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Abstract
Crash dump, or core dump is the typical way to save memory image
on system crash for future offline debugging and analysis. However,
for typical server machines with likely abundant memory, the time
of core dump can significantly increase the mean time to repair
(MTTR) by delaying the reboot-based recovery, while not dumping
the failure context for analysis would risk recurring crashes on the
same problems.

In this paper, we propose several optimization techniques for
core dump in virtualized environments, in order to shorten the
MTTR of consolidated virtual machines during crashes. First, we
parallelize the process of crash dump and the process of rebooting
the crashed VM, by dynamically reclaiming and allocating memory
between the crashed VM and the newly spawned VM. Second, we
use the virtual machine management layer to introspect the critical
data structures of the crashed VM to filter out the dump of unused
memory. Finally, we implement disk I/O rate control between core
dump and the newly spawned VM according to user-tuned rate
control policy to balance the time of crash dump and quality of
services in the recovery VM.

We have implemented a working prototype, Vicover, that opti-
mizes core dump on system crash of a virtual machine in Xen, to
minimize the MTTR of core dump and recovery as a whole. In our
experiment on a virtualized TPC-W server, Vicover shortens the
downtime caused by crash dump by around 5X.

Categories and Subject Descriptors K.6.3 [Management of Com-
puting and Information Systems]: Software Management—Software
maintenance; D.4.5 [Operating Systems]: Reliability

General Terms Management, Performance, Reliability

Keywords Core Dump, Parallel Core Dump, Virtual Machines

1. Introduction
Reliability has been one of the major concerns of modern com-
puter systems, which may be frequently disturbed by software and
hardware errors, unsafe software/hardware interactions, as well as
operation errors. While restarting the frozen or crashed system is
the usual way to recover from failures, it is demanding to diagnose
the root cause of the failure for future software and hardware fixes.
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Crash dump, or core dump [7], is a typical way to save the
crashed or hang context to persistent storage for future offline de-
bugging and analysis [5, 6] before restarting the system. However,
for traditional server machines with likely abundant memory, it is
usually time-consuming to save the failure context (usually includ-
ing the whole memory), which delays the recovery of the system
and increases the mean time to repair (MTTR). For instance, core-
dumping 32 GB memory into a commodity SCSI disk with 70
MB/sec write rate could take more than 400 seconds. Hence, some
administrators may choose to directly restart the system without a
crash dump, risking recurring crashes on the same problems.

In this paper, we analyze the characteristics of crash dump
and propose several techniques to optimize the process of crash
dump of virtual machines in consolidated virtualized environments.
Unlike that in a native environment, the crash or hang of a virtual
machine will not cause an end of the system, as the hypervisor
and VM management tools remain fully operational. This opens
opportunities to optimize crash dump to minimize the downtime
caused by the system crash.

We propose to parallelize the core dump of the crashed virtual
machine and the booting of another recovery virtual machine to
continue the same application services. In order to retain the per-
sistent states, the recovery VM uses the same file system as the
crashed VM. As a result, persistent states updated by the crashed
VM remain accessible by the recovery VM after the recovery VM
is started. The sharing is safe, because the two VMs do not access
the file system simultaneously: the recovery VM accesses the file
system only after the other VM crashes and stops the access to the
file system. Here, we assume that the crash of a virtual machine
does not cause irreversible system damages and can be repaired by
file system consistency check (e.g., fsck) when booting the recov-
ery VM.

When a VM crashes, its CPU and I/O resources are immediately
released. However, due to the long-term memory reservation by
the core dump tool, using the memory owned by the crashed VM
for recovery is not allowed until the core dump ends. Hence, we
propose to concurrently reclaim core-dumped memory and allocate
it to the recovery VM. To this end, the pseudo-physical memory of
a VM is divided into several chunks of the same size. If the VM
crashes, its pseudo-physical memory is core-dumped to disk chunk
by chunk, instead of all at once. For each chunk, once it is core-
dumped, it is immediately reallocated to another VM which boots
the system from the shared storage to recover application services.
As core dump continues, the hypervisor eventually releases all
memory owned by the crashed VM, and the recovery VM gradually
reaches its presumed memory capacity. The recovery VM not only
gains memory from the crashed VM as early as possible, but also
utilizes the CPU resource which core dump, as an I/O-intensive
process, does not fully utilize.

To minimize the time of core dump, we also implement a se-
lective dump strategy that only dumps memory that is in use by



the crashed VM, instead of dumping the whole memory of a vir-
tual machine. To identify which pages are in use, we introspect the
crashed VM, extract key data structures of the crashed guest OS
and recognize free memory pages not used on system crash, so that
only pages used by the guest OS or applications of the VM at the
moment of crash are core-dumped. The trustworthiness depends on
that the introspected part of memory is not corrupted by system
crash, which is a trade-off between the speed and correctness of
core dump.

Both the core dump VM and the recovery VM consume the
I/O bandwidth. To balance the time of crash dump and quality of
services in the recovery VM, we implement a disk I/O rate control
mechanism to balance the I/O bandwidth between the two VMs.
The bandwidth allocation policy is tuned by user as a trade-off
between the speed of reclaiming memory by core dump and the
disk I/O bandwidth for recovery. For a none I/O-intensive workload
of booting the recovery VM, core dump should be given higher
priority of disk I/O. Otherwise, if both core dump and booting the
recovery VM are I/O-intensive, the policy should be tuned by user
to minimize downtime.

We have implemented a working prototype, called Vicover,
based on Xen and Linux. Vicover has a utility program running
at the VM management layer. It automatically detects system crash
of a VM, and initiates core dump of the VM. It also concurrently
boots the recovery VM that shares the same file system with the
crashed VM.

Experimental results of core dump and recovery from system
crash of a virtualized TPC-W server on the Dell PowerEdge R900
machine show that the downtime is reduced by 5X with concur-
rent core dump and recovery from 103 seconds to 21 seconds, or
is shortened significantly if there are many free pages on crash by
selective dump with Vicover. Tuning the allocation policy toward
higher I/O priority for I/O-intensive (but not memory-critical) re-
covery over core dump reduces the downtime of concurrent core
dump and recovery by around 50%.

The rest of the paper is organized as follows. Some background
information on crash dump is presented in next section. We then
describe the overall architecture and optimizations of core dump at
the VM management layer in section 3 and detail the implemen-
tation issues of our prototype in section 4. Section 5 defines the
key metric of evaluation - downtime, introduces our testing frame-
work for evaluation and specifies the testing environment. Section 6
evaluates the effectiveness to shorten the downtime of core dump
and recovery by Vicover. Section 7 compares our work with pre-
vious efforts to improve recovery from system crash. Finally, we
conclude the paper in section 8.

2. Background
To manage various hardware resources and provide rich abstrac-
tions of them to applications, modern operating systems have
evolved with complex, flexible and rich functionalities, which spoil
the stability and result in recurring system crashes. A system crash
is a kernel-level crash caused by many factors such as memory cor-
ruption and bad drivers [3]. Although OS crashes are rare [3], they
are frustrating to users since recovery from them requires rebooting
of the whole system.

In order to prevent system crashes from recurring in the future, it
is worthwhile saving the states of the crashed system for future of-
fline debugging, which is called “core dump”. Core dump is an I/O-
intensive process to write system states into persistent storages. On
system crashes, CPU and I/O resources are immediately released
by the crashed system. After the core dump begins, the memory of
the crashed system is fully reserved by the core dump tool, until all
the memory is dumped into persistent storage.

Core dump tools are available for commodity OSes as well as
for virtualized environments. Microsoft Windows can be set up to
save a 64 KB minidump of basic states, a kernel dump of memory
in the Windows kernel, or a full dump of the whole RAM on system
crash. A debugger tool like WinDbg can be used to analyze the
failure data saved in the core dump image.

In Linux, Kdump [7] provides a reliable core dump mechanism.
Kdump [7] improves Kexec by fast and automatically booting into a
new kernel on system crashes and executing core dump in the con-
text of the new kernel. Kexec is a boot loader which fast boots into a
new kernel from the old one without clearing the memory of the old
kernel. It pre-loads a new kernel and associated data into a reserved
area of memory by the kexec load() system call. The reserved area
is configured not to be used by the old kernel. To quickly load the
new kernel, Kexec boots into the new kernel without hardware re-
set, firmware operations or the bootloader stage. The new kernel is
directly loaded from the reserved area so that the memory of the old
kernel is not cleared. Kdump modifies Kexec to automatically boot
into a new kernel on kernel panic. After the new kernel boots, the
memory of the old one is accessible through special UNIX device
files in the context of the new kernel and can be core-dumped into
persistent storage. The output core dump image is analyzable by
debugging or analysis tools (e.g. gdb [4] and crash analysis utility
[6]).

In virtualized environments, core dump tools save the memory
of a VM to persistent storages, whose reliability is guaranteed
by the isolation mechanism from the virtualization layer. These
tools are available in commodity virtualization products [2, 8]. For
instance, to dump the memory of a virtual machine in Xen, the core
dump tool of Xen maps the machine frames owned by the crashed
VM through the hypervisor, and writes them to an ELF image
file in the local file system. A feature of core dump in virtualized
environments is live core dump, by which the memory of a virtual
machine can be core-dumped while the virtual machine is running.

3. Optimizing Core Dump with Virtualization
In this section, we present an overview on the design of optimizing
core dump on the crash of a VM at the VM management layer, to
achieve fast core dump and recovery. First, we illustrate the overall
architecture. Then we present a detailed discussion on the design
concerns of the key components.

3.1 System Architecture
As the VM management layer is operational despite the system
crash of a VM, we put complex optimizations of core dump to run
at this layer for fast core dump and recovery.

Figure 1 shows the architecture of a virtualized server with the
optimizations of core dump applied. The hypervisor runs on bare
hardware. It multiplexes hardware for all the VMs running on the
hypervisor.

Vicover recovers from the crash of a VM by booting another
VM. The crashed VM is shown as the square with solid boundary;
the recovery VM that boots the same system and applications is
shown as the square with dashed boundary. The crashed VM and
the recovery VM share the same file system to retain persistent
states. The sharing is safe because the latter VM accesses files only
after the former crashes.

Each one of these VMs is allocated memory resource by the
hypervisor and forms their own pseudo-physical memory space,
represented by the rectangles labeled “Pseudo-Physical Memory
Space” in the VMs.

The virtual machine management tools, shown as the rectangle
labeled “Management Tools” in the management VM, interacts
with the hypervisor to manage VMs.
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Figure 1. System architecture of Vicover: the core dump daemon is located in the management VM, which creates the recovery VM upon
detecting the crash of a VM; the daemon controls the reallocation of resource from the crash VM to the recovery VM.

Vicover consists of a core dump daemon and a hypercall. The
core dump daemon is a utility program as part of the VM manage-
ment tools, shown as the smaller rectangle inside the rectangle of
“Management tools”. The daemon detects crash and then initiates
core dump and recovery automatically. It optimizes core dump by
modifying the default core dump tool. In addition, the hypercall is a
slight extension to the hypervisor by which the core dump daemon
interacts with the hypervisor to concurrently reclaim the memory
of the crashed VM and increase the memory of the recovery VM,
as is shown by the two arrow lines passing through the hypervisor.

The VM management layer monitors the state of a VM. When a
VM crashes, it is notified. Then, the core dump daemon of Vicover
is in turn notified of the crash by the VM management layer.
It automatically initiates the core dump of the crashed VM and
boots the recovery VM. Optimizations of core dump are applied
to shorten the time of core dump and recovery, which are explained
as follows.

3.2 Concurrent Core Dump and Recovery
Vicover realizes concurrent core dump and recovery, so that hard-
ware resources are better utilized and the overall downtime it takes
to finish core dump and recovery is shortened.

Long-term reservation of the entire memory of the crashed VM
prevents part of it from being used for recovery earlier, which is the
main bottleneck to realize concurrent core dump and recovery. To
resolve it, Vicover concurrently reclaims the memory of the crashed
VM, and allocates it to the recovery VM. Hence, the pseudo-
physical memory owned by the crashed VM shrinks, and that
owned by the recovery VM grows concurrently.

To realize it, we divide the memory of the crashed VM into
fixed-sized chunks. Once a chunk of memory is core-dumped and
reclaimed, it is allocated to the recovery VM. Therefore, memory of
the crashed VM is gradually reallocated to the recovery VM chunk
by chunk.

Ideally, if the rate of core dump is constant, the rate of mem-
ory reallocation from the crashed VM to the recovery VM is also
constant. It is expected that the amount of pseudo-physical memory
owned by the crashed VM shrinks linearly to zero, and the memory
owned by the recovery VM grows linearly to the original memory
size of the crashed VM. The linear shrinking and growing are indi-
cated by arrows labeled “shrink” and “grow” in Figure 1. However,
there are several issues that prevent such ideal linearity from being
achieved in practice:

• Cache during Core Dump The memory written by the core
dump tool is by default buffered by cache in the operating sys-
tem, to improve I/O throughput. However, caches of the oper-
ating system may defer flushing memory to disk. The caching
mechanisms affect the constant rate of reclaiming memory, dur-
ing concurrent core dump and recovery. To solve this problem,
the modified core dump tool of Vicover caches memory read
from the crashed VM in its own application-level buffer, and
flushes the memory to disk in fixed-sized batches. The core
dump tool of Vicover achieves more stable rate of memory
flushing and reallocation to the recovery VM than the default
one.

• Selection of Chunk Size Chunk size is the granularity of mem-
ory reallocation from the crashed VM to the recovery VM. A
small chunk size incurs more CPU overhead due to more fre-
quent interaction with the hypervisor for memory reallocation.
On the other hand, a large chunk size reduces the degree of
concurrency between reclaiming memory by core dump and al-
locating it to the recovery VM and lowers down memory uti-
lization.

• Minimum Memory Requirement of the Recovery VM During
concurrent core dump and recovery, the pseudo-physical mem-
ory owned by the recovery VM grows to the original size of
pseudo-physical memory in the crashed VM. Yet, the recovery
VM does not start to boot once core dump begins, until a min-
imum amount of memory required to hold the OS kernel and
basic services is gained from the crashed VM.

We define a threshold of memory to represent the minimum
requirement, depending on the guest OS and services to run
in the recovery VM. The recovery VM starts once enough
memory is gained from core dump by concurrent core dump
and recovery.

Inside the recovery VM, it is configured to make heavyweight
services that consume much memory start at the end of the
whole boot process. This configuration prevents the recovery
VM from greedily consuming too much memory at early stages
of the boot process. Thus more boot time is given for core
dump to reclaim memory from the crashed VM, before the
heavyweight services start in the recovery VM, in the hope
that the moment heavyweight services start in the recovery VM,
there is already adequate memory reallocated from the crashed
VM.



3.3 Selective Dump
Instead of dumping the whole memory of the crashed VM, selective
dump only core-dumps the part of memory useful for the specific
debugging purpose of the user, saving both time and disk space for
core dump. The selection relies on user knowledge about useful
selection heuristics in the system to be debugged.

For instance, the VMM can introspect the crashed VM to ex-
tract specific data structures indicating the part of memory worth
core-dumping. The trustworthiness of introspection relies on that
the introspected memory in the crashed VM is not likely to be cor-
rupted during the crash. At the VM management layer, implement-
ing introspection of the crashed VM involves mapping its memory
in the virtual address space of the core dump tool, which will be
detailed in the next section.

As an example of selective dump, Vicover introspects the
crashed VM to extract the page descriptor array of the Linux op-
erating system, access the reference count field of each descriptor,
and skip not-referenced free pages during core dump. Since Linux
is open-sourced, digging the page descriptor array out of the raw
memory data is easy with understanding of its structure by reading
the source code in advance. Vicover traverses the array to collect
free pages not used at the moment of a system crash. During core
dump, these free pages are ignored. The digging implementation is
OS-version-dependent, as different versions may vary in the struc-
ture of the page descriptor array. Since the page descriptor array
counts for less than 1.5% of total memory in the VM, we believe it
is not likely to be corrupted.

3.4 Disk I/O Rate Control
Vicover allocates disk I/O bandwidth between the core dump pro-
cess in the management VM and the recovery VM according to
user-defined policies. Core dump is essentially I/O-intensive. If re-
covery is not I/O-intensive, core dump can be given higher I/O pri-
ority. Otherwise, the I/O allocation policy should be tuned by user,
to minimize downtime.

Vicover can utilize built-in I/O QoS solutions in commodity
virtualization products to balance the I/O between concurrent core
dump and recovery. Otherwise, a third-party I/O scheduling tool
is applied. The detailed implementation of I/O scheduling for I/O
rate control depends on the solution of I/O virtualization, which is
described in the next section with Xen as an example.

4. Implementation
We have implemented a working prototype, Vicover, based on the
Xen hypervisor with XenLinux as the guest operating system. It
consists of 698 lines of code to implement the optimization of core
dump at the VM management layer, and 136 lines of code to add a
hypercall for Vicover in Xen.

This section describes the implementation of Vicover. First, the
architecture of Xen, its VM management tool Xend, including its
default core dump tool, are introduced. Second, the way to detect
system crash of a VM and initiate core dump automatically by
Vicover is described. Next, we explain in detail the implementation
of optimizing core dump one by one.

4.1 Core Dump in Xen
The Xen hypervisor runs on bare hardware and multiplexes hard-
ware resources for VMs. There are two kinds of virtual machines
(or “Domains”, in Xen’s terminology) - Domain0 and DomainU.
DomainUs are VMs that run applications to provide services, and
thus consume most hardware resources. The single Domain0 is the
privileged management VM. Domain0 accesses physical devices
on behalf of DomainUs to handle I/O requests from DomainUs,
according to the front-backend driver model.

The VM management tool of Xen is Xend. It runs as an applica-
tion in Domain0. Xend can be used to monitor status of VMs, such
as the crash event, and to allocate hardware resources among them.

Typically, on detecting a system crash of a VM by Xend, the
administrator can invoke the core dump tool, which is a utility
program of Xend, to core-dump the crashed VM. The invocation
can either be done by command line or by a programming API.

The core dump tool requests the hypervisor to setup a mapping
to the pseudo-physical memory pages of the crashed VM from its
own process address space. It then writes the memory to an ELF
image file in persistent storage. After core dump completes, the
administrator destroys the crashed VM and starts the recovery VM
with the memory reclaimed from the crashed VM.

The core dump daemon of Vicover automates the above process
to initiate core dump and recovery on crash. To share the file system
between the crashed VM and the recovery VM, the function that
checks exclusive access to the virtual disk image file in Xend is
modified to allow sharing.

4.2 Initiation of Core Dump
In DomainU, when a fatal error in the guest OS or one device driver
occurs, the kernel panics. The panic handler in the kernel invokes
a hypercall to Xen so that the Xen hypervisor intercepts the panic.
The hypervisor updates the status of the DomainU as crashed. To
forward the crash event to Domain0, the hypervisor fires a virtual
interrupt request (VIRQ) to Domain0 through an event channel.

Domain0, which is the listener of the event channel, notices the
crash event through the VIRQ, and then notifies Xend. Xend in turn
fires an application-level XenStore “watch event” to any registered
applications who are interested in the crash event. The core dump
daemon of Vicover is such a registered application. It registers with
Xend to listen for the watch event of system crash by a watcher
API function. On detection of the watch event, it invokes the main
routine of the core dump tool in Xend to core-dump the crashed
VM. The core dump tool is a modified one for optimized core
dump. Next, it boots the recovery VM with the memory reclaimed
by core dump from the crashed one. If concurrent core dump and
recovery is enabled, the recovery VM is started once the reclaimed
memory satisfies the minimum requirement, while core dump is
still in progress; otherwise, it is started after core dump completes.

Vicover is a utility program (xcutils) of Xend tools. It runs as a
background process in Domain0 and is started by the command line
in the console. It applies the specified optimizations of core dump
according to the command line parameters, including concurrent
core dump and recovery, selective dump and disk I/O rate control.

4.3 Concurrent Core Dump and Recovery
The main effort to realize concurrent core dump and recovery is
to break the full reservation of the crashed VM’s memory by the
core dump tool, and have it reallocated to the recovery VM as early
as possible. The memory is saved by core dump, and reallocated
from the crashed VM to the recovery VM chunk by chunk. Figure
2 shows the pseudo-code to implement concurrent core dump and
recovery by modifying the default core dump tool of Xend.

There are 9 steps in Figure 2, which are explained in the follow-
ing:

1. At Line 1, the core dump tool gets hypervisor-level refer-
ences to all pseudo-physical memory pages of the crashed VM
through a hypercall.

2. At Line 2, the core dump tool invokes a hypercall to relinquish
all the hypervisor-level references held by the crashed VM
to its pseudo-physical memory pages. To relinquish them, the
hypervisor traverses the list of memory pages owned by the



1. Get references to all pseudo-physical pages of the crashed VM.
2. Make the crashed VM relinquish all its references to its

pseudo-physical pages
3. for each page of the crashed VM

{
/* Core-dump the current page */

4. write_to_disk(page)

/* Release the core dump tool's reference to page, so that it
is reclaimed by the hypervisor */

5. put_page(page)

/* If enough memory has been released */
6. if (the recovery VM has not started &&

released pages >= minimum threshold)
{

7. Start the recovery VM.
}
/* Every chunk of memory is released, add it into the
recovery VM */

8. else if (the recovery VM is running &&
another memory chunk is core-dumped and
reclaimed)

{
9. Add the chunk of memory into the recovery VM.

}
}

Figure 2. Pseudo-code to implement concurrent core dump and
recovery

crashed VM, and drops all the references to each of these pages
from the crashed VM.

Line 1 and Line 2 together assure that after Line 2, the core
dump tool becomes the only referrer to any memory page of
the crashed VM. It enables the core dump tool to have accurate
control over when to release a page and to reallocate it to
the recovery VM, and also prevents the memory from being
accidentally released by the hypervisor in the background.

3. Line 3 begins the iteration over each page of the crashed VM.

4. At Line 4, the core dump tool writes the current page to disk.
Due to the Page Cache mechanism of Linux, it is possible that
some pages are buffered by the management VM in which the
core dump tool runs, and the constant speed of memory re-
claiming is affected. In order to achieve linearity of reclaiming
memory from the crashed VM, we modified the default caching
behavior, so that every batch of memory is core-dumped, it is
committed to disk by invoking fsync() over the core dump im-
age file.

5. At Line 5, the core dump tool finally releases the last refer-
ence to a page of the crashed VM, after it is core-dumped at
Line 4. As a result, the reference count in the corresponding
hypervisor-level machine frame descriptor for that page drops
to zero. Consequently, the hypervisor reclaims this page from
the crashed VM. Then, the page is free to be allocated to the
recovery VM.

6. Next, if the minimum memory required has been reclaimed
since the 1st iteration, the recovery VM begins to boot at Line 7.
After Line 7, core dump and the recovery VM run concurrently.
The optimization of concurrent core dump and recovery begins.
The default threshold of minimum memory is 128 MB.

7. At some iterations of Line 8, if another chunk of memory is
core-dumped and reclaimed, it is allocated to the recovery VM
at Line 9. The memory size parameter in the configuration of
the recovery VM is set to be larger by the chunk size. The

actual allocation of this chunk of memory to the recovery VM
will be done by the hypervisor as long as the current memory
size is smaller than the maximum allowed. The chunk size is
configurable, and is 128 MB by default.

As the main logic of concurrent core dump and recovery, the
for loop from Line 3 to Line 9 repeats, until all the memory of the
crashed VM is core-dumped and reallocated to the recovery VM.
Then, core dump ends; the recovery VM continues to boot with full
memory reclaimed from the crashed one, or fortunately it may have
already finished booting before core dump ends, depending on the
specific behavior of the boot process.

We disable ballooning to prevent the recovery VM from grab-
bing the free memory of Domain0, in which the VM management
tool Xend and Vicover run. Yet, our concurrent memory reclaim-
ing and allocation is inspired by ballooning, in which case a VM
reserves its free memory and releases it to the hypervisor by a bal-
loon driver. Ballooning enables dynamic memory reallocation be-
tween two running VMs, while Vicover enables that between core
dump and the recovery VM.

With regard to Line 1, 2 and 5, we added a dedicated hypercall
to the hypervisor for Vicover to interact directly with the hyper-
visor. The hypercall involves acquiring or releasing references to
memory from the core dump tool or from the crashed VM.

4.4 Selective Core Dump
Vicover introspects the crashed VM, extracts the page descriptor
array “mem map” of the guest Linux, identifies free pages indi-
cated by the array, and finally ignores them during core dump. As
a result, only pages used by the VM at the moment of crash are
core-dumped, which shortens the latency of core dump.

The trustworthiness of this optimization relies on the integrity of
the page descriptor array after the system crash of the VM. In our
version of Linux, the size of each page descriptor of a 4096-byte
page is 56 bytes. So the memory used by the page descriptor array
is less than 1.5% of the total. We believe it to be rarely possible that
the array is corrupted by the crash.

Vicover follows these steps to introspect the crashed VM at the
VM management layer, in order the extract the page descriptor
array of the guest operating system:

1. Obtain the virtual address of the page descriptor array in the
virtual address space of the crashed VM. It is OS or application-
dependent how a data structure can be located in the virtual
address space. For our purpose, the symbol info of the page
descriptor array in Linux is included in the kernel image file
at compile time. We export the virtual address of the page
descriptor array out of the kernel image with the “nm” tool at
the VM management layer.

2. Convert the virtual address in the space of the guest system to
the pseudo-physical address of the crashed VM. This depends
on how OS maps the virtual address to the pseudo-physical one.
Linux linearly maps data in the kernel space to physical mem-
ory. Therefore, the pseudo-physical address of the page descrip-
tor array equals the virtual address obtained in the previous step
minus the linear mapping offset.

3. Convert the pseudo-physical address to the machine frame
address of the physical host machine. This is virtualization-
solution-dependent. As a key data structure of memory virtu-
alization, Xen maintains a pseudo-to-machine (“p2m”) table
that maps the contiguous pseudo-physical memory of a VM to
the probably non-contiguous machine memory in the physical
host. In Xend, the p2m table of a DomainU can be accessed in
the context of Domain0. Vicover takes advantage of this access



to convert the pseudo-physical address to the machine frame
address by the p2m table.

4. Set up mapping to machine frames of the page descriptor array
in the core dump process. The running process of Vicover
invokes a hypercall to modify its page tables, in order to set
up mapping to the machine frames of the page descriptor array.
After that, Vicover is able to access the page descriptors in its
own virtual address space.

The modified core dump tool of Vicover maps the page descrip-
tor array page by page in its own virtual address. For each mapped
page, all the page descriptors stored in that page are accessed with
the same mapping. For a page descriptor that spans two pseudo-
physical pages, two mappings are setup to access and concatenate
the 1st and 2nd halves of the page descriptor.

If the “ count” field of a page descriptor in the guest Linux
is zero, the corresponding pseudo-physical page is not used by
the guest operating system or applications, and is thus free at the
moment of crash. Vicover maintains a bitmap to indicate if each
page of the crashed VM is free or not. During core dump, free pages
indicated by the bitmap are ignored.

4.5 Disk I/O Rate Control
Disk I/O rate control between concurrent core dump and recovery is
realized by I/O scheduling over the core dump process in Domain0
and the virtual disk I/O of the recovery VM, according to the
allocation policy tuned by user.

The open-source version of Xen does not provide built-in sup-
port of disk I/O rate control among VMs. Vicover introduces a
third-party per-process I/O scheduling tool, ionice, to schedule I/O
over the core dump process and kernel threads handling I/O for dif-
ferent virtual disks, which run in Domain0. With concurrent core
dump and recovery enabled, when the recovery VM is started, Vi-
cover invokes ionice to start scheduling with parameters specifying
the priorities of core dump and recovery. When core dump ends,
ionice is terminated to cancel the scheduling. After that, disk I/O
request is handled in the default round-robin fashion.

For enterprise virtualization products [1, 2], there is built-in
support to schedule disk I/O among VMs. Vicover, if transplanted
onto these platforms, can take advantage of such built-in support to
realize disk I/O rate control between core dump and recovery with
slight effort.

5. Experimental Setup
This section first introduces the key metric - downtime. Then,
it describes the testing framework to measure downtime, and to
monitor resource usage of VMs to understand the optimizations by
Vicover intuitively. Finally, it specifies the testing environment of
evaluation.

5.1 Downtime as the Key Metric
Downtime is the period during which services are not available to
the users. Vicover focuses on the recovery of system-wide crash of
a VM. To be application-independent, downtime is measured as the
time of core dump and recovery, at the server side.

On the other hand, downtime can also be measured at the client
side, as the period during which client requests are not responded
by the server. This measurement is more close to semantics of ser-
vice availability from the perspective of a service user. However,
it depends on the application-level behavior of the interaction be-
tween the client and the server, which is variant and contrary to our
focus on the system-level crash.

As a result, we apply the former measurement: the downtime is
measured at the server side, as the time it takes to complete core
dump and recovery.

5.2 The Testing Framework
The core dump daemon of Vicover runs constantly in the back-
ground in Domain0. The workload benchmark provides services to
clients in a virtualized server (which is a DomainU) that will crash,
be core-dumped and get recovered. To crash this VM, we insert a
Linux kernel module whose initialization function references a null
pointer into its guest Linux. The core dump daemon in Domain0
detects the crash, and initiates the optimized core dump, as well as
recovery.

To calculate downtime, the moments when important events
happen are fetched from the server through SSH, and are logged
in an event log file in the client. These events include the start and
end of testing, core dump, recovery and etc. Note that core dump
starts immediately at the moment the virtualized server crashes.

The resource consumptions of the VM to crash, the recovery
VM and Domain0 are monitored and recorded at the VM manage-
ment layer by the testing framework. The framework samples the
resource consumption of each VM every second through Xend, and
records the statistics in the client.

After core dump and recovery, statistics is parsed to draw a chart
which shows the resource consumptions of VMs intuitively.

5.3 The Testing Environment
The Xen hypervisor, DomainUs providing application services,
and Domain0 (including the core dump daemon of Vicover) run
on a Dell PowerEdge R900 machine equipped with 4 Intel Xeon
E7310 1.6 GHz 4-core processors, 32 GB memory, a Seagate SCSI
disk and an Intel 82571EB Gigabit Ethernet adapter. The version
of Xen is 3.3.0; guest operating systems in all VMs are 64 bit
Debian Linux with kernel 2.6.18.8. Domain0 has 512 MB machine
memory; the VM to crash has 4 GB machine memory; after core
dump and recovery, the recovery VM uses no more than the 4 GB
memory reclaimed from the crashed VM. The remaining machine
memory is occupied by another idle VM to simulate a consolidated
virtualized environment with little free memory.

6. Evaluation
In this section, we compare the downtime to complete core dump
and recovery with optimized core dump by Vicover and the down-
time of the baseline case, and give our analysis. We begin by show-
ing the evaluation of the baseline case to core-dump and recover
from a crashed virtualized TPC-W [25] server. Next, the evalua-
tion of concurrent core dump and recovery by Vicover for the same
server is given, with different chunk sizes applied. Thirdly, that of
selective dump for this server is given. Then, we evaluate concur-
rent core dump and recovery combined with selective dump. Fi-
nally, we show the effect of disk I/O rate control by Vicover with
I/O-intensive workload.

6.1 The Baseline Case
This subsection shows the baseline case of sequential core dump
and recovery on system crash of a virtualized TPC-W server. The
TPC-W benchmark is the TPC-W-lycos [26] implementation.

Table 1, Figure 3 and Figure 4 are the event log, CPU utiliza-
tion and memory consumption of the baseline case respectively. All
the server applications of TPC-W, such as the Web server and the
database server, are deployed in the same VM. They are configured
to always start as the last stage of booting the VM. 160 clients (or
“Remote Emulated Browsers”, in TPC-W’s terminology) concur-
rently access the on-line bookstore simulated by the TPC-W bench-
mark.

According to the event log in Table 1, the virtualized server
crashes at timestamp 27s; core dump and recovery of the TPC-W
server complete at timestamp 130s. Therefore, downtime is around
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Figure 3. CPU Utilization of the Baseline Core Dump and Recovery of a Virtualized TPC-W Server
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Figure 4. Memory Consumption of the Baseline Core Dump and Recovery of a Virtualized TPC-W Server

Event Time (sec)

Start of Testing 0
System Crash & Start of Core Dump 27

End of Core Dump & Start of Recovery 108
End of Recovery 130
End of Testing 224

Table 1. Event Log of the Baseline Core Dump and Recovery of a
Virtualized TPC-W Server

103 seconds, which is the difference of the two timestamps. Down-
time consists of the 81-second core dump time between timestamp
27s and timestamp 108s, and the 22-second recovery time between
timestamp 108s and timestamp 130s.

In Figure 3, the curve of CPU utilization of the crashed VM ends
on system crash, followed by core dump during which Domain0 is
the only consumer of CPU resource. After core dump, the recovery
VM begins to boot and thus consumes CPU resource.

With regard to memory utilization, Figure 4 shows that 4 GB
memory is reserved by the crashed VM until timestamp 108s,
which is the end of core dump and the beginning of recovery,
according to the event log. It is not until this moment that the 4

GB memory is reclaimed from the crashed VM, and is reallocated
to the recovery VM, which leads to low memory utilization.

6.2 Concurrent Core Dump & Recovery
Table 2 and Figure 5 show the event log and memory consumption
of concurrent core dump and recovery of the same virtualized TPC-
W server by Vicover, with the 128-MB chunk size.

Event Time (sec)

Start of Testing 0
System Crash & Start of Core Dump 28

Start of Recovery 35
End of Recovery 49

End of Core Dump 127
End of Testing 191

Table 2. Event Log of Concurrent Core Dump and Recovery

According to the event log in Table 2, core dump takes around
99 seconds, from timestamp 28s to timestamp 127s; and recovery
takes 14 seconds. Concurrent core dump and recovery overlaps
the 99-second core dump time and the 14-second recovery time.
Hence, the downtime is only 21 seconds from timestamp 28s to
timestamp 49s, not the sum of core dump time and recovery time.
The downtime is only around 1/5 of the baseline one.
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Figure 5. Memory Consumption of Concurrent Core Dump and Recovery (Chunk Size = 128 MB)

The memory consumption shown in Figure 5 illustrates such
overlapping intuitively. The recovery VM is created shortly after
core dump of the crashed VM begins, at around timestamp 35s,
because 128 MB has been core-dumped and reclaimed in total
from the crashed VM. After that, core dump and recovery progress
concurrently. As a result, the memory consumption of the crashed
VM shrinks linearly, while that of the recovery VM grows linearly.
It continues until the former drops to zero, and the later grows to 4
GB, at the end of core dump.

The concurrency also improves CPU utilization. The core dump
tool and the recovery VM consume CPU resources concurrently,
adding to a total of around 84% average CPU utilization during the
parallel period; while the exclusive CPU utilization by either core
dump or recovery alone in the baseline case is less than 52% on
average.

6.3 Evaluating Different Chunk Sizes
To show the effect of different chunk sizes on shortening downtime,
we further evaluate concurrent core dump and recovery with 10-
MB and 1024-MB chunk sizes, in addition to the previous 128-MB
chunk size, as is shown in Figure 6 and Figure 7.

Comparing Figure 5 with Figure 6 and Figure 7, although the
core dump tool always releases memory smoothly by the code of
Line 5 in Figure 2, the granularities by which the recovery VM
gains memory differ. The linearity of allocating memory to the
recovery VM with the 10-MB chunk size is almost perfect, while
that with the 1024-MB chunk size is coarse-grained.

Chunk Size (MB)
CPU Utilization of

Core Dump (%)
Downtime (sec)

10 75.82 21

128 57.58 21

1024 50.57 36

Table 3. Average CPU Utilization of Core Dump and Downtime
with Different Chunk Sizes

Table 3 shows the resulting CPU utilization of the core dump
tool and downtime with these chunk sizes. Each pair of CPU uti-
lization and downtime is the average of 3 same tests.

With 10 MB as the chunk size, it does not help to further reduce
the 21-second downtime already achieved by the 128-MB chunk
size, which means the concurrency degree with the 128-MB chunk
size is high enough to allocate memory to the recovery VM early.

However, the CPU utilization becomes higher with the 10-MB
chunk size, due to more frequent interaction with the hypervisor
to enlarge the memory of the recovery VM.

With 1024 MB as the chunk size, the overhead of interaction
with the hypervisor is the smallest, leading to the lowest CPU
utilization. But the memory reallocation is not fine-grained and not
in time. Therefore, the downtime increases to 36 sec.

In a word, the 128-MB chunk size balances between CPU uti-
lization and memory reallocation granularity well, and leads to the
shortest downtime in our testing scenario.

6.4 Selective Dump
Table 4 shows a summary of 3 trials of selective dump by ignoring
pages whose reference count is zero in the corresponding page
descriptor of guest OS at the moment of crash. Selective dump
is evaluated alone, not combined with concurrent core dump and
recovery in this section.

# Pages Core Dumped Downtime (sec)

Baseline 1048576 103
Selective Dump
1st Trial

87306 32

Selective Dump
2nd Trial

82813 32

Selective Dump
3rd Trial

67366 30

Table 4. Summary of Selective Dump by Ignoring Free Pages on
System Crash

There are 1048576 pseudo-physical pages in total for the 4 GB
memory of the crashed VM. The result shows that in all trials, most
pages are free - neither used by a process nor used for storing kernel
data structures, at the moment of crash. By ignoring these pages,
time of core dump as well as the overall downtime is shortened.
Comparing the 3 trials, the more pages are skipped, the shorter the
downtime is.

6.5 Combining Concurrent Core Dump & Recovery with
Selective Dump

In our testing scenario, because both concurrent core dump &
recovery and selective dump shorten downtime significantly, we
evaluate the combination of the two, to see if the downtime can
be further shortened. The 128-MB chunk size is used in this case.
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Figure 6. Memory Consumption of Concurrent Core Dump and Recovery (Chunk Size = 10 MB)
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Figure 7. Memory Consumption of Concurrent Core Dump and Recovery (Chunk Size = 1024 MB)

Figure 8 shows that selective dump further accelerates memory
reallocation from the crashed VM to the recovery VM, as the slope
of curve is more steep compared with that by the concurrent core
dump and recovery alone in Figure 5.

Concurrent Core Dump & Recovery:
Alone or Combined with Selective
Dump?

Alone Combined

Downtime (sec) 21 24
Core Dump Time (sec) 98 28
Recovery Time (sec) 14 15
CPU Utilization of Core Dump (%) 58 95

Table 5. Concurrent Core Dump & Recovery: Alone v.s. Com-
bined with Selective Dump

Table 5 compares the downtime, core dump and recovery time
as well as CPU utilization of core dump between concurrent core
dump & recovery alone and its combination with selective dump.
The result is the average out of 3 same tests.

The downtime with selective dump combined is 24 seconds, a
bit longer than the 21-second downtime achieved with concurrent
core dump and recovery alone. This is because the faster memory

allocation by the combination leads to more frequent interaction
with the hypervisor to reallocate memory; hence, the CPU utiliza-
tion of core dump becomes much higher in combined concurrent
core dump & recovery and selective dump. Consequently it takes 1
second longer for recovery to complete with selective dump com-
bined.

Therefore, Table 5 indicates that the rate of memory reallocation
with concurrent core dump and recovery alone is already high
enough, and combination with selective dump does not help to
further reduce the downtime in our scenario.

6.6 Disk I/O Rate Control
To evaluate the effectiveness of disk I/O rate control when there is
disk I/O contention between concurrent core dump and recovery,
we make the booting of the recovery VM I/O-intensive but not
memory-critical. To realize, a micro-benchmark repeatedly copies
a 200 MB file in the local file system of the recovery VM when it
is booting. The file is small and therefore the recovery VM does
not need much memory for copying when it is booting during
concurrent core dump and recovery. Obviously, with this additional
workload during booting, it takes more time to boot until the TPC-
W Web and database servers become ready. Both core dump and
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Figure 8. Memory Consumption of Concurrent Core Dump and Recovery Combined with Selective Dump (Chunk Size = 128 MB)

booting the recovery VM now contend for the limited physical disk
I/O bandwidth.

Table 6 gives two sample policies of I/O allocation between con-
current core dump and recovery, and the resulting average down-
time out of 3 same tests.

Core Dump
I/O Priority

Recovery
I/O Priority

Downtime (sec)

Case 1 low high 44

Case 2 high low 89

Table 6. Disk I/O Rate Control Policies and the Resulting Down-
time

In Case 1, the recovery VM is given higher priority of disk I/O
while in Case 2, core dump is given higher priority. Downtime
of Case 1 is significantly less than that of Case 2. This indicates
that it is better to give the recovery VM higher I/O priority to boot
faster, because its booting process is I/O-intensive but not memory-
critical, and is therefore more eager to process I/O than to grab
more memory from core dump.

The memory consumption graphs for both cases, Figure 9 and
10, further illustrate the effect of disk I/O rate control.

After the recovery VM starts with the I/O-intensive micro-
benchmark, the slope of curve is more gentle in Figure 9 than in
Figure 10. It indicates that memory reallocation in Case 1 is slower
than that in Case 2. This is because in Case 1, core dump tool has
lower I/O priority and thus reclaims memory more slowly.

The comparison between Case 1 and 2 reveals that for I/O-
intensive and not memory-critical recovery, explicitly setting higher
priority to recovery over core dump leads to smaller downtime of
concurrent core dump and recovery. Yet, the trade-off is that mem-
ory reallocation to the recovery VM is slower, which leads to less
available memory to process application requests with, after recov-
ery ends, and before core dump finishes reclaiming the memory.

7. Related Work
Core dump is essential for debugging to achieve robustness in
the long term, while fast recovery is important to achieve high
availability on system crash [9–11]. Current research works of
reboot-based recovery exist in both applications and in systems to
recover from system crash quickly without knowing its root cause.

At the application-level, Microreboot [12] proposes reboot-
ing well-isolated stateless application components, rather than the

whole application, separating data recovery from application re-
covery. Crash-only software [13] is the design pattern to build mi-
crorebootable systems.

At the system-level, the Recovery Box [14] tries to recover
from system failure with backup application and OS data stored
in the recovery box, rather than from scratch, which relies on the
integrity of the recovery box. Vicover can’t backup and restore in-
memory application session state as it is application-agnostic, as a
limitation. Kexec boots into a new kernel from a reserved memory
area, skipping hardware reset, firm operations and the bootloader
stage. Kdump [7] modifies Kexec to boot into a new kernel fast
and automatically on kernel panic without corrupting memory of
the crashed one. Then, core dump is done reliably in the context
of the new kernel. In Vicover, the isolation enforced by virtualiza-
tion serves the purpose of rebooting the system with the recovery
VM without corrupting the memory of the crashed VM. [15] ana-
lyzes the boot process of Linux, and optimizes it by system config-
urations such as ROM-based kernel loading, manually setting loop
delay value, avoiding redundant probing and etc. Starting heavy-
weight services later in the recovery VM helps to leave more time
to reclaim memory by core dump, before the recovery VM con-
sumes too much memory concurrently. Yet, it is not a must-to-do
in order to realize concurrent core dump and recovery. Vicover op-
timizes core dump at the virtual machine layer; so it does not rely
on the system configuration inside a VM.

At the virtualization level, Vicover is the first to optimize core
dump of a VM on system crash to minimize downtime, borrowing
existing virtualization techniques developed for other purposes.

To realize concurrent core dump and recovery, Vicover adopts
dynamic resource allocation among VMs, which is borrowed
from other research works about server consolidation to improve
throughput of virtualized servers. AutoControl [16], VMware ESX
[17], and MEmeory Balancer [18] dynamically allocate memory
among VMs for better throughput; meanwhile, memory realloca-
tion by Vicover aims at minimizing downtime.

Vicover introspects the crashed VM to extract the page de-
scriptor array of the crashed guest OS, identifies free pages in-
dicated by it, and does not save them during core dump. Virtual
machine introspection and related techniques are proposed in vari-
ous research works to build security tools and etc, including Live-
ware [19], Overshadow [21], Antfarm [20], Lycosid [22], VIX [23]
and FVM [24].
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Figure 9. Memory Consumption of Case 1: Higher I/O Priority Assigned to Recovery (Chunk Size = 128 MB)
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Figure 10. Memory Consumption of Case 2: Higher I/O Priority Assigned to Core Dump (Chunk Size = 128 MB)

8. Conclusion
We propose optimizing core dump at the VM management layer on
system crash of a VM, to minimize the downtime it takes to com-
plete core dump and recovery. The recovery is based on rebooting
services in the recovery VM. The demonstrated optimizations in-
clude concurrent core dump and recovery through concurrent mem-
ory reallocation from the crashed VM to the recovery VM, selec-
tive dump by introspecting the page descriptor array of guest OS
to identify and ignore free pages, and disk I/O rate control between
concurrent core dump and recovery. The prototype, Vicover im-
plements these optimizations in the VM management tool of Xen.
Experimental results show that Vicover shortens the downtime to
core-dump and recover a crashed virtualized TPC-W server by 5X.
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