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Abstract Nowadays, application migration becomes more and more attractive. For example, it can make computation
closer to data sources or make service closer to end-users, which may significantly decrease latency in edge computing. Yet,
migrating applications among servers that are controlled by different platform owners raises security issues. We leverage
hardware-secured Trusted Execution Environment (TEE, aka., enclave) technologies, such as Intel SGX, AMD SEV, and
ARM TrustZone, for protecting critical computations on untrusted servers. However, these hardware TEEs propose non-
uniform programming abstractions and are based on heterogeneous architectures, which not only forces programmers to
develop secure applications targeting some specific abstraction but also hinders the migration of protected applications.
Therefore, we propose UniTEE which gives a unified enclave programming abstraction across the above three hardware
TEEs by using a microkernel-based design and enables the secure enclave migration by integrating heterogeneous migration
techniques. We have implemented the prototype on real machines. The evaluation results show the migration support incurs
nearly-zero runtime overhead and the migration procedure is also efficient.
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1 Introduction

As an emerging computing paradigm, edge comput-

ing [1, 2, 3, 4] has gained more attention in recent years

because it allows services to become closer to clients

or data production sources. Owing to the promising

feature of “close-to-data/client”, edge computing can

significantly reduce network communication cost and

thus bring better quality of service, e.g., extremely low

latency for requests. Nowadays, it has been used in

plentiful application domains, such as computation of-

floading from cloud to smart home or city [5, 6], real-

time analytics [7, 8], and so on, to address the concerns

of response time requirement and bandwidth cost limi-

tation.

The mobility of clients (e.g., mobile users) and data

sources (e.g., intelligent vehicles) makes runtime ser-

vice migration become an indispensable requirement in

edge computing [9, 10, 11, 12]. With migration, a ser-

vice can keep running on the edge server nearest to the

client, which may change from time to time, in order

to keep latency low. Otherwise, dramatic performance

degradation may occur, and qualified service continuity

is difficult to ensure. In addition, migration is also im-

portant for meeting other demands of edge computing,

like relieving congested edge servers and leaving servers

that may fail (e.g., before running out of battery).

However, research on security issues of service mi-

gration in edge paradigms is still nascent and lim-
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ited [9, 13, 14]. Compared with traditional cloud com-

puting, there are two main security-related differences

when edge servers involve. First, the owners of the edge

servers may be different from the cloud providers and

could be curious or even malicious. Thus, the providers

of the service applications (e.g., the application devel-

opers) have concerns about their intellectual property

which may be easily stolen by the edge server owner

who controls the physical machine as well as the whole

system software stack. The end users also cannot en-

sure the service application is correctly running on the

edge servers. Second, the edge servers are easier to

be attacked compared with cloud servers because cloud

servers usually face remote attacks only while attack-

ers are easier to physically access edge servers and thus

have more attack means (e.g., conducting physical at-

tacks). Such differences are obstacles for migrating ser-

vices among edge servers as well as from cloud to edge.

In this paper, we propose to utilize the hardware-

assisted Trusted Execution Environment (TEE) to mit-

igate the above security threats and enable secure ser-

vice migration. TEE is suitable for protecting pri-

vate code and data on untrusted platforms. For ex-

ample, Intel SGX has been adopted by some major

cloud providers and ARMTrustZone has been well-used

on smartphones. Generally speaking, when accommo-

dated in a hardware TEE, a benign service applica-

tion can protect itself and users’ input from malicious

software, including OS and compromised peripherals.

Nevertheless, edge servers can deploy CPUs from dif-

ferent vendors, such as Intel, AMD and Huawei, which,

inherently, means that their equipped TEEs are hetero-

geneous, like Intel SGX [15], AMD SEV [16], and ARM

TrustZone [17].

Therefore, we propose UniTEE which gives a unified

TEE abstraction for hiding the hardware heterogeneity

from applications. UniTEE adopts the programming

model of SGX applications for its flexibility and pop-

ularity. Specifically, an application can partition itself

into secure-(in)sensitive parts and build one or more

hardware-secured TEEs (named enclaves) to run the

secure-sensitive ones. An enclave can offer strong guar-

antees of both confidentiality and integrity for the se-

cure code/data inside despite being executed in an un-

trusted environment, which can be extremely suitable

for outsourced computation [18, 19, 20, 21]. No mat-

ter what the underlying hardware TEEs are, UniTEE

provides unified programming APIs including creating,

attesting, invoking, and destroying enclaves. As AMD

SEV and ARM TrustZone do not provide enclaves like

Intel SGX, we leverage hardware-software co-designs for

building SGX-like enclaves on those platforms. AMD

SEV uses virtual machine (VM) as the granularity of

its TEE and supports concurrently running at most

15 secure VMs, which does not fit the programming

model of UniTEE. Therefore, we deploy a trusted mi-

crokernel in the supervisor mode of a secure VM and

then let the microkernel to build user-level isolated en-

claves. An application can construct its enclaves in the

secure VM by sending requests to the trusted micro-

kernel. ARM TrustZone enables the CPU to have two

modes named normal world and secure world, respec-

tively. UniTEE achieves the same enclave abstraction

by deploying the trusted microkernel in the secure world

to be the enclave manager. Thus, by combing the tiny

software layer (the trusted microkernel) and the hard-

ware TEE (either a secure VM of SEV or the secure

world of TrustZone), UniTEE provides SGX-like en-

clave abstractions and thus unifies the TEE program-

ming model on Intel SGX, AMD SEV, and ARM Trust-

zone. Besides, for easing programming, it provides an

enclave-management library for an application to con-

trol its enclaves’ life cycle, including creation, attesta-

tion, interaction and deletion. It also provides a C li-
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brary (based on musl-libc) to ease the development and

deployment of in-enclave code, as well as to be compat-

ible with legacy code.

A unified enclave abstraction enables programmers

to develop secure applications without considering the

differences of the underlying TEEs. Nevertheless, it

is not enough for migrating applications between edge

nodes because heterogeneous TEEs use different in-

struction set architectures (ISAs). Therefore, UniTEE

further integrates heterogeneous-ISA migration tech-

niques [22, 23, 24] to hide the heterogeneity of enclave

ISAs and support enclave migration [25] at runtime.

The enclave code will be compiled into different bina-

ries for different ISAs, but every symbol (a variable

and a function) has the same offset in different bina-

ries. No matter on which architecture, those symbols

will always be loaded at the same virtual addresses

at runtime, which significantly simplifies the (cross-

architecture) migration procedure because the point-

ers to them will still be valid after migration. For mi-

grating an enclave running on the source machine, the

target machine will first launch a virgin enclave with

the binary for its architecture and then receive and re-

store the enclave checkpoint (memory data and exe-

cution context) from the source machine. For ensur-

ing security, the checkpoint generation should not rely

on the untrusted software including the OS. Thus, an

enclave on the source machine will generate a consis-

tent checkpoint by itself. Specifically, UniTEE adds a

control thread in each enclave as a part of the frame-

work. After receiving a migration request, this thread

will wait for all the enclave threads to enter a quies-

cent state and then make a checkpoint by encrypting

and dumping the enclave states. The encryption key

is negotiated by the source enclave and the target en-

clave and it will protect both the confidentiality and the

integrity of the checkpoint during the transfer process.

UniTEE provides a software development kit (SDK)

for programmers, and they can develop secure edge ap-

plications without awareness of the underlying TEE

hardware or the migration mechanisms. We present

a prototype implementation and evaluation on an Intel

(Skylake i7-7700) machine, an AMD (EPYC 7281) ma-

chine, and an ARM (HiKey970) machine, respectively.

The evaluation results show: 1) Our SDK can support

many real-world applications and the migration mech-

anism incurs negligible overhead; and 2) The latency

of heterogeneous enclave migration is acceptable and

mainly decided by the network latency.

In summary, this paper makes the following contri-

butions:

• A unified enclave abstraction on Intel SGX, AMD

SEV, and ARM TrustZone exposed by UniTEE.

• A design of secure enclave migration between het-

erogeneous TEEs enabled in UniTEE.

• A real implementation and evaluation of UniTEE.

2 Motivation and Background

2.1 Motivation
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Fig.1. Throughput of the Vedis service that runs on an Intel Sky-
lake machine. The client device is an ARM HiKey board. The
network latency varies from 1 to 10 ms (typical latencies in edge
computing [11, 26])

.

Application (service) Migration is One of the Most

Critical Features in Edge Computing [8, 9, 10, 11, 27,
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28, 29]. First, migration can relieve congested edge

servers and thus achieve better load balance. Second,

migration can bring better fault tolerance (e.g., migrat-

ing applications that run on a low-battery edge ma-

chine) and ease the edge server upgrading (e.g., migrat-

ing running applications to other servers first and then

update an idle machine). Third, migration is important

to ensure Quality-of-Service (QoS) in edge computing

because of the high mobility of client devices such as

smartphones or intelligent cars. Specifically, the latency

between a client and an edge service may vary because

of the client’s mobility, which can impact the overall

performance, i.e., the service quality. Fig. 1 presents

such an example which shows the latency impact on

Vedis, a popular key-value store on edge. If latency-

sensitive services can be migrated to follow clients, they

can show much better performance.

Security Concerns on Migration for Both Service

Providers and Clients. Although service providers have

the above motivations to migrate their services between

different servers, security concerns may force them to

abandon migration. Different from cloud servers, which

are aggregated together in data centers and managed

by the same cloud provider, edge servers are more dis-

aggregated and can be managed by different owners. If

one service application is allowed to migrate from cloud

to edge and between different edge nodes, the service

provider faces the risk of leaking digital property be-

cause the owner of some edge server may be curious or

even malicious. The owner has the full control of the

edge server and can deploy malicious system software

(e.g., OS and hypervisor) or compromise them. If a ser-

vice runs on such a server, the server owner can easily

retrieve all the code, data, and runtime states of the

service, which means the loss of the digital property to

the service provider. Moreover, when the service is con-

trolled by an untrusted server owner, the clients of the

service also worry about the security: the client data

sent to the service may be stolen, or the service may

not faithfully handle the requests.

Hardware TEEs Bring a Potential to Solve the Se-

curity Problems. Nowadays, hardware support for se-

cure computing, i.e., Intel SGX, ARM TrustZone, and

AMD SEV, gains more and more attention in both the

academic and the industry area. These hardware se-

curity extensions can protect security-sensitive appli-

cations from attackers through providing a hardware-

secured trusted execution environment (TEE). A TEE

can shield an application’s code and data from external

accesses by other software, including higher-privileged

software like OS and hypervisor. Besides memory pro-

tection, it can also provide tamper-resistant execution

for the protected application. So, hardware-supported

TEE technology is a promising candidate for protecting

applications in untrusted cloud/edge servers where the

entire software stack and the infrastructure owner are

not trustworthy.

However, the Heterogeneity of Servers in Edge

Computing Leads to Two-Fold Challenges. In terms

of application programming, different servers are

equipped with different kinds of TEEs which give het-

erogeneous programming abstractions (Challenge-1 ).

Writing code for every abstraction not only makes the

application development inefficient but also brings dif-

ficulties to runtime migration. In addition, heteroge-

neous hardware TEEs make the migration procedure

of protected applications challenging (Challenge-2 ) for

two reasons. First, they use architecture-specific in-

structions, registers, etc., which are different from each

other. Second, they cannot be accessed by privileged

system software such as OS and hypervisor which play

important roles in traditional migration (e.g., OS will

stop an application and then send its memory data).

In this paper, we make an attempt to solve the above
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two challenges on how to program security-sensitive

applications with different heterogeneous TEEs and

how to migrate them between the heterogeneous TEEs.

Besides in edge computing as said above, our work

may also be used in cloud computing where hetero-

geneous hardware TEEs and migration are also re-

quired [22, 25, 30, 31, 32, 33, 34], for example, secure

cross-cloud migration is needed in joint cloud comput-

ing [35].

2.2 Background of Hardware-secured TEEs

Intel SGX. Intel SGX [15] can protect user-level com-

putations through providing a hardware-secured exe-

cution environment called an enclave. An enclave’s

memory pages reside in the EPC (Enclave Page Cache)

which is a part of the memory region that will be au-

tomatically protected by the CPU. Although the hy-

pervisor and OS retain their ability to manage EPC

memory (e.g., swap EPC page), they cannot break the

memory data’s confidentiality and integrity. Moreover,

Intel SGX also provides tamper-resistant execution to

enclaves and enables remote attestation, which means

that an enclave can prove its identity to a remote party.

Thus, researchers have proposed to leverage SGX to

protect outsourced applications [19, 21, 36, 37, 38, 39]

and cloud vendors have started to explore the commer-

cial usage of SGX [40]. Specifically, an application can

be separated into trusted and untrusted parts, and the

trust parts can be executed in one or more enclaves.

An SGX enclave resides in the address space of its host

application while its memory can only be accessed by

itself. A thread has to enter an enclave through execut-

ing an EENTER instruction and exit from the enclave

with an EEXIT instruction. Moreover, the CPU can

help an enclave to produce a verifiable proof that iden-

tifies its memory contents. A remote party, e.g., the

enclave owner, can leverage official attestation services

like Intel Attestation Service (IAS) to assess the trust-

worthiness of the proof. Such a procedure is called SGX

remote attestation.

AMD SEV. AMD proposed SEV [16] to protect out-

sourced computing on untrusted servers, whose sup-

port has been integrated into existing system software

stacks. Different from Intel SGX, which can build TEEs

inside applications, the granularity of a TEE in SEV is

a secure virtual machine (VM). Tenants can run their

applications inside a secure VM which is protected as

a whole by the SEV hardware. SEV supports at most

15 secure VMs, and each of them has a unique iden-

tifier (ASID). Inside the CPU, all the secure memory

of the VM is tagged with the VM’s ASID, which pre-

vents the memory content from being accessed by any-

one other than the owner VM. When the secure mem-

ory data leaves/enters the CPU, it is automatically en-

crypted/decrypted by the memory controller with a key

bound to its owner VM. These keys are managed by a

secure co-processor and will never be exposed. A se-

cure VM can decide whether a memory page is secure

by setting one bit (C-bit) in the corresponding guest

page table entry. Once the bit is set, the CPU will treat

the memory page as secure and then protect it trans-

parently. Otherwise, access to the memory page is not

restricted, i.e., the page can be accessed by the hyper-

visor. Besides memory protection, SEV also protects a

secure VM’s execution states during runtime. Recently,

AMD proposes further extensions named SEV-SNP 1

which helps to mitigate the memory integrity problems

of SEV [41, 42]. Therefore, even in the face of compro-

mised privileged software, SEV can also protect both

the confidentiality and the integrity of its TEEs.

ARM TrustZone. ARM proposes TrustZone [43]

technology as its hardware security extension since

1SEV Secure Nested Paging. https://www.amd.com/system/files/TechDocs/56860.pdf. Referenced February 2021.

https://www.amd.com/system/files/TechDocs/56860.pdf
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ARMv6 architecture. With TrustZone, the CPU has

two execution environments, named normal world and

secure world, separately. Both worlds have their own

user space and kernel space, while the latter is used

as the TEE on ARM. Usually, a commodity OS and

non-security-sensitive applications run in the normal

world while a secure OS (e.g., OPTEE 2) and security-

sensitive applications run in the secure world. The two

worlds can switch to each other through the highest

privilege mode, monitor mode. One world can execute

an SMC (Secure Monitor Call) instruction to trap into

monitor mode, and then a secure monitor in the mon-

itor mode helps to finish the world switch. TrustZone

can also partition all the physical memory resources

into the normal part and secure part, and ensure that

the normal world cannot access the secure memory part

while the secure world can access the entire memory.

Thus, two worlds can exchange data through the nor-

mal memory part. Moreover, the secure world can ad-

just the memory resource partition according to run-

time requirements. As TrustZone is widely deployed in

ARM platforms such as smartphones and tablets, it has

already been used to protect security-critical computa-

tion and data [1, 44, 45, 46, 47, 48].

3 Unified TEE Programming Abstraction

In this section, we first give a brief analysis of the

three commercial TEE abstractions, which will explain

why UniTEE chooses the SGX-like abstraction as the

unified one. Then, we describe how to achieve the uni-

fied TEE abstraction on different security hardware.

Last, the main programming interfaces of such an ab-

straction will be introduced.

 Application

OS Hypervisor Secure Monitor

APP

OS

Secure 

VM

APP

OS

Secure 

VM Secure World

Secure OS

APP APP
Enclave

Enclave

(a) (b) (c)

Fig.2. Three commercial TEE abstractions: (a) Intel SGX, (b)
AMD SEV, and (c) ARM TrustZone.

3.1 Abstraction Analysis

As shown in Fig. 2, Intel SGX supports constructing

multiple enclaves (fine-grained TEEs) inside an appli-

cation, i.e., in the application’s address space, which al-

lows programmers to divide an application into one un-

trusted part and one or more trusted parts. The latter

ones are used to protect security-sensitive code, data,

as well as execution. There are several typical usages

of SGX for application protection (different granular-

ity). First, programmers can put an unmodified appli-

cation together with a library OS into a single enclave

(e.g., Graphene-SGX [21]) which may also be deployed

as a guest VM on untrusted servers (e.g., Haven [36]).

Second, programmers can run a container in an en-

clave to enhance security (e.g., SCONE [19]). Third,

programmers can partition an application into mutual-

distrusted parts manually [39] or automatically [49] and

then utilize enclaves for isolation. In brief, SGX enclave

abstraction not only allows a relatively unlimited num-

ber of TEEs and but also promises flexibility in the

isolation granularity.

In contrast, AMD SEV supports at most 15 se-

cure VMs as TEEs, which leads to two drawbacks: 1)

The TEE number is too limited to accommodate differ-

ent applications; 2) the TEE granularity is too coarse-

grained to meet different requirements. Similarly, ARM

TrustZone provides only-one secure world as TEE. Al-

2https://github.com/OP-TEE/optee_os. Referenced February 2021.

https://github.com/OP-TEE/optee_os


Heterogeneous Enclave Migration 7

though prior studies proposed to multiplex the secure

world by deploying a secure OS or using virtualiza-

tion [32], they only considered protecting a whole ap-

plication instead of fine-grained protection enabled by

SGX.

Therefore, UniTEE embraces the flexible abstrac-

tion of SGX and allows to build SGX-like enclaves with

any of the three hardware-security technology. Pro-

grammers can develop secure applications against a

unified abstraction without concerning the underlying

hardware TEEs.

3.2 System Architecture

Secure VM /

Secure World

Normal VM /

Normal World

Hypervisor / Secure Monitor

APP

MicrokernelOS

Enclave-1

Enclave-2

Enc-1

Enc-2

Fig.3. UniTEE gives SGX-like enclave abstraction based on AMD
SEV or ARM TrustZone. Enclave is abbreviated as Enc.

To provide SGX-like abstraction with AMD SEV or

ARM TrustZone, the first problem to solve is that they

cannot provide an unlimited number of hardware TEEs

as enclaves. To this end, UniTEE deploys a security-

oriented microkernel in one hardware TEE, i.e., the

secure world of ARM TrustZone or a secure VM of

AMD SEV, and then leverages the microkernel to con-

struct an unlimited number of software TEEs as en-

claves. The microkernel runs in kernel mode while the

enclaves managed by it are running in user mode.

As shown in Fig. 3, the microkernel creates a new

address space for building a new enclave, which is sim-

ilar to a traditional process on the microkernel. Nev-

ertheless, an enclave logically belongs to some appli-

cation that runs in the normal VM on an SEV-capable

machine or in the normal world on a TrustZone-capable

machine. The trustworthy microkernel guarantees both

the isolation between different enclaves and the isola-

tion between an enclave and all the untrusted software

in the normal VM or the normal world. Specifically,

it assigns different enclaves with different page tables

and thus achieves the memory isolation between them;

it leverages the hardware-security mechanism to ensure

the memory isolation between an enclave and the un-

trusted software, i.e., the enclave uses the secure mem-

ory (in the secure VM or the secure world) that cannot

be accessed by the untrusted ones, including the privi-

leged OS. Besides, the microkernel also manages the en-

claves’ runtime states (execution context) and ensures

the states’ confidentiality and integrity.

An application still runs on the untrusted OS while

its enclaves are created by and run on the microker-

nel. The microkernel is only responsible for the en-

clave life-cycle management, which mainly involves en-

clave construction/destruction, enclave memory man-

agement, and enclave thread scheduling. The applica-

tion cannot access its enclaves’ memory while an en-

clave can access its host application’s memory only if

the microkernel maps the normal memory belonging to

the application into the enclave’s address space. By de-

fault, an enclave and its host application have shared

memory for communication.

In brief, UniTEE leverages the microkernel to mul-

tiplex a single hardware TEE and thus allows an ap-

plication to create an arbitrary number of fine-grained

enclaves on an AMD SEV machine or an ARM Trust-

Zone machine, just like on an Intel SGX machine. The

tradeoff is our microkernel enlarges the trusted com-

puting base (TCB) of an enclave. Nevertheless, our
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microkernel has a small code base (around 5,000 lines

of code) and thus is relatively easier to be implemented

correctly. With more efforts in the future, formal veri-

fication can be used to make our microkernel more se-

cure. Although prior work on ARM TrustZone also

proposes to deploy a secure OS in the secure world

(e.g., OPTEE), the secure OS is for running multiple

trusted applications instead of enclaves (belong to the

host applications), which makes the secure OS and the

microkernel of UniTEE different.

3.3 Programming Interfaces

As the SGX programming model is easy to use and

adopted by the public, UniTEE preserves similar (or

even can be the same) interfaces as listed in Table 1.

By providing such interfaces, existing secure applica-

tions targeting SGX can be more easily ported to Uni-

TEE, which can make our work more practical.

Normal VM /

Normal World

APP

OS

Secure VM /

Secure World

Hypervisor / Secure Monitor

Microkernel

ECS

Enc-1

Drv-1

Drv-2

Shm

Fig.4. The procedure of enclave construction on SEV and Trust-
Zone platforms. ECS represents Enclave Construction Service.
Enclave is abbreviated as Enc. Drv-1 and Drv-2 are two software
components deployed by UniTEE.

3.3.1 Enclave Creation

Fig. 4 shows how a host application creates an en-

clave on SEV and TrustZone platforms (the enclave

creation procedure on SGX platforms is just like be-

fore, i.e., using official Intel SGX Driver). First, the

host application prepares the enclave image and the

corresponding configuration. Second, it invokes cre-

ate enclave, which traps into a kernel module (Drv-1)

deployed by UniTEE. Third, the kernel module trans-

fers the control flow to the microkernel. For transferring

the control flow, SMC instruction is used on TrustZone-

enabled platforms while VMMCALL and VMRUN in-

structions are used on SEV-enabled platforms. In the

former case, SMC instruction makes the CPU trap into

monitor mode, and another tiny module (Drv-2) de-

ployed by UniTEE helps to finish the switch between

the normal world and secure world. In the latter case,

VMMCALL instruction triggers a VMExit and makes

the CPU trap into hypervisor mode and, thus, a simi-

lar tiny module (Drv-2) in the hypervisor executes VM-

RUN instruction to notify the microkernel. Fourth, a

system service of the microkernel, named Enclave Con-

struction Service (ECS), receives the enclave creation

request and then constructs the enclave according to

the image and configuration passed through the shared

memory. On SGX platforms, UniTEE provides the

same interface but constructs enclaves just like how offi-

cial Intel-SGX SDK does. Specifically, a kernel module

like Drv-1 in the OS builds enclaves using SGX instruc-

tions (ENCLS ).

Components of UniTEE: For SEV, the components

include a kernel module in the normal VM’s guest OS,

a tiny module in the hypervisor, and a microkernel OS

in the secure VM. For TrustZone, the components in-

clude a kernel module in the normal world OS, a tiny

module in the monitor mode, and a microkernel OS in

the secure world. For SGX, the components include a

kernel module, i.e., the SGX driver. Besides, the com-

ponents also include a library in each enclave for all the

three platforms.
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Table 1. Main Interfaces in the Enclave-Management Library (for Host Applications) and the Modified C Library (for Enclaves)

Declaration Description

int create enclave(Buf enclave img, Buf enclave config)
Used by the host application to create an enclave.
The two arguments give the locations of the enclave image
and the configuration, respectively.

int attest enclave(int enclave id, Buf input, Buf output)
Used by the host application to generate an attestation for an enclave.
The last two arguments give the locations of the input message
and the final attestation data, respectively.

int call enclave(int enclave id, Buf buffer) [ecall]

Used by the host application to invoke an enclave function.
The first argument specifies which enclave to call. The second one is
the shared buffer between the host application and the enclave,
which is used for storing both input arguments and output results.

int call host(Buf buffer) [ocall] Used by an enclave to invoke its host application’s function.

int get seal key(Buf output key)
Used by an enclave to get a sealing key
which can be used to encrypt some persistent data outside the enclave.

Most interfaces in musl-libc
An enclave can also invoke common POSIX interfaces in musl-libc
just like a normal application.

3.3.2 Enclave Attestation

Remote attestation enables a remote user to attest

whether an enclave is correctly launched and further al-

lows the remote user and the enclave to build a secure

communication channel (i.e., exchanging a session key).

UniTEE provides the corresponding interface named

attest enclave. On SGX-enabled platforms, UniTEE

simply uses the hardware-provided remote attestation

mechanism. On the other two platforms, UniTEE lever-

ages the reliable microkernel to implement a two-phase

attestation. Briefly speaking, in the first phase, it boots

the microkernel by using the secure boot mechanism

provided by the hardware and allows remote users to

negotiate secure keys with the microkernel; in the sec-

ond phase, the ECS of the microkernel is responsible

for launching enclaves, computing the enclave measure-

ment, and signing the measurement by secure keys. As

the results of attest enclave, the signed measurement

will be returned to the host application and it can be

further sent back to remote users for attestation.

APP Enclave

Shm

Hypervisor /

Secure MonitorSMC; VMEXIT/VMRUN 
FlexSC-like

APP Enclave

Shm

EENTER/EEXIT

(a) (b)

OS uK

Fig.5. UniTEE supports two modes of communication between
an enclave and its host application. The shared communication
buffer is abbreviated as Shm.

3.3.3 Enclave Interaction

An enclave and its host application can expose func-

tion routines for each other, called ecall and ocall in

the official Intel SGX SDK. UniTEE also supports the

interaction between enclaves and the host application,

and the programming interfaces are call enclave and

call host. When the host application thread invokes an

enclave function, it needs to transfer the control flow

to an enclave thread. As shown in Fig. 5(a), UniTEE

can implement the cross-boundary invocation (passive

interaction mode) by using a similar method for cre-

ating an enclave. However, in such mode, the invoca-

tion cost is high because both the SMC -based world

switching of TrustZone and the VMMCALL/VMRUN -
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based VM switching of SEV bring both expensive di-

rect cost (thousands of CPU cycles) and indirect cost

(pollution to CPU internal structures like cache and

TLB). For the sake of performance, UniTEE also pro-

vides an alternative interaction mode (proactive inter-

action mode) which integrates the FlexSC-like mech-

anism [50]. There is a shared buffer between a host

application thread and an enclave thread. The buffer

is not only for transferring data but also for transfer-

ring control flow. The enclave thread will poll on a

request ready flag in the buffer. When the flag is set,

which means the application thread makes an invoca-

tion request, the enclave thread starts to handle the

request and sets a replay ready flag after finishing the

request. So, when invoking call enclave, the host ap-

plication thread writes the arguments of the request to

the shared buffer, sets the corresponding request ready

flag, and waits for the reply ready flag. After the en-

clave thread sets the reply ready flag, it retrieves the

results of the request and continues the execution. Dur-

ing the request handling procedure, the enclave thread

may also invoke functions provided by the host applica-

tion through call host. If so, it sets the reply ready flag

to a specific value, which means it makes an invocation

request to the host application thread. Since the latter

thread polls on the reply ready flag, it can detect and

finish such a request. With this proactive interaction

mode, the invocation can be much faster while it re-

quires more CPU cores. The application programmers

can select either mode according to the requirements.

Fig. 5(b) shows that UniTEE also enables the two

modes of interaction on SGX platforms. In the passive

interaction mode, expensive EENTER and EEXIT in-

structions are used. In the proactive interaction mode,

the FlexSC-like mechanism described above is used in-

stead.

3.3.4 Enclave Library

UniTEE provides an in-enclave C library based on

musl-libc for easing programming and supporting run-

ning legacy code inside an enclave. The vanilla musl-

libc will finally invoke system calls by executing syscall

(x86-64) or svc (AArch64) instruction. Unlike that, the

modified library changes the system calls into invoca-

tions to the host application and then the host applica-

tion will invoke the requested system calls on the OS for

the enclave. In other words, the system calls issued by

an enclave are redirected to the OS on which the host

application runs. Note that an enclave belongs to its

host application, and the OS will serve it for most sys-

tem calls. Although the microkernel of UniTEE does

implement various system calls like an OS, it provides

the ones related to enclave memory management. The

enclave library will transparently dispatch the system

calls without the involvement of programmers. An ex-

isting application can be linked against the modified C

library and then directly run in an enclave as a whole.

In this case, UniTEE will start a simple host application

which just creates the enclave and handles the system

calls at runtime for the enclave.

Besides, the library supports another interface

named get seal key which can be invoked by an enclave

to get a sealing key. If an enclave needs to store some

data for use in the next boot, it can seal the data with

this key and store the encrypted data on some untrusted

storage. Enclave Key Service, another system service of

the microkernel, manages the relationship between the

sealing key and the enclave measurement. Therefore,

the same enclave (i.e., the same measurement) can re-

trieve the same sealing key after every boot. For SGX

platforms that directly support this functionality, the

enclave library uses EGETKEY instruction to get the

sealing key.
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4 Heterogeneous TEE Migration

The unified programming abstraction of UniTEE

benefits secure applications development by hiding the

heterogeneity from programmers. Furthermore, based

on the unified abstraction, UniTEE transparently en-

ables enclave migration between different platforms.

We focus on the enclave migration in this paper be-

cause: the migration of an application’s non-enclave

part has no significant difference from traditional mi-

grations, which has been detailedly presented in prior

studies. In this section, we first give an overview of the

whole enclave migration process and then explain the

detailed techniques used during the migration.

4.1 Overview of the Migration

 TrustZone MachineSGX Machine

Checkpoint

SEV Machine

Checkpoint Checkpoint

Migrate Migrate

Migrate

UniTEE

Enclave

UniTEE

Enclave

UniTEE

Enclave

Fig.6. Secure enclave migration between different platforms.

Briefly speaking, as shown in Fig. 6, a migration

process includes the following three steps: first, an en-

clave checkpoint is generated on the source machine;

second, the checkpoint is transferred to the target ma-

chine through the network; third, the checkpoint is used

to restore the running states and resume the execution

of the enclave on the target machine.

Compared with the traditional checkpoint genera-

tion of application migration, there are three differences

that make the enclave checkpoint generation challeng-

ing. 1) The enclave states cannot be accessed by any

system software (e.g., OS), which means they cannot

help to generate the enclave checkpoint; 2) the system

software may be compromised and launch consistency

attacks during the generation procedure; 3) the instruc-

tions and calling convention used by enclaves are dif-

ferent on heterogeneous TEEs.

To overcome the first challenge, UniTEE enables

each enclave to generate its own checkpoint, i.e., an

enclave encrypts and then dumps out its states as a

checkpoint without the involvement of others like the

OS. Considering state consistency, an enclave needs to

stop the enclave threads before generating the check-

point. Otherwise, the checkpoint may be inconsistent,

i.e., it consists of both old and new data. Also, a mali-

cious OS may schedule enclave threads during check-

point generation to break the state consistency. To

overcome this second challenge, UniTEE enables an en-

clave to make all its threads enter into a quiescent point

(make no further updates) before checkpoint genera-

tion. Besides, the underlying hardware TEEs on the

source and the target machines can be heterogeneous.

UniTEE integrates the heterogeneous migration tech-

niques proposed in Popcorn [51] to solve the hetero-

geneity challenge (the third one). During the genera-

tion process, UniTEE will transform the architecture-

dependent states according to the target machine’s ar-

chitecture.

Before receiving the enclave checkpoint, the target

machine will first launch a virgin enclave with the en-

clave binary for its architecture. The virgin enclave will

receive the checkpoint from the source enclave and use

the checkpoint to resume the execution. For securely

transferring the checkpoint from the source enclave to

the target enclave, the two enclaves will negotiate a

migration key with each other by using the widely-used

Diffie-Hellman key exchange protocol whose crux is the

mutual authentication between the two participants.

As UniTEE enables remote attestation (introduced in

Subsection 3.3), the source enclave and the target en-

clave can attest each other to finish the key exchange
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protocol and then generate the migration key (stored

inside the enclaves). Before writing the checkpoint out,

the source enclave will first calculate the checksum of

the checkpoint and then encrypt it together with the

checksum by using the migration key. Since the check-

point is encrypted when it is outside the enclave or

in the network, the untrusted software like OS cannot

break confidentiality and integrity.

4.2 Preparation for Checkpointing

UniTEE introduces control thread, an extra enclave

thread, to assist migration. Since the control thread

runs within an enclave, it can traverse and dump the

entire memory data within the enclave boundary as the

checkpoint. To ensure state consistency of the gener-

ated checkpoint, it has to make all the other enclave

threads (worker threads) suspend running before start-

ing the generation. Otherwise, it may get a checkpoint

with inconsistent data because a worker thread may up-

date some memory during the generation process. As

a user-level thread, the control thread cannot directly

suspend all worker threads. However, if it asks the OS

for help, a malicious OS can deceive the control thread

that all enclave threads are suspended but actually not,

which will violate the consistency of checkpoint.

Happen before

Work Thread Control Thread

// A=5000, B=0

transfer() {

  lock();

  A = A - 5000;

  B = B + 5000;

  unlock();

}

// Depend on OS to stop

dump_mem() {

  stop_other_thread();

  dump(A); // A=5000

  dump(B); // B=5000

}

Fig.7. An example of data consistency attack.

Fig. 7 presents a simple example of such a data

consistency attack. When a migration begins, a

worker thread in an enclave is transferring money from

account A to account B. The control thread calls

stop other thread() to ask the OS to stop all other en-

clave threads. However, the malicious OS returns OK

but actually does not stop the worker threads. Thus,

the control thread may get an old version of account A

(5000) and a new version of account B (5000), which

violates the invariant that the sum of accounts should

be 5000.

void migration_stub(void)

{

if (global_flag == set ) {

transform_stack();

local_flag = spin;

while (global_flag == set ) ;

}

}

Fig.8. Pseudo code of the migration stub.

Instead of relying on the untrusted OS, the control

thread makes the worker threads to reach a quiescent

point as follows. When receiving a migration notifica-

tion (e.g., through a user-defined signal like SIGUSR1),

the control thread is wakened up and then sets a global

flag in the enclave to indicate the start of the suspend-

ing process. There is a global flag for each enclave and

a local flag for each worker thread. Initially, the global

flag is unset, and the local flags are free. Each worker

thread sets its local flag to busy and free at the enclave

entry point and exit point, respectively. Each worker

thread normally runs until meeting a migration stub

(see Fig. 8), in which it first checks whether the global

flag is set. If not, it continues to execute normally.

It yes, it performs stack transformation, sets its cor-

responding local flag to spin, and then enters the spin

region. The stack transformation is for transforming

the execution stack according to the target architec-

ture, which will be explained in Subsection 4.3. When

running in the spin region, a worker thread will not

change any memory and will keep in the region, until it
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finds that the global flag is unset. The control thread

will wait for the point when all the local flags of worker

threads are either free or spin (i.e., not running or in

the spin region) before generating the enclave check-

point. Therefore, it can ensure the consistency of the

checkpoint without the help of the untrusted OS.

UniTEE inserts migration stubs before the ocalls.

So, a running enclave thread will respond to the mi-

gration when it invokes an ocall. Nevertheless, some

worker threads may execute in the enclave for a long

time without performing an ocall. It is very likely that

such a thread has already set its local flag to busy when

the control thread sets the global flag. If so, the control

thread needs to wait for a long time, which will block

the process of migration. To this end, UniTEE also

allows programmers to insert migration stubs in their

code as they want.

4.3 Hiding Heterogeneity for Migration

Since the three popular hardware TEEs, namely In-

tel SGX, AMD SEV, and ARM TrustZone, are pro-

vided on different architectures, UniTEE also has to

transparently hide the heterogeneity during the enclave

migration. We explain the detailed techniques from the

following four main aspects.

1) How to Migrate Code. Different hardware TEEs

must use the corresponding CPU instructions. There-

fore, UniTEE compiles different enclave binary codes

for different hardware TEEs, and an enclave will use

the corresponding binary code according to the under-

lying hardware TEEs. The key point of the compilation

is that each function in the different binary is located

at the same start address. Therefore, function point-

ers are always valid after migration, which eases the

migration, i.e., no need to update the pointers.

2) How to Migrate Data. UniTEE targets 64-bit and

little-endian because the first two types of TEEs sup-

port 64-bit only and all three types use little-endian.

Thus, the data format needs no transformation across

the three architectures, e.g., the data format of a struct

written in C is always the same for the three TEEs.

Like the function start address, each global variable

address is also located at the same address. Therefore,

the global data section and the heap area (using the

same heap start address) can be directly copied from

the source enclave to the target enclave. The validity

of data pointers is inherently preserved after migration,

which significantly eases the migration process.

Source Enclave Target Enclave

.text .text0x6000 main
0x6100 malloc
0x6400 printf

…

0x6000 main
0x6100 malloc
0x6400 printf

…

.data .data0x8000 var1
0x8008 var2
0x8020 var3

…

0x8000 var1
0x8008 var2
0x8020 var3

…

Heap area Heap area

Stack area Stack area

pre-loaded

 copy

 copy

 transform & copy

Fig.9. The memory layout of the source enclave and the target
enclave. Colored parts are architecture-dependent.

As shown in Fig. 9, UniTEE generates multiple en-

clave binaries for each architecture. An enclave binary

can be distributed to the target machine before migra-

tion or when migration is triggered. When a migra-

tion begins, the target machine boots the virgin en-

clave that will receive the checkpoint from its source

enclave. Thus, the code section does not need to be

transferred during migration. As described above, the

enclave binaries for different TEEs share a uniform ad-

dress space layout, i.e., every symbol address is kept

the same, and every data structure uses the same mem-

ory format. Therefore, simply copying the data section

and heap area will not make any pointer invalid. In

other words, these two areas are transferred without

any transformation.
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3) How to Migrate Execution Context as well as Ex-

ecution Stack. Different architectures provide different

numbers of general-purpose registers (GPR) and use

different calling conventions. For example, there are 16

GPRs for Intel SGX (x86-64) while 32 GPRs in ARM

TrustZone (AArch64). And the calling conventions for

them vary widely, which makes the execution stack dif-

ferent. A simple approach to solving this challenge

is to use the same number of registers and the same

calling convention. In such a way, it is easy to give

an explicit one-to-one mapping to connect registers in

different ISAs and simply copying the stack area can

also work for migration. However, this approach leaves

many registers unused and abandons originally appli-

cable optimizations, which may hurt the performance

enormously.

Instead, UniTEE adopts and implements the stack-

/register transformation proposed by prior work [51].

The basic idea is recording each stack frame’s informa-

tion at compile time and then reconstructing the execu-

tion stack frame by frame for the target architecture at

migration time. The inserted migration stubs ensure a

migration always happens at the function boundaries,

which means the stack frame to transform is always in-

tact. Specifically, the compilation toolchain is based

on LLVM and the information (including live variables

and the calling site) of each stack frame is recorded

according to the Intermediate Representation (IR) of

LLVM. For each specific architecture, a live variable is

either mapped to a register or on the stack. Therefore,

according to such information, the transformation pro-

cedure will reconstruct a new stack as well as set the

registers for the target architecture.

Implementation details for the transformation:

During the compilation process, all the stack frame in-

formation is recorded in a particular section of the bi-

nary, which mainly includes locations of live variables

(either on the stack or in a register). The transfor-

mation procedure first calculates the size for the new

stack according to the recorded information. Then it

rebuilds the new stack from the outermost frame to the

innermost frame (frame by frame). For rewriting one

stack frame, it gets all the live variables of that frame

in the source enclave binary, queries their locations in

the target enclave binary, and then copies them to the

new locations. A special case is that a variable is a

pointer that points to some stack address. In this case,

the variable cannot be directly copied because its value

(some stack address) should be changed after the stack

is transformed. Instead, it will be recorded in a fixup

list for resolving later. Every time the stack transfor-

mation procedure copies a variable, it checks whether

the variable (V1 ) is pointed by some variable (V2 ) in

the fixup list. If so, it removes V2 from the list and sets

the new location of V1 (on the target enclave stack) to

V2 for the target enclave. Also, the return address

of each stack frame is also rewritten according to the

calling site information.

At the migrate point, some live variables may be

stored in registers. Therefore, besides transforming

each stack frame, it is also necessary to restore these in-

register variables for the target enclave. According to

the information recorded during compilation, the trans-

formation procedure knows the location of each live

variable on different architectures and thus can simply

set the corresponding registers for the target enclave.

4) How to Migrate OS-Related States. UniTEE also

allows an enclave to invoke system calls, as described

in Subsection 3.3. Therefore, it is also necessary to mi-

grate OS-related states from the source enclave to the

target enclave. Currently, UniTEE supports restoring

file descriptors and TCP connections. For file descrip-

tors, it records the states (e.g., file path, file descriptor,

and cursor) of each opened file in the modified enclave
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library that redirects the system calls. These states

and related files are also transferred during migration.

During the restoring process, the target enclave reopens

each file and sets the cursor to the right position. For

migrating TCP connections, UniTEE refers to CRIU 3.

The Linux kernel (since version 3.5) has supported the

TCP connection repair mechanism to help with sockets

transmission. UniTEE first uses TCP REPAIR option

to switch the socket into a special mode for the source

enclave. It then collects and transfers necessary TCP

states. Last, on the target side, the TCP states will be

restored, and the socket mode will be reset to normal

for the target enclave.

5 Evaluation

We conduct performance evaluations on the proto-

type of UniTEE and present the results in this section.

The experiments include the enclave migration between

Intel SGX and ARMTrustZone, between Intel SGX and

Intel SGX, and between Intel SGX and AMD SEV.

5.1 Between SGX and TrustZone

We conduct experiments on two machines that sup-

port Intel SGX and ARM TrustZone, respectively. One

is equipped with Intel Core i7-9700 CPU and 16 GB

memory, and the other is an HiKey970 board with 6

GB memory. We run Ubuntu 16.04 on both machines

while the Linux kernel versions are 4.15.0 and 4.9.78.

We run each experiment over 30 times and report the

average of the results. The standard deviation is within

5% across all the experiments.

We select several SPEC CPU 2006 benchmarks and

vedis (a popular key-value store) as applications. An

application is protected as a whole and runs in an en-

clave of UniTEE. We do not modify the source code

of the applications except for inserting some migration

stubs. For the SPEC CPU benchmarks, the workloads

are the built-in ref test suites. For vedis, we generate

10 million random keys and perform PUT and GET

operations (50% PUT and 50% GET) randomly.

Overhead of Migration Support. We first

present an experiment on the overhead introduced by

supporting migration. We compile the chosen bench-

marks with and without migration support, run them

in enclaves, and measure the execution time. To dis-

able migration support, we do not link the applications

with migrated-related libraries or insert any migration

stubs. Fig. 10 shows the results of some benchmarks

(others are similar). We normalize the results to the

no-migration-support version for better readability.
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Fig.10. Execution time with and without migration sup-
port. The results are normalized to the no-migration-
support version.

Migration Cost. Table 2 gives the breakdown

time of migrating applications from the Intel machine

to the ARM machine. To facilitate analysis, we divide

the whole migration procedure in both machines into

different phases: preparation phase, checkpoint phase,

transmission phase, and restore phase. The time con-

sumed by booting the virgin target enclave is not re-

ported because this procedure is out of the critical path,

i.e., has finished before the final restore phase.

This evaluation shows the migration support brings

nearly zero overhead. It makes sense because UniTEE

only requires each thread to do two extra operations

3CRIU: Checkpoint/Restore In Userspace. https://www.criu.org/Main_Page. Referenced February 2021.

https://www.criu.org/Main_Page
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Table 2. Breakdown of the Migration Cost

Benchmark Preparation phase (µs) Checkpoint Phase (µs) Transmission Phase (µs) Restore Phase (µs)

vedis 932 155,818 1,140,314 71,888

bzip2 543 618,690 2,526,885 162,563

milc 916 399,044 1,880,252 113,955

sjeng 713 529,231 2,173,368 150,601

libquantum 755 294,514 1,378,012 90,352

h264ref 598 206,130 1,261,305 76,975

lbm 701 1,251,807 4,629,325 410,445

Note: Preparation and checkpoint phases happen on the source machine. Transmission phase is for transferring the enclave

checkpoint through the network. Restore phase happens on the target machine.
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Fig.11. Time consumed in the checkpoint/restore phase. Figure (a), (b), (c) and (d) show the encryption, decryption, dumping and
restoring time, respectively.

during normal execution for supporting migration. The

first one is to initialize the local migration flag, which

can be ignored since it only happens once. The second

one is to check the global migration flag at each mi-

gration point. However, checking the flag only requires

several instructions, which is negligible compared with

real workloads. Therefore, migration support does not

influence performance during normal execution.

Preparation Phase. This phase mainly consists of

the time of waiting for the quiescent point and per-

forming stack/register transformation. As shown in Ta-

ble 2. it takes less than 1% of total migration time in

all benchmarks. Here each enclave only has one worker

thread, so the quiescent point is reached once it meets

the first migration point. Stack transformation can be

done in a short time because all necessary information

has been stored in binaries during compilation and the

depth of the stack is usually not deep.

Checkpoint/Restore Phase. After the preparation

phase, the enclave (control thread) encrypts its mem-

ory data and dumps the encrypted data outside the

enclave, which is called checkpoint phase here. Simi-

larly, for restoring the checkpoint in the target enclave,

the checkpoint needs to be copied into the enclave and

then decrypted. For better performance, the checkpoint

only contains the enclave memory in use. Firstly, the

code section of the enclave does not need to be dumped,

since the binary code for different architectures is dif-

ferent and can be placed on the target machine in ad-

vance. Secondly, the size of the data section is known

at compile time and does not change at runtime. The

data section is included in the checkpoint. Thirdly, only

the in-use enclave heap region is dumped to the check-

point. To be specific, the in-use heap region consists

of two parts: one is from the heap base to the heap

top; the other is a list of memory-mapped areas (i.e.,

through mmap). Fourthly, only the valid stack regions

are dumped according to the stack pointers.
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The cost of the checkpoint phase (on the Intel SGX

machine) is obviously higher than that of the restore

phase (on the ARM TrustZone machine). This is be-

cause accessing the SGX-protected memory is much

more expensive, especially when SGX page swapping

happens.

The cost of such two phases is related to the in-use

enclave memory size. Therefore, we give a further anal-

ysis of the cost and Fig. 11 shows the results. Fig. 11(a)

and 11(b) show the time spent on encryption and de-

cryption. The encryption mechanism is Advanced En-

cryption Standard (AES) and some hardware-assisted

acceleration can be used. For example, Fig. 11(a) shows

Intel AES-NI [52] instructions can reduce over 60% of

encryption time. The time consumed in dumping (writ-

ing the checkpoint to outside) and restoring (copying

the checkpoint into an enclave) is reported in Fig. 11(c)

and 11(d), respectively. The result shows the dump-

ing and restoring time grows linearly as the enclave size

increases, because dumping and restoring are actually

memory copy operations.
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Fig.12. The network transmission time.

Transmission Phase. Fig. 12 presents the time of

transferring enclave checkpoints with different sizes.

The two machines connect to the same LAN, and the

bandwidth is about 115 MB/s. The evaluation results

show the time consumed in the transmission phase in-

creases along with the enclave size grows. According

to Table 2, this phase takes most of the migration time

(over 78%). With faster network, the total migration

latency can be significantly reduced.
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Fig. 13. Time saved by overlapping phases in the source
machine.

Overlapping Phases. To further decrease the mi-

gration latency, we pipeline the execution of the

checkpoint/transmission/restore phases by dividing the

whole enclave checkpoint into pieces. Fig. 13 shows the

time saved by using this strategy on the source ma-

chine. The total latency can be reduced by up to 30%.

Therefore, the total downtime for the enclave applica-

tions is bottlenecked/decided by the network speed. We

conclude the solution proposed by UniTEE is feasible.

5.2 Between Two SGX Machines

We also measure the performance of enclave migra-

tion between two laptops with Intel Core i7-6700HQ

2.6GHz CPU and 8 GB memory. The experiment is

migrating a virtual machine (VM) with and without

enclaves running inside. KVM is chosen as the under-

lying hypervisor, and the version of QEMU is 2.5.0.

The guest VM has 4 VCPUs (Virtual CPU) and 2 GB

memory.
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We run two VMs respectively, one with some run-

ning enclave applications, the other with the same num-

ber of original applications. The enclaves run either lib-

jpeg or mcrypt, which are real-world applications. The

enclave size is 1MB, and the workload is an endless

loop of picture decoding or encryption. Fig. 14 shows

the total migration time. The migration of VM with

no more than 32 enclaves has about 2% overhead. The

overhead increases to 5% when the number of enclaves

reaches 64.
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Fig.15. SDK performance comparison on nbench.

Besides, we conduct an experiment to compare the

SDK performance, i.e., UniTEE and Intel official SGX

SDK. The benchmark is nbench 2.2.3 in which most

applications are computation intensive. String Sort

is the one that accesses much more secure memory,

which leads to high SGX paging overhead. As shown in

Fig. 15, our SDK shows similar or better performance

compared with Intel SDK.

5.3 Between SGX and SEV

Intel SGX and AMD SEV are two security exten-

sions to x86-64 and they share the same general purpose

registers as well as calling convention. Compared with

the migration between SGX and TrustZone, the migra-

tion between SGX and SEV needs no stack transforma-

tion while the other procedures are the same. Fig. 16

shows the time for generating the enclave checkpoint.

The AMD machine is equipped with EPYC 7281 CPU

that supports SEV.
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Fig.16. The cost for generating checkpoints.

Besides, we measure the execution time of 12 ap-

plications in SPEC CPU 2006 benchmarks on the SEV

machine and present the results in Fig. 17. This exper-

iment is to show the protection overhead of UniTEE

on the SEV machine. For CPU-intensive benchmarks

such as bzip2 and gobmk, the performance of enclaves

is nearly the same as or even better than the native ex-

ecution performance. Two reasons can explain: first,

UniTEE will not bring overhead to enclave applica-

tions when they do not invoke ocalls; second, when

executing ocalls (system calls), the FlexSC-like design

(described in Section 3.3) avoids the context switches

for the enclave threads although it requires some ex-

tra cycles. Context switches between user-mode (ring

3) and kernel-mode (ring 0) may incur indirect costs

like TLB/cache pollution. Other applications show less
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than 5% overhead which mainly comes from the mem-

ory copies (transferring arguments and results) during

ocalls.
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6 Discussion

As mentioned in Section 3.2, the microkernel used

in UniTEE is included in the TCB. It makes sense to

assume the microkernel is trusted because it only pro-

vides simple and clear functionalities and has a small

code base. This is also a common assumption (e.g.,

TrustVisor [53], CloudVisor [54], Nested Kernel [55]).

It may also be feasible to build UniTEE’s microker-

nel over a formally verified OS kernel (e.g., Hyperker-

nel [56] and seL4 [57]) and further verify the entire one

with more effort. Besides, the implementations of ex-

isting hardware enclaves also heavily rely on software.

For example, as mentioned in “Hardware is the new

software” [58], much of SGX’s logic is implemented by

microcode, which can be patched on-the-fly just as soft-

ware. Meanwhile, many researchers try to build en-

claves from software (with the help of hardware), like

Komodo [59]. We certainly agree that from the per-

spective of security, it is more preferable to construct

the TCB in a more simple and predictable way. But

we argue that the point here is more about the level of

semantics instead of being hardware or software. In our

design, we try to move some of the hardware logic from

firmware (e.g., on AMD PSP) to software running in

the secure TEE, which has low-level semantics, instead

of developing a new complex software like a guest OS.

7 Related Work

Enclave Programming Model. The strong security

insurance of hardware TEEs motivates a variety of prior

studies [18, 19, 21, 36, 45, 60, 61] to protect applications

by leveraging one of Intel SGX, ARM TrustZone, and

AMD SEV. However, they do not focus on providing a

unified enclave programming model for hiding the un-

derlying hardware security technologies. Open Enclave

SDK 4 aims to provide consistent API surface across

enclave technologies as well as all platforms from cloud

to edge, which shares the same goal of the unified pro-

gramming abstraction of UniTEE. Nevertheless, Open

Enclave SDK considers SGX and TrustZone while Uni-

TEE further considers SEV. Moreover, UniTEE enables

enclave migration across those platforms while Open

Enclave SDK does not.

Microkernel Usages. There is a long line of research

on microkernel OS [57, 62, 63, 64, 65, 66]. Owing to the

desired advantages including good security and fault

isolation, microkernel has been used in some safety-

critical scenarios like vehicles. Designing microkernels

for general-purpose scenarios is also on the way. Nev-

ertheless, UniTEE leverages the microkernel for con-

structing isolated enclave instances in a single hardware

TEE. A recent work [67] also proposes to design a TEE

OS based on the microkernel architecture. Different

from that, the microkernel of UniTEE only manages

the enclave life cycle without providing various OS ser-

vices through system calls because most system calls

are redirected to the full-fledged OS which runs the

4Open Enclave SDK. https://openenclave.io/sdk/. Referenced February 2021.

https://openenclave.io/sdk/
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host application. The microkernel used here is derived

from [65].

Heterogeneous Migration. Live migration between

heterogeneous architectures has been studied by prior

work [22, 24, 68, 69]. UniTEE adopts and extends the

existing migration techniques of Popcorn [22, 24] to mi-

grate the secure enclaves among different TEE hard-

ware. The major difference is that the OS is not trust-

worthy. During migration, UniTEE relies on the OS

functionalities without trusting it. For example, Uni-

TEE requires the OS to transfer the enclave checkpoint

through the network but protects the consistency, con-

fidentiality, and integrity of the checkpoint. [25] makes

efforts to securely migrate SGX enclaves on untrusted

cloud, which, however, does not provide unified enclave

abstraction or enclave migration support on heteroge-

neous platforms.

8 Conclusion

This paper proposed UniTEE whose target is two-

fold. It provides a unified enclave programming ab-

straction that can help programmers to write enclave

applications without considering the underlying hard-

ware TEEs. Further, with the unified abstraction, it en-

ables secure enclave migration between heterogeneous

platforms.
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