
WeBridge: Synthesizing Stored Procedures
for Large-Scale Real-World Web Applications

Gansen Hu, Zhaoguo Wang, Chuzhe Tang, Jiahuan Shen,
Zhiyuan Dong, Sheng Yao, and Haibo Chen

Institute of Parallel and Distributed Systems (IPADS),
Shanghai Jiao Tong University

Latency is Critical to Web Applications

* How Loading Time Affects Your Bottom Line. neilpatel.com

40%

>3s page load time
causes 40% users to leave

47%

<2s page load time
expected by 47% users

“A 1 second page delay could potentially cost
$2.5 million in lost sales every year”

Web Apps Suffer from DB Round Trips

Broadleaf's Add-Cart API
IN: pid, uid
item := ORM.getItem(pid)
user := ORM.getUser(uid)
cart := ORM.getCart(user.cart_id)
if not item.available:

log := new Log(“Item Unavailable”)
ORM.save(log)

else:
cart.items.append(item)
ORM.save(cart)

Database

56% request processing time is spent on DB round trips!

Select * From Items …RT 1

Select * From Users …RT 2

Select * From Carts …RT 3

Insert Into Log Values (…)
or
Insert Into Items Values (…)

RT 4

* Broadleaf Commerce, 1.7k Stars on GitHub, https://github.com/BroadleafCommerce

Dynamically generated &
Individually sent!

https://github.com/BroadleafCommerce

Web Apps Suffer from DB Round Trips

Broadleaf's Add-Cart API
IN: pid, uid
item := ORM.getItem(pid)
user := ORM.getUser(uid)
cart := ORM.getCart(user.cart_id)
if not item.available:

log := new Log(“Item Unavailable”)
ORM.save(log)

else:
cart.items.append(item)
ORM.save(cart)

Database

56% request processing time is spent on DB round trips!

Select * From Items …RT 1

Select * From Users …RT 2

Select * From Carts …RT 3

Insert Into Log Values (…)
or
Insert Into Items Values (…)

RT 4

Research Question: How to reduce DB round trips?

* Broadleaf Commerce, 1.7k Stars on GitHub, https://github.com/BroadleafCommerce

Dynamically generated &
Individually sent!

https://github.com/BroadleafCommerce

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Add-Cart API
IN: pid, uid

S1
S2

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)

RT 1: Prefetch S1 & S2 with pid and uid

Data Dep. Control Dep. Get Results From

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Add-Cart API
IN: pid, uid

S1
S2

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)

RT 1: Prefetch S1 & S2 with pid and uid

RT 2: Prefetch S3 with user
S3③ cart := ORM.getCart(user.cart_id)

④ if not item.available:
⑤ log := new Log(“Item Unavailable”)

Data Dep. Control Dep. Get Results From

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Add-Cart API
IN: pid, uid

S1
S2

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)

RT 1: Prefetch S1 & S2 with pid and uid

RT 2: Prefetch S3 with user
S3③ cart := ORM.getCart(user.cart_id)

④ if not item.available:
⑤ log := new Log(“Item Unavailable”)

RT 3: Prefetch S4 with log
S4⑥ ORM.save(log)

⑦ else:
⑧ cart.items.append(item)

Data Dep. Control Dep. Get Results From

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Add-Cart API
IN: pid, uid

S1
S2

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)

RT 1: Prefetch S1 & S2 with pid and uid

RT 2: Prefetch S3 with user
S3③ cart := ORM.getCart(user.cart_id)

④ if not item.available:
⑤ log := new Log(“Item Unavailable”)

RT 3: Prefetch S4 with log
S4⑥ ORM.save(log)

⑦ else:
⑧ cart.items.append(item)

RT 3: Prefetch S5 with cart

S5⑨ ORM.save(cart)

Data Dep. Control Dep. Get Results From

Existing Method: Prefetching
Prefetching (or, eager execution)
Execute statements as soon as parameters become ready.

Add-Cart API

Data Dependency
Prefetching of S3 must wait

until variable user is finalized.

IN: pid, uid

S1
S2

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)

RT 1: Prefetch S1 & S2 with pid and uid

RT 2: Prefetch S3 with user
S3③ cart := ORM.getCart(user.cart_id)

④ if not item.available:
⑤ log := new Log(“Item Unavailable”)

RT 3: Prefetch S4 with log
S4⑥ ORM.save(log)

⑦ else:
⑧ cart.items.append(item)

RT 3: Prefetch S5 with cart

S5⑨ ORM.save(cart)

Control Dependency
Prefetching of S4/5 must wait

until branching at ④ is decided.

Original Prefetching

Number of Round Trips

4
RTs 3

RTs

Data Dep. Control Dep. Get Results From

Our Approach: Shipping Dependencies to DB

S1

S2

S3

S4

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = false:

Insert Into Log Values …
else:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Stored Procedures

Original Prefetching

Number of Round Trips

4
RTs 3

RTs
1

WeBridge

Get Results From

Multiple
result sets

Our Approach: Shipping Dependencies to DB

S1

S2

S3

S4

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = false:

Insert Into Log Values …
else:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

- Can express data dep via local variables
- Can express control dep via branching commands

Stored Procedures

Original Prefetching

Number of Round Trips

4
RTs 3

RTs
1

WeBridge

Get Results From

Multiple
result sets

Our Approach: Shipping Dependencies to DB

S1

S2

S3

S4

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = false:

Insert Into Log Values …
else:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

- Can express data dep via local variables
- Can express control dep via branching commands

Stored Procedures

Original Prefetching

Number of Round Trips

4
RTs 3

RTs
1

WeBridge

Get Results From

Multiple
result sets

How to synthesize such stored procedures?

Practical Challenge
• Strawman Solution: static trans-compiling

• Statically build an IR, then compile into stored procedures.

Practical Challenge
• Strawman Solution: static trans-compiling

• Statically build an IR, then compile into stored procedures.

• Challenge: Language dynamism
• The language feature that alter program behaviors at run time (e.g.,

Java's reflection), commonly used by web frameworks.

1. Issue Select with Inner Join
2. Issue Select with Left Outer Join
3. Defer Select until returned object is used
4. Do nothing
5. …

entityManager.find(Entity.class, id)

Practical Challenge
• Strawman Solution: static trans-compiling

• Statically build an IR, then compile into stored procedures.

• Challenge: Language dynamism
• The language feature that alter program behaviors at run time (e.g.,

Java's reflection), commonly used by web frameworks.

• As a result, we cannot statically determine what and when SQL
statements will be issued at run time.

1. Issue Select with Inner Join
2. Issue Select with Left Outer Join
3. Defer Select until returned object is used
4. Do nothing
5. …

entityManager.find(Entity.class, id)

Opportunities
• Concolic execution (concrete + symbolic execution)

• Able to accurately analyze dynamic languages like Java.
• However, it only analyzes the program paths triggered by given inputs.

Opportunities
• Concolic execution (concrete + symbolic execution)

• Able to accurately analyze dynamic languages like Java.
• However, it only analyzes the program paths triggered by given inputs.

• Pareto principle in program path hotness distribution
• Most requests are handled in a few distinct program paths.

• In Broadleaf*, 2 hottest paths account for 96.3% requests
• By collecting inputs that trigger these hot paths, we can still optimize

for the most common cases

* Broadleaf Commerce, 1.7k Stars, https://github.com/BroadleafCommerce

https://github.com/BroadleafCommerce

Key Idea

Synthesize and call stored procedures to cover hot path requests
Safely fall back to normal execution for cold path requests

Synthesizing Stored Procedures
S1

S2

IN: uid
① user := ORM.getUser(uid)
② if user != null:
③ cart := ORM.getCart(user.cart_id)

Original Code

Synthesizing Stored Procedures
S1

S2

IN: uid
① user := ORM.getUser(uid)
② if user != null:
③ cart := ORM.getCart(user.cart_id)

Original Code

uid: 233
S1_ret: {id:233, …}
S2_ret: /* cart obj */
Trace (taking if branch)

Synthesizing Stored Procedures

SQL node (S1)
Template: "Select … Where id={uid}"
Condition: true
In: uid
Out: user

SQL node (S2)
Template: "Select… id={user_cart_id}"
Condition: user != null
In: user_cart_id
Out: cart

S1

S2

IN: uid
① user := ORM.getUser(uid)
② if user != null:
③ cart := ORM.getCart(user.cart_id)

Dependency Graph

Original Code

uid: 233
S1_ret: {id:233, …}
S2_ret: /* cart obj */
Trace (taking if branch)

Concolically
Replay

Synthesizing Stored Procedures

SQL node (S1)
Template: "Select … Where id={uid}"
Condition: true
In: uid
Out: user

SQL node (S2)
Template: "Select… id={user_cart_id}"
Condition: user != null
In: user_cart_id
Out: cart

S1

S2

IN: uid
① user := ORM.getUser(uid)
② if user != null:
③ cart := ORM.getCart(user.cart_id)

if true:
Select * Into @user From Users

Where id=@uid
if @user != null:
Select * Into @cart From Carts

Where id=@user_cart_id Translate
Stored Procedure

Dependency Graph

Original Code

uid: 233
S1_ret: {id:233, …}
S2_ret: /* cart obj */
Trace (taking if branch)

Concolically
Replay

Integrating into Web Apps

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

Integrating into Web Apps

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

Result Buffer

Interception layer

Integrating into Web Apps

When method begins:
Ø Call stored procedures
Ø Buffer result sets & associated SQL executed

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

S1 S2 S3 S5

Interception layer

Integrating into Web Apps

When method begins:
Ø Call stored procedures
Ø Buffer result sets & associated SQL executed
When app invokes DB via execute(sql):
Ø Try use buffer[sql] if SP results available

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

S1 S2 S3 S5

Interception layer

Integrating into Web Apps

When method begins:
Ø Call stored procedures
Ø Buffer result sets & associated SQL executed
When app invokes DB via execute(sql):
Ø Try use buffer[sql] if SP results available
Ø On miss, send sql to DB & clean buffer

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

S1 S2 S3 S5

Interception layer

Database

Handling Cold Path Requests

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

Interception layer

Database

Handling Cold Path Requests

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

Interception layer

Only cover the hot path
(item being available)

Request adding unavailable item

Database

Handling Cold Path Requests

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

S1 S2 S3

Interception layer

Only cover the hot path
(item being available)

Request adding unavailable item

Database

Handling Cold Path Requests

S1

S2

S3

S5

Stored Procedure Code
PROCEDURE (pid, uid) BEGIN
Select * Into @item_item_id, @item_available, …

From Items Where product_id=@pid
Select * Into @userid_user, @cart_id_user, …

From Users Where id=@uid
Select * Into @cart_cart_id, …

From Carts Where id=@cart_id_user
if @item_available = true:

Insert Into Items Values …
END

Add-Cart API
IN: pid, uid

S1
S2
S3

S4

S5

① item := ORM.getItem(pid)
② user := ORM.getUser(uid)
③ cart := ORM.getCart(user.cart_id)
④ if not item.available:
⑤ log := new Log(“Item Unavailable”)
⑥ ORM.save(log)
⑦ else:
⑧ cart.items.append(item)
⑨ ORM.save(cart)

RT 1: call PROCEDURE with pid and uid

Result Buffer

S1 S2 S3

Interception layer

RT 2:
Insert Into Log Values …

Only cover the hot path
(item being available)

Request adding unavailable item

System Overview

Offline Stage Online Stage

Web App

Request Traces

Stored
Procedures

Web App

Normal Requests

Stored
Procedures

Identify hot paths &
Synthesize SPs

Call SPs &
Falls back on cold path requests

Concolic Engine DB Interceptor

System Overview

Offline Stage Online Stage

Web App

Request Traces

Stored
Procedures

Web App

Normal Requests

Stored
Procedures

Identify hot paths &
Synthesize SPs

Call SPs &
Falls back on cold path requests

unmodified

Concolic Engine DB Interceptor

Evaluation: Latency
• Over 6 open-source apps with realistic workloads. (6.8k★/app)
• WeBridge achieves 59.6% end-to-end latency reduction.

44.4%

24.2%

48.3% 45.3% 44.3% 41.8%

0%

25%

50%

75%

100%

Shopizer Broadleaf Sagan My-Blog Pybbs Apollo
Apps

Relative End-to-End Latency (median)

Geo-mean: 40.4%

59.6%
Reduction

Evaluation: Throughput
• WeBridge can also increase near half throughput, by

• Avoid DB repeatedly parsing interactive statements; and
• Shorten lock-holding time of conflicting transactions

1.14 ×
1.02 ×

2.01 ×

1.65 ×

1.00 ×

2.26 ×

0.0

0.5

1.0

1.5

2.0

Shopizer Broadleaf Sagan My-Blog Pybbs Apollo
Apps

Relative Throughput

1.44×
(Geo-mean)

Summary and Q/A
• WeBridge synthesize stored procedures to pre-execute SQL

statements to reduce DB round trips.
• Using concolic execution, data & control dependencies are

accurately shipped to DB.
• For end-users, WeBridge reduces 59.6% latency and achieves

1.44× relative throughput.

• Check out our paper and source code!
• Design details; optimizations;

correctness proof, etc.
Paper Code

