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Abstract—The non-deterministic nature of multi-threaded workloads running on multi-core platforms often leads to notable

performance variability from run to run. Such variability makes experimental results prone to misinterpretations or misguided claims. To

deal with such variability, statistical inference methods are usually used to summarize the experimental results with certain confidence

levels by running the experiments or measurements a large number of times. However, such statistical results are often too vague or

too simplistic. They are not sufficient to help users understand the causes of such variability, and allow more in-depth analysis on the

results or reproduce the results for validation during design space exploration. To allow better analyzability and reproducibility, we

propose a framework to tackle such variability, called VarCatcher. The key to VarCatcher is to characterize a parallel execution using

Parallel Characteristics Vector (PCV). A clustering-based approach is then used to group runs with similar execution characteristics

that can later be used to analyze results in-depth, to customize different evaluation strategies, reproduce the result for variability, to

determine the impact of features, or to assist performance diagnosis. We have built a prototype of VarCatcher that includes a user-level

toolset for runtime monitoring and measurements using the Intel Processor Trace feature on commodity Intel processors as well as an

architecture extension with very low runtime overheads (around 3 and 0.01 percent accordingly). Several case studies confirm that

VarCatcher enables several appealing features such as in-depth result analysis, customized evaluation strategies, and reproducibility.

Index Terms—Variability, parallel application, evaluation, multi core

Ç

1 INTRODUCTION

PERFORMANCE variability is a phenomenon where perfor-
mance results of the same workload change noticeably

between different execution runs with the same input set [1].
With the advent of multi-core processors, performance vari-
ability is exacerbated by parallel workloads running on such
machines. The inherent non-deterministic nature of parallel
execution often leads to significant diverse behavior among
different runswith pronounced variability in performance.

To deal with such increased performance variability, aver-
aging methods are generally introduced for performance
evaluation with variability. A quick survey of the papers

published in architecture-centric conferences (HPCA, ISCA,
and MICRO) in the past three years shows that about 90 per-
cent of the papers use a simple arithmetic average, typically
with only three to five execution runs for each benchmark,
and without a confidence guarantee. This makes it difficult to
draw proper conclusions with confidence when multiple
designs are being compared and evaluated during design
space exploration. For example, the performance differences
between two cache designs are 4.84 and 9.54 percent for the
first and the second 10-runs accordingly (Section 2.1).

More sophisticated statistical inference schemes such as
normality-based arithmetics [1], [2], non-parametric test-
ing [3], or visual tests [4] can be used to summarize perfor-
mance results with a pre-determined confidence level.
However, such statistical results are still too vague and too
simplistic to help users reason about the causes of such vari-
ability. For example, the performance differences for the
above cache design example are 4.08, 9.24 and 0.83 percent
when using normality, hypothesis testing and visual tests
accordingly, which is very hard for users to reason about
the causes behind the summarized performance numbers.
Besides, they are insufficient to reproduce the experimental
results for validation when necessary.

In many cases, analyzability [5] and reproducibility [6] are
critical to performance study and architectural design explo-
ration. System designers sometimes would like to know the
main causes of such performance variability, and to tackle
such variability either to eliminate it or to exploit it. Theymay
want to determine the impact of some design features on
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performance, identify abnormal behavior for performance
diagnosis, or to customize result summarization. They would
also like to reproduce the results for validation if needed.

In this paper, to improve analyzability and reproducibil-
ity, we first analyze the main causes of variability using exe-
cution patterns that are based on execution paths (i.e.,
program control flow) of the parallel workload and the rela-
tive execution speed of the cores. Such an analysis leads to
two main observations. First, parallel execution often exhib-
its a significant number of different execution patterns, and
the performance of different execution patterns could vary
substantially. Second, the distribution of execution patterns
across multiple runs could be quite random, i.e., the pattern
distribution among the first 100 runs could be substantially
different from that in the next 100 runs.

Based on the analysis of the execution patterns, we pro-
pose a framework, called VarCatcher, to tackle such variabil-
ity for better analyzability and reproducibility. This analysis
can be carried out in conjunction with existing statistical
inference methods. VarCatcher first collects the execution
patterns from different runs. A clustering technique such as
K-means [7], [8] is then used to group runs with similar exe-
cution patterns. Performance variability caused by distinct
execution patterns is then analyzed and evaluated.

In VarCatcher, a core-oriented Parallel Characteristics
Vector (PCV) is used to capture the variability in execution
paths (i.e., control flow) on each core. To account for varied
execution speed among different cores, PCV is captured in
a globally defined time interval across all cores. The time
interval is defined in clock cycles, e.g., every 100 K cycles.
To eliminate equivalent execution patterns, we devise and
apply core alignment and interval alignment before final clus-
tering because similar runs with the same execution pattern
may be identified as dissimilar during clustering.

An important requirement for all runtime tools is to min-
imize their intrusion and perturbation during the program
execution. It is done in two ways. First, we leverage Intel
Processor Trace [9], an emerging performance monitoring
feature on Intel processors, to non-intrusively capture rele-
vant runtime features with low overhead (around 3 per-
cent). To further reduce space and offline processing
overhead, we propose some architectural extensions and
have integrated them into a cycle-accurate simulator to
show their effectiveness in reducing space and processing
overhead. An offline analysis tool then accepts and analyzes
the runtime collected data to draw final conclusions.

To study the effectiveness of such a framework, we built
a prototype of VarCatcher and use it in five different scenar-
ios. They include an in-depth performance analysis using
PCVs, a customized performance evaluation scheme, a
reproducibility study, a design space exploration, and a
case of performance diagnosis. The case studies confirm
that VarCatcher allows more in-depth, flexible and repro-
ducible evaluation of parallel workloads and interpretation
of the performance data.

In summary, this papermakes the following contributions.

� An approach to characterize the execution of parallel
workloads (Section 3.1) that takes into account the pro-
gram execution paths (i.e., control flow) in a core and
the relative execution speed among cores (Section 4).

� A clustering-based approach to reasoning about per-
formance variability in parallel execution using execu-
tion patterns aswell as core and interval alignments to
improve clustering accuracy (Section 3.2).

� An evaluation framework empowers users with bet-
ter analyzability and reproducibility for performance
evaluation of parallel workloads. (Section 5).

The rest of this paper is organized as follows. In Section 2,
the motivation and the major motivation are discussed.
Section 3 gives out the overall design, including how to
extract execution features and how to group multiple runs
into the same clusters. Section 4 discusses the basic imple-
mentation and the experimental results. Section 5 gives out
several case studies. We discuss the related works in
Section 6. Finally, we summarize our paper in Section 7.

2 A MOTIVATING EXAMPLE AND SOME

OBSERVATIONS

2.1 A Motivating Example

We use a simple design space exploration as an example in
which two cache designs are being evaluated. One design
uses a 128 KB shared L2 cache (marked as Design-1) and the
other uses a 1MB shared L2 cache (marked as Design-2), both
are on a four-core system.1) We useWord Count (WC), a paral-
lel benchmark program in Phoenix-2 [10], [11] with the refer-
ence input to evaluate both cache designs. The simulation is
done on Transformer [12], a cycle-accurate parallel architec-
ture simulator. We first run WC 10 times on Design-1 (i.e.,
128 KB L2), the performance differences among 10 runs can
be up to 39.65 percent in cycles, i.e., the best execution time
versus the worse execution time can differ by 39.65 percent.
We then run WC 10 times twice on each design, and use the
simple arithmetic average of their execution time for each 10
runs. The performance difference between the two cache
designs in the first 10 runs is 4.84 percent, and it changes to
9.54 percent in the second 10 runs. Even though both experi-
ments give the same conclusion that shows larger L2 cache
gives better performance, such large variability in perfor-
mance gives little confidence on the conclusions inmore com-
plex design space explorations.

More sophisticated statistical inference methods have
been used to summarize such experimental results using a
higher confidence level. Statistical approaches such as
normality-based schemes [1], [2], [13], non-parametric test-
ing schemes [3], [14] and visual test schemes [4] are among
the commonly used. Normality-based schemes are based on
the Central Limit Theorem. They first run a few samples
and use their results to estimate the number of runs needed
to achieve a certain confidence level. In our L2 design exam-
ple, we need at least 121 runs to achieve a 95 percent confi-
dence level, and the performance improvement is 4.08
percent. According to the analysis in [3], the runs of multi-
ple applications do not always satisfy the Central Limit The-
orem for normal distribution even many execution runs are
conducted. Non-parametric testing schemes (a type of

1. We have conducted other evaluations, such as different memory
access latencies, INT ALU latencies and different ALU numbers, all of
which can get similar conclusions. For brevity, we only use this config-
uration to show the example and demonstrate the effectiveness of
VarCatcher.

1216 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 4, APRIL 2017



hypothesis testing), such as Mann-Whitney U test or Wil-
coxon Rank-Sum Test [3], [14], do not make any assumption
about such distributions, and depend only on the number
of runs with a pre-determined confidence level. Based on
such a method [14], the performance improvement is 9.24
percent for our L2 design example with a 95 percent confi-
dence level. Visual Test schemes first calculate the confi-
dence interval of performance for each design, and then
check the overlapping of two intervals to see whether there
is a difference. They require the width of confidence interval
be above a certain threshold for comparison. For our L2
design example, 40 runs on each design can achieve 3 per-
cent confidence interval width [4], and the performance
improvement is 0.83 percent.

All these statistical inference methods focus only on
result summarization as shown in Table 1. There is no fur-
ther detail available to reason about such performance vari-
ability, or to reproduce the results of validation. From this
perspective, statistical inference is inadequate in its analyz-
ability and reproducibility in particular for large design
space exploration.

2.2 Some Observations

To see if we could achieve better analyzability and repro-
ducibility, we first look at why WC behaves differently in
different runs on the multi-core platforms. First, we found
that immediately after the beginning of its execution, WC
forks a worker thread on each core to do the job. These
threads have to wait to be scheduled after their creation. In
some extreme cases, some threads may have already fin-
ished their jobs before other threads begin. Second, the
workload may not be evenly distributed among these
worker threads. The tail thread (i.e., the last thread) is often
assigned more workload than others. Third, thread migra-
tion and contention on shared resources happen non-
deterministically in different runs because of the nature of
parallel execution and the underlying system.

Those three factors are quite common in parallel execu-
tion, and they dominate the performance variability in dif-
ferent runs. Depending on the goals of the performance
studies, those factors can be exploited and manipulated to
study various scheduling schemes, resource management
strategies, performance diagnosis, among others.

However, in many performance studies such as architec-
tural design space exploration, users may want to control
such factors in order to minimize or eliminate such perfor-
mance variability. There have been several strategies pro-
posed to minimize the impact of these factors, such as adding
barrier instructions in the source code, setting thread affinities
to cores, changing workload allocation, and using shared
memory access tables [15]. By applying those strategies to all
benchmarks in Phoenix-2, we are able to reduce the perfor-
mance (i.e., execution time) variability from 17 to 1 percent,
and 22 to 0.45 percent on its CoV’s (coefficient of variance, the
ratio of the standard deviation to themean).

The analysis shows that such factors are the most domi-
nant causes of performance variability. They significantly
impact the execution path (i.e., control flow) on each core,
and the relative execution speed among multiple cores. The
execution patterns of parallel execution, which are primarily
determined by the execution paths and relative execution
speed, can thus be used to characterize the performance var-
iability in parallel execution. Different execution patterns of
multiple runs are defined as either the execution paths on a
certain core are different or the relative execution speed
among cores varies.

By studying the execution patterns of all benchmarks in
Phoenix-2 [10], [11], we have the following observations.

Observation 1. There are multiple execution patterns that
cause performance variability across multiple runs. We
run each benchmark 200 times using the same configura-
tion. For the tested seven benchmarks, there are on aver-
age 18.86 execution patterns among 200 runs. The largest
number of execution patterns is 25, and the smallest is 14.
The average CoV of the performance variability among
different execution patterns is more than 49 percent,
which explains the notable performance variability
among different runs even using the same configuration.
Fig. 1 also shows the average performance and the perfor-
mance variability among different execution patterns for
the example in Section 2.1. The performance of one pat-
tern may be 65.26 percent better than the performance of
another pattern of the same application.

Observation 2. The distribution of such execution patterns
can be notably different in different sets of runs. For
example, we found a specific execution patterns in WC
appeared in 8 runs of the first 100 runs, and appeared in
17 runs of the next 100 runs. Such phenomenon explains
why the statistical inference methods without specifying
a confidence level can lead to misleading results.

Based on these observations, we can see that statistical
inference may not be the most effective way to deal with
performance variability in parallel execution, since such
approaches only focus on result summarization. By identi-
fying and managing execution patterns instead, we can go a
step further over statistical approaches to tackle such per-
formance variability for better analyzability and reproduc-
ibility in addition to result summarization.

TABLE 1
Performance Differences Using Different Statistical Approaches

Average-1 Average-2 Normality Hypothesis testing Visual Tests

4.84% 9.54% 4.08% 9.24% 0.83%

Fig. 1. The variability of evaluation results from different execution pat-
terns for each application on two different designs. For each application,
the average performance difference evaluated from different execution
patterns and the range of these performance differences are given out.
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3 THE FRAMEWORK

InVarCatcher, we first need to collect relevant features during
a parallel execution as described in Section 3.1. It allows us to
characterize different execution patterns of a parallel applica-
tion. We then need to distinguish different execution patterns
based on the collected runtime features, and group similar
execution patterns through clustering as described in Section
3.2. An overview of VarCatcher’s workflow is shown in Fig. 2.

3.1 Characterization of Parallel Execution Patterns

There have been many features, such as basic block vector
(BBV) [8], [16], [17] or memory reuse distance [18], which
are used to characterize the execution behavior of applica-
tions running on single-core machines. However, they are
insufficient to characterize the execution patterns of parallel
workloads running on multi-core platforms. Here, we first
discuss why these features for sequential applications (se-
feature) cannot be used to represent the execution behavior
of parallel workloads. Then, we give out the feature design
for parallel workloads, called parallel characteristics vector.

3.1.1 Limitation of Traditional Features to Parallel

Execution

To characterize a parallel execution, one intuitive solution is
to collect the se-features for each core and then concatenate

all of them with a fixed order in the interval. The se-features
for each core can be collected independently. Although
such a method is simple, unfortunately it is not enough to
accurately represent the behavior of parallel execution. This
is because, besides the execution path of each core, relative
execution speed among different cores also leads to perfor-
mance variability of a parallel application. Fig. 3 shows
such a case. In the figure, the figures on the left-hand side
are the different execution patterns and the figures on the
right-hand side are their execution features. se-feature-1
stands for the se-feature captured from Interval-1 while se-
feature-2 stand for the se-feature captured from Interval-2.
Run-1 on the upper one side and Run-2 on the bottom one
are apparently different due to the difference in the relative
execution speed between core-1 and core-2.2 However, since
the se-features taken separately from each core are similar,
such a method (i.e., concatenation of se-features) may lead
to a wrong conclusion that the two runs are similar. We
thus need to capture the relative execution speed among
different cores in order to reflect real execution patterns of
parallel execution.

To achieve such a goal, one solution is to define an inter-
val globally across all cores, and collect the se-features in
the global interval. This approach could account for relative
execution speed among cores. But, it is insufficient to cap-
ture the execution paths (control flow) of each core, which is
critical to performance variability as mentioned earlier. As
shown in Fig. 4, there is no thread migration in Run-1 and
there are two thread migrations in Run-2. Since we use a
global feature for each interval without distinguishing the
behavior in each core, the migration behavior between two
threads in run-2 will be mixed up together. In such a sce-
nario, even though the corresponding global se-features in
the two runs are similar and the relative execution speed of
the two cores are kept the same, it is obvious that the two
runs are different because the execution paths of the corre-
sponding cores are different.

3.1.2 Parallel Characteristic Vector

To account for both execution paths and relative execution
speed of each core at the same time, we propose Parallel
Characteristics Vector as shown in Fig. 5. It defines intervals
globally but collects each core’s se-features independently.
A global interval is defined in term of a constant number of

Fig. 2. An overview of workflow for VarCatcher.

Fig. 3. Sefeatures in each core alone cannot reflect the relative execu-
tion speed among different cores.

Fig. 4. Each core’s execution paths are not reflected in a global interval.

2. This is caused by thread scheduling. For example, there are two
threads in a program. They are created at the same time. However, due
to thread threading, one of the threads may begin to execute after the
other one completes. We observed such a condition when we analyzed
the factors influencing the variability.
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clock cycles on each core across all cores, e.g., 100 K cycles
on each core. It requires a PCV to be a two-dimensional vec-
tor. The first dimension identifies the core number. The sec-
ond dimension records the se-feature information of each
core. They are concatenated into a PCV for the correspond-
ing interval.

After the program finishes its execution, PCVs for all
global intervals are collected. All PCVs are then
concatenated to characterize the execution pattern of that
particular run. Such a PCV will include all execution paths
(control flows) within each core, and the relative execution
speed among different cores.

It is worth noting that in the original se-feature defini-
tion, such as BBV [8], [16], [17] or memory reuse dis-
tance [18], an interval is defined in term of the total number
of instructions executed (e.g., per 100 K instructions). How-
ever, such a definition will have several problems in defin-
ing a global interval. One is that the elapsed time for such a
global interval may vary significantly depending on the
composition of the instructions in each core within the inter-
val. Each core may have a different number of instructions
included in the interval, which will make it difficult to track
and account for the relative execution speed among differ-
ent cores. Another is that we will need a global instruction
counter to keep track of the total number of instructions exe-
cuted from all cores, which requires a lot of synchronization
and communication as the core number increases. If we
divide the total number of instructions evenly among cores
in each global interval, the varying execution time of those
instructions on each core will make it very difficult to align
them in terms of global time across all cores. Such misalign-
ment will accumulate and become worse, and eventually be
untrackable if there is a large number of cores and a large
number of intervals.

3.2 Clustering

After characterizing parallel executions using PCVs, we can
apply clustering techniques on the collected PCVs to iden-
tify similar execution patterns among different runs. How-
ever, before applying clustering techniques on the collected
raw PCVs data, we can sharpen the similarity among differ-
ent runs by eliminating some misalignment during the data
collection process.

There are two main causes of misalignment. In Section
3.2.1, we present a preprocessing step for interval alignment,
and in Section 3.2.2, we present the other preprocessing step
for core alignment. The number of execution patterns can be
substantially reduced after interval and core alignment. We
then cluster the preprocessed PCVs data to identify similar
execution patterns as presented in Section 3.2.3.

3.2.1 Interval Alignment

In clustering algorithms such as K-means [7], [8]), the
dimension of all input vectors must be the same. The
dimension in our case is the total number of PCVs collected
in each run. Because the global intervals used in PCVs are
defined in clock cycles, the total number of PCVs for each
run may be different due to different execution time caused
by different architectural designs or simply parallel execu-
tion variability.

Using the two designs presented in Section 2.1 as an
example, the number of intervals in runs with Design-1 (i.e.,
128 KB L2) may be 34 percent larger than that with Design-2
(i.e., 1 MB L2) using the same interval size of 100 K clock
cycles because the execution time for Design-1 is longer.

Fig. 6 shows a simplified example to compare two archi-
tectural designs by assuming they have the same execution
paths and the same relative execution speed among the
cores during the execution, i.e., both runs have the same
execution patterns. The performance of design-2 is better
than that of Design-1. Thus, Design-2 has a shorter execu-
tion time. Using the same interval size on both runs to
obtain PCVs, we have nine intervals for Design-1 while
only six intervals for Design-2.

To use clustering algorithms such as K-means, we need
them to have the same number of intervals. One naive solu-
tion is to pad three zero PCVs to Design-1 or trim three
PCVs from Design-2. It is obvious that neither approach
will lead to an accurate conclusion after clustering. Actually,
the two will be considered as two completely different exe-
cution patterns, even though they should have the same
pattern as mentioned earlier.

The essence of such a problem is that when comparing
the execution patterns of two different designs, the length
of intervals should reflect and be adjusted according to the
difference in their execution time.

In the example shown in Fig. 6, each interval in Design-1
represents about 11.1 percent of the total execution time
while each interval in Design-2 is about 16.6 percent. To
determine if the execution patterns of the two runs are simi-
lar or not, the size of intervals should first be adjusted accord-
ingly. It allows clustering algorithms such as K-means to give
a more accurate classification of the execution patterns that
truly reflect the execution paths (i.e., control flow) and the
relative execution speed among cores in each run.

Therefore, in interval alignment, VarCatcher re-partitions
intervals based on the total execution time of each run. After
interval alignment, each interval will be equal to the same
percentage of the total execution time in each run as shown
in the right part of Fig. 6. After interval alignment, each run
will have the same number of intervals, i.e., the same num-
ber of PCVs, and thus K-means could give a more accurate
clustering to identify similar execution patterns.

Fig. 5. PCV includes concatenated se-features information from each
core in globally partitioned intervals.

Fig. 6. Re-partitioning for interval alignment using the ratio of total execu-
tion time.
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To facilitate interval alignment, our approach is to first
use very fine-grained intervals to collect PCVs for all runs,
e.g., instead of using a 10-million cycle interval size we use
a 100 K-cycle interval size. However, using a smaller inter-
val size could incur a larger storage overhead for storing
such information. Hence, the granularity of the initial inter-
val size should be chosen to balance the precision and the
space cost. During the interval alignment, we then merge
these fine-grained PCVs into a larger interval that is propor-
tional to the execution time.

3.2.2 Core Alignment

After interval alignment, runs with the same execution
patterns may still not be clustered as similar because of
varied thread mappings to cores. Fig. 7 shows such an
example. In Run-1 (shown on the left) and Run-2 (shown
on the right), the execution paths of Thread-1 and
Thread-2 are the same in both runs, and there is no thread
migration during the run. Moreover, the relative execu-
tion speeds are also the same. Therefore, these two runs
should be classified as the same execution pattern after
clustering. However, their PCVs are distinct because the
first dimension of PCVs specifies the core ID, and the
second dimension records the se-features of the thread
running on that core.

The essence of this misalignment problem is due to dif-
ferent thread mappings to cores. To account for such thread
mappings, we present a core alignment scheme to identify
runs with similar execution patterns but with different
thread mappings as shown in Fig. 8. It consists of four steps.

1. Forming gse-features for Each Core. As we are trying to
identify thread mapping on each core in each run,
we first characterize the execution path of each core
by grouping all BBVs on each core to form a global
se-feature (gse-feature) for that core as shown in

Fig. 9. In a sense, such gse-features represent a par-
ticular thread mapping.

2. Grouping Similar gse-features Into Clusters. To identify
similar gse-features (i.e., potentially same threads,
but mapped on different cores), we use K-means [7],
[8] to group these gse-features into clusters. The
input parameter K is selected by Bayesian Informa-
tion Criterion (BIC) method [19] since it can easily be
automated and has fewer errors in practice. The
cores mapped into the same cluster have similar gse-
features, and thus similar execution paths from simi-
lar threads.

3. Generate an Alignment Matrix. Based on the clustering
results, we generate an alignment matrix as shown
in Fig. 10. Each row of the matrix represents a run of
a particular design. Each column represents a cluster
identified by K-means. If a core’s gse-feature in a run
belongs to a particular cluster, the corresponding
entry in the matrix is marked with the core ID. Oth-
erwise, that entry is NULL. Using the previous
example, we run WC six times for Design-1 marked
as (a), and Design-2 marked as (b) on a 3-core plat-
form. There are eighteen gse-features, and they are
grouped into five clusters by K-means. The align-
ment matrix are formed as shown in Fig. 10.

4. Identifying Similar Execution Patterns by Factoring Out
Thread Mapping. If rows have identically filled posi-
tions, such as Run-2 and Run-4 in the alignment
matrix, then they have similar execution patterns
despite different thread mapping on core-2 and core-
3, according to cluster 3 (C-3) and cluster 4 (C-4) in
the alignment matrix. Based on such observations,
we can realign their core IDs in PCVs using the infor-
mation from the alignment matrix. For example, in
Fig. 11, we adjust the PCV positions of core-2 and
core-3 in Run-4 to make the core alignment between
Run-2 and Run-4.

Fig. 7. Core misalignment problem. Two runs have similar execution pat-
terns, but their thread mappings are different.

Fig. 8. Core alignment. Adjust the BBV sequence in PCVs to account for
different thread mappings.

Fig. 9. Generate gse-feature vectors of each core through merging each
core’s BBVs in every interval together.

Fig. 10. Alignment Matrix.

Fig. 11. Adjust core IDs in PCV to achieve core alignment based on the
alignment matrix. After exchanging the gse-feature positions of core-2
and core-3 in Run-4, Run-2 and Run-4 have the same execution
patterns.
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After the core alignment, similar execution patterns with
different thread mapping could be correctly identified and
adjusted.

3.2.3 Final Clustering

After the interval and core alignment, we are ready to
cluster all runs to identify different execution patterns by
applying K-means again using BIC method to select
K [19]. The K-means algorithm is applied to all aligned
PCVs (as opposed to gse-features in the core alignment
step) of all runs to identify similar execution patterns
among them.

For asymmetric multi-cores (i.e., cores with different
clock frequencies) or multi-cores that allow dynamic fre-
quency and voltage scaling, the clock frequencies of differ-
ent cores can be different, and thus the clock cycle time is
different on different cores. If two runs follow the same exe-
cution pattern but their intervals are partitioned using dif-
ferent clocks on different cores, they may not be grouped
into the same cluster.

To solve this problem, cycle alignment needs to be
done before the interval alignment is applied. Based on
the frequencies of different cores, we can choose a base
frequency (the maximum or minimum frequency) and
calculate the ratio of the base frequency to the frequency
of other cores, or other periods of intervals in the same
core. We can then decouple each core’s PCVs and re-par-
tition each core’s intervals according to these ratios. For
example, if the frequency ratio of two cores is 3:4, we can
combine three PCV intervals on the first core while com-
bine four of them on the second core. We can then apply
interval and core alignment as before after the cycle
alignment.

There are some architectures that can dynamically
change the CPU frequencies according to different system
loads, such as DVFS. The information about DVFS fre-
quency change can be collected through system instrumen-
tation or architecture extension. Therefore we can then
apply interval alignment with the corresponding frequency
information of each interval. VarCatcher can also work in
similar scenarios as long as we can get the information
about the real-time CPU frequency changes.

Effectiveness of Interval and Core Alignment. We measure
the number of clusters with and without interval and core
alignment based on a 200-run of the Phoenix-2 benchmark
(experimental setup is described in Section 2.1). There are
18.14 and 43.28 clusters on average with and without the
two alignments, respectively. Specifically, with only interval
alignment, there are on average 20 clusters (a 52.48 percent
reduction, with a maximum of 61.36 percent); with only
core alignment, there are 42 clusters (a 2.64 percent reduc-
tion on average, with a maximum of 9.1 percent). Hence,
with interval and core alignment, clustering algorithm
could be more effective in identifying different execution
patterns.

4 IMPLEMENTATION & EVALUATION

In this section, we will first introduce our BBV-based PCV
and some optimizations. Then, we will discuss the imple-
mentation of VarCatcher.

4.1 BBV-Based PCV

4.1.1 BBV-Based PCV

It is convenient for PCV to combine with these traditional
se-features, such as BBV and memory reuse distance. We
have tested the efficiency of PCV through combining it with
different se-features, including BBV and memory reuse dis-
tance, they can achieve the similar accuracy. Because it is
easier to collect BBV information through hardware perfor-
mance counter, we choose BBV as the se-feature in our fol-
lowing implementation.

Basic block vector [8], [16], [17] is a metric, which is used
to record how many times the basic blocks (BBs) in a pro-
gram interval have been executed. To obtain BBVs, the exe-
cution of a program is divided into intervals by a fixed
number of instructions. Then, the BB information in each
interval is collected and recorded into the corresponding
BBV. The Manhattan distance [8] of the two normalized
BBVs is used to decide whether two intervals are similar. If
the distance is smaller than a threshold, the intervals are
similar. Due to its efficiency to represent the dynamic
behavior of a program execution, it has been widely used
for dynamic analysis.

4.1.2 Optimizations for PCV

Since PCV needs to record all se-feature information in an
interval, a PCV is essentially a high-dimensional vector.
Actually, even for a small program such as matrix multiply,
the dimension of each core’s se-feature, such as BBV, can be
over 4,000. The larger the program is, the more dimensions
the PCV could have. Storing such information is expensive,
and processing such high-dimensional data with K-means
is time-consuming. Here, we use two optimizations: dimen-
sion reduction and phase table to reduce the overheads.

Dimension Reduction. We use the linear projection tech-
nique [8] to reduce the dimension of PCV, and thus decrease
the space requirement to store PCVs and accelerate the clus-
tering process. Before each core’s BBVs in an interval are
concatenated into a PCV, each BBV is randomly projected
onto a 15-dimension vector. Such projections reduce com-
putation complexity and storage requirements for the trace
file. Yet, they still preserve most of the pattern information
for later analysis or for reproducibility. Through this opti-
mization, VarCatcher can reduce 70 percent of the dimen-
sions while maintaining 95 percent variance of the origin
data. Furthermore, the dimension reduction also improves
processing speed and cut down 68 percent of the clustering
time on average for the Phoenix-2 benchmarks.

Using Phase Behavior to Reduce Storage Overhead. In the ori-
gin design, we collect PCVs in every interval. Although we
have reduced the dimension of PCVs, the PCV is still a
high-dimensional vector (15 dimensions for each core). It
still has a large storage requirement for PCVs when a pro-
gram has a long execution time. To further reduce such
overheads, we leverage the phase behavior in most applica-
tion programs. While a program is being executed, it gener-
ally has many execution intervals with repetitive patterns
due to loop structures and multiple call sites in the pro-
gram. Phase analysis has been well established as a stan-
dard technique that characterizes the set of execution
intervals with similar behavior in the same phase [16], [17].
Moreover, even if a program has a long execution time, the
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number of phases is usually small. For example, the average
number of phases for programs in Phoenix-2 [10], [11] is
only 16, and the maximum number is only 28. Therefore,
we only need to store a phase ID using less than 3-byte for
each interval, instead of 60 bytes for each BBV to include all
of the basic blocks in the program, which can greatly reduce
the space overhead.

4.2 Implementation

The workflow of VarCatcher is summarized Fig. 12. Var-
Catcher first collects PCVs during program execution. It
partitions the global intervals (measured in clock cycles)
with a fine granularity for later interval alignment.

It then collects se-features, i.e., BBVs, from each core in
each interval with reduced dimension, and leverages the
program’s phase behavior to reduce storage requirements.
After concatenating those se-features from each core with
core IDs to form PCVs, it performs core alignment by
grouping gse-features from each core into clusters and gen-
erating an alignment matrix based on these clusters. It also
performs interval alignment through re-partitioning of the
intervals so that the number of intervals in different runs
becomes the same. K-means is finally applied on the aligned
PCVs to group similar runs into clusters.

Implementing VarCatcher as a System Tool. We have imple-
mented a software tool using Intel Processor Trace (IPT) [9],
a performancemonitoring tool offered on Intel processors, to
non-intrusively capture runtime traces. The trace includes
each core’s branch information. After the trace is collected,
the instruction count of each BB can be calculated based on
each BB’s entry and exit instructions. The PCV can then be
constructed by combining BBVs with core IDs. Dimension
reduction and programphases are used to reduce processing
and storage overheads as described earlier.

Hardware Support for VarCatcher. To reduce storage and
processing overhead, we also provide some hardware sup-
port for VarCatcher based on traditional phase detection
architecture [16], [17]. The main differences are the interval
is partitioned by clock cycles instead of instruction counts
and there is a phase sequence buffer to record the feature of
the whole execution. Fig. 13 shows such hardware support
on each core. When a program is being executed, the BBV
information on each core is collected through the BBV accu-
mulator, which counts the number of instructions of each
BB. At the end of each cycle interval, its BBV is used to

search the phase table. Each entry of the phase table records
a distinctive BBV with a phase ID. If a similar phase table
entry (i.e., the Manhattan distance between the two BBVs is
smaller than a threshold) is not found, a new phase table
entry with a new phase ID is created and entered in the
phase table. If a phase ID is obtained (i.e., a hit on the phase
table), it is entered in the phase sequence buffer. To avoid
the execution stall, the sequence buffer is implemented as a
rotation buffer (Buf-1 and Buf-2). If the buffer is full, its con-
tents are dumped to the memory, and the other buffer con-
tinues to collect the execution information.

In our current design, the interval length is 100 K cycles,
and each buffer contains 100 entries. It means a phase
sequence is dumped to memory every 10 million cycles,
which is at the level of a context switch [17]. In memory, we
allocate 8 KB space (two 4 KB pages) for each core to store
the dumped information. If the page is full, it is dumped to
disk, and the other page continues to store the information.

4.3 Evaluation

To study the efficiency and the accuracy of VarCatcher, we
have tested applications in PARSEC-2.1 [20] and Phoenix-
2 [10], [11] on the environment in Section 5.

For system tool implementation, it incurs about 3 and
3.15 percent runtime overhead on average, which should be
low enough for many cases. The trace storage and the off-
line processing overhead are noticeable. The average size of
IPT trace is about 652.85 MB (ranging from 71 to 965 MB)
for Phoenix-2, and 865.63 MB (ranging from 189 MB to
1.9 GB) for PARSEC-2.1. It needs extra offline processing
time to convert IPT trace to PCVs, which takes on average
158.32s and 193.90s respectively.

We have implemented our architectural design using
Transformer [12] to evaluate the effectiveness of such a
hardware support. The hardware runtime overhead is less
than 0.01 percent based on our results. The total space over-
head is less than 2 KB for each core. The average space over-
head of the final PCVs is about 2.36 MB, and the offline
processing time for 400 runs is about 44s. Our simulation
results from Transformer also show the average runtime
overhead for the architecture extension is only about 0.45
percent on average.

We have also conducted evaluations on different varied
metrics, such as different INT ALU latencies, memory access
latencies and numbers of ALUs. VarCatcher works well
under all these settings and we got similar conclusions. Due
to space constraints, we only use the varied L2 size as an
example and demonstrate the effectiveness of VarCatcher.

Fig. 12. The workflow of VarCatcher.

Fig. 13. The online instrumentation structure in each core. It generates
phase ID based on the BBV of each interval and stores the phase infor-
mation in phase sequence buffer.
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Validation of Clustering. To validate the runs in each clus-
ter are actually similar, we compare the branch traces col-
lected with IPT. The traces are basically matched for the
runs clustered in the same group. Besides, the CoV of the
performance metrics (IPC, L1 cache miss rate) from the runs
in the same cluster under the same configuration is 0.65 per-
cent on average, indicating they are indeed very similar.

5 CASE STUDIES

With the capability to capture similar execution patterns in
parallel execution, VarCatcher can be used in many scenar-
ios that require better analyzability and reproducibility for
parallel workloads. This section studies the effectiveness of
VarCatcher through five case studies, including (1) in-depth
result analysis, (2) customized evaluation strategies, (3) a
reproducibility study, (4) a feature impact study, and (5)
performance diagnosis. We used both Intel processor trace
(IPT) and Transformer [12] to evaluate their effectiveness
and overheads.

We collected performance metrics, such as Instruction
per cycle (IPC), throughput, execution time, and cache miss
rate using VarCatcher. Their results are all very similar.
Hence, we only provide IPC data here for brevity. We tested
applications in Phoenix-2 [10], [11] and PARSEC-2.1 [20]
with the reference input. Due to the long simulation time
for PARSEC-2.1 with the reference input, we only use Phoe-
nix-2 in simulation studies.

The baseline hardware for simulation has 4 cores with
64KB private L1 data cache, 64 KB private L1 instruction
cache and 1 MB shared L2 cache. The memory latency is 200
cycles. Other configurations are similar to those widely-
used in other architecture evaluations [12], [21], [22], [23],

[24]. The IPT-based VarCatcher runs on Intel Processor
5Y70 CPU at 1.10 GHz, It has two cores, four hardware
threads and 8 GB main memory.

5.1 In-Depth Result Analysis

With VarCatcher, we can have a more in-depth analysis on
the experimental results. Here, we present a comprehensive
analysis on execution patterns and their distribution across
multiple runs to gain some insights to the variability of their
performance.

Different run sets share many common execution patterns. We
run two 100-run sets on two L2 cache designs in Section 2.1 as
experiments E1 (for Design-1) and E2 (for Design-2) using all
applications in Phoenix-2 (including linear regression (LR),
matrix multiply (MM), PCA, word count (WC), histogram, string
match (SM), and K-means). We collect the number of common
patterns in each 100-run set as shown in Fig. 14. The common
patterns are the execution patterns appeared in both two
experiments, and the “unique pattern” are the remaining pat-
terns that appear only in one experiment. Only around 7.06
percent of patterns are unique in both 100-run sets. Therefore,
most of the execution patterns appear in both run sets if the
number of runs is large enough, as shown in Fig. 14.

The distribution of execution patterns in different run sets is
quite random. There is a total of 21 distinct execution patterns
in the benchmark program K-means in the above two 100-
run sets E1 and E2. We plot the distribution of the execution
patterns in each set with Pattern ID marked on the x-axis in
Fig. 15 for it. The characteristics of the distribution are very
similar in all other benchmarks.

Each bar shows the number of times that each execution
pattern shows up in each run set (in E1 and E2). Most execu-
tion patterns appear in both run sets, but the distribution of
execution patterns in each run set is very random.

The percentage of matched runs in two run sets does not increase
notably even if we increase the number of runs in each set. The
matched runs in two run sets are the runs in one run set hav-
ing a one-to-one corresponding run with similar execution
pattern on the other execution set. For example, there are four
matched runs in each design on Pattern-1 in Fig. 15. To see
whether the number of matched runs will increase with the
number of runs increasing, we increase the number of runs
from 40 to 200 times on two designs. As shown in Fig. 16, the
percentage of matched runs remains pretty flat, and reaches
around 61.6 percent when we increase from 40 runs to 200

Fig. 14. The number of common patterns across two 100-run experi-
ments (E1 and E2) for Phoenix-2 on two designs.

Fig. 15. The distribution of the 21 distinct patterns in the two 100-run
experiments (E1 and E2) for K-means.

Fig. 16. The percentage trend of matched runs. Each application runs
from 40 times to 200 times on two designs. Matched run means a run
has a one-to-one corresponding run on the other design with similar exe-
cution pattern.
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runs in each run set. This study confirms that the distribution
of execution patterns in a large number of runs does not nec-
essary follow a normal distribution [3].

5.2 Customized Evaluation Strategy

Using VarCatcher, users can customize evaluation strategies
to summarize the performance results. We present three
possible strategies to summarize the performance results
based on matched execution runs, common execution pat-
terns, and all execution patterns, respectively.

In the first strategy, we summarize the performance
results based on the execution runs with matched execution
patterns to minimize potential performance variability. In
the second strategy, since different sets of runs usually
share many common execution patterns as shown in Fig. 14,
we could summarize the performance results based on all
common execution patterns instead of all execution runs. In
the third strategy, since all distinct execution patterns have
different performance characteristics, we can summarize
performance results based on all distinct execution patterns.

We use shared L2 cache design in Section 2.1 again as our
example. Table 2 lists summarized results using different
strategies on the improvement of Design-2 over Design-1 on
4-core and 8-core platforms. All applications in Phoenix-2
are executed 200 times. Note that the number of runs to
achieve a 95 percent confidence level is 121 using the statis-
tical normality approaches [1] as mentioned in Section 2.1.

The second and the sixth columns marked under
(M-Run) show the performance results using the first strat-
egy to summarize the results of matched runs. The third
and seventh columns marked under (C-Pattern) show the
performance results using the second strategy to summarize
the results based on common patterns. The fourth and
eighth columns marked under (A-Pattern) show the perfor-
mance results using the third strategy to summarize the
results based on all patterns. The fifth and ninth columns
marked under (Normality) show the performance results
using the statistical normality approach that calculates the
arithmetic mean using all runs.

Based on these results, we can see that performance results
using statistical normality approach can differ significantly
from those of three customized strategies, especially in
K-means, histogram, and MM, while the performance results
among the three customized strategies appear to be more
consistent. The first reason is that the performance variability
caused by different distinct execution patterns are better con-
trolled and more stable in the three customized strategies

than the statistical normalitymethod inwhich there is no con-
trol of the distribution of the distinct execution patterns. The
second reason is that, due to unmatched runs, there are only
about 61.6 percent matched runs on average for all applica-
tions as shown in Fig. 16. Therefore, 38.4 percent runs are
unmatched, which could cause more performance variability
to the summarized results. More importantly, the perfor-
mance of these unmatched runs is different from that of
matched ones, which significantly affects the results of the
statistical approach.

As opposed to statistical inference, VarCatcher has no
constraint on the number of runs as it focuses more on the
distinct execution patterns than the number of runs. The
number of runs depends on a user’s choice, and on how
many distinct execution patterns the user intends to cap-
ture. As most distinct execution patterns can be captured in
a small number of runs, it is more efficient for users to sum-
marize the performance results based on distinct execution
patterns than on a large number of runs as in statistical
inference. We run 200 times in our experiments just for a
fair comparison with statistical normality approaches,
which needs a large number of runs to achieve a certain con-
fidence level.

VarCatcher tackles performance variability through man-
aging distinct execution patterns, which allows for more
detailed exploration on performance evaluation. It will be our
future work to combine more rigorous statistical approaches
with the execution patterns obtained by VarCatcher.

5.3 Systematic Approach to Reproducibility

As mentioned earlier, it is neither very effective nor efficient
to reproduce the results of parallel execution using statisti-
cal inference for validation. Many deterministic execu-
tion [25], [26], [27], [28], [29] and deterministic record-and-
replay [30], [31], [32], [33], [34], [35] have been proposed to
counter the performance variability for reproducibility.
However, most of those techniques can only produce a spe-
cific execution pattern with significant overheads.

In VarCatcher, we run a parallel workload a limited
number of times and record all different execution patterns
of those runs with their corresponding performance results.
All these recorded execution patterns and performance
results can then be used for validation of future runs if the
same execution patterns are reproduced. It is a systematic
way of capturing all execution patterns, as opposed to a sin-
gle particular execution pattern as in deterministic record-
and-replay and deterministic execution approaches.

TABLE 2
A Summary of Performance Improvement of Design-2 Over Design-1

Using Three Customized Strategies and a Statistical Normality Approach

benchmark 4-core 8-core

M-Run C-Pattern A-Pattern Normality M-Run C-Pattern A-Pattern Normality

K-means 1.00% 0.93% 0.89% -0.87% 0.81% 2.21% 2.23% 5.38%
LR 6.37% 6.52% 6.93% 7.41% 6.94% 7.04% 4.58% 1.04%
histogram 2.07% 2.01% 1.77% -0.47% 7.18% 6.45% 6.03% 4.52%
MM 1.68% 1.49% 3.26% 13.06% 4.87% 4.66% 2.81% -1.15%
PCA 8.08% 6.88% 4.45% 3.37% 2.28% 2.32% 3.02% 5.13%
SM 4.94% 5.12% 5.66% 8.22% 2.35% 2.73% 2.44% 9.58%
WC 2.19% 1.98% 4.96% 8.18% 5.26% 6.90% 8.75% 13.08%
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As shown in Section 5.1, most of the parallel workloads
do not have too many execution patterns. It also does not
take many runs to capture most of those execution patterns.
New execution patterns can be added to such a database
when they appear.

Here we use a performance comparison between GCC
O1 option and O3 option as an example. O3 is a higher opti-
mization level than O1. We run 5 times for each option, and
simply use their averages to compute the speedup of O3
over O1. The PCVs of all those runs are collected using IPT.

Here, we use matrix multiply (MM) in Phoenix-2 to show
how it works. There are 4 distinct execution patterns for the
O1 option. It requires 13 runs to get all 4 patterns. There are
3 distinct patterns for O3 option, and it takes 7 runs to cap-
ture all of them. Table 3 shows the execution time in cycles
for all distinct execution patterns for O1 and O3 in the first
and the fourth row, respectively. When repeated runs with
similar execution patterns are identified, their execution
time is also very similar to the recorded results, thus the
results of the two runs are validated.

We also study all applications in Phoenix-2 and several
applications in PARSEC-2.1 (including blackscholes (BS),
bodytrack (BT), fluidanimate (FA), freqmine (FQ), swaptions
(SWAP), x264 and vips). Fig. 17 shows the average speedups
of O3 over O1 with 5 runs. The left bar marked as
“Evaluation” shows the speedup values of the original 5
runs. The middle bar marked as “Repeat” shows the
speedup values of 5 repeated runs with the same corre-
sponding execution patterns to the original 5 runs using
VarCatcher. The right bar marked with “Stat. Repeat”
shows the speedup values based on the statistical non-
parametric testing approach [14]. As the results show, statis-
tical testing approaches can hardly match the reproducibil-
ity of VarCatcher to reproduce the original speedup values
as closely as VarCatcher can.

5.4 Feature Impact Study

Designers often need to determine the performance impact
of changing a specific feature of the system. However, it is
hard to analyze whether such effect appears and how they
impact on the results on the multi-core platform, because
the effect may be mixed with parallel variability. With Var-
Catcher, we can evaluate the influence of these factors to
realize casual analysis [36] or before-and-after comparison
technique by judging comparing the performance of each
distinct execution pattern before and after the feature is
added or changed.

Here, we use the link order during the compilation of a
program with multiple modules as an example. We would
like to see how the change of the link order impacts the

performance of the generated code. To do this, we can com-
pare the performance of the generated code under different
link orders on the same execution pattern, and see if there is
any significant performance change.

We first run the target applications with the original link
order. We then change the link order and compare the per-
formance changes on each distinct execution pattern. If the
performance of many execution patterns changes, then the
performance will be affected by link order. For example, we
first collect the performance data of x264 in PARSEC-2.1 25
times in its original link order. Using VarCatcher, we found
there were 15 distinct execution patterns. The CoV of the
performance metric (e.g., IPC) in the same cluster is only
about 0.5 percent on average. We then run 25 times of 9
other different link orders. Among the 15 execution patterns
identified, 8 patterns show performance variability among 9
different link orders ranging from 3.53 to 26.19 percent. The
change of link orders also affects 3 out of 8 execution pat-
terns for WC in Phoenix-2, 4 out of 9 patterns for freqmine,
and 3 out of 12 patterns for swaptions in PARSEC-2.1 rang-
ing from 1.56 to 21.89 percent. From such an analysis, we
can confirm that the link order has a significant influence on
the performance for parallel applications.

5.5 Support for Performance Diagnosis

With significant performance variability during parallel exe-
cutions, designers or programmers may want to find out
what cause such performance discrepancies and how they
influence the performance. However, priormethods diagnose
performance under a constrained variability condition or a
replay condition, which limit their capability to fix asmany as
performance bugs as possible. Since VarCatcher can distin-
guish different execution patterns, it can uncover how many
andwhich execution patterns would have performance prob-
lem after an optimization or a design adjustment. Therefore,
with the help of VarCatcher, traditional performance tools
can diagnose performance for the fixed execution patterns.

Using shared L2 cache design example in Section 2.1, the
average performance improvement in the first 10 runs is
12.62 percent while the average improvement in the second
10 runs is only 1.12 percent. Designers may want to carry
out performance diagnosis on how such low performance
comes about. Using VarCatcher to obtain execution patterns
and their distribution, we can more easily diagnose where
the performance improvement is coming from by identify-
ing the best and the worst performed execution patterns.

Here, we use LR in Phoenix-2 as an example. We run LR
200 times for two shared L2 designs, respectively. As shown
in Table 4, there are 15 matched clusters for the two designs,
and the performance difference ranges from 0.92 to 15.85
percent. Based on such results, designers could identify the

TABLE 3
The Cycle Results of Original Runs and the Repeated Runs

Pattern-1 Pattern-2 Pattern-3 Pattern-4

O1 Evaluation 3,092,990 2,469,376 3,250,440 2,637,824
O1 Repeat 3,080,096 2,457,596 3,323,520 2,612,323

Pattern-5 Pattern-6 Pattern-7 -

O3 Evaluation 1,750,112 2,100,952 2,019,312 -
O3 Repeat 1,797,044 2,173,944 2,022,360 -

Their performance results are consistent.

Fig. 17. Reproducibility comparison on the same platform.
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patterns with the worst performance improvement (e.g.,
Pattern-13 achieves only 0.92 percent improvement) or the
pattern with the best performance improvement (e.g., the
Pattern-2 achieves 15.85 percent performance improvement)
during the performance diagnosis, and look into more
details on why such discrepancies occur based on their exe-
cution patterns.

If the number of runs with Pattern-13 appears frequently
in the experiment, the improvement would be below expec-
tation. In such a case, designers may want to find ways to
avoid certain patterns or promote certain patterns to occur
using some stable scheduling tools [37].

6 RELATED WORK

Feature Extraction and Sampling. Sherwood et al. [8] intro-
duced basic block vector to characterize the program behav-
ior on singe-core platforms. Kambadur et al. [38] presented
Harmony, which collects parallel block vector (PBV) in the
compiler to extract parallel features under thread granularity
for hardware or software optimization and acceleration. Due
to non-uniformly partitioned intervals, PBV cannot reflect
the execution speed of different threads and thus cannot be
used to characterize the execution patterns defined in Var-
Catcher. Based on the repetitive execution behavior of pro-
grams, sampling techniques, such as Co-Phase Matrix [39]
and multi-threaded sampling techniques [40], are proposed
to reduce simulation time through only simulating the repre-
sentative portion of the applications.

VarCatcher is also based on collecting online execution
characteristics (PCV), but with a completely different goal
from the above work. Further, PCV not only characterizes
the execution paths within a core, but also the relative
speeds among cores.

Statistics-Based Analysis. Such approaches can be mainly
divided into three categories: Normality [1], [2], [13], Non-
parametric testing [3], [14] and Visual test [4], which try to
summarize the varied performance of multiple runs.

Normality approaches [1], [2] are based on the Central
Limit Theorem, which indicates the average of a sufficiently
large number of independent random variables tends to fol-
low the normal distribution. They calculate the necessary
number of runs to fulfill the preset confidence level using
the parametric estimate based on this theorem. However,
As analyzed in [3], the runs of multiple applications do not
always follow the normal distribution even with many exe-
cution data collected unless there is a mechanism to ensure
the normality of sample runs [13].

Non-parametric testing (hypothesis testing), such as Mann-
Whitney U Test or Wilcoxon Rank-Sum Test [3], do not

make any assumption on any distribution. These
approaches determine whether two sets of samples are sig-
nificantly different or not, and can be extended to calculate
performance speedup [3]. Such results provide little infor-
mation for analysis and are also vulnerable to the number
of runs [2].

Visual tests first calculate the confidence interval of the
performance for each design and then check the overlap-
ping of two intervals. Such results provide very limited
information for analysis. Georges et al. [4] summarizes the
comparison results if the width of the interval is less than a
threshold with an increasing number of sample runs. The
conclusions are also considered to be too conservative [2].

In addition, some randomization techniques are often
combined with statistical methods to summarize the results
with variability, such as environmental randomization [13],
[36], [41] and workload randomization [42].

While such methods are useful to summarize results
among multiple sample runs, they are not sufficient to
resolve the analyzability and reproducibility issues of the
parallel workloads. VarCatcher can provide analyzability
and reproducibility for performance evaluation with vari-
ability compared to these methods.

Other Approaches. There are some other approaches that
try to tackle performance variability through minimizing
variability. Lepak et al. [15] and Pusukuri et al. [43] reduce
variability in evaluation or optimization through modifying
simulators or scheduling policy on threads. Vera et al. [44]
executes a representative trace of every test benchmark to
reduce experimental bias.

Such approaches can mitigate performance variability by
only dealing with a specific execution pattern, but they can-
not handle large performance variability in different execu-
tion patterns observed in many parallel workloads, while
VarCatcher can capture various patterns from different
runs with variability.

7 CONCLUSION

To tackle performance variability in parallel workloads, we
propose an evaluation framework called VarCatcher. It uses
PCVs to characterize the execution patterns of parallel exe-
cution, and use a clustering method to group similar execu-
tion patterns for further analysis. We provide several use
scenarios to show such an approach can be quite useful and
effective on various aspects of the performance evaluation
on parallel workloads and machine designs.
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