
Jade: A High-throughput Concurrent Copying
Garbage Collector

Mingyu Wu1, Liang Mao2, Yude Lin2, Yifeng Jin2, Zhe Li1, Hongtao Lyu1,

Jiawei Tang2, Xiaowei Lu2, Hao Tang2, Denghui Dong2, Haibo Chen1,3, Binyu Zang1,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Alibaba Group

3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract

Garbage collection (GC) pauses are a notorious issue threat-
ening the latency of applications. To mitigate this prob-
lem, state-of-the-art concurrent copying collectors allow
GC threads to run simultaneously with application threads
(mutators) in nearly all GC phases. However, the design of
concurrent copying collectors does not always lead to low
application latency. To this end, this work studies the behav-
iors of mainstream concurrent copying collectors in Open-
JDK and mainly focuses on long application pauses under
heavy workloads. By analyzing the design of those collec-
tors, this work uncovers that lengthy pre-reclamation cycles
(including GC phases before actual memory release), high
GC frequency, and large metadata maintenance overhead
are major factors for long pauses. Therefore, this work pro-
poses Jade, a concurrent copying collector aiming to achieve
both short pauses and high GC efficiency. Compared with
existing collectors, Jade provides a group-wise collection
mechanism to shorten pre-reclamation cycles while control-
ling GC frequency. It also embraces a generational heap
layout and a single-phase algorithm to maximize young
GC’s throughput. The evaluation results on representative
latency-critical applications show that Jade can reach sub-
millisecond-level pauses even under heavy workloads and
significantly improve applications’ peak throughput com-
pared with state-of-the-art concurrent collectors.

CCS Concepts: • Software and its engineering →

Garbage collection.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for com-

ponents of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’24, April 22–25, 2024, Athens, Greece

© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0437-6/24/04. . . $15.00

h�ps://doi.org/10.1145/3627703.3650087

Keywords: Language Runtime, Garbage Collection

ACM Reference Format:

MingyuWu, LiangMao, Yude Lin, Yifeng Jin, Zhe Li, Hongtao Lyu,
Jiawei Tang, Xiaowei Lu, Hao Tang, Denghui Dong, Haibo Chen,
Binyu Zang. 2024. Jade: A High-throughput Concurrent Copying
Garbage Collector. InNineteenth European Conference on Computer

Systems (EuroSys ’24), April 22–25, 2024, Athens, Greece. ACM, New
York, NY, USA, 15 pages. h�ps://doi.org/10.1145/3627703.3650087

1 Introduction

Garbage collectors are one of the most critical modules
in managed runtimes like Java Virtual Machine (JVM),
JavaScript V8, and Go runtime. By automatically detecting
dead objects (or garbage) and reclaiming memory resources,
collectors remove the burden of manual memory manage-
ment but also induce performance overhead. Pauses are a
notorious issue introduced by collectors: to perform garbage
collection (GC), language runtimes may require application
threads (namely mutators) to stop running. Collectors paus-
ing mutators during GC are usually called stop-the-world

(STW) collectors. As the memory demand of applications in-
creases, the duration of STW pauses becomes longer since
GC threads need to scan and collect a larger heap, which af-
fects application performance, especially for latency-critical
ones. To this end, recent collectors are designed to reach
short and controllable pause times regardless of the heap
size [8, 10, 15, 18, 25, 27, 28, 33]. In those concurrent copying
collectors, GC threads are running simultaneously with mu-
tators to find live objects and copy them to new addresses,
which can reach nearly pauseless collections.

However, short pauses come at a cost. Prior work [7, 39,
41] has shown that the design of low-pause concurrent copy-
ing collectors does not always translate to short latency for
applications due to their overhead like costly read/write bar-
riers (code instrumentation), poor GC efficiency, and fre-
quent interferences with mutators. Nevertheless, it is still
not clear what exactly causes unsatisfying latency, espe-
cially under heavy workloads (e.g., serving a large number
of requests within a short period of time). To this end, this
work provides a detailed study of the memory behaviors of

1160

https://doi.org/10.1145/3627703.3650087
https://doi.org/10.1145/3627703.3650087
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3650087&domain=pdf&date_stamp=2024-04-22


EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

two state-of-the-art concurrent copying collectors in Open-
JDK (ZGC [25] and Shenandoah [15]). We mainly focus on
the behaviors when running applications with heavy work-
loads, since those collectors introduce long pauses to mu-
tators (similar to pauses in STW collectors), which signifi-
cantly affect the throughput and latency of applications.
To understand those pauses, we explore the designs in-

sidemainstream concurrent collectors and analyze their per-
formance issues under heavy workloads. For Shenandoah,
its generation-wise collection releases memory resources
only after all chosen live objects are evacuated and cor-
responding references are updated, which induces lengthy
pre-reclamation cycles and thus causes long STW pauses
due to free memory shortage. Meanwhile, the number of
objects collected in each GC cycle is also restricted by the
remaining free space size, which contributes to higher GC
frequency andmore pauses. As for ZGC, although its region-
wise collection allows incremental memory reclamation and
lazy reference updating, its reference memorization mech-
anism (called color pointers) introduces significant perfor-
mance overhead and even longer mutator stalls (the same
effect as pauses).
According to limitations found in existing concurrent col-

lectors, this work introduces Jade, a collector to achieve
high GC efficiency while maintaining low pauses even un-
der heavy workloads. Although sharing similarities in de-
sign with ZGC (region-wise) and Shenandoah (generation-
wise), Jade leverages groups (a set of regions) as the basic
unit of collection. It further divides the collection into mul-
tiple roundswhere each round collects and releases memory
resources consumed by one group. Thanks to groups, Jade
achieves per-group incremental reclamation and avoids
overhead introduced by color pointers. However, it needs
to handle performance issues brought by grouping. To this
end, Jade provides a simulation-based algorithm to finish
grouping in less than one millisecond and proposes group-
based remembered sets and cross-region discover table (CRDT)
for low-cost reference memorization.
To reduce the pre-reclamation phase, Jade also embraces

a generational design and leverages young GC to collect
newly created objects. Instead of reusing the group-wise
collection, Jade provides a specialized single-phase mech-
anism to maximize the young GC throughput. When facing
inevitable pauses or application stalls, Jade also provides a
chasing mode to fully leverage idle CPU cores to complete
them as soon as possible.
Jade has been implemented in OpenJDK and evaluated

against state-of-the-art production garbage collectors (G1,
ZGC, Shenandoah) and recent efforts (LXR [41]). The eval-
uation uses a series of representative latency-sensitive ap-
plications, including a widely used online service deployed

in Alibaba. The results show that Jade can significantly im-
prove the application’s maximum throughput while still in-
ducing controllable low pauses and satisfying application
latency.
To summarize, the contributions of this work include:

• A detailed analysis of pauses in concurrent collectors
to uncover their deficiencies in design (§2);
• Jade, a concurrent generational collector leveraging
group-wise collection to achieve both high GC effi-
ciency and low pauses (§3-4);
• Comprehensive evaluationwith representative latency-
sensitive applications (including commercial online
services) to show Jade’s improvement over state-of-
the-art collectors (§5).

2 Analysis on Concurrent Copying GC

2.1 Concurrent copying garbage collectors

Although garbage collectors are helpful by automatically
reclaiming memory resources for later reuse, they also in-
troduce performance overhead to applications. Stop-the-
world (STW) pauses are one of the most severe prob-
lems introduced by collectors since they require applica-
tion threads (known as mutators) to pause until GC fin-
ishes. Although GC threads can leverage STW pauses to
monopolize CPU resources for high-throughput collection,
the duration of pauses becomes intolerable for applications
with large memory demands and strict latency require-
ments. Therefore, nowadays concurrent collectors are trying
to minimize pauses by allowing GC threads to run concur-
rently with mutators. Concurrent copying collectors are one
of the most important categories in concurrent collectors.
The collection in concurrent copying collectors mainly con-
sists of two phases: concurrent marking to locate live objects,
and concurrent evacuation to copy live objects into new ad-
dresses in a compact way. Various language runtimes have
embraced concurrent copying for their garbage collection
mechanisms. Taking OpenJDK, the mainstream runtime for
Java, as an example, it has introduced two concurrent copy-
ing collectors, Shenandoah [15] and ZGC [25], and both of
them only induce sub-millisecond-level pauses. Other lan-
guage runtimes like Azul JDK [33] and Android Runtime
(ART) [29] also provide concurrent copying collectors.

2.2 Characterizing pauses in concurrent copying

collectors

Interestingly, although existing concurrent copying collec-
tors are designed to control the duration of pauses, they
still induce large pauses especially when under heavy work-
load. We have analyzed the performance of two represen-
tative concurrent copying collectors in OpenJDK: ZGC and
Shenandoah. The evaluated application derives from the Da-
Capo benchmark [2], which uses the TPC-C workload [34]
to evaluate a relational database, H2 [17]. The application

1161



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

runs with eight physical cores to simulate a common web
service scenario, which is widely deployed in Alibaba. The
maximum Java heap size is configured as 8GB, which is
quite generous compared with the live data size (about 2GB).
Meanwhile, the number of concurrent GC threads is set to
two for a fair comparison (the default number for ZGC is
one while the others are two). Since JVMs require a warm-
up phase to improve application performance, we evaluate
H2 with six iterations while the first one is used for warm-
up. Each iteration finishes when H2 has processed a fixed
number of TPC-C transactions (256000), and the following
results are average numbers among the five iterations.
We first run the application by repetitively sending re-

quests to maximize the application’s throughput and com-
pare those concurrent copying collectors with G1 [13],
which copies objects in a STW fashion and thus achieves
better collection efficiency. Table 1 shows the throughput
(queries per second) for three collectors under this setting.
Compared with G1, both concurrent collectors cause the
application’s throughput to drop: they only reach 23.25%
(ZGC) and 46.52% (Shenandoah) of G1’s maximum through-
put. When under their own maximum throughput, the p99
latency for both concurrent collectors is also worse than G1.
To further understand the performance, we analyze the

memory behaviors in Shenandoah and ZGC by setting the
application throughput close to the maximum (9600 and
4800 for Shenandoah and ZGC, respectively). Note that we
fix the thoughput by throttling clients to control the send
rate (details in Section 5.5). As shown in Table 1, both ZGC
and Shenandoah induce quite long pauses tomutators when
under heavy workload. For Shenandoah, it triggers degener-
ated collections when facing heavy memory pressure, which
pauses all mutators. As for ZGC, although it does not di-
rectly introduce STW pauses, mutators can be stalled when
no free memory is available, which has the same effect as a
pause in STW collectors. As shown in Table 2, the cumula-
tive pause time for Shenandoah and ZGC is both larger than
G1 (even though its application throughput is 20800). For
ZGC, the cumulative pause time is even 30.36× larger than
G1 (1.81× for Shenandoah).Meanwhile, their p99 pause time
is also larger than G1, which suggests that those long pauses
are not rare and thus significantly affect application latency.
The results indicate that reducing those pauses is vital to
improving the performance of both GC and applications for
existing concurrent copying collectors. To this end, we fur-
ther explore the reasons for long pauses by analyzing the
design of those two collectors.

2.3 Shenandoah: heap-wise collection

Shenandoah tends to treat the whole heap as a monolithic
unit. Figure 1 illustrates three major phases in Shenandoah.
The first marking phase traverses all equal-sized regions in-
side Shenandoah’s heap to locate live objects and store their

live objects

free region

1. marking 2. evacuation

3. ref updating

!

live bitmap

free region

not free 

Figure 1. Concurrent phases in Shenandoah (suppose only
one region is collected). Colored rectangles stand for live
objects while lines with arrows stand for references.

address information in a live bitmap. Afterward, Shenan-
doah evacuates objects marked in the live bitmap to free
regions (marked with a different color). During evacuation,
Shenandoah stores an object’s new address into the header
of its old copy. Since the number of free regions might be
limited, only a part of the regions can be evacuated. Finally,
Shenandoah scans the live bitmap again to update refer-
ences so that they all point to an object’s newest address
(with the help of marked headers). Only after the reference
updating phase can the memory resources be recycled.
Although this design has advantages like low memory

overhead (only one bitmap is used to memorize live objects),
it introduces the following two performance issues.

• Longer pre-reclamation cycle. Since Shenandoah
only maintains live objects’ information in a simple
bitmap, it does not know exactly which objects hold
references to copied ones. Therefore, GC threads have
to check all live objects for reference updates, and free
regions can be reclaimed only when all phases are fin-
ished, which lengthens the time before the memory
resources can be reused (we refer to this cycle as a pre-
reclamation cycle). Meanwhile, each live object needs
to be accessed at least three times in one GC cycle,
which adds more performance overhead and also af-
fects the duration of pre-reclamation.
• Higher collection frequency. Shenandoah’s recla-
mation efficiency heavily relies on the number of free
regions in its one-generation heap. If the heap only
contains a few free regions, the number of reclaimed
bytes is limited, and the frequency of GC would in-
crease.

1162



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

Table 1. Application and pause statistics for three mainstream collectors.

Collectors Max Thru. (tx/s) p99 latency (ms) Cumulative pause time (ms) p99 pause time (ms)

G1 21208 34.20 447.32 82.77
ZGC 4931 128.11 13581.87 1963.38
Shenandoah 9865 37.65 809.22 297.39

Those two issues make GC a severe performance bottle-
neck with heavy workloads. When the application’s allo-
cation rate increases, mutators may exhaust all available
free space and have to wait until the pre-reclamation cycle
finishes. Since Shenandoah’s pre-reclamation cycle is quite
long, the pause time could also become longer. Meanwhile,
higher collection frequency suggests more pre-reclamation
cycles are required, which induces more performance over-
head and potentially more pauses. As shown in Table 2, the
three phases (Mark and Other) in Shenandoah together con-
tribute to 24.89 seconds, which means GC threads are active
for over 90% of execution time and potentially block muta-
tors from memory allocation. Worse still, although collec-
tions are long and frequent, their marking results are actu-
ally quite similar. We have dumped the live bitmap gener-
ated in Shenandoah’s marking cycles and analyzed regions
not moved by the subsequent evacuation phase. By com-
paring those regions in the live bitmaps for two consecu-
tive cycles, we find that only 0.53% of objects are different,
which suggests that the high frequency of marking is ac-
tually unnecessary. Therefore, the key to reducing Shenan-
doah’s overhead would be decreasing both the duration of
pre-reclamation and the whole-heap GC frequency.

2.4 ZGC: region-wise collection

Compared with Shenandoah, the algorithm of ZGC is more
incremental and region-wise: regions can be reclaimed in-
dependently. As illustrated in Figure 2, the vanilla ZGC has
a similar marking phase to Shenandoah, which marks the
whole heap to find live objects. However, when all live ob-
jects in a region have been evacuated, the region can be
immediately reclaimed without waiting for reference updat-
ing. ZGC achieves this by using color pointers, which en-
code information inside object references to determine if
the referred object requires updating. Furthermore, it also
maintains per-region forwarding tables storing mappings
between an object’s old address and the new one. With this
design, reference updating can be lazily conducted during
mutator execution (for example, when a stale reference is
loaded) or in the next marking phase (ultimately updating
all stale references to live objects).
This region-wise design seems to shorten the pre-

reclamation cycle by moving evacuation and reference up-
dating off the critical path. Unfortunately, the application
stall becomes even longer as shown in Table 1. Although
ZGC’s pre-reclamation only contains the marking phase,

live objects

free region

1. marking 2. evacuation

1. next marking

!

live bitmap

forwarding 

table

!

live bitmap

free region

Figure 2. Concurrent phases in ZGC.

its duration is much longer than Shenandoah (2.40×) and
remains active in 92.89% of the overall execution time of
H2 (Table 2). The overhead mainly comes from ZGC’s color
pointer design. Since it requires four extra bits in virtual
addresses to encode reference-related information, the vir-
tual memory size of Java heaps is enlarged by 16× and
makes the reference compression optimization [21] (encod-
ing 64-bit heap references to 32-bit offsets from the start
address of heap) impractical, which affects both GC and
application performance. Meanwhile, to fix all stale refer-
ences, the marking phase in ZGC needs to recolor them
by modifying their encoded bits, which introduce a large
number of atomic instructions. To simulate the overhead,
we have disabled the reference compression optimization
and added a dummy compare-and-swap instruction before
marking each object in Shenandoah. With those modifica-
tions, H2’s peak throughput on Shenandoah drops from
9865 to 6052, which is close to that in ZGC (note that dis-
abling compressed references also significantly affects mu-
tators’ performance in addition to GC).

2.5 Discussion: generational variants

To achieve better collection efficiency, both ZGC and
Shenandoah have developed their own generation variants
(referred to as GenZ and GenShen), which typically divide
the heap into two generations. The young generation is used

1163



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

Table 2. Breakdown analysis for concurrent copying collectors on the H2 application. The first three columns show the
duration for overall execution (App.), GC marking (Marking), and other phases in the pre-reclamation cycle (Other, only
exists in Shenandoah). The latter two show the average time for marking and other phases for each GC cycle, while the last
two show the cumulative pause time in marking and other phases. All results are wall-clock time in seconds.

Collectors App. Marking Other
Avg. Avg. Cumulative Pause Cumulative Pause

Marking Other Marking Other

ZGC 56.95 52.90 - 2.40 - 13.39 -
Shenandoah 27.40 13.56 11.33 1.00 0.81 0.12 0.68

to serve memory allocation requests, and a separate young
GC cycle is provided to only collect the young generation.
Meanwhile, a full GC cycle is only triggered when memory
resources in the whole heap become exhausted. Since the
young generation is relatively smaller, the pre-reclamation
cycle is largely shortened, which helps reduce application
stalls and pauses. Nevertheless, the design of GenZ’s and
GenShen’s young GC algorithm is similar to the correspond-
ing single-generation one. For GenZ, the young GC algo-
rithm still contains the overhead of color pointers. As for
GenShen, it turns into a generation-wise collector which still
collects the young generation in three phases. Therefore,
they still induce considerable overhead. We will show the
detailed results of GenZ and GenShen in Section 5.

2.6 Summary

According to the performance analysis, we find that reduc-
ing the duration of pre-reclamation cycles is critical to con-
trol pauses when under a heavy workload. Meanwhile, the
collector should also avoid introducing large runtime over-
head. We therefore build our own collector to achieve both
goals.

3 Group-wise design in Jade

3.1 Overview

This work introduces Jade, a high-throughput concurrent
copying collector achieving both low GC pauses and satis-
fying collection efficiency. Compared with prior concurrent
copying collectors (heap/generation-wise or region-wise),
Jade provides a new abstraction named group as a unit of
reclamation, which is the core of Jade’s design. Thanks
to the group-wise collection mechanism, Jade can achieve
incremental reclamation while inducing moderate perfor-
mance overhead.
Analogous to prior concurrent copying collectors, Jade

also adopts equal-sized regions to organize its heap. When
GC is triggered, Jade also contains a concurrent marking
phase which generates a live bitmap to memorize live ob-
jects in its regions. The live bitmap uses each bit to denote
if a memory range of 8 bytes contains the header of a live
object, so the bitmap’s memory consumption is 1.56% of the
heap size. Marking is followed by a special grouping phase,
which divides the heap into collection groups where each

group contains several regions. The reclamation phase is
then divided into multiple rounds. Each round only evacu-
ates regions in one group, i.e., copying live objects in those
regions to free regions in the heap. Jade releases memory
resources consumed by a group immediately after the corre-
sponding round ends. To coordinate concurrent operations
from mutators, Jade adopts loaded value barriers (also used
in ZGC) to ensure mutators always hold references to an ob-
ject’s latest copy.With the group-wise design, Jade achieves
group-level incremental reclamation since free regions can
be recycled when each group is evacuated. Meanwhile, it
also leverages the same marking results for all rounds in
one collection cycle, which reduces collection frequency
and performance overhead comparedwith an algorithm like
Shenandoah which treats the whole heap/generation as the
reclamation unit.
Nevertheless, the results on ZGC suggest that an incre-

mental reclamation algorithm is not enough. The design of
a group-wise algorithm should also control its runtime over-
head, whichmainly consists of two parts: (1) the grouping al-
gorithm to assign regions to groups and (2) reference memo-

rization for subsequent reference updating. To this end, Jade
proposes designs for those two parts separately.

3.2 Simulation-based hand-over-hand grouping

As introduced before, the group abstraction can be seen as a
middle ground between generation and region: when each
group only contains one region, the evacuation is similar
to ZGC; when only one group is generated in a GC cycle,
the behavior is close to Shenandoah. Therefore, the group-
ing algorithm is important for Jade’s collection efficiency.
Meanwhile, the time required for grouping should be short
as it is included in the pre-reclamation cycle. To this end,
Jade proposes a simulation-based hand-over-hand grouping

algorithm.
After marking is finished, Jade simulates a hand-over-

hand compaction [20] that assumes a former group’s re-
leased memory is directly reused by the evacuation of a lat-
ter one. As illustrated by Algorithm 1, Jade first constructs a
tracked list to include regions to be evacuated in the current
GC cycle (line 1-6). This step filters out regions whose live
bytes exceed a preset threshold (85% by default) to avoid
inducing large memory copying overhead. The tracked list

1164



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

is then sorted by the number of live bytes so that the evac-
uation can start with those containing the fewest live bytes.
This part of the algorithm is similar to the construction of
collection sets in collectors like G1 and Shenandoah, but
Jade needs to further split the list into multiple groups to
achieve group-wise collection. It starts by estimating the
free space size available for evacuation (line 9, more details
in Section 4.2) and adds regions to the first group until the
accumulated live bytes exceed the overall free bytes (line
13-22). Jade uses the size of the first group for all subse-
quent groups as well (line 23). This design is used to con-
trol the group size: since Jade compacts live objects in mul-
tiple used regions to free ones, the number of free regions
gradually increases every time a group is reclaimed. If all
released regions are used for a per-group evacuation, the
pre-reclamation time becomes longer, which could hinder
mutators from memory allocation. For subsequent groups,
since the number of regions is fixed, Jade only needs to con-
tinuously fill them up until the tracked list is drained (line
26-33). Lastly, Jade sets a maximum number of groups (16
by default) to avoid a long collection cycle with too many
groups, and regions in the tracked list would not be collected
when Jade has constructed enough groups (line 34-36). Note
that since Jade’s grouping mechanism is based on a simula-
tion, it requires no data copying and thus only introduces
trivial (microsecond-level) overhead. Other advanced poli-
cies (e.g., controlling a group’s size by setting the maximum
number of regions) are also possible to tune Jade’s perfor-
mance.

3.3 Group-wise remembered sets

After grouping, Jade can start following its simulation pro-
cess to evacuate live objects in each group. The remaining
challenge is how to guarantee regions in a group are free to
release after live objects have been moved to free regions.
Considering the overhead of color pointers, Jade embraces
remembered sets to memorize references at a coarser granu-
larity.
Remembered sets are usually used to memorize incom-

ing references to a given memory range (e.g., a region). Tak-
ing regions as an example, the collector can maintain a re-
membered set for each region (G1 has a similar design for
its remembered sets), which is usually implemented with a
bitmap where each bit corresponds to a 512-byte memory
range (referred to as a card) in the heap. After the marking
phase, GC threads can scan the live bitmap to locate cross-
region references. Suppose a reference r in region x points
to an object in another region y, GC threads need to (1) ac-
quire the remembered set for region y and (2) set the bit for
the corresponding card where r resides. When a region is
evacuated, GC threads only need to use its remembered set,
scan memory ranges where the corresponding bits are set,
and update incoming references therein.

Algorithm 1 Constructing collection groups

1: for A468>= in >;3_A468>=B do
2: if A468>=.;8E4_1~C4B/A468>=.B8I4_1~C4B <
3: CℎA4Bℎ>;3 then

4: CA02:43_;8BC .033 (A468>=)
5: end if

6: end for

7: # Sorting the tracked regions (organized as a list) by the
size of live bytes

8: CA02:43_;8BC .B>AC ()
9: 5 A44_1~C4B ← 4BC8<0C4_5 A44_B?024 ()
10: while !CA02:43_;8BC .8B_4<?C~() do

11: 6A>D? ← 4<?C~

12: if 6A>D?B.8B_4<?C~() then

13: # Constructing the first group
14: while !CA02:43_;8BC .8B_4<?C~() do

15: A468>= ← CA02:43_;8BC .C0:4_5 8ABC ()
16: 5 A44_1~C4B ← 5 A44_1~C4B−
17: A468>=.;8E4_1~C4B
18: if 5 A44_1~C4B < 0 then
19: break

20: end if

21: 6A>D?.033 (A468>=)

22: end while

23: 6A>D?_B8I4 ← 6A>D?.B8I4 ()

24: else

25: # Constructing subsequent groups
26: while 6A>D?.B8I4 () < 6A>D?_B8I4 do
27: if CA02:43_;8BC .8B_4<?C~() then

28: break

29: end if

30: 6A>D?.033 (CA02:43_;8BC .C0:4_5 8ABC ())
31: end while

32: end if

33: 6A>D?B.033 (6A>D?)

34: if 6A>D?B.B8I4 () >= "�-_�'$*% then

35: break

36: end if

37: end while

38: # Output 6A>D?B

Although enabling incremental reclamation, remem-
bered sets have three disadvantages compared with color
pointers. First, since the references are memorized in a
coarse (card-level) granularity, GC threads have to scan
more objects to find and update cross-region references. Sec-
ond, the memory overhead is proportional to the number
of regions, which can be quite large (usually more than
thousands). Third, remembered sets need to be rebuilt after
each marking phase, which potentially lengthens the pre-
reclamation cycle. To mitigate the first two problems, Jade
provides group-wise remembered sets, where regions in the
same group share a remembered set. Since regions in the

1165



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

same group are released together, we do not need to memo-
rize inter-region references inside them, which reduces the
re-scanning overhead. Meanwhile, the memory overhead is
also reduced as the number of groups is much smaller. Since
each bitmap consumes only 1/4096 of the heap size, the over-
all memory overhead is only 0.39% for 16 groups.

!

!

! "

"

"

"

#$%&%'(%)

*+,-.,'(%) *+,-.,'(%)

!%.)/012

"34012

Figure 3. Heap layout in Jade.

Optimization: piggyback with marking. Neverthe-
less, rebuilding group-based remembered sets is still time-
consuming as it needs to scan the remembered sets. Fortu-
nately, this step can be further improved considering the
fact that the number of inter-region references is usually
limited. For example, our analysis on the Specjbb2015 work-
load [12] shows that 83.13% of dirty cards (containing inter-
region references) in the whole memory range contain ref-
erences to only one or two regions (excluding the region
the card resides in), so this region-related information can
be memorized with acceptable overhead. To this end, Jade
proposes to collect the information in the preceding mark-
ing phase. This is achieved by a global cross-region discover

table (CRDT), which memorizes inter-region references also
in a card granularity (512 bytes). CRDT maintains a map-
ping between cards and an integer (4 bytes). In contrast to
the remembered set, CRDT maintains outgoing references to
other regions by storing region IDs in the integer. For ex-
ample, suppose Jade discovers an address in card x from
region y which stores a reference to another region z, then
the region ID z should be stored into x’s corresponding in-
teger in CRDT. For each card, two outgoing references to
the same region are only stored once. Since the number of
regions is usually in the thousands, 4 bytes are enough to
store two region numbers. If the number of discovered re-
gions exceeds two, Jade marks the corresponding integer
in the CRDT with a special value (currently -1) so that it
needs to be rescanned in the remembered set building phase.
With CRDT, the work required by building remembered sets
is greatly reduced. First, cards not containing cross-region
references do not need scanning since it is impossible for

them to contain cross-group references. For those record-
ing region IDs, Jade finds the group containing the regions
and marks the bit for the card in the group-wise remem-
bered set. Because both remembered sets and CRDT use the
same granularity for reference memorization, this step does
not need card scanning. It also eliminates unnecessary scan-
ning if the recorded regions are in the same group as the
card. Lastly, only cardsmarkedwith -1 should be thoroughly
scanned, so the scanning frequency is greatly reduced (eval-
uated in Section 5.6). Meanwhile, the memory consumption
of CRDTs is also moderate: Since one CRDT is enough to
maintain cross-region references for all groups, its memory
consumption is only 0.78% of the heap size.

4 Generational collection

4.1 Single-phase young GC

To break long collection cycles into smaller ones, Jade
also embraces a generational design and provides young
GC to collect its young generation. As shown in Figure 3,
the regions in Jade’s heap can be free (unmarked), used
by the young generation (marked as Y ), or consumed by
the old generation (marked as O). Compared with a multi-
generation approach with more than two generations [5],
Jade’s two-generation design is simpler and enough to col-
lect short-lived objects. When young GC is triggered, ob-
jects in young regions can be copied (or promoted) to the
old generation or still reside in the young one. As for the
old GC (the group-wise collection introduced before), ob-
jects are only evacuated to other old regions. Those two can
run together as they reclaim different parts of memory re-
sources.
Generational concurrent collectors like GenZ and C4 use

the same algorithm for young and old GC, so the young GC
still contains two phases: marking and incremental evacu-
ation. This two-phase design is helpful to (1) prioritize re-
gions with the most garbage for collection and (2) immedi-
ately reclaim a region once it is evacuated. However, both
two advantages are somewhat unnecessary for young GC.
First, since the weak generational hypothesis [35] still holds
for many modern applications, the survival rate for young
regions is usually low and all young regions will be selected
for reclamation, rendering the prioritization useless. Second,
reclamation immediacy is not that important for young GC
because it is much faster than old GC and hardly becomes
a bottleneck for memory allocation. Therefore, Jade instead
adopts a single-phase young GC algorithm to maximize its
collection efficiency and thus saves more CPU cycles for the
execution of mutators and old GC.
The single-phase design finishes themarking, evacuation,

and reference updating in the same phase: Jade traverses the
young generation and immediately copies an object to a sur-
vivor region once it is marked live. Instead of using a mark-
ing bitmap like the old GC, Jade directly stores an object’s

1166



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

new address in its old header as the marking result and uses
atomic instructions to avoid repetitive copying of the same
object. Since young GC does not traverse old regions, Jade
also needs to remember inter-generation references from
them. This is achieved by an old-to-young remembered set,
where each bit maintains if a corresponding 512-byte mem-
ory range contains inter-generation references. Meanwhile,
references inside live objects are pushed into a GC-thread-
local marking stack so that they can be updated immedi-
ately after their referents have been evacuated. By coalesc-
ing multiple operations into one single phase, Jade reduces
the number of memory accesses and significantly improves
the GC efficiency.

4.2 Free space estimation

To avoid blocking mutator allocation during old GC, Jade al-
lows the co-running of both GC cycles. Therefore, the free
space estimation inAlgorithm 1 should consider two factors:
(1) allocatable free bytes in the heap and (2) memory behav-
iors in the young generation. The first part is simple to cal-
culate: since only completely free regions can be allocated
to mutators, we can get the value by multiplying the num-
ber of free regions by the region size (Line 2). Meanwhile,
since the young GC promotes objects to the old generation
(Figure 3), Jade calculates its size with the historical promo-
tion rate and the estimated remaining GC time (Line 3-4). As
for the young generation, since its memory behaviors are
complicated (perhaps including multi-round memory allo-
cation and collection), Jade conservatively leaves a part for
all memory-related activities within the young generation,
whose size is determined by an empirical ratio (young_ratio,
85% by default). Only the remaining free bytes are treated
as free space and used as destinations for evacuation in old
GC.

Algorithm 2 Estimating free space size for collection

1: function estimate_free_space

2: 5 A44_B?024 ← 5 A44_A468>=_2>D=C ∗ A468>=_B8I4
3: 5 A44_B?024 ← 5 A44_B?024 − ?A><>C8>=_A0C8>∗
4: 4BC8<0C43_62_C8<4

5: 5 A44_1~C4B ← 5 A44_B?024 ∗ (1 − ~>D=6_A0C8>)
6: return 5 A44_1~C4B
7: end function

4.3 Chasing mode and full GC

When the allocation rate becomes too high, Jade may face
inevitable mutator stalls due to free memory shortage. Since
the number of running mutators becomes smaller, the CPU
resources can be reaped to run more GC threads. However,
since the default number of GC threads in ZGC and Shenan-
doah is usually small, they fail to leverage idle CPU cores

in a mutator stall (e.g., ZGC only occupies 26.80% of over-
all CPU resources during application stalls in Table 1’s ex-
periment). Meanwhile, if the user manually increases the
thread number, GC threads would compete for more CPU
resources and affect application performance when no stall
happens. To this end, Jade introduces a chasingmode, which
launches more GC threads to concurrently evacuate groups
only when mutators begin to stall. In the default setting, the
number of concurrent GC threads is equal to the number of
cores, which maximizes the GC throughput to finish pro-
cessing the current collection group. Jade also supports full
GC but only triggers it when extreme cases occur (e.g., con-
secutive long application stalls), and it also sufficiently uti-
lizes all available CPU resources to improve the collection
efficiency.

4.4 Weak references handling

Jade supports handling weak references in both young and
old GC. In the marking phase (mark-and-copy phase in the
young GC), Jade puts objects into a discover list if they
are pointed to by weak references. After all concurrent
phases finish, Jade leverages an extra stop-the-world phase
to check if objects in the list are marked through other
strong references. If an object is not marked, Jade tries to
reclaim it and invokes its corresponding callback function
(if any). Since the number of weak references is not large
for many applications, the induced pause time is trivial. We
plan tomodify this phase into a concurrent one in our future
work.

5 Evaluation

5.1 Experiment setup

Jade is implemented on OpenJDK (the version is 11.0.17.13)
with about 30,000 lines of code. During implementation,
some components of Jade derive from existing collectors in
OpenJDK, such as snapshot-at-the-beginning (SATB) mark-
ing and card tables.
We mainly evaluate Jade on a bare-metal instance in the

public cloud environment. The instance has dual Intel Xeon
Platinum 8369B CPUs (32 physical cores with SMT enabled)
and 512GB DRAM. To avoid NUMA issues, we bind appli-
cations to separated physical cores on the same socket. We
leverage the following applications to evaluate Jade.

• Specjbb2015 [12] is the de facto standard for Java
server performance, especially for garbage collectors.
It simulates an online supermarket serving various
kinds of requests. Both ZGC and Shenandoah adopt
this application to show their improvement against
prior collectors upon their release [15, 22]. Mean-
while, Oracle leverages it as the primary application
to show the progress of GC in OpenJDK [19, 30].

1167



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

• HBase [1] is a distributed big-data store for non-
relational data. We mainly use it to study the single-
machine performance, and the evaluated version is
2.4.14.
• Shop is a real-world online service used in Alibaba’s
e-commerce platform. This service is used by tens of
millions of users every day to serve their requests to
access online shops.
• DaCapo [2] is a benchmark suite containing various
Java workloads. Compared with other evaluated ap-
plications, most workloads in DaCapo have smaller
memory demand, so we mainly use them to show the
performance of Jade with tight memory budgets.

With those applications, we mainly compare Jade with
four different concurrent garbage collectors: G1, ZGC,
Shenandoah, and LXR. G1 and LXR evacuate objects in an
STW fashion, so it is helpful to improve application through-
put. However, their STW pauses may cause worse appli-
cation latency especially when the size of live data grows
larger. Both ZGC and Shenandoah concurrently evacuate
objects and thus have larger interferences on application
throughput. All those collectors are also evaluated under
OpenJDK-11.0. Since G1 allows users to control its pause
time by setting a soft limit (-XX:MaxGCPauseMillis), we
manually set it to 10ms for better application latency, in ad-
dition to a default setting (200ms). We also evaluate the gen-
erational variants of ZGC and Shenandoah (namely GenZ
and GenShen), and the respective versions are OpenJDK-
21 and OpenJDK-221 since they do not backport to older
versions. As GenZ and GenShen are implemented in differ-
ent JDK versions, the evaluation results would be affected
by other factors other than GC (e.g., efficiency of JIT op-
timizations). LXR is built from its latest commit (the com-
mit number for mmtk-core and mmtk-openjdk is 4ab99bb
and cdbc8de, respectively), which is also based on OpenJDK-
11.0 (commit 7caf8f7). The mmtk/opt cargo feature is also
enabled to avoid performance issues. C4 is not included as
it uses a similar algorithm to GenZ but a much different JDK
implementation (Azul JDK).
For all evaluated applications, we mainly concentrate on

two metrics: application throughput and latency. To this
end, we collect the latency statistics when applications are
under different throughput levels. Meanwhile, we also lever-
age various heap configurations for all applications but the
online Shop service since we have no permission to adjust
its heap size. To configure the heap size, we first calculate
a minimum heap size for ZGC and simulate three scenar-
ios: tight (1.5×), medium (2×), and large (4×). The mini-
mum heap size for Specjbb2015 and HBase is 1941MB and
1100MB, respectively. For Shop, we directly use its fixed con-
figuration (8GB heap, approximately 4× of the live data size).

1Generational Shenandoah is still under development, so we download the

latest version (commit f3c9eda) for evaluation.

As for DaCapo, we use a tighter memory configuration (de-
tails in Section 5.5). All applications use 8 physical cores re-
gardless of heap size.

5.2 Specjbb2015

We mainly evaluate Specjbb2015 with its default mode
(HBIR_RT ), which reports two scores for each execution:
max-jops stands for the peak throughput while critical-jops
stands for the maximum throughput satisfying p99 latency
requirements.
As shown in Table 3, Jade has worse max-jops compared

with the default setting of G1 (3.98% smaller in arithmetic
mean) and LXR (6.81%), but the result is much better than
other concurrent copying collectors. Meanwhile, its critical-
jops score of Jade is the best for all settings. The evaluation
suggests that the critical-jops score of other concurrent col-
lectors is significantly restricted by their maximum through-
put, especially under tight heap configurations. As for G1, al-
though setting a smaller soft limit (10ms) helps improve the
critical-jops score, the max-jops is significantly decreased
due to more frequent collections and larger overhead.

1

10

100

0 5000 10000 15000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

LXR

GenShen

GenZ

Jade

Shen

ZGC

(a) 1.5× heap

1

10

100

0 5000 10000 15000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

LXR

GenShen

GenZ

Jade

Shen

ZGC

(b) 2× heap

1

10

100

0 10000 20000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

LXR

GenShen

GenZ

Jade

Shen

ZGC

(c) 4× heap

Figure 4. P99 latency results under various throughput set-
tings in Specjbb2015.

Figure 4 further shows the p99 latency when under var-
ious throughput settings. The latency statistics are col-
lected when Specjbb2015 gradually increases the applica-
tion throughput to find the peak one. The results show that
other concurrent copying collectors have smaller p99 la-
tency than G1 when the throughput is moderate, but the
latency soon becomes larger due to their poor GC efficiency.
In contrast, Jade has optimized its collection phases and
thus reaches satisfying latency even under heavyworkloads.
As for other percentiles, Jade’s worst latency in the 2x heap

1168



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

Table 3.Maximum throughput numbers for various collectors. For Specjbb2015, we also show the critical-jops score (the first
of the two numbers).

Application Collector 1.5× heap 2× heap 4× heap

Specjbb2015

Jade 8299/13101 9497/15257 14149/21454
G1 4462/13433 4788/14926 7942/24297
G1-10ms 4122/11761 5058/12936 8811/19786
ZGC 1618/2774 3443/4563 8576/9931
Shenandoah 3771/6120 4602/7245 11371/13599
LXR 3170/16302 4038/17694 5310/18989
GenZ 6675/8387 8654/11346 12258/15308
GenShen 1605/11345 4313/10218 7212/10931

HBase-Insert

Jade 1128 1164 1284
G1 970 1141 1304
G1-10ms 866 931 1294
ZGC 668 690 1096
Shenandoah 840 873 969
GenZ 874 890 1045
GenShen 726 528 777

HBase-Mixed

Jade 1334 1577 1929
G1 1384 1489 1820
G1-10ms 1332 1313 1954
ZGC 737 811 1302
Shenandoah 843 734 944
GenZ 1085 1146 1666
GenShen 861 663 1218

Shop (8GB)

Jade - - 400
G1 - - 350
ZGC - - 150
Shenandoah - - 300

configuration is better than GenZ when QPS exceeds 9000
and GenShen for almost all QPS settings.

5.3 HBase

HBase is evaluated using YCSB [11] with two workloads: an
insert-only one and a mixed one (50% read and 50% insert).
Furthermore, we use the throttle option to control the re-
quest rate and generate results under various throughputs.
LXR is not included since it is based on MMTk, whose cur-
rent version cannot run HBase [38]. As shown in Figure 5,
when compared with other concurrent copying collectors,
Jade has better latency results than Shenandoah and Gen-
Shen for nearly all configurations and remains comparable
with ZGC and GenZ under moderate throughput. Mean-
while, Jade’s peak throughput is 1.63×, 1.63×, 1.27×, and
1.82× against ZGC, Shenandoah, GenZ, and GenShen, re-
spectively. When setting the pause soft limit to 10ms, G1
has better p99 latency under moderate workload, but the
maximum throughput decreases.

5.4 Shop

To evaluate the online Shop service, we use four nodes to
generate concurrent requests and simulate a stressful work-
load. Since the online service only supports JDK11, GenZ
is not evaluated in this experiment. If the p99 latency is
larger than a second, the Shop service automatically reports
itself as unavailable for user-experience considerations. As
shown in Figure 6, Jade can achieve the best peak through-
put among all collectors. Although G1 can endure high
throughput, it triggers too many long pauses and thus in-
duces a large p99 latency, so its peak throughput is worse
than Jade. In contrast, Jade reaches comparable p99 latency
with Shenandoah and ZGC under moderate throughput
while outperforming G1 by 3.94× on average (from 100 to
350 QPS).
We also collect the average CPU utilization during appli-

cation execution. The results in Figure 6b show that the CPU
utilization under moderate throughput is similar among all
collectors except ZGC. However, when the throughput is
close to the maximum, both Shenandoah and ZGC’s CPU
utilization quickly increases. As analyzed before, they in-
troduce long pre-reclamation cycles, which consume much

1169



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

1

10

100

300 600 900
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(a) Insert-1.5× heap

1

10

100

300 600 900 1200
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(b) Insert-2× heap

1

10

100

500 1000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(c) Insert-4× heap

1

10

100

600 900 1200
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(d)Mixed-1.5× heap

1

10

100

400 800 1200 1600
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(e)Mixed-2× heap

1

10

100

500 1000 1500 2000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1

G1−10

GenShen

GenZ

Jade

Shen

ZGC

(f)Mixed-4× heap

Figure 5. P99 latency results under various throughput set-
tings in HBase.

more CPU resources and put heavier burdens on mutators.
Meanwhile, the p99 latency of Jade is relatively stable even
when the CPU utilization reaches 85.78% (QPS is 350), which
confirms that Jade can retain high GC efficiency and short
pauses even under heavy CPU-intensive workloads.

200

400

600

100 200 300 400
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1 Jade Shen ZGC

(a) P99 Latency

20

40

60

80

100 200 300 400
Queries per Second

C
P

U
 U

ti
li

a
z
ti

o
n

 (
%

)

G1 Jade Shen ZGC

(b) CPU utilization

Figure 6. Evaluation results for Shop.

5.5 DaCapo

Table 4 first shows the normalized application execution
time under two heap configurations (1.5x and 2x of G1’s
minimal heap [37]) for all workloads in DaCapo. The results

are averaged over ten times of execution, where each execu-
tion reports the numbers in the fifth iteration for each ap-
plication (i.e., the other four iterations are used as warm-up
execution). The relative standard error ranged from 0.002%
to 51.49%, with 98.18% of data points having a standard error
of 10% or less. Due to the tight memory configuration, ZGC
and Shenandoah (including their generational variants) fail
to execute some applications due to out-of-memory errors
or inducing large performance overhead. In contrast, Jade
can execute all applications and its performance remains
relatively stable. Compared with them, LXR and G1 show
better performance on DaCapo. Those two collectors both
introduce STW pauses for evacuation to reach better collec-
tion efficiency. Since the memory budget for most applica-
tions in DaCapo is relatively small (less than 1GB), the pause
time is also short. As for concurrent copying collectors, their
runtime overhead like load barriers becomes more signifi-
cant under those scenarios.
For latency results, in applications like tomcat (142MB

heap size), LXR has 10.31% better p99 latency against Jade.
However, for those with larger heap sizes, the application
latency is largely affected by LXR’s pauses. Figure 7 shows
the results for two different size configurations in H2 from
DaCapo, normal (by default) and large (the corresponding
minimal heap size is 4099MB). To collect latency statistics in
various throughput levels, we modify the metered latency
measurements from the Chopin version of Dacapo [16] to
model request queuing with adjustable QPS configurations
(we refer to this application asH2-throttle). For both settings,
Jade shows better p99 metered latency than G1 and LXR al-
though its maximum throughput is smaller. By analyzing
the GC log, we find LXR’s average pause time under the
large configuration and moderate throughput (8000 QPS) is
46.30ms, while G1 is 40.41ms. In contrast, Jade’s average
pause time is only 0.52ms, which can explain its better la-
tency than the other two collectors.

5.6 Breakdown analysis

Group-related parameters. Figure 8 shows the p99 la-
tency when varying the maximum group and region num-
ber. The evaluated application is Specjbb2015 with its preset
mode, which runs with a fixed QPS (2000) for 10 minutes.
When Jade is only allowed to evacuate one group in each
collection cycle, the collection efficiency is affected, so the
tail latency becomes worse. As for the region number, dif-
ferent configurations lead to similar results, which suggest
Jade’s performance is not sensitive to them.
Collection efficiency. We also compare the GC perfor-

mance of GenZ and Jade since they both use a generational
design and GenZ has better performance than GenShen (Ta-
ble 3). The workload is the same as Figure 8. To achieve a
relatively fair comparison, we disable the compressed point-
ers in Jade and fix the number of GC threads to two (one
for young and another for old, chasing mode disabled) and

1170



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

Table 4. Application execution time for the DaCapo benchmark (normalized to G1), under 1.5x (left) and 2x (right) minimal
heap configurations. N/A means the applications cannot run due to unsupported JDK versions.

App G1 G1-10ms Shen. ZGC GenShen GenZ LXR Jade

avrora 2902/2811 0.994/0.972 1.092/1.037 OOM 1.734/1.437 OOM 0.992/1.027 1.747/1.770
batik 1707/1735 1.004/0.978 1.152/0.976 OOM 1.389/1.269 1.314/1.044 OOM/1.048 1.741/1.712
biojava 7487/7334 1.000/0.992 2.912/2.062 OOM 3.105/2.581 OOM/3.781 0.954/0.969 1.825/1.803
cassandra 8812/7760 1.009/0.989 1.275/1.177 OOM N/A N/A 0.961/1.011 1.793/1.801
eclipse 12473/12215 0.999/0.996 1.068/1.047 OOM/0.980 1.418/1.309 1.119/0.978 1.023/1.038 1.770/1.767
fop 1041/860 0.998/0.989 4.035/1.592 OOM 6.049/4.609 OOM/8.059 0.731/0.829 1.655/1.700
graphchi 4252/4188 0.998/0.997 1.909/1.636 OOM/1.403 4.414/3.987 1.405/1.227 0.949/0.956 1.825/1.831
h2 4972/3790 0.989/1.005 7.104/5.642 OOM/11.47 2.304/2.373 2.212/1.914 0.904/1.109 1.941/2.130
h2o 4573/3793 1.015/0.998 2.259/1.750 OOM N/A N/A 1.068/1.110 1.913/1.857
jme 6873/6873 1.000/1.000 1.008/1.005 OOM 1.088/1.097 1.006/1.005 0.999/1.000 1.733/1.734
jython 5890/5393 0.999/1.002 3.323/2.022 OOM 6.548/5.238 OOM/1.954 0.958/1.031 1.883/1.829
kafka 5186/5200 0.999/0.996 1.000/0.996 OOM/0.995 2.441/3.588 0.993/0.989 0.991/0.992 1.728/1.725
luindex 4290/4283 0.994/0.989 1.173/1.089 OOM 18.20/20.93 1.054/0.976 0.969/0.988 1.780/1.782
lusearch 5398/4688 1.021/0.987 OOM OOM OOM OOM/6.914 0.981/1.101 2.313/2.240
pmd 2549/2407 1.002/1.013 1.338/1.243 OOM/1.432 10.95/31.76 1.794/1.469 0.959/0.987 1.793/1.797
spring 4414/3077 1.005/1.043 9.403/5.243 OOM 7.621/5.314 OOM 0.804/0.995 1.683/1.853
sunflow 8285/8100 1.000/0.967 8.371/2.729 OOM OOM/13.10 3.009/2.234 0.699/0.705 2.143/1.945
tomcat 13377/13330 1.001/0.999 1.494/1.198 OOM 4.510/3.245 OOM/4.019 1.005/1.003 1.750/1.747
tradebeans 5984/5691 1.004/0.997 4.842/2.626 OOM OOM OOM/9.141 1.089/1.072 2.081/2.076
tradesoap 4615/3031 0.989/1.007 3.022/2.480 OOM OOM OOM/13.68 0.757/1.095 1.664/1.999
xalan 2747/1753 0.988/1.008 26.03/25.83 OOM 37.19/43.93 6.657/7.631 0.737/0.962 2.077/2.312
zxing 2432/2404 1.003/0.960 1.023/1.009 1.454/1.017 1.794/1.386 0.995/0.958 0.917/0.957 1.680/1.680

geomean - 1.000/0.995 2.450/1.873 1.454/1.685 4.047/4.263 1.597/2.468 0.919/0.995 1.835/1.860

2.5

5.0

7.5

10.0

12.5

5000 10000 15000 20000 25000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1 Jade LXR

(a) Nomal

10

20

30

40

50

4000 8000 12000 16000
Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

G1 Jade LXR

(b) Huge

Figure 7. P99 latency results under various throughput and
workload settings in H2-throttle.

10

1

2000 10000

Queries per Second

P
9

9
 L

a
te

n
c
y

 (
m

s
)

8 16 32 64 128

(a) Maximum group number

10

1

2000 10000

Queries per Second

p
9

9
 L

a
te

n
c
y

 (
m

s
)

8 16 32 64 128

(b)Maximum region number

Figure 8. P99 latency results with varying group-related pa-
rameters (the application is Specjbb2015).

Table 5. Breakdown GC statistics for Jade and GenZ, in-
cluding average time (in milliseconds) and GC throughput
(reclaimed megabytes per second) for both young and old
GC. Again, GenZ and Jade are running on different JDK ver-
sions.

Cycle Collector Phase Avg. Thru.

Young

Jade
Mark+Evac. 111.90

8579.47
Total 111.90

GenZ
Mark 366.29

2259.70Evac. 86.87
Total 453.16

Old

Jade

Mark 1124.64

1248.36
Build 218.88
Evac. 763.23
Total 2106.75

GenZ
Mark 2525.76

760.53Evac. 932.31
Total 3458.07

the young generation size to 1GB. Note that in this config-
uration, Jade’s application throughput is also affected (e.g.,
the max-jops for 2x heap is 11761). According to the results

1171



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

in Table 5, Jade reaches 3.80× larger GC throughput (calcu-
lated by released memory size over collection time) in the
young GC cycle. The speedup mainly comes from (1) the
single-phase algorithm in Jade that avoids repetitive object
graph traversals, (2) the inherent color pointer overhead and
(3) the performance loss due to disabling compressed point-
ers in the presence of color pointers in GenZ. As for the old
GC cycle, Jade performs better in both marking and evac-
uation than GenZ and thus reaches 64.14% improvement
on GC throughput. The results further confirm that Jade’s
group-based design outperforms prior concurrent copying
collectors even with similar generational layouts.
Duration of different phases. Table 6 shows different

phases’ execution time under various heap configurations
andmaximum throughput for the H2 application. The work-
load is the same as Table 2, making the statistics comparable
with ZGC and Shenandoah. Note that when the heap config-
uration is more than 2×, Jade only has youngGC, sowe eval-
uate it with two tighter heap configurations: 1× and 1.2× of
ZGC’s minimum heap size. As for the smallest heap size, al-
though GC threads are mostly active, each pre-reclamation
cycle is much shorter (averaging 0.09s and 1.09s for young
and old GC), which allows Jade to quickly reclaim memory
for mutators. Meanwhile, the accumulated pause time con-
tributes to less than 1% of overall execution time, while the
average pause time is less than 1ms even with a tight heap
size, which induces little interference on application latency.
When the heap becomes larger, the pause is even shorter
and does not restrict the application latency and throughput
like ZGC and Shenandoah.

Table 6. GC-related statistics in Jade, including time for ap-
plications (App.) and different GC phases.

Time 1× 1.2× 1.5× 2×

Total

App. (s) 20.28 18.15 16.37 16.22
Mark (s) 17.68 2.41 0 0
Build (s) 11.82 0.62 0 0
Pause (s) 0.13 0.08 0.04 0.03
Young Evac. (s) 6.87 7.20 6.89 6.44
Old Evac. (s) 1.39 0.47 0 0

Avg.

Mark (s) 0.85 0.60 0 0
Build (s) 0.24 0.62 0 0
Pause (ms) 0.72 0.71 0.55 0.66

Young Evac. (s) 0.09 0.13 0.18 0.26
Old Evac. (s) 0.20 0.26 0 0

p99 Pause (ms) 3.21 1.64 1.08 1.39

CRDT. To show how CRDT helps reduce Jade’s concur-
rent GC time, we break down Jade’s GC cycle and compare
it against G1, which uses region-wise remembered sets for
its mixed collections (reclaiming both young and old gen-
eration) and thus also includes a concurrent marking and
remembered set building phase. The workload is also the

same as Figure 8. The results in Table 7 show that Jade im-
proves the remembered set building time by 67.81%. This
is mainly because CRDT reduces the number of cards to
be scanned in the building phase by 64.63%. Meanwhile, al-
though CRDT can introduce overhead in the marking phase,
Jade still outperforms G1 by 24.95% in marking. The im-
provement mainly comes from Jade’s co-running design:
during an old GC cycle, young GC threads can help by push-
ing young-to-old references intomarking stacks. In contrast,
since G1 conducts young GC in an STW fashion, it has to
temporarily store those references in the live bitmap (similar
to that in concurrent collectors), which needs rescanning in
a future old marking cycle. Due to those two optimizations,
Jade achieves a 40.48% improvement on the two concurrent
phases together even compared with a high-throughput col-
lector like G1, which further confirms Jade’s GC efficiency.
As for the H2 benchmark analyzed before, CRDT also re-
duces the average number of scanned cards by 61.11%.

Table 7. Remembered set-related time breakdown in mil-
liseconds, which mainly divides into two phases: marking
(Mark) and remembered set re-building (Build).

Collectors Mark Build Total No. of cards

G1 1369.02 777.93 2146.95 1215774
Jade 1027.36 250.43 1277.78 430041

Chasing mode. Thanks to Jade’s efficient marking and
collection phases, we do not observe application stalls in
most configurations. Therefore, we run Specjbb2015 with
high throughput (13,000 for 1.5× heap) for 15 minutes and
find the average pause time introduced by application stalls
is 40.05ms (p99 is 97.96ms), which suggests that Jade does
not induce large pauses even under extreme configurations.
Meanwhile, the average CPU utilization within the chas-
ing mode is 90.75%, showing that Jade sufficiently leverages
CPU resources when mutators are stalled.

6 Related work

6.1 Concurrent collectors

As applications’ memory demands constantly grow, concur-
rent collectors are becoming popular to provide controlled
GC pause time regardless of heap sizes. The Garbage-First
(G1) collector introduces soft limits and a concurrent mark-
ing phase, but its evacuation phase is still stop-the-world.
Pauseless GC [10] divides the collection into three phases
(marking, relocating, remapping) and each phase allows co-
execution with mutators, which inspires the design of to-
day’s concurrent collectors. C4 [33] extends Pauseless GC
with a generational design while Collie [18] proposes to
use hardware transactional memory (HTM) to atomically
relocate objects. Compressor [20] also uses hand-over-hand
compaction to retain low physical memory overhead, but its

1172



EuroSys ’24, April 22–25, 2024, Athens, Greece M. Wu, et al.

reference calculation algorithm is costly. Block-free GC [26]
introduces non-block handshakes for concurrent stack scan-
ning and object copying. OpenJDK also introduced two con-
current copying collectors, Shenandoah and ZGC, which
have been studied in this work. Cai et al. [7] also find ZGC
and Shenandoah can introduce long pauses when under
heavy workload, but they do not explore the design of col-
lectors to explain those pauses. Jade summarizes the defi-
ciencies inside existing concurrent collectors and provides
group-based evacuation and single-phase young GC to im-
prove GC efficiency and application performance.

6.2 Reference counting

In contrast to tracing collectors, reference counting (RC)
collectors record incoming references for objects and can
immediately reclaim them when the number reaches zero.
Immediacy is an appealing feature in RC, but it also has
two limitations: (1) the inability to handle cyclic references
and (2) the large overhead for maintaining the per-object
counter. The first one is the inherent limitation for RC, so
prior work mainly focuses on optimizing the maintenance
overhead. Biased reference counting (BRC) [9] observes
most objects are only accessed by a single thread (namely
owner) and thus allows the owner to modify the counters
without atomic instructions. Deferred RC [14] introduces a
collection phase to RC, which only focuses on objects up-
dated since the last collection and updates those objects’
counters. RCImmix [31, 32] further combines the deferred
RC designwith Immix’s heap layout [3] to reach comparable
performancewith trace-based collectors. LXR [41] finds that
RC can be elegantly integrated with the concurrent mark-
ing algorithm of G1 and thus proposes to still use RC-based
STW pauses for both GC efficiency and low application la-
tency. Jade instead focuses on improving the performance
of concurrent collectors.

6.3 GC optimizations

Another line of work proposes optimizations to collectors so
that they can be adapted to various scenarios. Yak [24] pro-
vides an epoch-based GC design for big-data applications
while NG2C [4–6] pre-tenures long-lived objects for simi-
lar workloads. Yang et al. [40] provide NVM-friendly GC
designs according to the bandwidth characteristics of non-
volatile memory devices. Mako [23] and MemLiner [36] op-
timize the performance of concurrent GC on a far memory
scenario. Our workmainly focuses on optimizing the perfor-
mance of concurrent copying GC when under heavy work-
load and thus orthogonal to those prior efforts.

7 Conclusion

Garbage collectors (GC) are among the most important
modules in language runtimes. Recent concurrent collectors
claim to reach pauseless by allowing concurrent execution of

mutators and GC threads, but they still induce long pauses
when under heavy workloads. To this end, this work pro-
poses Jade, which provides corresponding designs to im-
prove GC efficiency and reduce the duration of pauses. The
evaluation results show that Jade can significantly improve
the peak application throughput while remaining compara-
ble tail latency with mainstream concurrent collectors.

Acknowledgments

We sincerely thank our shepherd Martin Maas and the
anonymous EuroSys’24 reviewers for their insightful com-
ments and feedback. We also thankWenyu Zhao for helping
us evaluate LXR. This workwas supported in part by the Na-
tional Natural Science Foundation of China (No. 62202295,
62172272, 61925206), and in part by Alibaba Group through
the Alibaba Innovative Research Program. Corresponding
author: Liang Mao (maoliang.ml@alibaba-inc.com).

References
[1] Apache. Welcome to apache hbase. https://hbase.apache.org/, 2022.

[2] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khan,

Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,

Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking,

Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. The dacapo benchmarks: java benchmarking development

and analysis. In OOPSLA, pages 169–190. ACM, 2006.

[3] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-

region garbage collector with space efficiency, fast collection, and mu-

tator performance. In PLDI, pages 22–32. ACM, 2008.

[4] Rodrigo Bruno and Paulo Ferreira. POLM2: automatic profiling for

object lifetime-aware memory management for hotspot big data ap-

plications. In Middleware, pages 147–160. ACM, 2017.

[5] Rodrigo Bruno, Luís Picciochi Oliveira, and Paulo Ferreira. NG2C:

pretenuring garbage collection with dynamic generations for hotspot

big data applications. In ISMM, pages 2–13. ACM, 2017.

[6] Rodrigo Bruno, Duarte Patrício, José Simão, Luís Veiga, and Paulo Fer-

reira. Runtime object lifetime profiler for latency sensitive big data

applications. In EuroSys, pages 28:1–28:16. ACM, 2019.

[7] Zixian Cai, Stephen M. Blackburn, Michael D. Bond, andMartin Maas.

Distilling the real cost of production garbage collectors. In ISPASS,

pages 46–57. IEEE, 2022.

[8] Maria Carpen-Amarie, Yaroslav Hayduk, Pascal Felber, Christof Fet-

zer, Gaël Thomas, and Dave Dice. Towards an efficient pauseless java

GC with selective htm-based access barriers. In ManLang, pages 85–

91. ACM, 2017.

[9] Jiho Choi, Thomas Shull, and Josep Torrellas. Biased reference count-

ing: minimizing atomic operations in garbage collection. In PACT,

pages 35:1–35:12. ACM, 2018.

[10] Cliff Click, Gil Tene, and Michael Wolf. The pauseless GC algorithm.

In VEE, pages 46–56. ACM, 2005.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with YCSB.

In SoCC, pages 143–154. ACM, 2010.

[12] Standard Performance Evaluation Corporation. The specjbb2915

benchmark. https://www.spec.org/jbb2015/, 2021.

[13] David Detlefs, Christine H. Flood, Steve Heller, and Tony Printezis.

Garbage-first garbage collection. In ISMM, pages 37–48. ACM, 2004.

[14] L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental,

automatic garbage collector. Commun. ACM, 19(9):522–526, 1976.

1173



Jade: A High-throughput Concurrent Copying Garbage Collector EuroSys ’24, April 22–25, 2024, Athens, Greece

[15] Christine H. Flood, Roman Kennke, Andrew E. Dinn, Andrew Haley,

and RolandWestrelin. Shenandoah: An open-source concurrent com-

pacting garbage collector for openjdk. In PPPJ, pages 13:1–13:9. ACM,

2016.

[16] Dacapo Group. The dacapo benchmark suite (chopin devel-

opment). https://github.com/dacapobench/dacapobench/tree/dev-

chopin, 2022.

[17] H2. H2 database engine. https://www.h2database.com/html/main.html,

2022.

[18] Balaji Iyengar, Gil Tene, Michael Wolf, and Edward F. Gehringer. The

collie: a wait-free compacting collector. In ISMM, pages 85–96. ACM,

2012.

[19] Stefan Johansson. Gc progress from jdk 8 to jdk 17.

https://kstefanj.github.io/2021/11/24/gc-progress-8-17.html, 2021.

[20] Haim Kermany and Erez Petrank. The compressor: concurrent, in-

cremental, and parallel compaction. In Proceedings of the 27th ACM

SIGPLANConference on Programming Language Design and Implemen-

tation, pages 354–363, 2006.

[21] Chris Lattner and Vikram S. Adve. Transparent pointer compression

for linked data structures. In Memory System Performance, pages 24–

35. ACM, 2005.

[22] Per Lidén and Stefan Karlsson. The z garbage collector - low latency

gc for openjdk. http://cr.openjdk.java.net/ pliden/slides/ZGC-Jfokus-

2018.pdf, 2018.

[23] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao, Michael D. Bond,

Stephen M. Blackburn, Miryung Kim, and Guoqing Harry Xu. Mako:

a low-pause, high-throughput evacuating collector for memory-

disaggregated datacenters. In PLDI, pages 92–107. ACM, 2022.

[24] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,

Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance big-

data-friendly garbage collector. In OSDI, pages 349–365. USENIX As-

sociation, 2016.

[25] OpenJDK. Zgc - the z garbage collector.

https://openjdk.org/projects/zgc/, 2022.

[26] Erik Österlund andWelf Löwe. Block-free concurrent GC: stack scan-

ning and copying. In ISMM, pages 1–12. ACM, 2016.

[27] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne Steensgaard.

Stopless: a real-time garbage collector for multiprocessors. In ISMM,

pages 159–172. ACM, 2007.

[28] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concur-

rent real-time garbage collectors. In PLDI, pages 33–44. ACM, 2008.

[29] Android Open Source Project. Art gc overview.

https://source.android.com/docs/core/runtime/gc-

debug#art_gc_overview, 2022.

[30] Thomas Schatzl. Java garbage collection: The 10-release evolution

from jdk 8 to jdk 18. https://blogs.oracle.com/javamagazine/post/java-

garbage-collectors-evolution, 2022.

[31] Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. Down

for the count? getting reference counting back in the ring. In ISMM,

pages 73–84. ACM, 2012.

[32] Rifat Shahriyar, Stephen M. Blackburn, Xi Yang, and Kathryn S.

McKinley. Taking off the gloves with reference counting immix. In

OOPSLA, pages 93–110. ACM, 2013.

[33] Gil Tene, Balaji Iyengar, and Michael Wolf. C4: the continuously con-

current compacting collector. In ISMM, pages 79–88. ACM, 2011.

[34] TPC. Tpc-c is an on-line transaction processing benchmark.

https://www.tpc.org/tpcc/, 2022.

[35] David M. Ungar. Generation scavenging: A non-disruptive high per-

formance storage reclamation algorithm. In Software Development

Environments (SDE), pages 157–167. ACM, 1984.

[36] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,

Christian Navasca, Shan Lu, and Guoqing Harry Xu. Memliner: Lin-

ing up tracing and application for a far-memory-friendly runtime. In

OSDI, pages 35–53. USENIX Association, 2022.

[37] wenyuzhao. Dacapo minheap values.

https://gist.github.com/wenyuzhao/29e3e0e10bb68c4f2862851c874e0275,

2023.

[38] wenyuzhao. Incorrect heap usage reporting.

https://github.com/mmtk/mmtk-openjdk/issues/270, 2024.

[39] MingyuWu, Ziming Zhao, Yanfei Yang, Haoyu Li, Haibo Chen, Binyu

Zang, Haibing Guan, Sanhong Li, Chuansheng Lu, and Tongbao

Zhang. Platinum: A cpu-efficient concurrent garbage collector for

tail-reduction of interactive services. In USENIX Annual Technical

Conference, pages 159–172. USENIX Association, 2020.

[40] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang. Bridging the

performance gap for copy-based garbage collectors atop non-volatile

memory. In EuroSys, pages 343–358. ACM, 2021.

[41] Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. Low-

latency, high-throughput garbage collection. In PLDI, pages 76–91.

ACM, 2022.

1174


	Abstract
	1 Introduction
	2 Analysis on Concurrent Copying GC
	2.1 Concurrent copying garbage collectors
	2.2 Characterizing pauses in concurrent copying collectors
	2.3 Shenandoah: heap-wise collection
	2.4 ZGC: region-wise collection
	2.5 Discussion: generational variants
	2.6 Summary

	3 Group-wise design in Jade
	3.1 Overview
	3.2 Simulation-based hand-over-hand grouping
	3.3 Group-wise remembered sets

	4 Generational collection
	4.1 Single-phase young GC
	4.2 Free space estimation
	4.3 Chasing mode and full GC
	4.4 Weak references handling

	5 Evaluation
	5.1 Experiment setup
	5.2 Specjbb2015
	5.3 HBase
	5.4 Shop
	5.5 DaCapo
	5.6 Breakdown analysis

	6 Related work
	6.1 Concurrent collectors
	6.2 Reference counting
	6.3 GC optimizations

	7 Conclusion
	Acknowledgments
	References

