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ABSTRACT

Many application domains can benefit from hybrid transac-
tion/analytical processing (HTAP) by executing queries on
real-time datasets produced by concurrent transactions. How-
ever, with the increasingly speedy transactions and queries
thanks to large memory and fast interconnect, commodity
HTAP systems have to make a tradeoff between data fresh-
ness and performance degradation. Fortunately, we observe
that the backups for high availability in modern distributed
OLTP systems can be retrofitted to bridge the analytical
queries and transactions in HTAP workloads. In this paper,
we present VEGITO, a distributed in-memory HTAP system
that embraces freshness and performance with the follow-
ing three techniques: (1) a lightweight gossip-style scheme
to apply logs on backups consistently; (2) a block-based de-
sign for multi-version columnar backups; (3) a two-phase
concurrent updating mechanism for the tree-based index of
backups. They collectively make the backup fresh, columnar,
and fault-tolerant, even facing millions of concurrent transac-
tions per second. Evaluations show that VEGITO can perform
1.9 million TPC-C NEWORDER transactions and 24 TPC-H-
equivalent queries per second simultaneously, which retain
the excellent performance of specialized OLTP and OLAP
counterparts (e.g., DrTM+H and MonetDB). These results
outperform state-of-the-art HTAP systems by several orders
of magnitude on transactional performance, while just incur-
ring little performance slowdown (5% over pure OLTP work-
loads) and still enjoying data freshness for analytical queries
(less than 20 ms of maximum delay) in the failure-free case.
Further, VEGITO can recover from cascading machine fail-
ures by using the columnar backup in less than 60 ms.

1 INTRODUCTION

For more than four decades, online transaction processing
(OLTP) and online analytical processing (OLAP) are two
separate pillars in the database community, with their own
design targets and specific fields. Nowadays, many appli-
cation domains are highly demanding the combination of
OLTP and OLAP, such as fraud detection [24, 77, 78], busi-
ness intelligence [54, 80, 85], healthcare [27, 93], personal-
ized recommendation [117], and IoT [16]. The fundamental
reason behind this trend is that much information is most
valuable when it first appears, but the value diminishes over
time [10, 115]. For example, on 2018 Alibaba’s Double 11
Online Shopping Festival (similar to Black Friday Day in the
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Fig. 1. The performance-freshness tradeoff for existing HTAP sys-

tems with three different architectures and the OLTP performance

of existing HTAP systems for TPC-C [95] or CH-benCHmark [29].

VEGITO is located in the desired area of HTAP systems and can

offer comparable performance with modern distributed in-memory

OLTP systems [46, 87, 107]. Sources: published results of HTAP

systems [33, 34, 43, 54, 60, 62, 65, 72, 112] and real-time require-

ments of various application domains [12, 45, 63, 76, 77].

US), the peak throughput reaches 6,000,000 transactions per
second, and Alibaba’s real-time monitoring system behind it
expects to provide a time delay of 20 ms [12]. Meanwhile,
users may search for the hottest items and receive personal-
ized advertisements [117]. Vendors also need to detect and
prevent online transaction fraud [24] and rely on immediate
information to adjust price and stock timely [63].

In response, many recent academic and industrial efforts
have been devoted to developing hybrid transaction/analyti-
cal processing (HTAP) systems [4, 14, 31, 43, 48, 54, 55, 60,
62, 80, 84, 88, 112], which are expected to support real-time

operational analytics by breaking the walls between OLTP
and OLAP systems. More specifically, analytical queries
should be executed on real-time datasets quickly updated
by transactions simultaneously. This implies two overarch-
ing goals for HTAP systems [43, 60, 101, 112]. Freshness:
the maximum time delay between the tuple’s value written
by transactions and read by analytical queries should be near
real-time (e.g., tens of milliseconds) in the failure-free case.
Performance: the transactions and analytical queries should
be executed concurrently with little performance degradation
(e.g., less than 10%), compared to specialized systems.

Several architectures were proposed (see Fig. 2) but can
hardly satisfy both goals of HTAP systems simultaneously,
as depicted in Fig. 1. Alternative 1 (DUAL-SYSTEM) con-
nects two OLTP and OLAP-specific systems and performs
both workloads at (almost) full speed. However, the cross-
system data transfer will cause a large delay (seconds to
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Fig. 2. A comparison of three existing HTAP architectures.

minutes) [72, 112].1 It also doubles the memory cost and
incurs additional CPU and network overhead. Alternative 2

(SINGLE-LAYOUT) directly builds an HTAP system derived
from one specialized system (e.g., OLTP), which uses a sin-
gle layout (e.g., row store) for both transactions and analyti-
cal queries to ensure data freshness. Thus, it will certainly
prefer one type of workload while sacrificing the perfor-
mance significantly in another (e.g., more than 50% perfor-
mance degradation [43, 60]). Alternative 3 (DUAL-LAYOUT)
carefully combines two different modules into a single sys-
tem with intra-system data transfer, which ameliorates this
problem with a performance-freshness tradeoff. However,
the fundamental issues remain (i.e., noticeable performance
degradation and time delay).

This paper presents VEGITO, as highlighted in Fig. 1, a
distributed hybrid transaction/analytical processing system
that retrofits the high availability mechanism (e.g., primary-
backup replication) to support HTAP workloads. Specifi-
cally, VEGITO executes transactions and analytical queries
on primary and backup replicas separately; the transaction
updates are always replicated synchronously to multi-version

columnar backups and tree-based indexes. Unlike many
prior HTAP systems [43, 54, 101], VEGITO keeps both pri-
mary and backup replicas in main memory and adopts a sym-
metric model—each machine both runs HTAP workloads
and stores data. However, modern distributed in-memory
OLTP systems [34, 74, 83, 89, 107, 113] can provide ex-
tremely high throughput (millions of transactions per sec-
ond) never encountered and targeted by existing HTAP sys-
tems (see Fig. 1); it poses new challenges to key components
in VEGITO, causing severe performance degradation of both
OLTP and OLAP workloads (see §3.2).

To remedy this, we first introduce a classic concept
(epoch) into a new context (HTAP) and further propose three
new techniques. First, VEGITO introduces a lightweight
gossip-style scheme to allocate consistent epoch numbers
for dependent (distributed) transactions. It allows all logs
on a single backup from different transactions to be drained
in parallel. Meanwhile, to refrain from strict synchroniza-
tion among different backups, VEGITO demands the analyt-
ical query to use the latest stable epoch for reading multi-
ple backups consistently. Second, VEGITO chooses a block-

1The data transfer relies on general ETL (Extract, Transform, and Load)
tools [2] or specialized techniques (e.g., log shipping [65, 103]).

based design to build multi-version columnar backups for
analytical queries, instead of conventional wisdom (chain-
based design). Since the transaction updates are applied in
rows while the tuples are stored in columns, VEGITO further
proposes two optimizations—row-split and column-merge—
to exploit both spatial and temporal locality for writing a
columnar backup in rows. Third, VEGITO introduces a two-

phase concurrent updating mechanism for the tree-based in-
dex (e.g., B+-tree) of backups, which is essential to achieve
high performance for analytical queries. VEGITO splits the
insert operations within an epoch into two phases (i.e., loca-
tion and update) and parallelizes two phases with two differ-
ent approaches (i.e., task and data parallelism), respectively.

In addition, while VEGITO uses columnar backups to sup-
port OLAP workloads, it still preserves the same availability
guarantees for free; namely, the backup is still fault-tolerant.
VEGITO retrofits the replication protocol carefully and re-
stricts changes to the data layout of the backup. Thus, it re-
tains the capability of failure recovery. Besides, the original
recovery protocol could be used as usual in most cases.

We implemented VEGITO by extending DrTM+H [107],
a state-of-the-art distributed in-memory OLTP system. The
extensions include retrofitting fault-tolerant backups to run
analytical queries and integrating an efficient distributed in-
memory OLAP engine, similar to MonetDB [6]. To demon-
strate the efficacy of VEGITO, we have conducted a set of
evaluations using several micro-benchmarks and a typical
HTAP benchmark, CH-benCHmark [29], which combines
TPC-C [95] and TPC-H [96] to form a complex mixed work-
load. For OLTP-only workloads, VEGITO (with 3-way repli-
cation) can commit 3.7 million NEWORDER transactions
per second when running the TPC-C transaction mix on
16 machines. For OLAP-only workloads, VEGITO can run
TPC-H-equivalent queries in 216 ms on average (geomet-
ric mean) using a single thread. These results are compara-
ble to the excellent performance of specialized counterparts
(e.g., DrTM+H [107] and MonetDB [6]). For HTAP work-
loads (i.e., CH-benCHmark), VEGITO can achieve a peak
throughput of 1.9 million NEWORDER transactions per sec-
ond and 24 TPC-H-equivalent queries per second simultane-
ously on a cluster of 16 machines with up to a 1.2 TB dataset.
It outperforms state-of-the-art HTAP systems with three
different architectures (i.e., MemSQL [4], TiDB [8], and
SQL Server [54]) by several orders of magnitude on transac-
tional performance (from 2,911X to 53,138X).2 Meanwhile,
different from prior systems, which have severe performance
degradation and poor data freshness (e.g., more than 70%
OLTP performance degradation in MemSQL and an 1,500-
millisecond delay in TiDB), VEGITO limits the adverse ef-
fects to less than 5% and 20 ms simultaneously in the failure-
free case. Further, VEGITO can recover from cascading ma-
chine failures by using the columnar backup in less than

2Note that MemSQL is an in-memory HTAP system, while TiDB and
SQL Server are on-disk HTAP systems.
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Fig. 3. A simplified dataset on a row store and a sample transaction

(TXno) in TPC-C.

60 ms. On the other hand, VEGITO can provide compara-
ble failure-free freshness with Amazon Aurora [101].3 Yet, it
also supports fault tolerance and a much higher rate of trans-
actions (e.g., 1.9 million vs. 1,232 NEWORDER transactions
per second) by scaling out and processing transactions in the
main memory.

In summary, the contributions of this paper are:
• A new distributed in-memory HTAP architecture that

retrofits fault-tolerant backups to support hybrid trans-
action/analytical processing (§3) without compromising
high availability (§5).

• Three key techniques with epoch scheme to collectively
make a fresh, multi-version columnar backup with tree-
based indexes for analytical queries (§4).

• A set of evaluations that confirm the efficacy of VEGITO

for HTAP workloads even facing millions of transactions
per second (§6).

2 BACKGROUND

Online Transaction Processing (OLTP). The workloads
for OLTP systems (e.g., database) usually contain repetitive,
short-lived transactions to retrieve and modify tuples (e.g.,
create/read/update/delete) with ACID guarantees, which are
the basis of many applications such as stock exchange, e-
commerce, and online order processing. Fig. 3 illustrates
a simplified dataset and NEWORDER transaction in TPC-
C [95], a popular OLTP benchmark. The sample transaction
(TXno) adds a new order (o_id) for selling qty items (i_id),
which will append a tuple to ORDER table and update ITEM

table. OLTP systems use the row store to exploit data locality
and access patterns in transactions, where all attributes of a
single tuple are stored continuously.

Moreover, modern in-memory OLTP systems [26, 30, 34,
46, 57, 113] are becoming mainstream, which scale out
by sharding a large volume of data across multiple shared-
nothing machines and supporting distributed in-memory
3Amazon Aurora [101] reports that each read replica typically lags behind
the writer by a short interval (20 ms or less). We interprete it as the failure-
free freshness. For freshness with failures, we have neither the number for
Aurora nor for VEGITO.

count ORDER by AMOUNT

SELECT count(*)

FROM   ORDER 

WHERE  AMOUNT in (50.0, 150.0)

10001
10002

O_ID I_ID AMOUNT STATUS

ORDER

17 30.0

QTY

3 UNPAID
16 200.01 SHIPPED

10003 17 100.010 PAID
10004 17 70.07 ABORTED

91
92

RowID

93
94

. . . . . . .. . . . ...

column
AMOUNT

Tree-based 
Index

30.0 70.0 100.0 200.0
91 94 93 92

QCNT:

Column Store

attribute

Fig. 4. A simplified dataset on a column store with a tree-based

index and a sample analytical query (Qcnt) in TPC-H.

transaction processing with high throughput and low latency.
They usually rely on replication schemes (e.g., primary-
backup replication [52] or Paxos state machine replica-
tion [30]) to provide high availability even with failures.

Online Analytical Processing (OLAP). By contrast, the
workloads for OLAP systems (e.g., data warehouse [32, 40])
usually contain analytical queries to consistently read several
attributes of massive tuples (e.g., select/join/filter/aggregate),
which also are the basis of many other applications such as
business intelligence, financial reporting, and data mining.
Fig. 4 illustrates a simplified dataset with a tree-based in-
dex, and a sample analytical query in TPC-H [96], a popu-
lar OLAP benchmark. The sample query (Qcnt) counts the
number of orders (count(*)) with a given range of amounts
(from 50.0 to 150.0), which needs to scan ORDER table and
the index for AMOUNT attribute. Thus, the column store (aka
columnar store) with tree-based indexes is widely used to ex-
ploit data locality and access patterns in analytical queries.

Hybrid Transaction/Analytical Processing (HTAP).

OLTP and OLAP systems have their own design targets
and specific fields, yet many application domains are
highly demanding the combination of them; analytical

queries should be executed on real-time datasets quickly

updated by transactions simultaneously. For example,
massive new orders are submitted by users (TXno in Fig. 3).
Meanwhile, the seller may want to see the number of
orders with a given range of amounts in real-time (Qcnt

in Fig. 4). The HTAP system should meet the following
two goals—freshness and performance—also appearing in
recent literature [49, 60, 70, 75, 82, 100, 103].

Freshness. The maximum time delay between the tuple’s
value written by transactions and read by analytical queries
should be near real-time (e.g., tens of milliseconds).

Performance. The transaction and analytical workloads
should be executed concurrently with little performance
degradation (e.g., <10%) compared to specialized systems.

Nowadays, several HTAP architectures are proposed but
could hardly meet two goals simultaneously in the failure-
free case—for example, a maximum delay of 20 ms and 10%
performance degradation, as depicted in Fig. 1.
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3 APPROACH AND CHALLENGES

Opportunity: fault-tolerant backup. It is important and
imperative for distributed transaction processing (OLTP) sys-
tems to provide high availability (HA), which is guaranteed
by replicating tuples on remote machines before commit-
ting a transaction. A common approach is to use vertical
Paxos [52] with primary-backup replication [4, 7, 26, 34, 46,
59, 69, 97, 108]4, where each shard is commonly configured
to use 3-way replication (one primary and two backups). The
transaction will synchronously ship updates (i.e., logs) to all
backups before committing on the primary.

We observe that the consistent and fresh backup in high
availability (HA) provides the foundation for hybrid trans-
action/analytical processing (HTAP)—running OLTP and
OLAP workloads on primary and backup replicas sepa-
rately. Specifically, for freshness, high availability guaran-
tees strong consistency between primary and backups by us-
ing synchronous log shipping. Thus, analytical queries can
always see the latest updates of transactions. For perfor-

mance, running different workloads on different replicas
can avoid interference naturally and deploy optimizations
individually (e.g., row store and column store). Moreover,
reusing fault-tolerant backups and synchronous log shipping
for free—there is no compromise on availability (§5)—can
avoid extra memory for read replicas and CPU for data syn-
chronization to support real-time OLAP.

3.1 Our approach

VEGITO is a distributed in-memory hybrid transaction/ana-
lytical processing system, which targets concurrent OLTP
and OLAP workloads over one large volume of data. It scales
out by partitioning data into many shards spreading across
multiple shared-nothing machines while allowing both trans-
actions and analytical queries to span any number of ma-
chines. VEGITO can provide serializability for both transac-
tions and analytical queries. We build VEGITO out of two
independent components: execution layer and memory store.
An overview of VEGITO’s architecture is shown in Fig. 5,
which also illustrates the execution of transaction and analyt-
ical workloads.

The execution layer employs a worker-thread model by
running n worker threads atop n cores playing different
roles; each worker thread executes a transaction (e.g., TXno)
or a query (e.g., Qcnt) at a time, according to its role (TP or
AP worker thread). Following prior modern transaction pro-
cessing systems [26, 34, 46], VEGITO also leverages 3-way
primary-backup replication for high availability. To reduce
the overhead of replication, a non-volatile write-ahead log
(WAL) is used to buffer the updates (logs) for each backup.
Transactions (synchronously) append updates to the WAL
of backups involved before committing on the primary, and

4Our work is also applicable to other replication-based HA mechanisms,
like chain replication [99] and state machine replication [30, 43].

1

3

21

2

3

TP threads AP threads

M1:

M2:

M3:

shard
Qcleaners

sync ops async ops

primary backup/TP

WAL

backup/AP

TX

drain

1

3

2

index

multi-
version

logs

3

1

2

M1 M2 M3

Network

logs

Fig. 5. An overview of VEGITO with three machines and three
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2nd shard (M2), and the query (Q) scans the attributes of all tuples.

then auxiliary (cleaner) threads drain the logs in a lazy and
batched manner (asynchronously). VEGITO runs TP and AP

worker threads over the primary and one of the backup repli-
cas (aka backup/AP), respectively.5

The memory store adopts a general key/value store over a
distributed hash table to support a partitioned global address
space. Each machine (e.g., M1) stores several primary and
backup replicas of different shards. The primary and back-
up/TP use row stores, while the backup/AP uses a multi-
version column store. Specifically, each key-value pair stores
an attribute of a tuple. All of the attributes of a single tu-
ple are stored continuously in row stores, while the same at-
tributes of all tuples are stored continuously in column stores.
The memory store provides a general key-value store inter-
face (e.g., get and put) and a specific row/column store inter-
face (e.g., row and column) to the above execution layer. Fur-
ther, tree-based indexes are also maintained with backup/AP
for range scans in analytical queries.

Each client contains a client library that parses and ships
transactions (TX) and analytical queries (Q) to TP and AP

worker threads, respectively. As shown in Fig. 5, the transac-
tion will be executed on the primary using a concurrency con-
trol protocol (e.g., two-phase locking [18] or optimistic con-
currency control [51]). Before committing the transaction on
the primary, all updates are first appended to the write-ahead
log (WAL) queue at each machine with a backup. The logs
will be applied to backup replicas asynchronously by cleaner

threads. On the other hand, the analytical query will be exe-
cuted on the columnar backup replicas (backup/AP).

Further, the architecture of VEGITO can integrate exist-
ing OLTP and OLAP systems instead of writing code from
scratch, including transaction/analytical engine, key-value
store, data replication and recovery support [26].

5This paper uses backup/TP to denote the vanilla backup that provides high
availability of transaction processing, and uses backup/AP to denote the
columnar backup that also supports analytical processing.
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3.2 Challenges

We note that recent HTAP systems also propose to run an-
alytical queries on a separate, read-optimized snapshot of
transactional data [43, 60, 92, 112]. However, none of them
could meet two goals simultaneously—freshness (a maxi-
mum delay of 20 ms) and performance (10% performance
degradation)—even under much lower OLTP throughput
(e.g., several thousand transactions per second [30, 43, 101]).
Differently, our approach reuses synchronous log shipping to
keep backups consistent and fresh; however, it indeed raises
new challenges for minimizing performance degradation on
transaction and analytical processing, especially when facing
millions of transactions per second.

C#1: consistent and parallel log cleaning. To avoid block-
ing transaction committing, the updates are appended to
WAL queues synchronously and then applied to the backup
asynchronously by cleaner threads in parallel (see the left
part of Fig. 6(a)). This design is enough and efficient to
maintain a fault-tolerate backup [26, 34, 46]. In Fig. 6(b),
OLTP throughput (FTBackup) can reach about 4.7 million
transactions per second, and WAL queues are never full.
However, OLAP workloads demand consistent backups. It
means that the cleaner threads should drain logs following
the dependency in transactions. A common solution is to
record a global timestamp in each log and drain logs in se-
quence [55, 65, 103, 112]. This causes a significant loss
(70%) in throughput (GTS+SEQ), dropping to 1.4 M txns/s of
OLTP throughput. Given WAL queues with unlimited mem-
ory (Unlimited), we further decouple the performance bot-
tlenecks of transaction processing and log cleaning. Perfor-
mance degradation can happen for two reasons. First, the
OLTP throughput is limited to 2.5 M txns/s due to assign-
ing global timestamps for every transaction in a cluster of 16
machines, causing high contention [106]. Second, draining
logs sequentially limits the clean throughput to 3.0 M logs/s
and further limits the OLTP throughput to 1.4 M txns/s, since
all transactions would be blocked when WAL queues are full.
Therefore, VEGITO needs a new approach to draining logs at
each machine in a consistent and parallel way.

C#2: multi-version column store building. The backup for
analytical processing (backup/AP) should store tuples in a
columnar format to achieve high performance. Meanwhile,
cleaner threads and AP threads will write and read the same
backup simultaneously, especially with different flavors of
locality (row-wise writes vs. column-wise reads). Multi-
version concurrency control (MVCC) [19, 110] is commonly
used to resolve conflicts between read and write operations
by maintaining multiple snapshots. The chain-based design
(see the top right corner of Fig. 6(a)) is widely used by
multi-version (row) stores [33, 39, 50, 58, 60, 110], and prior
HTAP systems [20, 68, 84] also follow this design. However,
column-wise reads with a given version (snapshot) have to
access pointer-linked tuples (chains) and frequently check
their versions, causing massive cache misses and severe per-
formance degradation for analytical queries [58]. As shown
in Fig. 6(c), the read throughput drops more than 90% (from
21.2G to 1.8G ops/s) with growing write throughput (10M
ops/s), even just accessing 0.5 more versions per read on av-
erage. Note that the query (similar to Q02 in TPC-H [96])
simply reads one column updated by TPC-C transactions
(like QTY attribute of ITEM table in Fig. 4), and the median
latency is about 180 ms over a single-version store, close
to the average latency of queries in CH-benCHmark [29].
Therefore, VEGITO demands a new approach to building a
multi-version column store that can preserve the locality of
both row-wise writes (log cleaners) and column-wise reads
(analytical queries).

C#3: concurrent tree-based index updating. The tree-
based index (e.g., B+-tree) is imperative to support range
scans for analytical queries. In HTAP systems, the index
has to serve both writes (cleaner threads) and reads (AP
threads) simultaneously (see the bottom right corner of
Fig. 6(a)). Although several research efforts have been de-
voted to building concurrent tree-based data structures [17,
61, 86, 94, 102, 104, 114], to our knowledge, none of them
satisfies our requirements and exploits HTAP workload char-
acteristics. Fig. 6(d) shows the throughput of range scans
with growing write throughput for read-optimized and write-
optimized tree-based index structures (i.e., STX [21] and
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Masstree [61]). STX can outperform Masstree by 1.8× for
read-only workloads (564 M vs. 319 M ops/s). However, its
write throughput is limited to 7.9 M ops/s due to high con-
tention on concurrent writes and collapses when the clients
send more write requests. In addition, the read throughput
drops up to 34% because of the interference from heavy up-
dates. On the contrary, Masstree is highly optimized to han-
dle fast concurrent writes at the expense of read performance
(e.g., unordered keys in leaf nodes). Thus, VEGITO should
optimize tree-based index for concurrent writes and reads.

4 DESIGN AND IMPLEMENTATION

To overcome the challenges, we introduce a classic concept
(epoch) into a new context (HTAP). A centralized (epoch) or-
acle partitions time into non-overlapping epochs.6 Epoch is
the granularity at which VEGITO guarantees the consistency
and visibility of backup/AP replicas to analytical queries. It
opens opportunities to exploit parallelism and preserve local-
ity for providing consistent, fresh, and columnar backups. In
this section, we detail main techniques in our epoch-based
solution employed by VEGITO.

4.1 Consistent and Parallel Log Cleaning

To provide consistent backups for OLAP workloads, log
cleaner threads on multiple machines should apply logs fol-
lowing the dependency in transactions; all logs of one trans-
action should be applied atomically, and all logs from differ-
ent transactions should be applied in order.

A traditional approach is to assign global or vectorized
timestamps to logs of transactions and then apply logs se-
quentially at both machine and thread levels according to
their timestamps [55, 65, 101]. When facing millions of
transactions per second, this approach would incur excessive
cost to transaction processing, and sequential log cleaning
would be extremely slow (see GTS+SEQ in Fig. 6b).

The epoch-based approach simplifies the assignment and

6Note that the oracle only needs to periodically broadcast a new epoch to all
machines in the cluster, instead of transactions or queries involved. Hence,
it will definitely not be the bottleneck in the cluster with thousands of ma-
chines even using very small epochs (e.g., a few milliseconds) [15, 30].

comparison of timestamps with a local scalar value (epoch
number), and also allows logs within an epoch (assigned the
same epoch number) to be drained in parallel. However, de-
pendent transactions at the epoch boundary must be assigned
epochs matching the serial order; namely, committed transac-
tions in earlier epochs never transitively depend on transac-
tions in later epochs. Further, logs in different epochs should
still be drained in order.

Consistent epoch assigning. VEGITO introduces a light-
weight gossip-style scheme to assign consistent epoch num-
bers for dependent transactions. An epoch oracle will period-
ically broadcast a new epoch to update the transaction epoch
number (Epoch/TX) on each machine atomically; it always
waits for ACKs from all machines such that the epoch gap
among machines must not be bigger than 1. Each transac-
tion will assign Epoch/TX on machines involved to its logs
during committing (see Fig. 8). For stand-alone dependent
transactions on the same machine, the order of epoch num-
bers can always agree with the serial order due to using the
concurrency control scheme (e.g., 2PL or OCC), similar to
Silo [98]. For distributed transactions, the epochs from dif-
ferent machines are likely the same, which means all transac-
tions on these machines are in the same epoch. In rare cases,
the distributed transaction involves machines within differ-
ent epochs, as shown in Fig. 7. The distributed transaction
TX1 executes on two machines and observes the epoch on
one machine (M1) is behind the other (M2). Suppose a local
transaction TX2 on M1 depends on TX1, assigning a smaller
epoch number (Epoch/TX=4) to TX2’s log would violate the
serial order. To avoid this, TX1 is responsible for synchro-
nizing the epoch (Epoch/TX=5) on machines involved using
point-to-point messaging (gossip), so that TX2 will commit
its log with the correct epoch number (5).

Fig. 8 shows the commit protocol [34, 107] with a new
distributed epoch synchronization step.7 It first gains the lat-
est epoch number (Line 1-3) from machines involved (mset),
and then updates the epoch if needed (Line 4-6). Specifically,
we can blindly overwrite the epoch instead of using atomic
operations as there are at most two epoch numbers across the
cluster. Finally, it will send logs to backups with the consis-
tent epoch number (Line 8). Note that epochs are synchro-
nized after write locking and before read validation. Placing
it after write locking ensures that all transactions in the later
epochs would see at least the conflict tuple locked; placing it
before read validation ensures that committed transaction in
earlier epoch never reads the tuple updated by transactions in
later epoch. Thus, assigning epochs obeys both dependencies
and anti-dependencies.

Parallel log cleaning. Logs from different machines (and
threads) are buffered in different queues [26, 34], and mul-

7The single-machine epoch scheme usually replies on total-store-order
(TSO) architectures (like x86-64) to synchronize the epoch among worker
threads, like Silo(R) [98, 116].
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COMMIT

▸ 1. LOCK tuples in write set

...

▸ 2. VALIDATE tuples in read set

... 

▸ 3. send LOGs to backups

7 foreach b in backups

8   send_log(b, updates, epochTX )

▸ 4. COMMIT updates to primary

...

▸ SYNC epoch/TX

1 foreach m in mset

2   m.epoch = get_epoch(m)

3   epochTX = max(epochTX, m.epoch)

4 foreach m in mset

5 if epochTX != m.epoch then

6 sync_epoch(m, epochTX)

Fig. 8. Commit protocol with a lightweight epoch scheme run at

the end of every transaction.

tiple cleaner threads can drain logs of the same epoch in
parallel. VEGITO uses a hybrid design to exploit both intra-
machine and inter-machine parallelism. First, each machine
maintains a cleaner epoch number (Epoch/C), meaning that
logs at this epoch have been drained. As shown in Fig. 7, af-
ter the cleaner thread on M2 applies the last two logs at epoch
4 from M1, the cleaner epoch will increase to Epoch/C=4, and
then two cleaner threads could start to drain logs at epoch 5

on M2 in parallel. The runtime schedules queues dynamically
across available cleaner threads to achieve load balance [81].

Second, to reduce waiting time among cleaner threads,
VEGITO refrains from the synchronization among the
cleaner threads on different machines, so that the backup
replicas on different machines may not keep up the pace of
change. For example, in Fig. 7, the cleaner threads on M1

and M2 are draining logs in different epochs (5 and 4 re-
spectively). To remedy this, VEGITO supports multi-version
backup replicas (see §4.2) and makes analytical queries
read consistent backups at a (stable) query epoch (Epoch/Q),
which is the minimum value of cleaner epochs on machines
involved, like Epoch/Q=3 in Fig. 7.

4.2 Locality-preserving Multi-version Column Store

To avoid contention between cleaner threads (write) and AP
threads (read), backup/AP replicas require to adopt a multi-
version column store (MVCS) at the epoch level. Specifically,
the cleaner threads will generate a new version of column
store for each epoch by applying logs in parallel. Meanwhile,
AP threads will run analytical queries over the latest stable
version of the column store to retrieve fresh results.

The chain-based design is widely used by multi-version
(row) stores [33, 39, 50, 58, 60, 110]. Prior HTAP sys-
tems [20, 68, 84] also follow this design. As shown in
Fig. 9(a), the column store maintains an array for each at-
tribute to store the latest value of tuples with its version
(e.g., epoch). Each entry also maintains a backward chain
for values in the earlier versions, which is designed to sup-
port atomic updates efficiently. Before updating new value
in-place, the cleaner thread will copy the original entry and
update the chain atomically. Although this design preserves
the locality for recent values, analytical queries commonly
access the latest consistent data. For example, in Fig. 9(a),
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the cleaner threads are currently draining logs at epoch 4, and
the queries can only access the values up to epoch 3. Conse-
quently, the AP thread has to traverse the chains of updated
entries and frequently check the versions (see the access pat-
tern in Fig. 9(a)). Besides, the garbage collection for chains
would also be complicated and time-consuming.

VEGITO proposes a block-based design to exploit optimal
performance for analytical queries. As shown in Fig. 9(b),
the design is straightforward, which maintains an array for
each epoch. When starting a new epoch, the cleaner thread
copies the array of last epoch and applies logs to it. This cre-
ates a complete snapshot on demand in each epoch. Given an
epoch, the AP thread can scan the array with perfect locality
but without interference from the cleaner threads. Moreover,
the cleaner thread can also garbage collect expired arrays ef-
ficiently and reuse the memory easily. However, this design
has an apparent and critical drawback (see Fig. 20 in §6.7):
data copying may waste lots of CPU and memory resources,
especially for append-only attributes (e.g., the attributes in
ORDER table). In Fig. 9(b), most of the entries are wasted
(grey box) to repeatedly store tuples, which are not changed
in the current epoch.

To remedy this, we optimize the naive block-based design
by exploiting both spatial and temporal locality observed in
transaction workloads, the data source of MVCS.

Row-split. We observe that the transactions may focus on

updating tuples in a small scope for a while, like discounted
products, batch orders, and social events. Thus, VEGITO first
splits values into multiple pages, and each page enables a
copy-on-write mechanism independently to implement fine-
grained on-demand data copying. There are no new copies
for pages without updates at the current epoch. As shown
in Fig. 10(a), values of attribute QTY are grouped into two
pages. The first page has only two copies for epoch 1 and
epoch 2 (i.e., E=1 and E=2), since there is no update in later
epochs. To balance the read (AP threads) and write (cleaner
threads) performance of the multi-version column store, VE-
GITO uses 4KB page size, which is enough to exploit the
cache locality [44, 91]. Although an insert can be treated as
a normal update and triggers the copy-on-write mechanism
for a new epoch as well, it is costly for insert-mostly tables
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(e.g., ORDER). VEGITO avoids page copying from inserts
by appending new values and maintaining offsets for each
epoch.

Column-merge. We further observe that a certain type of

transactions usually updates a fixed set of attributes at a

time. For example, NEWORDER transaction in Fig. 3 always
updates two attributes (QTY and CNT) of ITEM table to-
gether. Thus, VEGITO will merge related attributes for the
same tuple into a single page. As shown in 10(b), QTY and
CNT attributes of ITEM table are merged. Using column-
merge improves the performance of draining logs for cleaner
threads and also reduces data copying operations with the
same page size, due to finer-grained partitioning for each at-
tribute. VEGITO can automatically discover correlations be-
tween attributes from transaction logs and reorganize them
into a single page at the start of next epoch.8 The epoch-
based reorganization will not interfere with running queries
at all since new pages will not be read by current analytical
queries. Further, analytical queries could benefit from the op-
timization two epochs later.

Finally, after enabling the two optimizations, only 2%
of updates incur page copying when using 4KB page size
and 15ms epoch interval in a typical HTAP workload (i.e.,
CH-benCHmark [29]). The median latency to copy a 4KB
page is about 6 microseconds. Moreover, our two optimiza-
tions are orthogonal to the preceding techniques for the col-
umn store [32, 40], such as compression and range filter, so
both are applicable in a complementary manner. We leave it
to future work.

4.3 Two-phase Concurrent Index Updating

The order-preserving indexes commonly use tree-based data
structures to support range scan operations. The update op-
eration may involve more complicated steps (e.g., traversal
and split), which will cause new challenges to support fast
concurrent updates (by cleaner threads) and lookups (by AP
threads). Without loss of generality, the rest of this paper

8We collect the statistics on the column family to decide how to merge
columns with conflicting requirements.
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will use B+-tree to explain the issues and introduce our de-
sign, since it is widely adopted by OLTP and OLAP sys-
tems [37, 43, 47, 101, 105, 109].

As shown in Fig. 11, B+-tree contains two types of nodes:
inner nodes and leaf nodes. The inner node stores the val-
ues and links to the next level. The last level (L2) contains
(sorted) leaf nodes, which are used to store the sorted value
of the indexed attribute (AMOUNT) with a link to the row ID
and its start/end epochs. The end epoch is used to delete a
value, which will simply write an end epoch. The cleaner
thread will garbage collect expired values in a lazy and
batched manner. The update operation is treated as a delete
operation for the original value and an insert operation for
the new value. So that we mainly consider the insert oper-
ations by cleaner threads and the lookup operations by AP
threads.

The INSERT operation consists of three steps.

• Locate leaf node. Search a leaf node to store the value by
traversing from the root

• Split/Insert leaf node. Split the leaf node if it is full, and
then insert the value into the sorted leaf node.

• Split/Insert inner node. (Recursively) Split the upper-
level inner node if it is full, and then insert a value and a
link into the sorted inner node.

We observe that the throughput of insert operations drops
with the increase of threads, even using an optimized B+-
tree [104] (see Fig. 21(a) in §6.8). The main reason is that
the second step of the insert operation may block other con-
current insert operations. As shown in Fig. 11, for inserting
the value 70, the cleaner thread has to recursively lock the
leaf node and the upper-level inner nodes due to node split.
It will block the concurrent insert operations on the whole
subtree (e.g., 58 and 100). Even worse, the node split may
cause some blocked operations to lock or rollback the first
step since the leaf node has changed (e.g., 58 and 70). Even
no split, the second step may still hold the lock of the leaf
node for a long time, since it has to move values for keeping
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them in order. However, these efforts may be in vain, as the
later insert may move these values again (e.g., 160 and 170).
On the other hand, the existence of insert operations will also
significantly impact the performance of lookup operations by
AP threads (see Fig. 21(b) in §6.8). The lookup operation has
to protect access to the inner/leaf node and the value, since
the insert operations may change them concurrently.

Fortunately, the epoch-based design provides an opportu-
nity to fully parallelize the index updating. More specifically,
the insert operations in the current epoch only need to be-
come visible by the lookup operations until the next epoch.
VEGITO introduces a two-phase index updating mechanism
that splits the insert operations within an epoch into two
phases (i.e., location and update) and parallelizes them us-
ing two different approaches (task parallelism and data par-

allelism), as shown in Fig. 12.

In the location phase, each thread searches a leaf node
to append the value into its interim buffer, and recursively
updates the counter at each level. The interim buffer is un-
ordered, and atomic instructions (e.g., CAS) are used to ap-
pend the value and increase the counter. VEGITO simply uses
a vector to implement the interim buffer and resize it accord-
ing to workloads. Note that the interim buffer is absolutely
transparent to lookup operations; thus there is no read/write
conflict.

In the update phase, we first use a top-down greedy strat-
egy to partition the tree into non-overlapping subtrees accord-
ing to the counters at each level, so that each subtree has
a similar amount of tasks. Then each thread will insert the
values within a subtree in a batch, which also avoids redun-
dant node splits and data movements. Finally, we use a sin-
gle thread to split the top-level (L0) node if necessary. Con-
sequently, there are no conflicts between cleaner threads in
both location and update phases. However, the lookup opera-
tions (by AP threads) still may conflict with the update phase
of the insert operations. To minimize the impact on lookup
operations, cleaner threads can leverage RCU [64] mecha-
nism or HTM [41] to implement the update phase.

5 NO COMPROMISE: AVAILABILITY

VEGITO assumes that the OLTP system has already pro-
vided high availability using replication (e.g., 3-way primary-
backup replication [26, 34, 46]) and other fault-tolerant tech-
niques (e.g., failure detection and non-volatile WAL). VE-
GITO reuses this mechanism to support HTAP workloads
and still preserves the same availability guarantees for free—
namely, there is no need for extra replicas. Because VEG-
ITO just reorganizes the data layout of one backup replica
(backup/AP), from row-wise store to column-wise store; the
backup/AP can still provide the capability of failure recov-
ery. Besides, the original recovery protocol [26, 34] is used
as usual in most common cases.

Backup failure. When the backup/TP fails, VEGITO will re-
build a row-wise backup from the primary by following the
original protocol. When the backup/AP fails, VEGITO will
rebuild a column-wise backup to the next epoch, because
both the primary and the backup/TP do not store epochs as-
sociated with tuples for memory savings and good locality.
Meanwhile, VEGITO needs to re-execute analytical queries
involved with the new epoch.

Primary failure. When the primary fails, VEGITO always
prefers to promote a surviving backup/TP to be the new pri-
mary and rebuild a new backup/TP on another machine later
in the background, which still follows the original protocol.
When both the primary and the backup/TP fail (a rare case),
VEGITO rebuilds a new primary based on the surviving back-
up/AP on the same machine (∼42 ms for 12 warehouses of
TPC-C, see §6.5), instead of promoting it, and then migrates
the backup/AP to another machine later in the background.
This rebuild-and-migrate design avoids lengthy data reorga-
nization between row store and column store, compared to
the conventional promote-and-rebuild approach. Note that
our block-based design also simplifies and accelerates this
procedure. Therefore, VEGITO can still offer comparable per-
formance against promoting a backup/TP (∼7% overhead).
In addition, it also avoids interrupting analytical queries.

It should be noted that the recovery scheme prefers OLTP
performance. VEGITO chooses to abort the analytical query
that accesses failed machines and retry it after recovery,
since the long-running analytical query is unusual in HTAP
workloads [29] (e.g., real-time analytics), especially for in-
memory systems. If the long-running analytical query is a
serious problem, for example the query latency exceeds the
mean time to failure (MTTF) of HTAP systems, both the pri-
mary and the backup/TP should store epochs associated with
tuples. VEGITO thus could suspend and resume the analyti-
cal query after recovery.

6 EVALUATION

We implemented VEGITO by extending DrTM+H [107], a
state-of-the-art distributed in-memory OLTP system. The
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Fig. 13. Comparison of (a) performance and (b) scalability be-

tween VEGITO and DrTM+H using CH-benCHmark with OLTP-

only workloads.

extensions include retrofitting the high availability mecha-
nism (3-way primary-backup replication) for hybrid trans-
action/analytical processing and integrating a distributed
in-memory OLAP engine, similar to MonetDB [6, 44], a
column-store database that maps analytical queries into a se-
ries of array operations [23].

6.1 Experimental Setup

Hardware configuration. All experiments were conducted
on a rack-scale cluster of 16 machines. Each machine has
two 12-core Intel Xeon processors, 128GB of RAM, two
ConnectX-4 100Gbps IB NICs and an Intel 10GbE NIC.
Unless otherwise noted, we reserve 4 cores for log cleaner
threads and 2 cores to generate transactions and analytical
queries in parallel for local worker threads, which avoid the
impact of networking between clients and servers, as done in
prior work [26, 97, 98, 105, 111]. For HTAP workloads, we
pin 8 TP threads and 10 AP threads on the remaining cores.

Benchmarks. We use CH-benCHmark [29], a typical HTAP
benchmark derived from unmodified TPC-C [95] (OLTP
benchmark) with some necessary tables to fulfill equiva-
lent queries from TPC-H [96] (OLAP benchmark). It con-
tains 5 types of transactions and 22 analytical queries. We
run the full mix and report OLTP throughput as the num-
ber of NEWORDER transactions committed per second and
OLAP throughput as the number of analytical queries exe-
cuted per second. CH-benCHmark scales by partitioning a
database into multiple warehouses spreading across multiple
machines. We deploy 12 warehouses on each machine with
3-way replication, namely 12 primary, 12 backup/TP and 12
backup/AP replicas. Each machine hosts about 6GB initial
data, which rapidly grows up to 75GB (a total of 1.2TB)
through continually running transactions (e.g., NEWORDER)
for about 40 seconds. To eliminate the effect of growing data,
the analytical query will access a fixed size of latest data by
using LIMIT statement.

Comparing targets. We choose DrTM+H [107] and
MonetDB [6] (v11.33.3) as the representative in-memory
OLTP and OLAP systems, respectively, to show that both
OLTP and OLAP performance of VEGITO are comparable
to specialized counterparts. VEGITO follows 3-way replica-
tions of DrTM+H except for replacing one of backup/TP
replicas with one backup/AP replica. To eliminate the perfor-
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Fig. 14. Comparison of single-threaded latency (ms) between VE-
GITO and MonetDB using CH-benCHmark with OLAP-only work-

loads, equivalent to TPC-H with SF=10.

mance discrepancy, VEGITO also uses the query plans gener-
ated by MonetDB for all of the analytical queries. VEGITO

optimizes distributed joins as MemSQL by adding reference
tables (copies) on each machine and aggregating intermedi-
ate results to avoid the whole table transferring [4]. In ad-
dition, the default intervals of epoch and garbage collection
(GC) are set as 15 ms and 1 second, respectively.

For HTAP workloads, we mainly focus on the perfor-
mance degradation and the freshness in VEGITO against
three state-of-the-art HTAP systems with three different
architectures—namely TiDB v4.0 [8] with TiFlash [9]
(DUAL-SYSTEM), the community edition of MemSQL
v7.0 [4] (SINGLE-LAYOUT), and SQL Server 2019 [7]
(DUAL-LAYOUT). Note that MemSQL is an in-memory sys-
tem, while TiDB and SQL Server are on-disk systems. For
SQL Server, we host all data in main memory by using tmpfs,
an in-memory file system. TiDB demands all data on the disk
with the ext4 file system. In addition, we deploy TiDB on
the cluster with different settings9 and always report the best
results of them. Differently, MemSQL and SQL Server can
only run on a single machine, and we deploy them on one of
our testbed machine without replication (just 12 warehouses).
Finally, to avoid the impact of compiling and interpreting an-
alytical queries, we directly evaluate the performance of exe-
cuting analytical queries on servers.10

6.2 Overall Performance

OLTP-only workloads. We first compare OLTP perfor-
mance of VEGITO and DrTM+H using CH-benCHmark
with OLTP-only workloads, like TPC-C [95]. As shown in
Fig. 13, the peak throughput of VEGITO reaches 3.7 million
NEWORDER transactions per second when running the full
mix on 16 machines (each has 14 TP threads), just 1% lower
than DrTM+H. This is thanks to our epoch-based scheme
and gossip-style parallel log cleaning, which avoid block-
ing transactions. The best published TPC-C performance we
know of is from FaRMv2 [87], which can commit 5.4 mil-
lion NEWORDER transactions per second on 90 machines. In

9As recommended in TiDB’s official website [9], we deployed TiKV and
TiFlash in both the same and different nodes.

10The systems evaluated in our paper use different approaches to run an-
alytical queries—namely VEGITO (hand-written C++), MonetDB (inter-
preted SQL), MemSQL (compiled SQL), TiDB (complied SQL), and
SQL Server (compiled SQL).
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general, VEGITO can offer OLTP performance comparable
to state-of-the-art specialized systems (e.g., DrTM+H and
FaRMv2) and scales well on a cluster with tens of machines.

OLAP-only workloads. We further compare OLAP per-
formance of VEGITO and MonetDB using CH-benCHmark
with OLAP-only workloads, like TPC-H [96]. Fig. 14 com-
pares the single-threaded latency of analytical queries on
VEGITO and MonetDB; both of them use the same query
plans generated by MonetDB. To compare with the pub-
lished TPC-H results [35, 38, 67], we scale the database in
CH-benCHmark following a similar approach in TPC-H by
a scale factor of 10 (SF=10). As shown in Fig. 14, the aver-
age (geometric mean) latency of VEGITO (GM) outperforms
MonetDB by 2.8× (216 ms vs. 610 ms). The main perfor-
mance improvement in VEGITO is due to combining some
operators manually and using efficient string operations by
hand-written C++. VEGITO also outperforms published TPC-
H results for various query processing engines [35, 38].
Specifically, the average (geometric mean) latency of all
TPC-H queries (SF=10) using a single thread is 568 ms for
HyPer [68], 541 ms for Umbra [67], 1,125 ms for Hyrise [36]
and 619 ms for MonetDB [6].11 Overall, VEGITO’s OLAP
performance matches state-of-the-art specialized systems.

HTAP workloads. Fig. 15 shows both OLTP and OLAP
throughput of VEGITO and other available HTAP systems
using CH-benCHmark with hybrid workloads. To study per-
formance degradation, we evaluate each system twice. We
first run OLTP and OLAP workloads separately and tune the
number of clients to use half of CPU resources. Then, we run
HTAP workloads with the same number of clients to saturate
CPU resources with a balance between OLTP and OLAP en-
gines. The results of performance degradation in Fig. 15 (la-
bels) are the difference between the two runs.

VEGITO can perform 1.9 million TPC-C NEWORDER

transactions and 24 TPC-H-equivalent queries per second
simultaneously. The OLTP throughput of VEGITO is sev-
eral orders of magnitude higher than that of its competitors
(11,808× for TiDB, 2,911× for MemSQL, and 53,138× for
SQL Server). This means that the bridge between two ends
of the world in VEGITO—parallel log cleaning, column store

11Note that we calculate the geometric mean of the query times based on
the reported results of every query [35, 38].
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Fig. 16. Performance degradation on VEGITO and MemSQL with

the increase of OLAP and OLTP workloads, respectively.

building, and tree-based index updating—is strong enough
to face the challenge of extremely high throughput, which is
never appeared in prior published results of HTAP systems,
to the best of our knowledge. Compared to single-machine
HTAP systems, like MemSQL and SQL Server, VEGITO still
has orders of magnitude higher OLTP throughput per ma-
chine (120 K txns/s) with support for scaling out and fault
tolerance.

Moreover, VEGITO also provides little throughput degra-
dation when running hybrid workloads, just 5% for OLTP
and 1% for OLAP respectively. In contrast, existing HTAP
systems, TiDB, MemSQL, and SQL Server, suffer from sig-
nificant performance degradation, reaching 18%, 74%, 24%
for OLTP and 1%, 37%, 37% for OLAP respectively. It
matches well with the characteristics of different HTAP ar-
chitectures (see Fig. 1).

We further deploy and evaluate VEGITO on a single ma-
chine by hosting all three replicas of each shard (one primary
and two backups) on the same machine. VEGITO still syn-
chronously send transaction logs between primary and back-
ups by the NIC. As shown in Fig. 15, on a single machine,
VEGITO can perform 132 thousand TPC-C NEWORDER

transactions and 26.5 TPC-H-equivalent queries per second
simultaneously. Note that running analytical query on a sin-
gle machine is more efficient due to eliminating network
overhead.

6.3 Performance Degradation

To study the impact of performing hybrid workloads simulta-
neously, we follow Gartner’s recommendation to instruct one
kind of clients (e.g., OLTP) to sustain a configured through-
put (i.e., about half of peak throughput) and allowing another
kind of clients (e.g., OLAP) to saturate the throughput [28].

VEGITO can provide strong performance isolation by dedi-
cating a fixed number of worker threads for OLTP and OLAP
workloads. We carefully put the memory of two classes of
threads into different cache lines (e.g., write epoch and read
epoch, write offset and read offset) to mitigate the impact
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Fig. 17. (a) The time delay and (b) OLTP throughput of VEGITO

with the increase of epoch intervals in the failure-free case.

on the cache. As shown in Fig. 16, with the increase of AP
clients, OLTP performance degradation of VEGITO is less
than 5%. After OLAP performance is saturated, OLTP per-
formance also remains stable. When the roles are reversed,
OLAP performance degradation becomes trivial (1%) since
OLAP worker threads always use a stable epoch to perform
analytical queries on a specified column store and index. In
contrast, MemSQL suffers from severe performance degra-
dation of both OLTP and OLAP workloads, even if there are
adequate resources. In Fig. 16, the performance degradation
of MemSQL reaches 74% and 37% for OLTP and OLAP re-
spectively, with the increase of another type of workloads.
This is largely due to the high contention between OLTP and
OLAP engines over shared data.

6.4 Freshness

The freshness is defined as the maximum time delay between
an update was committed by the transaction (OLTP work-
load) and this update can be read by the analytical query
(OLAP workload). Fig. 17(a) shows the freshness of VEG-
ITO with the increase of epoch intervals in the failure-free
case. The median time delay is about 70% of the epoch inter-
val, and the maximum delay is up to 1.3× of epoch interval.
It implies that we could roughly limit the freshness in VEG-
ITO by setting an appropriate epoch interval.

Moreover, by setting the epoch interval, there would be a
tradeoff between the freshness (OLAP) and the performance
degradation (OLTP) in VEGITO. In Fig. 17(b), when using a
relative short epoch interval (less than 10 ms), performance
degradation would become non-trivial (10%) since epoch-
based design limits the parallel log cleaning within an epoch,
and the cost to build a column store for each epoch is hard to
be amortized. Considering the latency of analytical queries
(see Fig. 14), the epoch interval with tens of milliseconds
would be moderate and reasonable. The default epoch inter-
val is set as 15 ms, providing a freshness less than 17.4 ms.

As a reference, on our testbed, the maximum delay in
TiDB, MemSQL, and SQL Server are about 1,534 ms, 1.2
ms, and 46 ms, respectively. The results are compatible
with the characteristics of different HTAP architectures (see
Fig. 1). Further, VEGITO can provide a comparable failure-
free freshness with Amazon Aurora [101], which reports the
read replica typically lags behind the writer by 20 ms or less.
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is done; rebuild-start: backup/AP starts to rebuild primary.

6.5 Recovery

VEGITO follows a 3-way primary-backup replication of
DrTM+H except for replacing one of backup/TP replicas
with one backup/AP replica. During the evaluation, we kill
one machine by turning off its networking, and the primary
on the failed machine will be recovered by promoting its
backup/TP on one of the surviving machines. We disable
the primary to re-replicate a new backup/TP for emulating
a rare case. Then, we kill the recovered primary again, and
its backup/AP will be used to rebuild a new primary locally
and migrate itself to another machine in the background.

Fig. 18 shows the timeline with OLTP throughput aggre-
gated at 2 ms intervals, which is a zoomed-in view around the
failure. VEGITO uses about 10 ms for failure detection and re-
configuration. Promoting backup/TP to primary takes about
8 ms, and rebuilding primary based on backup/AP takes 42
ms for 12 warehouses with the initial size (about 2GB). Note
that the recovery load is handled by a single machine (lim-
ited by DrTM+H), causing a relatively long rebuilding time
that mainly depends on the data size. Thus, it could be easily
balanced across the cluster by fine-grained sharding [34, 69].
The throughput is not fully recovered since the failed ma-
chines are not back. Besides, rebuilding primary will slightly
impact on throughput (10%) due to sharing CPU cores.

6.6 Parallel Log Cleaning

To study the performance impact of different log cleaning
approaches, we implement three approaches on VEGITO.

• Parallel/Inconsistent: a fully parallel scheme used by
OLTP-specific systems [26, 34], which can provide high
availability but not ensuring the consistency of backups.

• GTS+SEQ: a global timestamp-based scheme used by
prior HTAP systems [55, 65, 103, 112], which provides
consistent backups by draining logs in a sequential way.

• Parallel/Consistent: a lightweight gossip-style scheme
used by VEGITO, which also ensures the consistency of
backups but drains logs in parallel.

Fig. 19 shows the throughput of OLTP and log cleaning
with the increase of machines. Parallel/Inconsistent is used
by OLTP-specific system to build fault-tolerant backups (see
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FTbackup in Fig. 6(b)), which are not consistent for analyti-
cal queries. GTS+SEQ just achieves up to 31.5% and 30.9%
throughput for OLTP and log cleaning, respectively. There
are two main reasons. First, assigning a global timestamp
for each transaction will increase the execution time. Sec-
ond, draining logs in a sequential way limits the through-
put of cleaner threads and further blocks the execution of
transactions. By contrast, for OLTP and log cleaning, our ap-
proach in VEGITO (Parallel/Consistent) only incurs about
4.5% and 4.7% slowdown compared to Parallel/Inconsistent

and outperforms GTS+SEQ by up to 3.0× and 3.1×. It can
drain about 9.3 million 1 KB logs per second in parallel. Ac-
cording to the TPC-C specification, there are 1% of accesses
to a remote warehouse in NEWORDER transactions by de-
fault [95], resulting in about 9% of distributed transactions.
Consequently, our gossip-style scheme only increases 7% of
remote accesses due to the epoch synchronization step in the
commit protocol (see Fig. 8). In the worst case, namely 100%
of distributed NEWORDER transactions, our approach can
still limit the performance degradation of OLTP throughput
to 15% or less. The overhead of additional remote accesses
increases to 21%.

6.7 Multi-version Column Store

For multi-version column store (MVCS) in VEGITO, the con-
ventional (chain-based) approach could achieve the best per-
formance to build the store (by cleaner threads) but the worst
performance to scan the store (by AP threads). To study the
effect of our locality-preserving design and optimizations,
we implement four types of MVCS on VEGITO and report
the steady-state throughput for them.

• Chain: a chain-based design [20, 68, 84].

• Block: a block-based design without optimizations.

• +RS: a block-based design with row-split optimization.

• +CM: a block-based design with row-split and column-
merge optimizations.

As shown in Fig. 20, as expected, Chain can achieve the
best write throughput (9.4 M ops/s), which outperforms the
naive block-based design (Block) by 157× due to fewer
memory copy operations. On the contrary, Block can pro-
vide about 95% of read throughput over a single-version
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column store, which outperforms Chain by about 12.4×.
However, both write and read throughputs are important
for HTAP systems. The row-split optimization (+RS) can
achieve about 87.3% of write throughput of Chain and 95.4%
of read throughput of Block. The column-merge optimization
(+CM) further provides a tradeoff between two operations. It
improves write throughput by 13% due to exploiting the lo-
cality of attributes updated by transactions, while reduces 2%
of read throughput since one column of tuples will spread
more pages.

Further, GC for the block-based design is very efficient
and incurs a negligible impact on OLAP performance. It only
uses one core with less than 10% of CPU utilization lasting
about 70 ms (retrieve about 4.8GB), compared to 35% and
350 ms used by GC for the chain-based design.

6.8 Concurrent Index Updating

To study the performance of different tree-based indexes
with concurrent read and write operations, we compare three
typical data structures.

• STX+HTM: a generally-used C++ B+-tree library [21],
using hardware transactional memory (HTM) to support
multiple writers and readers, as done in DBX [105].

• Masstree [61]: a trie-like concatenation of B+-trees with
cache-friendly design, using a combination of fine-grained
lock and version.

• B+-tree w/ 2PU: a standard B+-tree with two-phase con-
current index updating, which is adopted by VEGITO.

We first evaluate the performance of insert operations
(write-only) with the increase of worker threads using write-
intensive transactions (NEWORDER) in CH-benCHmark. As
shown in Fig. 21(a), STX+HTM does not scale with the in-
crease of writers due to heavy contentions on node splits.
Masstree is heavily optimized for concurrent operations by
using fine-grained locks and optimistic mechanism, but it
still cannot avoid contention thoroughly. For B+-tree w/ 2PU,
the insert operation is very efficient (single writer) due to us-
ing a lazy and batched manner to avoid redundant operations
(node splits and data movement). Moreover, B+-tree w/ 2PU

also scales well with concurrent writers, thanks to avoiding
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redundant node splits and data movements. Therefore, B+-

tree w/ 2PU outperforms STX+HTM and Masstree by up to
8.7× and 1.4×, respectively.

We further evaluate read performance for different in-
dexes using Q01 from CH-benCHmark with and without
NEWORDER transactions (NO), as shown in Fig. 21(b). For
the read-only workload, STX+HTM achieves the best perfor-
mance (564 M ops/s) by using more balanced tree, while
Masstree just provides 56.6% of throughput (319 M ops/s)
due to out-of-order keys in leaf nodes. For the read-write
workload, the read performance in STX+HTM significantly
decreases by 31% due to massive read-write contentions, and
Masstree can still achieve 290 M ops/s. The read through-
put of B+-tree w/ 2PU achieves 563 M and 515 M ops/s for
read-only and read-write workloads, respectively, which is
competent for HTAP workloads.

7 RELATED WORK

HTAP systems. The increasing importance of real-time oper-
ational analytics has stimulated considerable interest in both
academia and industry. There are three classes of systems.

DUAL-SYSTEM. Connecting two specialized systems is a
common design alternative [56, 62, 71, 80, 82, 112]. Re-
cently, several systems [42, 55, 65, 103] also propose to
use a single node (primary) for OLTP workloads and mul-
tiple nodes (backups) for OLAP workloads, where transac-
tion logs are shipped to backups asynchronously. Google F1
Lightning [112] is a loosely coupled HTAP solution (HTAP-
as-a-service) that aims at providing a transparent experience
to OLTP systems. TiDB [43] is a Raft-based HTAP database
that asynchronously replicates logs from a row store (TiKV)
to a column store (TiFlash). MySQL allows running ana-
lytical queries on (row-based) backups and provides semi-
synchronous replication [66]. Further, many cloud databases
also allow OLTP and OLAP workloads to run on different
instances, which are also replicated by log shipping in the
background, like Amazon Aurora [1] and MS Azure [5]. Dif-
ferently, VEGITO runs analytical queries over multi-version
columnar backups for efficiency and ships transaction up-
dates before committing on the primary for freshness.

SINGLE-LAYOUT. There are several efforts aiming at build-
ing HTAP systems from one specialized system (i.e., OLTP

or OLAP) [3, 13, 48, 84, 88]. HyPer [48] is an in-memory
HTAP system, which leverages hardware-assisted virtual
memory snapshots, session-based OLAP, and hot/cold page
management [49] to maintain consistent snapshots for OLAP.
AnKer [88] leverages virtual memory snapshots and adds
new system calls to accelerate page copying. L-Store [84]
introduces an update-friendly lineage-based data store to
support both OLTP and OLAP workloads. Many SQL-on-
Hadoop systems [3, 25, 31] have extended existing OLAP
engines with transactional support. Using a single layout
may prohibit certain optimizations (e.g., frequency com-
pression [79]) and cause poor performance for part of
workloads [14]. To avoid data contention between transac-
tions (read-write) and analytical queries (read-only), MVCC
scheme becomes essential. Prior work [53, 68] has also re-
ported 20–45% throughput degradation due to using MVCC
schemes even under low contention.

DUAL-LAYOUT. Recent systems support HTAP workloads
by combining two different data layouts in a single sys-
tem [4, 11, 14, 22, 54, 60, 90]. MemSQL [4] adopts an in-
memory row store for OLTP workloads at scale and an on-
disk column store for OLAP workloads. SAP HANA [90]
stores records in either row or column format for both trans-
actional and analytical workloads. It further uses life cycle
management to ship and merge records asynchronously. SQL
Server [37, 54] has added updatable columnstore indexes and
batch mode processing to speed up analytical queries. Pelo-
ton [73] proposes a hybrid data layout (i.e., FSM [14]) for
HTAP workloads, which stores tuples with different formats
and supports online reorganization. BatchDB [60] alternates
between the execution of transactions and a batch of queries
(e.g., 200 ms). OLTP updates are first queued and then prop-
agated to OLAP replicas in-between two batches of queries.

8 CONCLUSION

This paper presents VEGITO, a distributed in-memory HTAP
system that retrofits high availability mechanism to meet two
overarching goals simultaneously—performance (e.g., 10%
performance degradation) and freshness (e.g., a maximum
delay of 20 ms). Evaluations using CH-benCHmark show
the efficacy of VEGITO for HTAP workloads even facing mil-
lions of concurrent transactions per second.
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A ARTIFACT APPENDIX

Abstract

This artifact provides the prototype of VEGITO, including
the document, source code and scripts to execute the main
experiments and reproduce the experimental results. VEG-
ITO is a fast distributed in-memory HTAP system, which
retrofits high availability mechanism to tame hybrid trans-
action/analytical processing. An open-source version of VE-
GITO is available at https://github.com/SJTU-IPADS/
vegito.

Scope

This artifact (including the document, source code and
scripts) is used for artifact evaluation, which can reproduce
the main experimental results in VEGITO. To use VEGITO in
your research, we recommend using the master branch of
the public repository, which would be maintained by mem-
bers of the Institute of Parallel and Distributed Systems.

Contents

• README and document: A detailed description of the
artifacts, including the steps of environment building, in-
stallation, usage of scripts and configuration files, and how
to conduct experiments. Please read the README.md at
first.

• Source code: We provide the prototype of VEGITO with
the HTAP benchmark called CH-benCHmark and some
micro-benchmarks.

• Configuration files: We record different configurations in
some XML format files. The detailed format is described
in the README.md.

• Scripts: We run the VEGITO by using the Python scripts
and Shell scripts. These scripts use SSH for cluster deploy-
ment and management.

Hosting

• Program: vegito.

• Compilation: g++ and cmake.

• Hardware: Intel CPU with RTM and Mellanox NIC with
RDMA.

• Execution: Python scripts, Shell scripts, SSH.

• Metrics: Throughput, latency, and time lag (freshness).

• Public link:

https://github.com/SJTU-IPADS/vegito.

• Code licenses: Apache License 2.0.

Requirements

Hardware Dependencies. At least three machines are used
to reproduce the experimental results for distributed configu-
rations. Each machine must have:

• CPU: Intel processors with 2 sockets and Restricted Trans-
actional Memory (RTM) (e.g., Xeon E5-2650 v4).

• NIC: At least one (two is better) Mellanox RDMA net-
work card (e.g., Mellanox ConnectX-4 100Gbps Infini-
Band NIC).

Software Dependencies.

• Operating system: Ubuntu ≥ 16.04.

• Compile toolchain: g++ ≥ 5.4.4 and cmake ≥ 3.5.1.

• Libraries: Mellanox OFED, boost 1.61.0, ssmalloc.

AE Methodology

Submission, reviewing and badging methodology is
specified at https://www.usenix.org/conference/

osdi21/call-for-artifacts.
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