
A Case for Virtualizing Persistent Memory

Liang Liang, Rong Chen, Haibo Chen, Yubin Xia, †KwanJong Park, Binyu Zang, Haibing Guan

Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

†Samsung Electronics

Contact: haibochen@sjtu.edu.cn

Abstract

With the proliferation of software and hardware support

for persistent memory (PM) like PCM and NV-DIMM, we

envision that PM will soon become a standard component of

commodity cloud, especially for those applications demand-

ing high performance and low latency. Yet, current virtual-

ization software lacks support to efficiently virtualize and

manage PM to improve cost-effectiveness, performance, and

endurance.

In this paper, we make the first case study on extending

commodity hypervisors to virtualize PM. We explore design

spaces to abstract PM, including load/store accessible guest-

physical memory and a block device. We design and im-

plement a system, namely VPM, which provides both full-

virtualization as well as a para-virtualization interface that

provide persistence hints to the hypervisor. By leveraging

the fact that PM has similar characteristics with DRAM ex-

cept for persistence, VPM supports transparent data migra-

tion by leveraging the two-dimensional paging (e.g., EPT) to

adjust the mapping between guest PM to host physical mem-

ory (DRAM or PM). Finally, VPM provides efficient crash

recovery by properly bookkeeping guest PM’s states as well

as key hypervisor-based states into PM in an epoch-based

consistency approach. Experimental results with VPM im-

plemented on KVM and Linux using simulated PCM and

NVDIMM show that VPM achieves a proportional consoli-

dation of PM with graceful degradation of performance. Our

para-virtualized interface further improves the consolidation

ratio with less overhead for some workloads.

Categories and Subject Descriptors D.4.2 [Storage Man-

agement]: Virtual memory

General Terms Design, Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987551

Keywords Persistent Memory, Virtualization, Para-

virtualization

1. Introduction

Computer systems have long faced a tension between

performance and persistence, which poses a challenge to

place data in volatile and non-volatile storage to ensure

proper crash recovery under power failures. Persistent mem-

ory (PM), either in the form of battery-backed memory

cards (e.g., NVDIMM) or emerging non-volatile memory

like PCM [47], Memristor [65], STT-MRAM [3], is promis-

ing to relax this tension by providing high-performance re-

coverable systems.

Because of its intriguing promise, PM has gained signif-

icant interests from both hardware and software sides. Ma-

jor memory vendors like Micron, Viking, JEDEC, Fusion-IO

have provided commercial NVDIMM to the mass market.

SNIA has also recently formed the NVDIMM Special In-

terest Group [49] to accelerate the adoption of NVDIMM.

For emerging non-volatile memory, Micron has announced

its 1Gb PCM available to volume production [38] in 2012. In

response of this, researchers have investigated a number of

ways of utilizing PM [10, 14, 20, 31, 53, 62, 64, 68]. Linux

and Windows developers have started to provide support for

PM-aware file systems [15, 16].

With the proliferation of hardware and software systems

for PM, as well as the emerging in-memory computing in-

stances for big data from major cloud providers [2], we en-

vision that PM will soon be an indispensable part of cloud

computing systems. Actually, recent industry talks [1, 45] in-

dicated that cloud will likely incorporate non-volatile mem-

ory like NVDIMM to increase the services reliability, scal-

ability, and availability. However, commodity hypervisors

still lack support to virtualize and efficiently manage PM in

a cloud environment.

In this paper, we make a case study on how to effi-

ciently virtualize PM to improve cost-effectiveness and per-

formance, which are important for several reasons. First, as

new technologies, PM is still with a relatively high price.

For example, currently NV-DIMM’s price is at least 8-10X

higher than DRAM according to the price quote from NV-

DIMM providers; efficiently virtualizing and consolidating

126

PM may lead to significant cost-effectiveness. Second, some

emerging memory technologies like PCM or Memristor still

have inferior write performance than DRAM, virtualizing

them may lead to performance improvement. By virtualiz-

ing PM, we provide VM with an abstraction of sufficient

amount of PM, through emulating it with multiple types of

media, without any relax to the persistency that PM offers.

There are several technical challenges in providing effi-

cient virtualization for PM and VPM addresses them in a

framework called VPM. First, current virtualization lacks

support for an appropriate abstraction for PM, which may

present as a block device or directly as a piece of mem-

ory in guest virtual machines (VMs). In this paper, we ex-

plore the design spaces of providing appropriate abstrac-

tions as well as support from hypervisors to different forms

of PM. Specifically, VPM virtualizes PM as a block device

and a special piece of memory and provides a few para-

virtualization interfaces to bridge the semantic gap of per-

sistency between guest VMs and the hypervisor.

Second, as PM may exhibit different performance and

price characteristics from DRAM, it is critical to consoli-

date PM to maximize cost-efficiency, performance, and en-

durance. As a PM has similar characteristics (except some

performance gap between DRAM and some emerging mem-

ory like PCM) with DRAM when serving read accesses from

guest VM, it has no impact on persistence whether data is

placed in DRAM or PM. To this end, VPM leverages DRAM

to place read-mostly data in a transparent way by leverag-

ing the two-dimensional paging (e.g., extended page table

(EPT)) to dynamically migrating data between DRAM and

PM.

To make an optimal decision on data placement, VPM

needs to efficiently track PM accesses to predict future ac-

cesses. VPM leverages the newly introduced dirty bit in the

hypervisor-managed page table (e.g., EPT) to transparently

tracking writing working set of guest VMs.

Finally, crash recovery is a challenge for VPM under a

hybrid memory architecture. To ensure proper and efficient

crash recovery under a power failure, VPM only needs to

preserve key data structures in the hypervisor to be consis-

tent but also need to efficiently bookkeep virtualized PMs

for proper crash recovery. VPM address this challenge by

making the part of hypervisors leverage PM to store its key

data structures for crash recovery and using a portion of PM

to bookkeep guest VM’s PM structures.

We have built a working prototype based on KVM, by

simulating PM using DRAM and treating PM as a portion

of the physical address space in the hypervisor. To measure

the performance of VPM, we run a combination of work-

loads atop VMs. Evaluation results show that VPM can re-

duce the using of PM by a factor of 50% while incurring

only 20% performance overhead for most tested workloads.

The para-virtualization interface further improves PM con-

solidation rate by allowing more workloads to be executed

concurrently with low performance degradation.

This paper makes the following contributions:

• A case for virtualizing PM (§3) and a set of ways to

virtualize PMs (§4).

• A set of techniques to efficiently consolidate PM for

better cost-efficiency and performance (§5).

• An implementation on KVM (§6) set of evaluations that

confirms the effectiveness of VPM (§7).

2. Background and Motivation

2.1 Persistent Memory

Persistent memory (PM), also known as non-volatile

memory (NVRAM), embraces the high performance byte

addressability of DRAM and the persistency of disk and

flash devices. They can be attached to a DRAM-like mem-

ory bus and thus can be accessed through load and store

instructions [23]. Currently, there are several technologies

providing PM potentially as a main-memory replacement:

PCM (Phase-change Memory) [29], STT-MRAM (Spin-

Transfer-Torque MRAM) [27], battery-backed DRAM (i.e.,

NVDIMM) [52], and memristors [51]. With the advances of

semiconductor techniques, PM is now commercially avail-

able with sizes of 8GB [52]. In this paper, we do not con-

sider flash-based storage (e.g., solid state disk) since they

are mostly accessed as block device through I/O bus.

While it is still unclear which emerging technology would

likely be a replacement of DRAM, we envision that there

will be a long period where DRAM will co-exist with emerg-

ing PM, for the sake of performance, cost, and endurance.

A co-existence of DRAM with PM would lead to hetero-

geneity in performance and cost-effectiveness. For example,

NVDIMM is with 8-10X price compared to DRAM. Other

emerging PM would still have a relatively higher price until

massive production and wide adoption. Besides, PM tends to

have two types: symmetric read/write performance or asym-

metric read/write performance. Finally, some PM devices

have endurance issues such that they have a limited lifetime.

In this paper, we mainly consider two types of PM: 1) PM

with symmetric read/write performance but higher price; 2)

PM with asymmetric read/write performance. Specifically,

we consider PCM and NVDIMM as their representatives.

PM in Use: PM is now being used in three categories.

First, as many applications and file systems are still not PM

aware, PM is used through the block device interface (e..g,

PMBD [28]). While this way can make legacy applications

benefit from PM, such a usage does not fully exploit PM:

1) the byte addressability is not fully exploited; 2) a large

portion of PM is used for read but not write, which just treat

PM as disk cache.

The second way is building a new PM-aware file system.

Examples include BPFS [15], SCMFS [62], PMFS [20],

and Aerie [56]. In this case, PM is accessed through the

127

memory interface by file systems, which further provide a

block interface to applications. The layout of data structures

of the file systems is specially optimized to leverage PM’s

characteristics. Such a usage provides better usage of PM in

the file system layer, but a lot of application data is still not

PM optimized.

The third one is building PM-optimized applications,

which can directly access PM through load/store in-

structions. Examples include Quill [21], Moneta-D [10],

Mnemosyne [55], NV-Heaps [14], NV-Tree [64] and a lot

of database logs [11, 22, 43, 54].

Such three usages PM are suitable for different use cases,

according to which components can be modified or not.

Thus, they may coexist for a relatively long time. Varies

usages of PM lead to different access patterns: some are

read-mostly; some are write-intensive; some are at byte-level

while others are at block-level. The diversity will be further

amplified in virtualized environments, where a number of

diverse workloads are consolidated.

2.2 The Need of PM Virtualization

VPM is motivated by two important trends in the big

data era. First, the intriguing features like disk-like persis-

tency and memory-like fast byte-addressability make PM

very promising in many big-data applications demanding

low-latency and high-throughput, where crash recovery is

a hard but an indispensable issue. This has been evidenced

by a number of systems designed around PM like OLTP,

file systems and concurrent data structures. Second, (vir-

tualized) cloud has been a standard computing platform to

run many big-data applications, which can be evidenced by

many big-memory clouds from major cloud vendors like

Amazon EC2, Windows Azure, and RackSpace. With the

two trends, we envision that major cloud platforms will soon

provision PM in their cloud for performance and reliability.

While a hypervisor can trivially support PM by treating it

as normal DRAM or a hypervisor can directly expose PM to

guest VMs, these would lose several key benefits, which are

the key motivation of VPM:

Virtualization for cost-effectiveness: One sole purpose

of virtualization is server consolidation, where a hypervisor

can host a large number of guest VMs each with different

uses of PMs. Statically and directly provisioning physical

PM to guest VMs are not only inflexible but also not cost-

effectiveness. The latter is especially for NVDIMM, whose

price is at least 8-10X than DRAM. By adding an indirection

between the VMs and the PM, the hypervisor can provide

more flexible resource management to maximize the utiliza-

tion of PM according to their characteristics. For example,

for those read-intensive workloads running on PM, a hyper-

visor can use DRAM or SSD to emulate PM to release more

physical PM to other VMs, while still retaining performance

and persistence of PM. In this way, PM can be more effi-

ciently used while reducing the vendor’s cost.

PMDRAM

Applications

Page

Table

VM-1

GVA

EPT
Hypervisor

GPA

HPASystem Bus

Fig. 1: Address translation in virtualization

Virtualization for performance: The additional indirec-

tion added by virtualization may also help bridge the vari-

ation of performance characteristics between DRAM and

emerging PM like PCM or memristor. For example, the hy-

pervisor may leverage DRAM to transparently serve some

read-mostly workloads for PM with inferior read perfor-

mance. Besides, the hypervisor may also leverage schedul-

ing information to mitigate the NUMA-induced memory la-

tency of PMs.

Virtualization for ease of management: From the ten-

ants’ perspective, the PM virtualization provided by the

hypervisor can greatly ease the applications’ management

of PM. For example, a tenant can simply request a large

(pseudo-) PM in the VM and use it as a block device to

speed up unmodified database applications, while leaving

the entire PM management to the underlying hypervisor. For

other tenants that require fine-grained control over PM, they

can request the hypervisor to expose PM as directly-attached

memory while with little intervention from the hypervisor.

2.3 Background on Virtualization

Hardware-assisted virtualization has been a standard fea-

ture in both desktop and server platforms. On x86 processors

there are two modes named “host mode” and “guest mode”,

the former is used to run the hypervisor and the latter is

for guest VMs. Once some privileged operations, e.g., I/O

instruction or system configuration, executes in the “guest

mode”, a trap occurs and the hypervisor takes over to handle

the trap, which is also known as a “VMEXIT”. The hyper-

visor then resumes the guest VM’s execution after handling

the VMEXIT. Such a process is also known as “trap-and-

emulate” and is the essential part of CPU virtualization.

To virtualize memory, hardware vendors introduce a new

type of page table, named “Extended Page Table” (EPT)

by Intel or “Nested Page Table” (NPT) by AMD , which

is uniformly denoted as nPT in this paper. As a page table

in guest OS (mentioned as gPT) transfers guest virtual ad-

dress (gVA) to guest physical address (gPA), the nPT trans-

fers guest physical address (gPA) to host physical address

(hPA) (Fig. 1). Each guest VM has its own nPT which is

managed by the hypervisor. The second-level address map-

128

ping enables a continuous memory space of gPA built on

discontinuous hPA memory, which eases the memory man-

agement of hypervisor and is hidden to the guest VM.

I/O device virtualization is done by intercepting all ac-

cesses to device registers or memory-mapped I/O through

trap-and-emulate so that the hypervisor can get interposition

between the guest VM and physical devices.

3. PM Virtualization

Similar as the traditional server virtualization, there are

two typical ways to virtualize PM: 1) Full-virtualization,

which provides functionally-identical virtualized PM to

guest VM; 2) Para-virtualization, which abstracts a similar

but not completely identical interface. The two ways share

similar characteristics with server virtualization: the former

provides transparency, but the latter may provide better per-

formance.

Besides, as current PM like NVDIMM or PCM can be

exposed to software as either a memory device or a stor-

age device, we need to consider both cases in the design of

VPM. Typically, the former one can provide better perfor-

mance due to being load/store accessible and thus bypasses

unnecessary interposition and formatting from systems soft-

ware. The latter is mainly designed to enable existing appli-

cations to benefit from PM without notable changes.

3.1 Full-virtualization of PM

Memory interface: For PM like PCM and MRAM that

attached to the memory bus, the interface is similar to

DRAM that is accessed through load/store instructions. A

guest VM retrieves PM information (such as caching and

address space) from BIOS and then manages the PM using

virtual memory hardware.

The memory interface is virtualized through namespace

virtualization. A namespace, including address range and

caching modes (e.g., write back, write through, or write

combining), is a continuous address space isolated from each

other. It is delivered by the virtual BIOS to the guest OS dur-

ing the booting process. Specifically, Intel x86 provides a set

of memory type range registers, which can be leveraged by

the hypervisor to virtualize the namespace. In the hypervisor,

VPM can use nested paging to map the guest PM names-

paces to host PM namespaces. Thanks to the another indi-

rection provided by virtualizing PM, the size of guest PM

can be smaller or larger than the physical PM size.

Block interface: Some PMs, such as NVDIMM, also

supports block interfaces to provide an evolutionary path to

adopt PM. VPM can virtualize them through configuring the

virtual BIOS so as to enumerate PM devices to the guest

VM. This includes configuring PM-related control registers

to expose the interfaces to the guest PM driver. VPM emu-

lates the control registers of PM using a “trap-and-emulate”

mechanism: when the control register is accessed, the CPU

will trap to the hypervisor to emulate the access. However,

as the hypervisor manage the PM through the memory inter-

face, the upon virtual block interface is already implemented

using the PM’s memory interface. The hypervisor first maps

the entire PM to its own memory space, and reads or writes

the PM according to the commands issued by the guest VMs.

To copy data between DRAM and PM through the block

interface, the guest PM driver needs to configure the PM

command registers to indicate the data region information

and let the hypervisor do the copy. The process is more like

DMA operations. VPM completely leverages MMU instead

of I/O MMU to isolate PM devices in the hypervisor.

3.2 Para-virtualization of PM

While full-virtualization can retain transparency to guest

VMs, the lack of guest semantics information may lead to

suboptimal performance and cost-efficiency. To this end, we

also provide a para-virtualization interface, which aims to

enable the guest VM to provide some hints to the hypervisor.

For emerging PM like PCM, the asymmetry read/write

and limited endurance are key limitations, which may

be further exacerbated due to the additional virtualization

layer (analogous to sync amplification for I/O virtualiza-

tion). While both Xen and KVM are equipped with a

para-virtualized memory interface called transcendent mem-

ory [36]. We found that it is not suitable for PM for several

reasons:1) it is not designed with persistency awareness; 2)

it uses a slow, long data path using a frontend/backend de-

sign with several interim buffers, which are not suitable for

fast PM devices and may even amplify the write endurance

issues.

Instead, VPM provides a slightly modified PM interface

by allowing guest VMs to access virtualized PM in a man-

ner which both preserves the semantics that of the native

one and enables a relatively high performance. Table 1 lists

those few APIs, which under certain circumstances, will be

translated into hypercalls. For example, the vpm persist is

used to notify the hypervisor that a specific range of mem-

ory requires to be persisted to the PM. The vpm barrier is

a virtualized call of pcommit from Intel or pm barrier [20],

which informs VPM to wait until the prior persist requests

to complete. This essentially enables an epoch-based persis-

tency [15, 44] to guest VM. The vpm lock and vpm unlock

are introduced to achieve the mutual exclusive write to PM,

which prevents a certain range of memory to be concurrently

accessed by both the guest VM and the hypervisor.

3.3 Architecture of VPM

Fig. 2 shows an overview of the architecture of VPM.

VPM can run multiple guest VMs, each of which is with

different virtualized forms of PMs, e.g., para-virtualized de-

vice, full-virtualized persistent memory. Each VM can map

at most the amount of PM equaling to the size of the vir-

tualized PM seen by the VM. Inside the hypervisor, VPM

uses the PM as the memory device attached to the memory

bus for better performance. A physical PM page is allocated

129

Table 1: Para-virtualization interfaces

vpm persist notifies hypervisor that a specific range of guest PM is to be persisted

vpm lock/unlock lock & unlock the content of a specific range of guest PM to avoid it being modified by the hypervisor

vpm barrier persist all prior flushed guest PM to physical PM

PMDRAM

V-DRAM VPM VPM

Applications

Memory

Manager

PM

Driver

read/write

load/store

VM-1 VM-2

Physical H/W

Virtual H/W

VM Kernel

VM User

Disk

Block Logic

Block Logic

Fig. 2: Overall architecture of VPM

from a unified PM pool managed by VPM in the hypervi-

sor. VPM intensively leverages the two-dimension address

translation (e.g., nPT) to transparently mapping guest PM to

host PM. According to different usages of guest PMs and

the underlying PM characteristics, VPM may use different

storage media to store guest PM data. The goal is to retain

or even improve the performance (for PCM) while saving

the usages of PM (for NVDIMM). This is done by leverag-

ing guest provided hints and the hypervisor-based memory

tracking (§ 5). However, VPM still preserves the persistency

property of guest PM so that the guest PM data can be con-

sistently recovered even in the face of arbitrary power fail-

ures (§ 4).

4. Virtualizing Persistence and Crash

Recovery

One key aspect of VPM is ensuring persistency of virtu-

alized PM, by guaranteeing that a virtualized PM enjoys the

same persistence guarantee as its native counterpart. VPM

achieves this by placing certain constraints over accesses of

guest PM from VM layer as well as providing proper book-

keeping and crash recovery at the hypervisor layer. In the fol-

lowing, this section first describes necessary hardware sup-

port and assumptions and then describes how we extend the

hypervisor for crash recovery.

4.1 Assumption and Hardware Support

As prior work, we assume that data stored in PM is

made durable and consistent, but that stored in CPU cache

is not. Besides, as there are typically some internal buffers

inside a memory controller, a write operation to memory is

usually buffered and in-flight reads by commit by directly

reading the written value in the buffer. While this design

is not an issue for DRAMs, it may lead to subtle comprise

of persistence for PM due to the violation of ordering and

persistence.

We address this issue by combining the newly provided

instruction set by Intel and memory fencing instructions.

Specifically, Intel has recently added an instruction called

PCOMMIT (Persistent Commit). PCOMMIT serves as a

persistent barrier, to enforce all memory stores flushed from

CPU caches to either PM or some power-fail protected

buffers. To guarantee proper memory ordering like the read-

after-write reordering, VPM leverages memory fencing in-

structions in the hypervisor. Another feature VPM relies on

is the atomic update of PM, at the granularity of 8-bytes, or

16-bytes with locking prefix or 64-bytes with transactional

memory [20].

4.2 Persistency Model

To ensure persistency and consistency (i.e., memory per-

sistency) in the hypervisor, one may either use a strict or

a relaxed persistency model [44]. To provide better perfor-

mance, VPM adopts a relaxed persistency model that allows

reordering by using a combination of PCOMMIT, clflush1

and fencing to only ensure a proper ordering and persis-

tency when necessary. Specifically, VPM adopts an epoch-

based persistency [15] by dividing execution related to PM

as epochs. It then uses clflush to flush related memory stores

to PM and then uses a PCOMMIT to force memory stores to

PM to be persistent at the end of each epoch; Proper mem-

ory fences are added to preserve necessary ordering among

memory accesses and force the completion of PCOMMIT to

be visible globally.

VPM ensures persistence by preserving the invariant that,

for any persistent state that can be identified by applications

(either with instructions or predefined APIs), every guest PM

page must have one persistent media (e.g., SSD or PM) to

store its content. Fig. 3 illustrates an example of data resident

types among DRAM, PM, and SSD: at any time, a guest PM

page’s content must be at least stored in either SSD or PM.

4.3 Persistency of Full-Virtualization PM

Full-virtualization of VPM (VPM-hv) ensures that all

memory writes will be applied to native PM. To satisfy this

constraint, VPM-hv heavily relies on the write protection of

the two-dimension address translation mechanism. VPM-hv

traps all writes to guest PM pages that are originally mapped

with non-volatile storage and remaps the corresponding re-

1 Note that, Intel provided several optimized clfush version like

CLFLUSHOPT and CLWB. We use clfush to uniformly denote them.

130

Fig. 3: Data Resident Types. (a) is the state at the very beginning.

(b) shows data after being loaded from disk to the PM. (c) means

the data has been modified so the only copy is now in PM. (d) stands

for the temporary status when transferring from state-c to state-e.

(e) is the state of PM emulation where the physical PM is revoked

for other VM. (f) shows a state that will never exist since the data

is only in DRAM which is vulnerable to power failure.

gion with native PM. The guest PM mapping is determined

partially by the access pattern, which will be discussed in

(§ 5.1).

4.4 Persistency of Para-Virtualization PM

The para-virtualization of VPM (VPM-pv), guest VM ne-

gotiates with VPM through the predefined APIs to guarantee

the persistency of guest PM. As have introduced previously,

vpm persist is invoked to notify that a specific guest PM re-

gion is to be persisted while vpm barrier acts as a sign that

the previously issued vpm persists have been completed, and

the corresponding data has been made non-volatile.

VPM-pv further relieves the constraints in VPM-hv and

leaves more space for the VM or software in VM, that the

modifications can be applied directly to non-volatile storage

media; it is the applications’ responsibility to maintain the

persistency of data. Additionally, VPM-pv can also take

the access pattern of a guest PM into considerations while

making decisions on the PM mapping.

Optimization for Para-Virtualization PM Communi-

cating with hypervisor presents a challenge for VPM-pv.

Using hypercall for every VPM-pv APIs can incur unac-

ceptable performance overhead for VM software since it is

a high-frequency event. In VPM-pv, each VM communi-

cates with hypervisor via one piece of shared memory. This

piece of shared memory holds one ring queue and its cor-

responding metadata. On each vpm persist call, a descriptor

referring to a memory region that is to be persisted will be

placed on the ring queue, which will be processed by a per-

sist thread that runs on a dedicated core in the hypervisor by

storing it in the non-volatile media.

To avoid additional memory copy, vpm persist only

records the pointer to the memory region. However, this

leads to another problem that the persist thread might ac-

cess the region that is to be persisted simultaneously with

the VM. VPM-pv introduces vpm lock and vpm unlock to

achieve the mutual exclusiveness between hypervisor and

VM. Both entities shall proactively protect the region with

the given APIs before making changes.

4.5 Supporting Crash Recovery

VPM is designed to guarantee that the key states regard-

ing virtualizing PM in hypervisor shall be preserved across

power failures or crashes. Correspondingly, operating sys-

tems in guest VMs should have its mechanism to recover

data by leveraging states accessible from guest PM.

Apart from data stored in the guest PM, there are several

key states in the hypervisor that require consistency and per-

sistency. First, the additional indirection between guest PM

to host PM, which does not exist in a vallina virtualized en-

vironment, should be recoverable after failure. This includes

the nPT for PM, as well as hypervisor-provided reverse map-

ping from host PM addresses to guest PM addresses. Re-

covering nPT for PM allows VM to have an identical view

of data on PM across a failure. Second, the memory track-

ing information, including the local and global history table,

should be preserved to enable continuous access prediction

and improve wear-leveling.

However, those states cannot be directly stored on PM.

First, they are updated rather frequently (e.g., a CPU updates

nPT status bits like access and dirty automatically on each

memory access), using PM to store them might reduce the

endurance for PCM-like PM. Second, there are still subtle

ordering issues to ensure the consistency of such data struc-

tures.

VPM uses a separate data structure in PM to bookkeep the

mapping from guest PM to host PM but uses DRAM to store

nPT for accesses by CPU. It uses a write-ahead style logging

to ensure consistent crash recovery: before updating the nPT,

VPM firstly performs the corresponding page allocation and

content migration, then updates its mapping structure stored

in PM and lastly applies the updates to nPT.

The history information is persisted to PM periodically.

The interval can be relatively long since it does not require

high accuracy and is timing-independent. Losing some ac-

curacy only affect performance but not persistency.

Hypervisor recovery: The hypervisor does not explicitly

perform data recovery. Instead, on every startup of guest

VMs, the hypervisor will automatically recover data either

from disks or PM, according to the mapping information,

stored in PM, which the PM nPT will also be populated

accordingly.

5. PM Consolidation

With multiple VMs running different PM workloads,

VPM is designed to leverage the access characteristics to

consolidate virtual PMs into less physical PMs. The key for

VPM to do this with small overhead is efficiently tracking

and predicting memory accesses. Specifically, VPM needs

to track memory accesses to determine not only which page

131

is frequently referenced, but also which page is frequently

updated. VPM then leverages such information to transpar-

ently remap pages to save PM or improve performance.

5.1 PM Tracking

While there has been much work in memory access track-

ing and prediction, there is little work doing this at the hy-

pervisor level for managing PM. This is unique as VPM

needs to optimize for performance while retaining persis-

tency and thus needs to track both read and write set with

timing information. Commodity processors provide limited

hardware support for tracking memory access patterns. Prior

approaches usually use an intrusive approach by either trap-

ping all accesses to the hypervisor [71] or only tracking read

accesses [26], or both. Other approaches usually leverage

dedicated hardware support currently not available in com-

modity processors [19, 46] and not designed for hypervisors.

To provide a readily-available approach while retaining

guest transparency, VPM leverages nPT to track the working

set information. While prior Intel processors before Intel

Haswell only provides an access bit to nPT entries, recently

processors (e.g., Haswell) also provide a dirty bit in nPT,

which can be used by VPM to track the writing work set.

This avoids the expensive approach by frequently trapping

into the hypervisor as in prior approaches [71].

At every sampling period, VPM scans each nPT entries

related to PM and gets the access bits and dirty bits of nPT

entries and also clear such bits to rescan them later in next

period (may need to flush TLB for nPT). VPM then records

such bits for use in prediction.

Prior PM management systems usually use a variant

of CLOCK algorithm [9] to predict future memory ac-

cesses [33]. While this can result in good accuracy, it re-

quires frequent sampling of memory accesses, which may

incur large overhead in a virtualized environment. As indi-

cated by prior work [33], sampling writes instead of read-

s/writes may provide a better estimation of future accesses

for PM. Besides, for both PCM-like and NVDIMM like PM,

the write accesses are more important metrics to PM virtual-

ization. Hence, we only sample write accesses in this paper.

5.2 Transparent Page Migration

Page displacement is done by remapping from PM pages

to different storage media on the fly. VPM achieves this

by dynamically changing the mapping from guest physical

address to host physical address, which is stored in nPT.

Batching of flushing to disk: Whenever there is a PM

page swap-out, the content of this page needs to be made per-

sistent on the disk(SSD), which in turn requires a disk flush,

after which can applications continue to run. Frequent disk

flushes can dramatically waste disk bandwidth due to the

low utilization of on-disk cache and little schedule space for

disk-scheduler. To relieve the performance impact incurred

by disk flush operations, VPM aggressively writes back PM

pages to the disk in the background and only issue disk flush

when the amount of dirtied data reaches a certain threshold

or on applications’ request (PM page swap out).

Reducing writing cost with lazy reallocation: When

a page is displaced, VPM does not immediately clear its

content and still retains its mapping until it is reused by other

VMs. Besides, such pages are allocated to other VMs in a

least-recently displaced order. These are used to reduce the

writing/copying cost to this page. For example, when there

is a write request to a guest PM page mapped to a DRAM

while the original host PM page is still not reallocated, a

copy of the page can be avoided as VPM can directly remap

the host PM page back. Later, after the nPT violation due to

the write request is fixed, the write can directly write to the

host PM page.

5.3 Other Issues

Transparent Huge Page: Commodity hypervisors like

KVM are built with a mechanism called transparent huge

page (THP), which merges consecutive pages into a huge

page (like 2MB or even 1GB) to reduce TLB misses and

TLB miss penalty. However, this increases the paging gran-

ularity and thus reduces the flexibility of PM virtualization.

Further, the cost of a page migration or huge page demo-

tion (i.e., breaking a huge page into smaller pages) is much

higher. For the sake of simplicity, VPM currently disables

THP. To work with THP, VPM can register a callback to re-

ceive THP’s notify whenever there’s a change to nPT.

Transparent page sharing: Commodity hypervisors has

a useful feature called transparent page sharing, by which

the hypervisor automatically merges pages with the same

content. More specifically, KVM has a feature derived from

Linux called kernel same-page merging (KSM). VPM is

designed to leverage this feature for PM as well. However,

it leverages the fact that the merged page is write-protected

such that it instead uses a DRAM page instead of host PM

page to save PM pages if PM is with a higher price than

DRAM in the NV-DIMM case. We currently disabled KSM

for simplicity, but can support it by distinguishing the case

for consolidation and KSM upon a write protection fault.

6. Implementation

We have built a prototype of VPM based on Linux 3.17.2

by modifying the KVM implementation for Intel processors.

The code base of VPM comprises around 4200 lines of code.

To expose PM to guest VMs, VPM extends guest ker-

nel with a kernel module, whose main functions are man-

aging and allocating PM. For the current implementation,

the kernel module uses a predefined reserved 1GB physi-

cal consecutive memory region as the PM pool, which is

backed by VPM. This provides guest VMs with an abstrac-

tion that there is a dedicated 1GB PM provided, no matter

what the amount of native PM is. VPM’s guest kernel mod-

ule is also responsible for managing and persisting the map-

132

ping between guest physical PM and applications, to provide

a consistent view of memory across crashes.

PM Tracking for HV: VPM-hv leverages the Ac-

cess/Dirty Bit on EPT entries to track the accesses and up-

dates of every PM page. The tracking process piggybacks

on one VM-Exit event for every 500 nanoseconds. For each

round of tracking, VPM-hv clears the Access/Dirty bit (if

set) for the scanned pages and record this information for the

page remapping afterward. However, checking all page en-

tries of guest PM for each round of scanning can hurt the per-

formance, which is a dilemma between accuracy and over-

head of statistics. To relieve this problem, VPM-hv employs

a two-level scanning, PM page entries in the first level refer

to the hot pages, and they will be checked for each round

of PM scanning. PM page entries in the second level refer

to the relatively cold pages, and they will be scanned in a

clock-like manner. The number of page entries in the first

level and pages to scan in the second level are both limited.

Page entries will be moved between the two levels according

to the frequency that it is modified.

PM Tracking for PV: Access tracking for VPM-pv is

relatively easy since the tracking information can be directly

obtained when processing vpm persist APIs.

Managing PM for HV: Managing PM for VPM-hv in-

cludes handling PM access EPT-violation as well as guest

PM Page remapping. During the handling of EPT-violation,

VPM-hv needs to allocate native PM since it requires that all

updates are applied to physical PM, which under the worst

situation, needs to reclaim an already allocated PM Page by

unmapping it from the page table. VPM-hv uses the CLOCK

algorithm [9] to pick the PM Page for unmapping. The PM

page remapping remaps the guest PM page with a DRAM

page if the updating frequency is not high enough. Cur-

rently, PM Page Remapping for VPM happens at the same

frequency as the PM access tracking.

Managing PM for PV: Handling EPT-violation for

VPM-pv does not require the allocated page to be a na-

tive PM page. This is because the persistency of VPM-pv

is guaranteed by the VPM-pv APIs, which is processed by

a persist thread. In VPM-pv, persist thread shares with each

guest VM a 128MB non-volatile memory metadata region.

This region includes 2 sections, the lock section, and ring

queue section. The former one holds locks for each guest

PM pages, while the latter one holds vpm persist requests.

On processing vpm persist requests, persist thread locks the

corresponding memory region, copies the content to non-

volatile media (if necessary), and then unlocks the region.

On processing vpm barrier requests, persist thread flushes

the whole ring queue for this VM. VPM-pv uses Peterson

algorithm to implement vpm lock and vpm unlock.

Para-virtualizating PMBD: To demonstrate the effec-

tiveness of providing hints to the hypervisor using para-

virtualization, we modified PMBD, a persistent memory

block device to use the interface provides by VPM. We

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

d
d
 t
h
ro

u
g
h
p
u
t
(M

B
/s

)

bs(kb)

Emu NVDIMM
Emu PCM

Fig. 4: PMBD throughput slowdown

found that the process is relatively easy due to the module

design of PMBD: we only need to modify few lines of code:

we wrap the block writing with vpm lock and vpm unlock

and persist this writing with vpm persist. Another change we

need is to change calls to clflush to use the batching interface

vpm barrier of VPM.

7. Evaluation

7.1 Experimental Setup

We evaluate VPM using a host machine with a Quad-core

Intel Core processor, 16 GB DDR3 memory and 256 GB

Samsung SSD on SATA-3 bus. The memory is divided into

two parts: one is the main memory and the other is emulated

PM. Two types of PM are emulated, including NV-DIMM

and PCM. NV-DIMM is relatively straightforward to emu-

late since it uses a DRAM component for read and write

operations, which shares the same performance characteris-

tics with DRAM. PCM is emulated by configuring PMBD

to deliberately inject a slowdown on write operations. We

use dd to test the effect of PMBD slowdown, by writing to

PMBD at different granularity with DIRECT IO mode. As

shown in Fig. 4, the write throughput of emulated NVDIMM

is roughly 8X of emulated PCM when the size of write unit is

over 16KB. For a smaller write unit, the slowdown is around

5X.

It might be common to use a Linux RAMDISK-like block

device as a native PM device for the baseline. However, it is

not fair enough since a RAMDISK device relies on the OS

virtual machine management policies and cannot be parti-

tioned between PM and DRAM. Thus, it could be interfered

by OS paging. A better choice could be using Persistent

Memory Block Device (PMBD) which supports partition-

ing between PM and DRAM [12]. For block writes, PMBD

uses pm wbarrier operations to ensure that the selected data

is flushed from CPU cache to memory. PMBD is also able

to emulate the throughput of PM.

We evaluate VPM by considering the three dimensions:

1). PM types, including NV-DIMM, PCM, etc. NV-DIMM

has similar performance with DRAM and has no endurance

problem, while PCM has a limitation on write and is slow on

write. 2). Virtualization types, including full-virtualization

and para-virtualization, the former requires no modification

133

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Workset Size (MB)

baseline

1024M

512M

256M

128M

64M

32M

16M

Fig. 5: fwr bandwidth

on guest VM while the latter does; 3). Guest workloads,

including different file systems and applications, where the

file systems can be PM-aware or not.

7.2 Microbenchmark

We use lmbench to analyze VPM’s influence on band-

width and latency of memory access. We select fwr to mea-

sure write bandwidth of VPM with different amount of PM

given. To enable fwr to access PM, we adopt libvmalloc li-

brary provided by NVML2, which replaces the original mem-

ory allocation functions (e.g., malloc and free) with PM-

aware ones. We also make small modifications (less than 10

LoC) on libvmalloc so that it can communicate with VPM’s

guest kernel module. As shown in Fig. 5, the x-axis indi-

cates the size of touched memory for the fwr bw benchmark;

the y-axis stands for the throughput, and lines in the figure

represent memory bandwidth measured for different sizes of

the touched memory area when the amount of backing PM

is different. As can be observed from this figure, the size of

provided native PM does not have a big effect on the final re-

sult, which contributes to less than 10% drop in bandwidth.

This is because fwr access memory in a relatively sequential

pattern, which is friendly by VPM’s prediction and prefetch-

ing mechanism.

7.3 PM Requirement

One motivation of VPM is that PM is usually a precious

hardware resource on servers due to its high price. VPM is

designed to provide most of the performance benefit from

PM with much less physical PM hardware. We run Filebench

with ext4 over PMBD on a server with NV-DIMM. The

baseline test runs with enough NV-DIMM, and the workload

runs on VPM using full-virtualization PM. The size of vir-

tual PM is the same as the size of PM in the baseline test but

is backed with different sizes of physical PM. In both cases,

the physical PM is emulated with DRAM by partitioning a

region of the main memory as NV-DIMM. The results are

shown in Fig. 6-(a),(b) and (c). The figures above illustrate

the performance (throughput) of VPM when running work-

loads with different native PM size given. The “base” line in

each of the figure denotes the performance of the workload

when running on unmodified VM/hypervisor with enough

native PM. For the unmodified VM/hypervisor, none of the

2 https://github.com/pmem/nvml

benchmarks above will be able to execute if memory pro-

vided is not enough.

Fig. 6 (a) shows the performance of fileserver on emu-

lated NVDIMM when running on the PV and HV versions

of VPM with insufficient PM. Fileserver is a workload which

issues disk flush operations, which in our case is translated

into clflush for VPM-hv or vpm barrier for VPM-pv. This

figure shows that both VPM-hv and VPM-pv can achieve

over 80% of the performance with only 20% of the PM. For

this workload, VPM-pv outperforms VPM-hv because the

former does not require write operations to be put on PM,

which saves time for VM-Exits. Since fileserver flushes disk

in a relatively conservative manner, the data persistence cost

required by PV is hidden.

Fig. 6 (b) shows the performance of varmail on emulated

NVDIMM when with insufficient PM. Varmail is a work-

load which frequently issues disk flush operations. From the

figure, we can see that both VPM-hv achieves 60% of the

performance with 20% of PM and 95% of the performance

with 60% of PM. The para-virtualization version of VPM

achieves 40% of the performance with 40% of PM and re-

quires around 80% of PM to help performance grow over

95%. This is because vpm barrier caused by disk flush oper-

ations introduces many VM-Exits, which impairs the chance

to hide the flush latency in the background.

The Fig. 6 (c) shows the performance of webserver on

emulated NVDIMM with insufficient memory given. Both

VPM-pv and VPM-hv can achieve over 80% of the perfor-

mance with only 20% PM provided since webserver is a

benchmark which issues write operations in a low frequency

and seldom flushes disk. Webserver requires around 750 to

800MB memory to have a complete running.

We also evaluate the performance on the emulated PCM.

The workload in the guest VM is filebench on Ext4 file sys-

tem which using PMBD as the block device. Under VPM-

pv, the PMBD is modified to use hypercalls to replace in-

structions like pcommit. The results are shown in Fig. 7-

(a),(b),(c). As shown in the figure, VPM-hv achieves 95%

of the baseline performance using 70% of PM, while VPM-

pv achieves 95% performance only using 50% of PM. The

performance of VPM-pv is better than VPM-hv since the

DRAM is faster than PCM on writing, as well as that there

are more write absorptions in VPM-pv.

Fig. 7(a) shows the performance of fileserver on emu-

lated PCM with other configurations unchanged. It can be

noticed that the overall performance degrades due to PCM

write performance slowdown. However, VPM-pv can per-

form better than the original system under this configuration.

This is because VPM-pv allows applications to directly write

on DRAM, which absorbs multiple modifications over PM

pages and avoids writing to PCM on the critical path. Ad-

ditionally, VPM-hv’ s performance is furthermore impaired

due to handling EPT violation, which requires migrating a

DRAM page to a PCM page.

134

 150

 200

 250

 300

 350

 400

 450

 0% 20% 40% 60% 80% 100% 120% 140%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(a)

fileserver

 0

 20

 40

 60

 80

 0% 20% 40% 60% 80% 100% 120%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(b)

varmail

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 0% 20% 40% 60% 80% 100% 120% 140%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(c)

webserver

Fig. 6: Relationship between Native NVDIMM PM Size and Performance (Throughput)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(a)

fileserver

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(b)

varmail

 160

 170

 180

 190

 200

 210

 220

 0% 20% 40% 60% 80% 100% 120% 140%

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

PM Size (% of the PM required)

base

hv
pv

(c)

webserver

Fig. 7: Relationship between Native PCM PM Size and Performance (Throughput)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 200 300 400 500 600 700 800 900 1000 1100

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

PM Size (MB)

w/o batching
w/ batching

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300 350 400 450 500 550

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

PM Size (MB)

w/o lazy relocation
w/ lazy relocation

Fig. 8: (a) The effect of batching of flushing, and (b) the effect of

lazy relocation.

Fig. 7(b) presents the performance of varmail on emu-

lated PCM. One major difference between the performance

on emulated NVDIMM is that VPM-pv can produce higher

throughput than VPM-hv. In this case, the slowdown of PCM

affects VPM-hv more than VPM-pv. This is because that the

relatively random write pattern of varmail makes VPM-pv

put content directly on DRAM.

Fig. 7(c) shows the performance of webserver on emu-

lated PCM, which is hardly affected by underlying PM type

due to the webserver’s asymmetric read/write pattern.

7.4 Optimization Decomposition

We further analyze the effect of each optimization on

VPM’s performance. The optimizations include batching of

disk flushing and lazy relocation (§ 5.2). Both optimizations

can be applied to VPM-hv and VPM-pv. Here, we use VPM-

hv to demonstrate its effect.

We run fileserver over emulated NVDIMM to show the

performance improvement contributed by batching of disk

flushing. As shown in Fig. 8(a), batching of flushing in-

creases the utilization of disk bandwidth, which in return

speeds up the handling of page remapping.

 0%

20%

40%

60%

80%

100%

dbench

fileserver-1

fileserver-2

varmail

webserver

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Type of Workload

128 256 512 768 1024

Fig. 9: Performance for workloads under consolidation

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 10 20 30 40 50 60

P
M

 P
a

g
e

s
 T

a
k
e

n

Time (s)

webserver

varmail

fileserver-2

fileserver-1

dbench

Fig. 10: PM usage for workloads under consolidation

The lazy relocation reduces the memory copy due to

page remapping which requires copying the content of a

non-volatile page to a PM page. Hence, we run varmail

over emulated PCM to show the lazy relocation’s effect. As

shown in Fig. 8(b), lazy relocation increases performance by

over 30% when the amount of native PM is more than 25%

135

of that is required on the unmodified system. For the case

when the available PM pages are few, the handling of EPT-

violation needs to aggressively allocate PM pages, which

renders lazy relocation useless.

7.5 VM Consolidation

VM Consolidation part is evaluated using a host ma-

chine with a Quad-core (configured as 8 cores using hyper-

threading) Intel Xeon processor, 32 GB DDR3 memory with

2 channels and 256 GB Samsung SSD on SATA-3 bus.

We evaluate the degree of VM consolidation of VPM with

5 VMs running concurrently with 4 types of workloads: Two

VMs run fileserver, the other 3 VMs run varmail, webserver,

and dbench respectively. The 5 VMs make up one set of test

VMs, which is also as known as a tile. As previously men-

tioned, all benchmarks will not be able to have a complete

run if not sufficient memory is provided in an unmodified

VM and hypervisor. Table 2 introduces the performance and

PM size that is required for the workloads in the tile. There-

fore, it requires around 2.1GB to 2.2GB in total to run a tile

to completion on an unmodified VM and hypervisor.

Table 2: Performance and required PM size

Benchmark Memory (MB) Throughput (MB/s)

dbench 50 to 60 1,168

fileserver 600 to 650 430

varmail 150 to 160 90

webserver 700 to 750 251.3

For each round of the test, 128MB, 256MB, 512MB,

1024MB of native PM is provided respectively. We run the

tile on VPM-pv, whose results are shown in Fig. 9. Dbench

can achieve 60% of the throughput with around 15% of the

amount of PM provided, around 80% of the throughput with

50% of the amount of PM provided. Varmail can achieve

30% of the throughput with around 15% of the amount of

PM provided and 60% of the throughput with 50% of the

amount of PM provided. The performance of fileserver is

hardly affected by the size of given PM, this is because the

frequent flush operations issued by varmail and dbench re-

duce the possibility of background persisting. Since web-

server contains mostly read operations, a different PM size

has little impact on its overall performance. Fig. 10 shows

how native PM is multiplexed across different virtual ma-

chines with 1024MB PM provisioned. When all PM are used

by each VM, VMS running dbench, fileserver, varmail and

webserver consume 4%, 37%, 14% and 8% of the total PM

respectively.

7.6 Crash Recovery

We run dbench on VPM-hv to demonstrate VPM’s ability

to recover from a crash. In this case, 32MB of native PCM

is provided to VM. Dbench is configured to run for 140 sec-

onds, of which the warm-up phase runs for the first 20 sec-

onds; after that dbench starts the real execution phase. Dur-

ing the whole execution phase, 2 crashes are injected. The

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Time (Seconds)

start
crash

crash

Fig. 11: Recovery performance
first crash happens at around 6th second since the execution

phase starts, while the 2nd one occurs at around 86 seconds.

Since guest PM as well as the mapping information either

resides on PM or other non-volatile media, we simulated a

crash by unmapping all the non-volatile pages from the guest

PM. Thus, the following accesses will trigger EPT-violations

which requires the VPM to find the corresponding data by

reading from the non-volatile media other than native PM.

From Fig. 11, we can see that the 2 crashes that are in-

jected decrease the throughput due to the additional EPT-

violation handling. After each crash injection, dbench con-

tinues its execution and the throughput gradually recovers.

8. Limitation and Future Work

While VPM makes the first step towards virtualizing per-

sistent memory (PM), the work is still preliminary and left

a number of research questions unanswered. We leave these

as future work.

NUMA. As PM can approach the performance of DRAM

and is byte-addressable through the memory bus, there will

be a similar NUMA issue for PM, where accesses to differ-

ent PM placed in different sockets may have different perfor-

mance. Hence, a PM virtualization platform should also take

this into account to efficiently provisioning PM for guest

VM according to its access characteristics. Specifically, we

plan to extend auto-NUMA in Linux/KVM to provide auto-

matic management of NUMA effects for virtualized PM.

Wear leveling. The current implementation of VPM does

not consider wear leveling issue. This is important for some

PM devices that have limited life cycles. As VPM now has

the global knowledge of the access pattern of guest PM,

it is possible for VPM to perform global wear leveling to

improve the life cycles of PM.

Different characteristics. The performance characteris-

tics for emerging PM is still speculative, which may be var-

ied from currently predicted ones. In this paper, we only

evaluated two settings for NVDIMM and PCM. In future,

we plan to investigate how to different performance charac-

teristics of future PM may affect the decision of VPM.

9. Related Work

Systems support for PM: With the emergence of persis-

tent memory, researchers have started to think proper sys-

136

tems support for persistent memory [15, 33, 39]. In a posi-

tion paper, Mogul et al. [39] discussed proper OS support

for hybrid DRAM with PCM or NOR Flash and proposed

Time-Between-Writes-to-Page (TBWP) to ensure write en-

durance. There are a number of storage systems designed for

PM, including BPFS [15], SCMFS [62], Shortcut-JFS [30],

PMFS [20] and NOVA [63]. Maze et al. [37] propose using

a single-level store to unify PM DRAM and storage, which

eliminates the need for address translation between PM and

storage but requires a reconstruction of systems software

atop. A close work to VPM is NV-Hypervisor [48], which

briefly describes the use of PM to provide transparent persis-

tence to whole guest VMs. Yet, it does not aim at virtualizing

and efficiently managing PM to be used by PM as in VPM,

nor does it consider a para-virtualized interface for PM.

The emergence of PM has also stimulated a number of ap-

plications of PM, including libraries [14, 58], database trans-

actions [4, 13, 60] and data structures [53]. VPM also lever-

ages some PM-aware concurrent and durable data structures

to support proper crash recovery.

Software/hardware interfaces for PM: There have been

much work in providing proper hardware/software interface

for PM to bridge the persistence of memory and the volatil-

ity of CPU structures [14, 15, 25, 34, 35, 55, 59, 69, 70].

Mnemosyne [55] provide an application interface that lever-

ages a lightweight transaction mechanism to preserve data

consistency upon failures. Kiln [69] uses a non-volatile last-

level cache (LLC) and NV-aware cache replacement to en-

sure atomicity and ordering of memory updates. FIRM [70]

further provides a memory scheduling algorithm specifically

for PM-based applications. WRaP [25] uses a victim persis-

tence cache to coalesce updates to NVM and a redo log in

memory. Pelley et al. [44] observe the similarity between

memory consistency and memory persistency and describes

strict and relaxed persistent models. VPM also aims at study-

ing the interfaces for PMs but at the level of virtual machines

and its hypervisor.

Memory virtualization: Memory virtualization has been

a key component of system virtualization, leading to var-

ious schemes like writable page table [40], shadow pag-

ing [57] and nested paging [17, 41] and a set of optimiza-

tions [5, 6, 8]. Recently, there are interests in investigating

elimination of two-dimensional paging [24] using direct seg-

ments [7]. Ye et al. [66] leverage the memory tracing mecha-

nism of VMware to prototype a hybrid memory system with

the heterogeneous performance by slowing down accesses

to a portion of memory. Lee et al. [32] extend Xen to man-

age hybrid fast 3D die-stacked DRAM and off-chip DRAM.

A recent effort [42] also considers managing hybrid on-chip

DRAM and off-chip DRAM/NVRAM in a cloud environ-

ment. However, it mainly considers how to design OS kernel

support inside a VM by designing a lightweight OS kernel,

instead of efficiently virtualizing and managing PM in the

hypervisor layer. Compared to existing memory virtualiza-

tion work, VPM focuses on virtualizing and managing hy-

brid PM/DRAM that has completely different performance

and persistency characteristics from the hypervisor layer. It

will be our future work on how to leverage existing memory

virtualization schemes to further optimize VPM.

Tracking memory accesses: There is also much work

aiming at tracking memory accesses for memory manage-

ment either in virtualized environment [26, 71], or native en-

vironment [72], yet does not consider hybrid PM/DRAM en-

vironment. Recently, there are some efforts in tracking mem-

ory accesses in hybrid DRAM/PM system for page place-

ment [18, 33, 46], but require special hardware support and

does not work for virtualized environment. VPM extends

prior in tracking memory accesses by leveraging A/D bits in

extended page tables for low-overhead, transparent memory

access tracking and leverages writing working set to predict

future memory access behavior.

Virtualizing Flash: Recent work has started to explore

virtualization support for flash-based storage [50, 61, 67].

However, they mainly focus on providing I/O virtualization

instead of memory virtualization in VPM.

10. Conclusion

This paper presented a study on the interfaces as well

as the underlying hypervisor support to virtualize persistent

memory (PM). A prototype, namely VPM, has been imple-

mented and evaluated atop emulated PCM and NVDIMM.

Performance evaluation shows that VPM can efficiently

manage and multiplex PM while leading to small perfor-

mance degradation even with under provisioned PM. The

evaluation also shows that the para-virtualized interfaces can

lead to even more saving of PM while achieving a similar

level of performance.

Acknowledgments

We thank our group member Yang Hong to help imple-

ment part of the para-virtualization of VPM and the anony-

mous reviewers for their helpful comments. This work is

supported in part by National Key Research Program of

China (No. 2016YFB1000104), China National Natural Sci-

ence Foundation (No. 61572314), the Top-notch Youth Tal-

ents Program of China, Shanghai Science and Technol-

ogy Development Fund (No. 14511100902), Zhangjiang Hi-

Tech program (No. 201501-YP-B108-012), a grant from

Samsung and Singapore NRF (CREATE E2S2).

References

[1] N. Alvares. Satisfying cloud data center require-

ments with new memory storage hierarchy. http://

www.flashmemorysummit.com/English/

Collaterals/Proceedings/2015/20150812_

S202A_Alvares.pdf, 2015.

[2] Amazon EC2. Ec2 for in-memory computing the

high memory cluster eight extra large instance.

137

http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150812_S202A_Alvares.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150812_S202A_Alvares.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150812_S202A_Alvares.pdf
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150812_S202A_Alvares.pdf

https://aws.amazon.com/blogs/aws/ ec2-for-in-memory-

computing- the-high-memory -cluster-eight-extra-large/.

[3] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang,

D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong, et al. Spin-

transfer torque magnetic random access memory (stt-mram).

ACM Journal on Emerging Technologies in Computing Sys-

tems (JETC), 9(2):13, 2013.

[4] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about

storage & recovery methods for non-volatile memory database

systems. In SIGMOD, pages 707–722. ACM, 2015.

[5] T. W. Barr, A. L. Cox, and S. Rixner. Translation caching:

skip, don’t walk (the page table). In ISCA, pages 48–59. ACM,

2010.

[6] T. W. Barr, A. L. Cox, and S. Rixner. Spectlb: a mechanism

for speculative address translation. In Computer Architecture

(ISCA), 2011 38th Annual International Symposium on, pages

307–317. IEEE, 2011.

[7] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift.

Efficient virtual memory for big memory servers. In ISCA,

pages 237–248. ACM, 2013.

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accel-

erating two-dimensional page walks for virtualized systems.

ACM SIGOPS Operating Systems Review, 42(2):26–35, 2008.

[9] R. W. Carr and J. L. Hennessy. Wsclocka simple and effective

algorithm for virtual memory management. ACM SIGOPS

Operating Systems Review, 15(5):87–95, 1981.

[10] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn,

and S. Swanson. Providing safe, user space access to fast,

solid state disks. ACM SIGARCH Computer Architecture

News, 40(1):387–400, 2012.

[11] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind: Re-

covery write-ahead system for in-memory non-volatile data-

structures. VLDB, 8(5):497–508, 2015.

[12] F. Chen, M. P. Mesnier, and S. Hahn. A protected block

device for persistent memory. In Mass Storage Systems and

Technologies (MSST), 2014 30th Symposium on, pages 1–12.

IEEE, 2014.

[13] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen. Fast and gen-

eral distributed transactions using rdma and htm. In EuroSys,

2016.

[14] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.

Gupta, R. Jhala, and S. Swanson. Nv-heaps: making persis-

tent objects fast and safe with next-generation, non-volatile

memories. In ASPLOS, pages 105–118. ACM, 2011.

[15] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In SOSP, pages 133–146.

ACM, 2009.

[16] J. Corbet. Supporting filesystems in persistent memory.

https://lwn.net/Articles/610174/, 2014.

[17] A. M. Devices. Amd, secure virtual machine architecture

reference manual, 2005.

[18] G. Dhiman, R. Ayoub, and T. Rosing. Pdram: a hybrid

pram and dram main memory system. In Design Automation
Conference, 2009. DAC’09. 46th ACM/IEEE, pages 664–669.

IEEE, 2009.

[19] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple

but effective heterogeneous main memory with on-chip mem-

ory controller support. In Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing,

Networking, Storage and Analysis, pages 1–11. IEEE Com-

puter Society, 2010.

[20] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,

D. Reddy, R. Sankaran, and J. Jackson. System software for

persistent memory. In EuroSys, page 15. ACM, 2014.

[21] L. A. Eisner, T. Mollov, and S. J. Swanson. Quill: Exploiting

fast non-volatile memory by transparently bypassing the file

system. Citeseer, 2013.

[22] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High

performance database logging using storage class memory.

In Data Engineering (ICDE), 2011 IEEE 27th International

Conference on, pages 1221–1231. IEEE, 2011.

[23] R. F. Freitas and W. W. Wilcke. Storage-class memory: The

next storage system technology. IBM Journal of Research and

Development, 52(4.5):439–447, 2008.

[24] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Efficient

memory virtualization: Reducing dimensionality of nested

page walks. In Proceedings of the 47th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 178–189.

IEEE Computer Society, 2014.

[25] E. Giles, K. Doshi, and P. Varman. Bridging the programming

gap between persistent and volatile memory using wrap. In

Conf. on Computing Frontiers, 2013.

[26] V. Gupta, M. Lee, and K. Schwan. Heterovisor: Exploiting

resource heterogeneity to enhance the elasticity of cloud plat-

forms. In VEE, pages 79–92. ACM, 2015.

[27] Y. Huai. Spin-transfer torque mram (stt-mram): Challenges

and prospects. AAPPS Bulletin, 18(6):33–40, 2008.

[28] Intel. Intel persistent memory block driver. https://

github.com/linux-pmbd/pmbd.

[29] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting

phase change memory as a scalable dram alternative. ACM

SIGARCH Computer Architecture News, 37(3):2–13, 2009.

[30] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn. Shortcut-jfs: A write

efficient journaling file system for phase change memory.

In Symposium on Mass Storage Systems and Technologies

(MSST), pages 1–6. IEEE, 2012.

[31] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer cache

and journaling layers with non-volatile memory. In FAST,

pages 73–80, 2013.

[32] M. Lee, V. Gupta, and K. Schwan. Software-controlled trans-

parent management of heterogeneous memory resources in

virtualized systems. In Proceedings of the ACM SIGPLAN

Workshop on Memory Systems Performance and Correctness,

page 5. ACM, 2013.

[33] S. Lee, H. Bahn, and S. H. Noh. Characterizing mem-

ory write references for efficient management of hybrid pcm

and dram memory. In Modeling, Analysis & Simulation

of Computer and Telecommunication Systems (MASCOTS),

2011 IEEE 19th International Symposium on, pages 168–175.

IEEE, 2011.

138

https://lwn.net/Articles/610174/
https://github.com/linux-pmbd/pmbd
https://github.com/linux-pmbd/pmbd

[34] Y. Lu, J. Shu, L. Sun, and O. Mutlu. Loose-ordering consis-

tency for persistent memory. In ICCD, pages 216–223. IEEE,

2014.

[35] Y. Lu, J. Shu, and L. Sun. Blurred persistence in transactional

persistent memory. In Mass Storage Systems and Technolo-

gies (MSST), 2015 31st Symposium on, pages 1–13. IEEE,

2015.

[36] D. Magenheimer. Transcendent memory in a nutshell.

https://lwn.net/Articles/454795/, 2011.

[37] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A

case for efficient hardware-software cooperative management

of storage and memory. In Proceedings of the 5th Workshop

on Energy-Efficient Design (WEED), pages 1–7, 2013.

[38] Micron. Micron announces availability of phase change mem-

ory for mobile devices. http://investors.micron.

com/releasedetail.cfm?releaseid=692563,

2012.

[39] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi. Op-

erating system support for nvm+ dram hybrid main memory.

In HotOS, 2009.

[40] J. Nakajima, A. Mallick, I. Pratt, and K. Fraser. X86-64

xenlinux: architecture, implementation, and optimizations. In

Linux Symposium, page 173, 2006.

[41] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig.

Intel virtualization technology: Hardware support for efficient

processor virtualization. Intel Technology Journal, 10(3),

2006.

[42] K. H. Park, W. Hwang, H. Seok, C. Kim, D.-j. Shin, D. J. Kim,

M. K. Maeng, and S. M. Kim. Mn-mate: Elastic resource

management of manycores and a hybrid memory hierarchy

for a cloud node. J. Emerg. Technol. Comput. Syst., 12(1):

5:1–5:25, 2015.

[43] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage

management in the nvram era. VLDB, 7(2):121–132, 2013.

[44] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency.

In Proceeding of the 41st annual international symposium on

Computer architecuture, pages 265–276. IEEE Press, 2014.

[45] J. Pinkerton. Bring the public cloud to your data

center. http://www.snia.org/sites/default/

files/Pinkerton_NVMSummit-2015.pdf, 2015.

[46] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page place-

ment in hybrid memory systems. In Proceedings of the inter-

national conference on Supercomputing, pages 85–95. ACM,

2011.

[47] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C.

Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L.

Lung, et al. Phase-change random access memory: A scalable

technology. IBM Journal of Research and Development, 52

(4.5):465–479, 2008.

[48] V. Sartakov, R. Kapitza, et al. Nv-hypervisor: Hypervisor-

based persistence for virtual machines. In Dependable Sys-

tems and Networks (DSN), 2014 44th Annual IEEE/IFIP In-

ternational Conference on, pages 654–659. IEEE, 2014.

[49] SNIA. Nvdimm special interest group. http://www.

snia.org/forums/sssi/NVDIMM, 2015.

[50] X. Song, J. Yang, and H. Chen. Architecting flash-based solid-

state drive for high-performance i/o virtualization. Computer

Architecture Letters, 13(2):61–64, 2014.

[51] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams.

The missing memristor found. nature, 453(7191):80–83,

2008.

[52] V. Technology. Arxcis-nv (tm): Non-volatile

dimm. http://www.vikingtechnology.com/

arxcis-nv, 2014.

[53] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell,

et al. Consistent and durable data structures for non-volatile

byte-addressable memory. In FAST, pages 61–75, 2011.

[54] S. D. Viglas. Data management in non-volatile memory. In

SIGMOD, pages 1707–1711. ACM, 2015.

[55] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

Lightweight persistent memory. ACM SIGPLAN Notices, 46

(3):91–104, 2011.

[56] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Sax-

ena, and M. M. Swift. Aerie: Flexible file-system interfaces

to storage-class memory. In EuroSys, page 14. ACM, 2014.

[57] C. A. Waldspurger. Memory resource management in vmware

esx server. In OSDI, pages 181–194. Usenix, 2002.

[58] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and

C. Engelmann. Nvmalloc: Exposing an aggregate ssd store as

a memory partition in extreme-scale machines. In Parallel &

Distributed Processing Symposium (IPDPS), 2012 IEEE 26th

International, pages 957–968. IEEE, 2012.

[59] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen. Persistent

transactional memory. Computer Architecture Letters, 14:

5861, 2015.

[60] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-

memory transaction processing using rdma and htm. In SOSP,

2015.

[61] Z. Weiss, S. Subramanian, S. Sundararaman, N. Talagala,

A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Anvil:

advanced virtualization for modern non-volatile memory de-

vices. In FAST, pages 111–118. USENIX, 2015.

[62] X. Wu, S. Qiu, and A. Narasimha Reddy. Scmfs: a file

system for storage class memory and its extensions. ACM

Transactions on Storage (TOS), 9(3):7, 2013.

[63] J. Xu and S. Swanson. Nova: A log-structured file system

for hybrid volatile/non-volatile main memories. In USENIX

FAST, pages 323–338, 2016.

[64] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He.

Nv-tree: reducing consistency cost for nvm-based single level

systems. In FAST, pages 167–181. USENIX, 2015.

[65] J. J. Yang and R. S. Williams. Memristive devices in com-

puting system: Promises and challenges. J. Emerg. Technol.

Comput. Syst., 9(2):11:1–11:20, 2013.

[66] D. Ye, A. Pavuluri, C. Waldspurger, B. Tsang, B. Rychlik,

S. Woo, et al. Prototyping a hybrid main memory using a

virtual machine monitor. In ICCD, pages 272–279. IEEE,

2008.

[67] Y. Zhang, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Removing the costs and retaining the benefits of flash-based

ssd virtualization with fsdv. In MSST, 2015.

139

https://lwn.net/Articles/454795/
http://investors.micron.com/releasedetail.cfm?releaseid=692563
http://investors.micron.com/releasedetail.cfm?releaseid=692563
http://www.snia.org/sites/default/files/Pinkerton_NVMSummit-2015.pdf
http://www.snia.org/sites/default/files/Pinkerton_NVMSummit-2015.pdf
http://www.snia.org/forums/sssi/NVDIMM
http://www.snia.org/forums/sssi/NVDIMM
http://www.vikingtechnology.com/arxcis-nv
http://www.vikingtechnology.com/arxcis-nv

[68] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim:

A reliable and highly-available non-volatile memory system.

In Proceedings of the Twentieth International Conference on

Architectural Support for Programming Languages and Op-

erating Systems, pages 3–18. ACM, 2015.

[69] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the performance gap between systems with and with-

out persistence support. In Proceedings of the 46th Annual

IEEE/ACM International Symposium on Microarchitecture,

pages 421–432. ACM, 2013.

[70] J. Zhao, O. Mutlu, and Y. Xie. Firm: Fair and high-

performance memory control for persistent memory systems.

In MICRO, pages 153–165. IEEE, 2014.

[71] W. Zhao, Z. Wang, and Y. Luo. Dynamic memory balancing

for virtual machines. In VEE, pages 37–47. ACM, 2009.

[72] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou,

and S. Kumar. Dynamically tracking miss-ratio curve for

memory management. In ASPLOS, 2004.

140

	Introduction
	Background and Motivation
	Persistent Memory
	The Need of PM Virtualization
	Background on Virtualization

	PM Virtualization
	Full-virtualization of PM
	Para-virtualization of PM
	Architecture of VPM

	Virtualizing Persistence and Crash Recovery
	Assumption and Hardware Support
	Persistency Model
	Persistency of Full-Virtualization PM
	Persistency of Para-Virtualization PM
	Supporting Crash Recovery

	PM Consolidation
	PM Tracking
	Transparent Page Migration
	Other Issues

	Implementation
	Evaluation
	Experimental Setup
	Microbenchmark
	PM Requirement
	Optimization Decomposition
	VM Consolidation
	Crash Recovery

	Limitation and Future Work
	Related Work
	Conclusion

