30% (Work-
load B) and 15% (Workload C), respectively.
7.5.2 Persistent Key-Value Stores. RocksDB [7] uses
a combination of in-memory Memtables and on-disk log-
structured merge (LSM) trees to store data, and relies on
a WAL for crash consistency. Both the on-disk LSM trees
and WAL can be replaced by TreeSLS. NVM’s large capacity
makes it possible to hold a large Memtable in memory and
use high-frequency checkpointing for persistence.

Several configurations are used: RocksDB with no persis-
tence guarantee (Aurora-base and TreeSLS-base), RocksDB
with WAL on DRAM (Aurora-base-WAL), RocksDB persisted
by SLS systems with transparent checkpoint mechanism
(Aurora-5ms, TreeSLS-5ms andTreeSLS-1ms) or custom APIs
(Aurora-API). As TreeSLS’s base microkernel and FreeBSD
perform differently, both baselines are tested. We setup Au-
rora to use DRAM as storage, and set Aurora’s checkpoint

interval to 5ms. A smaller checkpoint interval cannot reduce
the actual time between checkpoints since it takes 5–7ms to
persist the checkpoint. The actual time between checkpoints
will be as long as 100ms if SSD is used as storage.

Figure 14 gives the throughput and the write latency of
running different configurations with the Facebook Pre-
fix_dist [16] workload. With TreeSLS taking checkpoints
every 1ms (TreeSLS-1ms), the throughput drops by 10% com-
pared to the baseline (TreeSLS-base); the latency increases
by 22% (P50) and 69% (P99), respectively. For TreeSLS tak-
ing checkpoints every 5ms (TreeSLS-5ms), the throughput
decreases by 2% and the latency rises by 6% (P50) and 32%
(P99), respectively. Aurora, with 5ms checkpoint intervals,
presents a 9% throughput overhead and latency increases of
43% (P50) and 4.2× (P99), respectively, compared to Aurora-
base. The absolute performance of TreeSLS-1ms is worse than
Aurora-5ms, because the baseline of TreeSLS is slower than
Aurora’s FreeBSD due to the usage of different libc. Besides,
to ensure external synchrony, a 1ms latency needs to be
added to each operation in TreeSLS-1ms. In contrast, 5–10ms
latency needs to be added for Aurora-5ms, including up to
5ms waiting for the next checkpoint to be taken and 5ms
for the checkpoint to be flushed to storage.
Our transparent checkpoint also achieves 2.4× and 2.5×

throughout of Aurora’s journaling API (Aurora-API) and
RocksDB’s WAL (Aurora-base-WAL), respectively. The rea-
son is that RocksDB is write-intensive and many writes are
directly applied to the in-memory structure with persistence
guaranteed by TreeSLS. As we have demonstrated, the check-
point size is smaller than many applications’ runtime con-
sumption, and as a result, we eliminate the need for double-
write (i.e., writes to the application data and WAL) for these
pages, which is inevitable when using logging mechanisms.

8 Discussion

Limitations. While TreeSLS provides low-overhead and
externally-synchronized whole-system persistence, differ-
ent applications in the system and different data within
an application may have varying persistence requirements,
TreeSLS’s uniformed persistence may result in the persis-
tence of unnecessary data.
Data Reliability. Data stored in NVM are critical for

TreeSLS to work correctly. Data corruption or hardware fail-
ures in NVM can break the integrity of TreeSLS’s data and
prevent TreeSLS’s execution. To enhance the data reliabil-
ity, TreeSLS can maintain multiple versions of checkpoints
and recover to earlier checkpoints if the latest checkpoint is
corrupted. TreeSLS can also maintain replications for each
objects in TreeSLS during checkpointing. This requires stor-
ing multiple copies of the same checkpoint and consumes
more space. In alternative to replications, TreeSLS can fur-
ther adopt erasure coding to reduce space consumption, at
the cost of using additional computing resources.

TreeSLS Aurora
0

50

100
T

h
ro

u
g

h
p

u
t

(K
o

p
s
/s

)

(a) Throughput

110

120

TreeSLS Aurora
0

5

10

La
te
nc
y
(μ
s)

(b) P50 Write Latency

250

300

TreeSLS Aurora
0

25

50

La
te
nc
y
(μ
s)

(c) P99 Write Latency

TreeSLS-base

TreeSLS-5ms

TreeSLS-1ms

Aurora-base

Aurora-5ms

Aurora-API

Aurora-base-WAL

(d) Legend

Figure 14. Runtime overhead of RocksDB with Facebook’s Prefix_dist workload.

Memory Over-commitment. As NVM devices have
a high capacity, we didn’t consider out-of-memory issues
in the current TreeSLS design. To support memory over-
commitment, we can add a cold page list to track cold pages
and evict them to secondary storage, such as SSDs and disks,
when the system is under memory pressure.

Extending to Eidetic System. Eidetic system refers to
a system with the ability to recover to any past state [27].
TreeSLS can be extended to maintain multiple versions of the
system’s lifetime, as we have already enabled version main-
tenance through the ORoot interface. With this, TreeSLS can
provide interfaces for listing all versions and allow users to
quickly navigate through arbitrary versions in the execution
history, which offers numerous advantages, particularly in
the context of debugging. Maintaining multiple backups will
not include additional work on the critical path, but requires
more space. The ORoot interface can also allow multiple
checkpoints to share the same object to save space.

9 Related Work

Single-Level Store. The design of TreeSLS draws inspira-
tion from early single-level store (SLS) systems. The idea
of putting all information on a single-level layer was pro-
posed by Atlas [40], Multics [12], IBM System/38 [71], as
well as some single-address space operating systems [18,
34, 45, 69] decades ago. Our high-level idea is to achieve
system-wide checkpoints by leveraging techniques simi-
lar to KeyKOS/EROS [33, 66], Aurora [73] as well as many
other SLSs [48, 68, 74]: freezing the execution and take a
checkpoint of all system state except for user memory pages,
while employing copy-on-write (CoW) during runtime to
persist user memory pages. The integrity of our persisted
system state is ensured through the capability tree, which
has been proposed by earlier capability-based microker-
nels [33, 66] and Barrelfish/DC [80]. However, TreeSLS ex-
ploits NVM by eliminating the distinction between persistent
and ephemeral devices and further leverages the capability
tree for efficient, incremental state checkpointing, and thus
is much more efficient than prior systems.
Application Persistence on NVM. Several prior stud-

ies have used NVM to simplify application persistence. For

example, NVM libraries are proposed to enable applica-
tions to either rewrite themselves to use the provided in-
terfaces [21, 77] or rely on the compiler and runtime to au-
tomatically add durability semantics [17, 37, 78].
The Machine [39] and Twizzler [13] provide alternative

data-centric OS abstractions to enable uniform access on hy-
brid DRAM-NVM systems, which, however, are not transpar-
ent to applications. WSP [52] and Zhuque [36] provide fully
transparent system-level or application-level persistence by
putting everything on NVM and flushing transient state (pro-
cessor registers and caches) to NVM only on failures. They,
however, mandate sophisticated hardware customization.
State Checkpointing. State checkpointing has been

widely used in various domains, such as deterministic
record/replay systems [28, 43, 44, 53, 55, 57], VM migra-
tion [20, 30, 35, 75], and transparent process migration
[1, 14, 29, 51, 56, 59, 61]. To checkpoint memory pages,
these systems utilize different approaches (e.g., stop-and-
copy [29, 56], incremental copy-on-write[1, 14, 59] and spec-
ulative copy [76]), as discussed in §4.3.1. Inspired by them,
TreeSLS incorporates a hybrid page checkpointing approach
that exploits the characteristics of our hybrid DRAM/NVM
system and leverages idle cores to perform tasks like specu-
lative copying during the stop-the-world checkpointing.

10 Conclusion
This paper proposed TreeSLS, a persistent microkernel on
NVM that simplifies the whole-system state maintenance to
a capability tree and a failure-resilience checkpoint manager.
Evaluation shows that TreeSLS can complete a whole-system
persistence in around 100 `s and take a checkpoint every
1ms with acceptable performance overhead.

Acknowledgments
We are grateful to our shepherd Gernot Heiser for the de-
tailed and insightful suggestions that significantly improved
the paper. We thank the anonymous SOSP reviewers for their
constructive suggestions, and Shiwei Tan for contributing
to an early prototype of TreeSLS. This work was supported
in part by the National Natural Science Foundation of China
(No. 61925206, 62141219 and 62132014). Corresponding au-
thors: Mingkai Dong (mingkaidong@sjtu.edu.cn) and Haibo
Chen (haibochen@sjtu.edu.cn).

mingkaidong@sjtu.edu.cn
haibochen@sjtu.edu.cn

References
[1] 2021. CRIU. https://www.criu.org/Main_Page
[2] 2021. Direct Access for files. https://www.kernel.org/doc/

Documentation/filesystems/dax.txt.
[3] 2021. eADR: New Opportunities for Persistent Memory Applica-

tions. https://www.intel.com/content/www/us/en/developer/
articles/technical/eadr-new-opportunities-for-persistent-memory-
applications.html

[4] 2021. LevelDB. https://dbdb.io/db/leveldb
[5] 2021. Memcached - a distributed memory object caching system. https:

//memcached.org/
[6] 2021. Redis. https://redis.io/
[7] 2021. RocksDB Home Page. https://www.rocksdb.org
[8] 2021. SQLite. https://sqlite.org/
[9] 2021. Zircon. https://fuchsia.dev/
[10] 2023. ChCore Lab v2. https://gitee.com/ipads-lab/chcore-lab-v2.
[11] 2023. Musl Libc. https://musl.libc.org/
[12] A. Bensoussan, C. T. Clingen, and R. C. Daley. 1972. The Multics

Virtual Memory: Concepts and Design. Commun. ACM 15, 5 (May
1972), 308–318.

[13] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and
Ethan L. Miller. 2020. Twizzler: a Data-Centric OS for Non-Volatile
Memory. In Proceedings of the 2020 USENIX Conference on Usenix An-
nual Technical Conference (USENIX ATC 20). USENIX Association, 65–
80.

[14] Edouard Bugnion, Vitaly Chipounov, and George Candea. 2013. Light-
weight Snapshots and System-Level Backtracking. In Proceedings of
the 14th USENIX Conference on Hot Topics in Operating Systems (Santa
Ana Pueblo, New Mexcio) (HotOS ’13). USENIX Association, 23.

[15] Roy Campbell, Garry Johnston, and Vincent Russo. 1987. Choices
(Class Hierarchical Open Interface for Custom Embedded Systems).
SIGOPS Oper. Syst. Rev. 21, 3 (July 1987), 9–17.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies (FAST ’20). USENIX Association, 209–223.

[17] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.
Atlas: Leveraging Locks for Non-Volatile Memory Consistency. In
Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (Portland, Oregon,
USA) (OOPSLA ’14). Association for Computing Machinery, New York,
NY, USA, 433–452.

[18] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. 1994. Sharing and Protection in a Single-Address-Space
Operating System. ACM Trans. Comput. Syst. 12, 4 (November 1994),
271–307.

[19] Haibo Chen and Yubin Xia. 2023. Operating System: Principles and
Implementation (1 ed.). China Machine Press.

[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live
Migration of Virtual Machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume 2
(NSDI ’05). USENIX Association, 273–286.

[21] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Mak-
ing Persistent Objects Fast and Safewith next-Generation, Non-Volatile
Memories. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Newport Beach, California, USA) (ASPLOS XVI). Association for
Computing Machinery, 105–118.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(Indianapolis, Indiana, USA) (SoCC ’10). Association for Computing

Machinery, 143–154.
[23] P. Dasgupta, R. C. Chen, S. Menon, M. P. Pearson, R. Anantha-

narayanan, U. Ramachandran, M. Ahamad, R. J. LeBlanc, W. F. Appelbe,
J. M. Bernabeu-Auban, P.W. Hutto, M. Y.A. Khalidi, and C. J. Wilkenloh.
1990. Design and implementation of the clouds distributed operating
system. Computing systems 3, 1 (December 1990), 11–46.

[24] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders
Lindström, John Rosenberg, and Francis Vaughan. 1994. Grasshopper:
An Orthogonally Persistent Operating System. Comput. Syst. 7, 3 (June
1994), 289–312.

[25] Alan Dearle and David Hulse. 2000. Operating System Support for
Persistent Systems: Past, Present and Future. Softw. Pract. Exper. 30, 4
(April 2000), 295–324.

[26] Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics
for Multiprogrammed Computations. Commun. ACM 9, 3 (March
1966), 143–155.

[27] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. 2014. Eidetic Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (Broom-
field, CO) (OSDI ’14). USENIX Association, USA, 525–540.

[28] Joseph Devietti, Brandon Lucia, Luis Ceze, andMark Oskin. 2009. DMP:
Deterministic Shared Memory Multiprocessing. In Proceedings of the
14th International Conference on Architectural Support for Programming
Languages and Operating Systems (Washington, DC, USA) (ASPLOS
XIV). Association for Computing Machinery, 85–96.

[29] William R. Dieter and Jr. James E. Lumpp. 2001. User-Level Check-
pointing for LinuxThreads Programs. In 2001 USENIX Annual Technical
Conference (USENIX ATC 01). USENIX Association.

[30] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing
Machinery, 467–481.

[31] Aakash Goel, Bhuwan Chopra, Ciprian Gerea, Dhruv Mátáni, Josh
Metzler, Fahim Ul Haq, and Janet Wiener. 2014. Fast Database Restarts
at Facebook. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). Association for Computing Machinery, 541–549.

[32] David B. Golub, Randall W. Dean, Alessandro Forin, and Richard F.
Rashid. 1990. UNIX as an Application Program. In USENIX Summer.

[33] Norman Hardy. 1985. KeyKOS Architecture. SIGOPS Oper. Syst. Rev.
19, 4 (October 1985), 8–25.

[34] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry
Vochteloo. 1994. Mungi: A Distributed Single-Address-Space Operat-
ing System. In Proceedings of the 17th Australasian Computer Science
Conference (ACSC). Christchurch, New Zealand, 271–80.

[35] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-
Copy Live Migration of Virtual Machines. SIGOPS Oper. Syst. Rev. 43,
3 (July 2009), 14–26.

[36] George Hodgkins, Yi Xu, Steven Swanson, and Joseph Izraelevitz. 2023.
Zhuque: Failure is Not an Option, it’s an Exception. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23) (Boston, MA). USENIX
Association, 833–849.

[37] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. 2017. NVthreads: Practical Persistence for
Multi-threaded Applications. In Proceedings of the Twelfth European
Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 468–482.

[38] D. Hulse. 1995. On Page-Based Optimistic Process Checkpointing. In
Proceedings of the 4th International Workshop on Object-Orientation in
Operating Systems (IWOOOS ’95). IEEE Computer Society, USA, 24.

https://www.criu.org/Main_Page
https://www.kernel.org/doc/Documentation/filesystems/dax.txt.
https://www.kernel.org/doc/Documentation/filesystems/dax.txt.
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://dbdb.io/db/leveldb
https://memcached.org/
https://memcached.org/
https://redis.io/
https://www.rocksdb.org
https://sqlite.org/
https://fuchsia.dev/
https://gitee.com/ipads-lab/chcore-lab-v2
https://musl.libc.org/

[39] Kimberly Keeton. 2015. The Machine: An Architecture for Memory-
Centric Computing. In Proceedings of the 5th International Workshop
on Runtime and Operating Systems for Supercomputers (Portland, OR,
USA) (ROSS ’15). Association for Computing Machinery, Article 1,
1 pages.

[40] T.D. Kilburn, B.G. Edwards, M.J. Lanigan, and F.H. Summer. 1962. One-
Level Storage System. IRE Transactions on Electronic Computers 11
(April 1962), 223–235.

[41] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. 2009. SeL4: Formal Verification of an OS Kernel. In Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles (Big Sky, Montana, USA) (SOSP ’09). Association for Com-
puting Machinery, New York, NY, USA, 207–220.

[42] C.R. Landau. 1992. The checkpoint mechanism in KeyKOS. In Pro-
ceedings of the Second International Workshop on Object Orientation in
Operating Systems (IWOOOS ’92). 86–91.

[43] Leblanc and Mellor-Crummey. 1987. Debugging Parallel Programs
with Instant Replay. IEEE Trans. Comput. C-36, 4 (1987), 471–482.

[44] Andrew Lenharth, Vikram S. Adve, and Samuel T. King. 2009. Re-
covery Domains: An Organizing Principle for Recoverable Operating
Systems. In Proceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Washington, DC, USA) (ASPLOS XIV). Association for Computing
Machinery, New York, NY, USA, 49–60.

[45] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. 1996. The
Design and Implementation of an Operating System to Support Dis-
tributed Multimedia Applications. IEEE Journal on Selected Areas in
Communications 14 (1996), 1280–1297.

[46] HenryM. Levy. 1984. Capability-Based Computer Systems. Butterworth-
Heinemann, USA.

[47] Jochen Liedtke. 1993. Improving IPC by Kernel Design. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles
(Asheville, North Carolina, USA) (SOSP ’93). Association for Computing
Machinery, New York, NY, USA, 175–188.

[48] Jochen Liedtke. 1993. A persistent system in real use-experiences of
the first 13 years. Proceedings Third International Workshop on Object
Orientation in Operating Systems (1993), 2–11.

[49] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017.
Persistent Memcached: Bringing Legacy Code to Byte-Addressable
Persistent Memory. In Proceedings of the 9th USENIX Conference on
Hot Topics in Storage and File Systems (Santa Clara, CA) (HotStorage
’17). USENIX Association, 4.

[50] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI ’18). USENIX Association, 33–50.

[51] S.J. Mullender, G. van Rossum, A.S. Tananbaum, R. van Renesse, and
H. van Staveren. 1990. Amoeba: a distributed operating system for the
1990s. Computer 23, 5 (1990), 44–53.

[52] Dushyanth Narayanan and Orion Hodson. 2012. Whole-System Per-
sistence. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (London, England, UK) (ASPLOS XVII). Association for Com-
puting Machinery, New York, NY, USA, 401–410.

[53] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. 2006. Record-
ing Shared Memory Dependencies Using Strata. In Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems (San Jose, California, USA) (ASPLOS
XII). Association for Computing Machinery, 229–240.

[54] Edmund B. Nightingale, Kaushik Veeraraghavan, PeterM. Chen, and Ja-
son Flinn. 2006. Rethink the Sync. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (Seattle, Washington)
(OSDI ’06). USENIX Association, USA, 1–14.

[55] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo:
Efficient Deterministic Multithreading in Software. In Proceedings
of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Washington, DC, USA)
(ASPLOS XIV). Association for Computing Machinery, 97–108.

[56] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. 2002. The
Design and Implementation of Zap: A System forMigrating Computing
Environments. In 5th Symposium on Operating Systems Design and
Implementation (OSDI ’02). USENIX Association.

[57] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. 2009. PRES: Probabilistic Replay
with Execution Sketching on Multiprocessors. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles (Big
Sky, Montana, USA) (SOSP ’09). Association for Computing Machinery,
177–192.

[58] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2014. All File Systems Are Not Created
Equal: On the Complexity of Crafting Crash-Consistent Applications.
In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (Broomfield, CO) (OSDI ’14). USENIX As-
sociation, 433–448.

[59] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1995. Libckpt:
Transparent Checkpointing under UNIX. In USENIX 1995 Technical
Conference (USENIX 1995 Technical Conference). USENIX Association,
New Orleans, LA.

[60] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. 2007 IEEE 13th International Symposium
on High Performance Computer Architecture, 13–24.

[61] Richard F. Rashid and George G. Robertson. 1981. Accent: A Commu-
nication Oriented Network Operating System Kernel. SIGOPS Oper.
Syst. Rev. 15, 5 (December 1981), 64–75.

[62] David D. Redell, Yogen K. Dalal, Thomas R. Horsley, Hugh C. Lauer,
William C. Lynch, Paul R. McJones, Hal G. Murray, and Stephen C.
Purcell. 1980. Pilot: An Operating System for a Personal Computer.
Commun. ACM 23, 2 (February 1980), 81–92.

[63] John Rosenberg and David Abramson. 1985. MONADS-PC - a
capability-based workstation to support software engineering.

[64] Marc Rozier, Vadim Abrossimov, François Armand, Ivan Boule, Michel
Gien, Marc Guillemont, Frédéric Herrmann, Claude Kaiser, Sylvain
Langlois, and Will Neuhauser. 1991. Overview of the CHORUS ®
Distributed Operating Systems.

[65] Jonathan S. Shapiro and Jonathan Adams. 2002. Design Evolution of
the EROS Single-Level Store. In Proceedings of the General Track of the
Annual Conference on USENIX Annual Technical Conference (ATC ’02).
USENIX Association, 59–72.

[66] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. 1999.
EROS: A Fast Capability System. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles (Charleston, South
Carolina, USA) (SOSP ’99). Association for Computing Machinery,
170–185.

[67] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
2016. Push-Button Verification of File Systems via Crash Refinement.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI ’16). USENIX
Association, 1–16.

[68] Espen Skoglund, Christian Ceelen, and Jochen Liedtke. 2001. Trans-
parent Orthogonal Checkpointing Through User-Level Pagers. In Pro-
ceedings of the 9th International Workshop on Persistent Object Systems.

Lillehammer, Norway, 201–215.
[69] Alan Skousen and Donald Miller. 1999. Using a single address space op-

erating system for distributed computing and high performance. In the
18th IEEE International Performance, Computing and Communications
Conference (IPCCC ’99). 8–14.

[70] Till Smejkal, Adam Lackorzynski, Benjamin Engel, and Marcus Völp.
2015. Transactional IPC in Fiasco.OC. OSPERT 2015 (2015), 19.

[71] Frank G. Soltis. 1996. Inside the AS/400. Twenty Ninth Street Press.
[72] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mashti-

zadeh. 2021. The Aurora operating system: revisiting the single level
store. In Proceedings of theWorkshop on Hot Topics in Operating Systems
(HotOS ’21). ACM, 136–143.

[73] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and Ali José Mash-
tizadeh. 2021. The Aurora Single Level Store Operating System. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21). Association for Computing Machinery, 788–803.

[74] P. Tullmann, J. Lepreau, B. Ford, and M. Hibler. 1996. User-Level
Checkpointing through Exportable Kernel State. In Proceedings of the
5th International Workshop on Object Orientation in Operating Systems
(IWOOOS ’96). IEEE Computer Society, USA, 85.

[75] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, Analysis, and Optimization of
Serverless Function Snapshots. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for
Computing Machinery, 559–572.

[76] Dirk Vogt, Armando Miraglia, Georgios Portokalidis, Herbert Bos,
Andy Tanenbaum, and Cristiano Giuffrida. 2015. Speculative Memory
Checkpointing. In Proceedings of the 16th Annual Middleware Confer-
ence (Middleware ’15). Association for Computing Machinery, New
York, NY, USA, 197–209.

[77] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI). Association for
Computing Machinery, 91–104.

[78] Zhenwei Wu, Kai Lu, Andrew Nisbet, Wenzhe Zhang, and Mikel Luján.
2020. PMThreads: persistent memory threads harnessing versioned
shadow copies. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 623–637.

[79] Junfeng Yang, Can Sar, and Dawson Engler. 2006. EXPLODE: A Light-
weight, General System for Finding Serious Storage System Errors.
In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (Seattle, Washington) (OSDI ’06). USENIX Association,
131–146.

[80] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe.
2014. Decoupling Cores, Kernels, and Operating Systems. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation (Broomfield, CO) (OSDI ’14). USENIX Association,
USA, 17–31.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory-storage Hierarchy
	2.2 Single-Level Store
	2.3 Limitations of Existing SLSs
	2.4 External Synchrony
	2.5 Rethinking SLS in the Context of NVM

	3 Overview of TreeSLS
	4 Tree-structured State Checkpoint
	4.1 Checkpointing the Capability Tree
	4.2 Consistency with Versioning
	4.3 Checkpointing Memory Pages with Hybrid Copy

	5 Transparent External Synchrony
	6 Implementation
	7 Evaluation
	7.1 Environment Setup
	7.2 Functional Tests
	7.3 Stop-the-world Checkpointing
	7.4 Runtime Overhead
	7.5 Real-world Applications

	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

