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Abstract

Virtual machine introspection, which provides tamper-

resistant, high-fidelity “out of the box” monitoring of vir-

tual machines, has many prominent security applications in-

cluding VM-based intrusion detection, malware analysis and

memory forensic analysis. However, prior approaches are ei-

ther intrusive in stopping the world to avoid race conditions

between introspection tools and the guest VM, or providing

no guarantee of getting a consistent state of the guest VM.

Further, there is currently no effective means for timely exam-

ining the VM states in question.

In this paper, we propose a novel approach, called TxIn-

tro, which retrofits hardware transactional memory (HTM)

for concurrent, timely and consistent introspection of guest

VMs. Specifically, TxIntro leverages the strong atomicity of

HTM to actively monitor updates to critical kernel data struc-

tures. Then TxIntro can mount introspection to timely detect

malicious tampering. To avoid fetching inconsistent kernel

states for introspection, TxIntro uses HTM to add related syn-

chronization states into the read set of the monitoring core

and thus can easily detect potential inflight concurrent ker-

nel updates. We have implemented and evaluated TxIntro

based on Xen VMM on a commodity Intel Haswell machine

that provides restricted transactional memory (RTM) support.

To demonstrate the effectiveness of TxIntro, we implemented

a set of kernel rootkit detectors using TxIntro. Evaluation re-

sults show that TxIntro is effective in detecting these rootkits,

and is efficient in adding negligible performance overhead.

1. Introduction

Traditional in-VM based virus detection tools are intrinsi-

cally limited from isolating themselves from the vulnerable

monitored system, and thus can inevitably be infected by the

rootkits as well. Virtualization, by adding an additional layer

of indirection, provides new opportunities to move rootkit de-

tection tools to the virtual machine monitor (VMM)1, result-

ing in strong isolation from the monitored system. Virtual

machine introspection (VMI) [1, 2, 3, 4, 5, 6], which retrieves

1Here, we refer to the management VM like domain-0 in Xen and Xen

itself as the VMM (Virtual Machine Monitor) for simplicity, and use the term

hypervisor to denote the monitor underneath the virtual machines.

and introspects guest VM’s internal states from the VMM,

has been widely explored for intrusion detection [4, 1, 2], pro-

cess monitoring [7], and memory forensics [8].

However, there are several limitations with prior introspec-

tion approaches that impede their wide adoption in many sce-

narios. First, as there will be race conditions on kernel data

structures if the VMI tools and the guest VM execute concur-

rently, some introspection systems are intrusive in stopping

the VM for up to tens of seconds [9, 6] to introspect over a

VM snapshot, either eagerly [9, 6] or lazily [3]. Further, prior

VMI tools provide no effective means to determine when a

VMI operation should be performed, forcing users to make a

tradeoff between performance overhead and security protec-

tion: frequent VMI causes significant service disruption and

performance overhead, while infrequent VMI risks of unde-

tected security breaches.

In this paper, we propose a novel approach to VMI, called

TxIntro, which leverages hardware transactional memory

(HTM) [10] to provide concurrent, timely and consistent

VMI. Though HTM’s original purpose is simplifying concur-

rent programming with good performance, we find that the

strong atomicity provided by HTM can be used to detect con-

flicting concurrent accesses to kernel data structures by the

kernel and the VMI tools, as well as to provide hints regard-

ing when a VMI operation is needed.

HTM, originally proposed by Herlihy and Moss [10] has re-

cently shifted from research community to commercial prod-

ucts. Example commercial HTM products or proposals in-

clude Sun’s Rock processor [11], AMD advanced synchro-

nization family [12], POWER [13] and Intel transactional syn-

chronization extensions (TSX) [14]. A concrete embodiment

of Intel TSX, the Haswell processor with restricted transac-

tion memory (RTM) support, has been released to the mass

market in the middle of 2013. Hence, our approach is readily

deployable to commodity platforms.

While ideally it is possible to run the entire operating sys-

tem code using HTM [15], commodity operating systems

have not been integrated with HTM support and commercial

HTM is usually a best effort TM with limited read/write set.

Hence, TxIntro leverages the strong atomicity of HTM by run-

ning only parts of the VMI code using transactional memory.



TxIntro ensures concurrent and consistent VMI by adding the

associated synchronization states into the read set of the CPU

core running VMI tools, so that inflight updates to critical ker-

nel data structures will cause transaction aborts in VMI tools,

where TxIntro can retry to get a consistent state to check. To

provide active monitoring of critical kernel data structures

(e.g., syscall/IDT table, kernel hooks), TxIntro dedicates a

(logical) CPU core to hold these states to actively monitor

kernel updates, which will cause transactional aborts to trig-

ger the corresponding VMI tools.

TxIntro is further built with two techniques to reduce the

read and write set of VMI code. To reduce enlarged read

and write set due to two-dimensional page walk to access

guest VM’s memory, TxIntro leverages a technique called

core planting that dynamically implants a stealthy core to

the guest VM to allow direct access of guest VM data. To

leverage the asymmetric read/write set of commodity HTM

machines, we propose a two-phase VMI approach that uses a

pre-run phase to trade read set for write set.

We have implemented TxIntro based on Xen/Linux, which

runs on an Intel Haswell machine with RTM support. Tx-

Intro leverages the asymmetric read and write set feature in

Haswell, where the read set is 100X larger than the write set

(3 MB vs. 26 KB in the tested machine), to hold a relatively

large set of kernel data structure for monitoring. Though the

emphasis of TxIntro is an architectural mechanism for non-

intrusive, timely, concurrent and consistent VMI instead of

specific security policies, we have built 9 VMI tools using

TxIntro to detect a variant of kernel rootkits. Our evaluation

shows that TxIntro is effective in timely detecting such kernel

rootkits and intrusions. Performance evaluation shows that

TxIntro incurs little disruption to the guest VM and consumes

only a small amount of resources.

In summary, this paper makes the following contributions:

• VMI using HTM. We introduce TxIntro, a novel ap-

proach that provides non-intrusive, concurrent, consistent

and timely VMI. We identify the problems associated with

prior approaches (section 2), and show how TxIntro suc-

cessfully solves them (section 3).

• VMI optimized for HTM. We describe two novel tech-

niques that significantly reduce the read and write set of

VMI code (section 4).

• An implementation of TxIntro on a Haswell processor.

We show that TxIntro can be practically implemented (sec-

tion 5.1) and integrated to detect intrusions by applying it

to several existing VM monitoring tools (section 5.2).

• Experimental validation of the benefits of TxIntro. We

evaluate the effectiveness using a number of kernel rootk-

its (section 6.1) and the non-intrusiveness by using applica-

tion benchmarks (section 6.2).

2. Motivation and Background

This section first introduces virtual machine introspection

(VMI) using LibVMI [16] as an example. LibVMI is an open-
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Figure 1: Architecture of LibVMI

start_proc  vmi_ksym2v("init_task")

vmi_pause_vm()

/* traverse the all-tasks list */

foreach task in tasks_list: 

     allprocs.add(vmi_read(task + pid_offset))

tasks_list  vmi_read(start_proc + tasks_offset)

/* traverse the runqueue tree */

foreach run_task in runqueue_tree: 

     runprocs.add(vmi_read(run_task + pid_offset))

vmi_resume_vm()

/ check if there is any hidden running process */

foreach pid in runprocs: 

     check_if_pid_in_allprocs(pid, allprocs)

runqueue_tree  vmi_read(start_proc + cfs_rq_offset)

Copy VM data

Do VMI check

alarm_if_needed() VMI end

Figure 2: Example VMI code to detect hidden processes

source VMI system from Sandia National Laboratories that

supports both Xen [17] and KVM [18]2. We use it because

it is relatively mature and should be representative of typical

VMI systems. We then describe some potential issues with

prior VMI approaches and finally present some background

information related to transactional memory using Intel’s Re-

stricted Transactional Memory (RTM) as an example.

2.1. Virtual Machine Introspection

Figure 1 illustrates an architectural overview of typical

VMI system such as LibVMI. A VMI tool runs as a user-level

process inside the management VM, which uses the library

interfaces provided by LibVMI to pull memory from guest

VMs for introspection. Figure 2 shows an example VMI tool

that checks the process runqueue to detect hidden processes.

In the VMM, the tool first iterates the system-wide process

list to get the whole set of processes and then fetches the set of

all runnable processes by scanning the runqueue of each vir-

tual core. As all processes should be present in the runqueue

in order to execute, the tool can detect hidden processes by

calculating the difference of the two sets, i.e., processes in the

set of runnable processes, but not in the set of all processes.

2The support for KVM is relatively less mature than Xen. Hence, we use

a Xen-based version in our study.
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Figure 3: Software page table traversal in vmi_read_addr

As the VMI tool resides in a different address space than

the monitored VM, it requires a two-dimensional address

translation as it only gets a virtual address in the guest vir-

tual machine. The vmi_read function gets the virtual address

in the VMI tool of the specified guest virtual address. It does

so by using the guest virtual address to walk the guest page ta-

ble to get the corresponding guest physical address, which is

then translated into host physical address and finally mapped

to the virtual address in the VMI tool. However, as shown in

figure 3, such a translation would require five accesses to the

guest page table for a 4-level page table and a hash table that

translates guest physical address to host virtual address in the

VMI tool, as well as some hypercalls3 to the hypervisor in

order to create mappings for guest physical address to virtual

address in the VMI tool upon a miss in the hash table.

2.2. Issues with Prior VMI Approaches

Intrusiveness: As shown in Figure 2, the VMI tool needs

to stop the guest VM in order to get a consistent state of the

guest VM (vmi_pause_vm()). However, there are two main

issues with such an approach. First, it is essentially intru-

sive in suspending the VM and the suspension time is usually

lengthy. For example, even some simple VMI tools would re-

quire stopping the VM from being executed tens of millisec-

onds, and for frameworks using python like Volatility [19],

the stop time is even longer than tens of seconds (e.g., figure

10 in [9]). A lengthy VM suspension time will not only cause

disruption to the running services, but also may render some

services not function correctly due to timeout of some critical

requests (like DMA and heartbeats).

Consistency: Even if the VM is suspended, a VMI tool

may still get inconsistent states. This is because some pend-

ing updates to the data structures to be checked may still have

not completed, causing an inconsistent view by the VMI tool.

This may either cause false positives/negatives, or even crash

the VMI tool [9, 3]. Hence, some VMI systems need to wait

a quiescent state (e.g., all VCPUs are executing in user mode)

to stop the VM [9]. However, for today’s virtual machines

with multiple virtual cores, it is not easy to wait such a quies-

3Hypercall is similar to syscall but is used to request the hypervisor’s

services.

cent state without enforcing such a state (e.g., pending a CPU

in user mode). Further, there may be some time-of-check-

to-time-of-use issues, where the suspension time is not the

quiescent time due to concurrent execution of multiple cores.

One approach to mitigating the consistency issue is using

non-blocking VMI to inspect a guest VM first and then re-

inspect again if the first trial detects potential inconsistency.

It will then suspend the VM to do checking if the two VMI

runs detect a problem [3]. This approach could reduce the

frequency of lengthy suspension of VMs. However, it may

introduce both false positives and false negatives, as some

transient inconsistence will miss a necessary VMI run (thus

false negatives) and unsynchronized accesses in two runs may

cause false positives. Ultimately, it still needs to suspend the

VM to run VMI code.

Timeliness: Further, most prior VMI approaches provide

no effective means to infer when a VMI would be necessary.

This requires users to make a tradeoff between security and

performance: frequent VMI causes significant disruption to

running services but infrequent VMI may render some kernel

rootkits undetected.

2.3. Transactional Memory

Hardware transactional memory, after nearly two decades

of discussion in the research community, has been recently

available to the mass market, i.e., Intel’s restricted transac-

tional memory (RTM) [14] and hardware lock elision [20]4.

RTM extends the instruction set of x86 with several new in-

structions called xbegin, xend and xabort, which begins, com-

mits and aborts a transaction respectively. Like all other trans-

actional memory proposals, RTM ensures atomicity and isola-

tion for all running transactions, and implements mechanisms

like conflict detection and version management.

For hardware simplicity, RTM implements conflict detec-

tion by piggy-backing on the cache coherence protocols, like

the early HTM proposal [10]. Specifically, each core main-

tains a read set and a write set that track the memory addresses

read and written in a transaction by extending cache lines with

additional read and write bits. Each coherence message will

intersect these bits for a cache line in the involved cores to

detect conflicts (e.g., read/write and write/write conflicts). A

conflict aborts a transaction, whose execution will be directed

to the beginning of the transaction, which then switches to

a user-provided fallback handler. One interesting feature in

RTM and most other HTMs, is that they provide strong atom-

icity such that a transactional execution will be uncondition-

ally aborted by a non-transactional execution if their memory

accesses overlap.

Unlike some HTM proposals supporting unbounded trans-

actions [21], RTM is restricted in that it cannot survive from

context switches, mode switches and interrupts, which will

4We only discuss RTM here as the underlying mechanism is similar,

though their interfaces are different.
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abort a running transaction. Further, its read/write set are lim-

ited in size and a capacity abort will happen if there are any

cache misses (e.g., capacity or conflict misses) in the transac-

tionally tracked cache lines. Interestingly, accordingly to our

evaluation, though the official Intel Software Development

Emulator [22] indicates equal sizes for read and write set as

the size of L1 cache, our evaluation shows that its read set is

actually around hundred times of the write set (3 MBytes vs.

26 KBytes using a microbenchmark in our tested machine)

due to some internal optimizations to track read set. Such

asymmetric read/write set size makes it very appealing for

VMI, which mostly introspect (i.e., read) guest VM states.

3. Transactional Virtual Machine Introspection

TxIntro leverages hardware transactional memory to pro-

vide concurrent and consistent virtual machine introspection

that is non-intrusive and transparent to guest VMs. The key

idea is to leverage the strong atomicity of HTM to ensure that

a VMI tool running in a transactional region can always get

a consistent state of guest VM, even if the guest VM is not

running in a transaction. This section first describes the basic

architecture and algorithm of TxIntro. In the next section, we

will further show two optimizations that significantly reduce

the read and write set of VMI code so as to accommodate

relatively large and complex VMI tools.

3.1. Architecture Overview

Figure 4 shows the overall architecture of TxIntro. The

VMI tool mainly runs in the management VM so that it is

isolated from the guest VM to be checked. In section 4.1,

we further show that parts of its execution can be securely

planted into the guest VM stealthily to reduce transactional

working set during introspection. TxIntro can monitor mul-

tiple VMs simultaneously, essentially embodying a security-

as-a-service model for cloud platforms. TxIntro runs in both

active and passive modes. In the passive mode, TxIntro moni-

tors updates to critical kernel data structures. Upon detecting

any updates to monitored data, TxIntro actively runs the cor-

responding VMI tools to detect potential kernel rootkits.

3.2. Passive Transactional VMI

In passive mode, TxIntro dedicates a logical core (e.g., a

hardware thread) to monitor critical data structures in guest

VMs. To monitor updates to data structures, TxIntro first

translates their addresses from guest virtual address to host

virtual address in the VMI tool, as discussed in section 2.2,

and maintains a copy of these data for rescanning later. Tx-

Intro also places probes in the hypervisor’s extended (nested)

page table in case the mappings from guest physical addresses

to host physical addresses have been changed (which is rare).

To start monitoring, TxIntro starts a transaction and adds

the addresses of critical kernel data structures to the read

set by touching them. TxIntro disables interrupts and con-

text switches in this (logical) core to minimize transactional

aborts due to system events.

When there is an update to the monitored data, the trans-

action abort will be flagged as a conflict abort and TxIntro

fetches the virtual address related to this abort through per-

formance monitoring tool (i.e., Intel’s Precise Event Based

Sampling (PEBS)). In the abort handler, TxIntro determines

if the address is due to false sharing (as HTM monitors up-

dates in cache line granularity), or belongs to the monitored

addresses. If it is not caused by false sharing, TxIntro then

determines which VMI tool should be used according to the

address causing the abort. TxIntro then notifies the VMI dae-

mon in another core to start VMI on the corresponding guest

VM and returns to the transactional memory loop. The trans-

action will also be aborted if the address mapping of moni-

tored data has been changed. In this case the hypervisor will

send an address change message to TxIntro (i.e., using shared

memory), which will abort the transaction. TxIntro will then

track the updated addresses using the updated mapping.

Instead of using the monitoring feature provided by TxIn-

tro, it is also possible to use page protection in the hypervisor

to intercept updates to critical data structures. However, as the

protection granularity can only be done in page level, there

could be a number of false sharing that causes frequent traps

into the hypervisor, which may cause significant performance

slowdown. Another approach would be modifying the guest

kernel to aggregate critical data structures together into the

same pages to mitigate false sharing [23], which, however, re-

quires significant changes to operating system kernel. In con-

trast, TxIntro uses HTM to monitor updates in the cache line

level, which is with reasonably fine granularity and requires

no change to operating system kernel.

3.3. Active Transactional VMI

To support transactional VMI, users may simply replace

vmi_pause_vm and vmi_resume_vm in Figure 2 with xbegin

and xend, as well as adding a simple abort handler that retries

the VMI. However, this may still result in inconsistencies as

some pending updates are still in-progress. As discussed be-

fore, even if the kernel has been paused where there is no con-



state = _xbegin()

if state == OK: /* transaction begin */

foreach task in tasks_list: 

     allprocs.add(vmi_read(task + pid_offset))

foreach run_task in runqueue_tree: 

     runprocs.add(vmi_read(run_task + pid_offset))

_xend() /* transaction end successfully */

foreach pid in runprocs: 

     check_if_pid_in_allprocs(pid, allprocs)

Copy VM data

Do VMI check

alarm_if_needed() VMI end

else /* transaction abort */

      goto tx_run

/* check related locks and put them in RTM read set */

foreach lock in related_lock_set: 

     if lock is unavailable, then  _xabort()

tx_run:

… /* get start_proc, tasks_list, runq_tree */
in Transaction

Figure 5: Basic version of VMI code to detect hidden pro-

cesses using HTM.

flicting access with the VMI process, TxIntro can still get in-

consistent states, leading to false positives or false negatives.

To address this issue, TxIntro also tracks the synchroniza-

tion states associated with data touched by a VMI tool. As

shown in figure 5, to begin a VMI process, TxIntro starts a

memory transaction and first checks the synchronization vari-

ables protecting the data structures to ensure that there is no

inflight update (e.g., lock is not locked). If so, they are also

implicitly added to the read set of this transaction. As a re-

sult, any pending or ongoing updates to the data structures

will be detected by triggering a transactional abort, where the

VMI process can be restarted from the beginning. It should be

noted that by checking the synchronization states in the HTM

region, TxIntro avoids the issue of time of check to time of

use (TOCTTOU), as the checking code is executed atomically

with the actual VMI code.

An alternative approach would be to acquire all related

locks before the VMI process to ensure a consistent check.

However, OS kernels usually have a very complex locking

discipline where the locking orders and nesting are very tricky

and it is very easy to hang the entire kernel [3, 24]. Further,

acquiring the related locks is essentially intrusive to the guest

VM and the rootkit could check the lock status to see if some

VMI check is in progress.

After all related synchronization variables have been added

to the read set, TxIntro starts the VMI process, similarly as

the original VMI code.

Handling Transaction Aborts: When there is a transac-

tion abort, TxIntro handles it according to the abort reason. If

the abort is caused by system events, TxIntro simply restarts

the transaction. If it is caused by a conflict abort, this means

that there may be conflicting accesses from the guest VM’s

code. Hence, the VMI transaction should be restarted as well.

Though the above scheme can work in principle, it may

cause permanent aborts due to the limited support of transac-

tional memory in commodity processors for some VMI tools.

One potential issue is that it would require some system calls

as well as hypercalls in order to create valid memory map-

pings so that guest virtual/physical addresses can be accessed

from the VMI tool’s code. To address these problems, instead

of directly running VMI code inside the transaction, TxIntro

uses a pre-tx phase to first run the VMI code, in which Tx-

Intro creates all required mappings, issues necessary system

calls and hypercalls.

3.4. Scope and Assumptions

Instead of focusing on the specific introspection policies,

the focus of TxIntro is on an architectural approach to pro-

viding concurrent and consistent VMI, yet is non-intrusive to

guest VMs. Hence, TxIntro shares most assumptions with

prior VMI systems, including relying on the general knowl-

edge from the OS design principles, correctly interpreting

guest VM states and trusting the hypervisor and management

VMs. Hence, TxIntro may have both false positives and false

negatives like others. For example, a sophisticated adversary

controlling the operating system may provide an illusion of

displaced kernel text and data, deliberately violate the lock-

ing disciplines, or even tamper with the hypervisor and man-

agement VM using security vulnerabilities to circumvent the

introspection from TxIntro.

As other VMI systems, TxIntro relies on other means like

hypervisor based integrity checking and assurance [25] to

guarantee the integrity of kernel code and static data. Further,

it assumes that a hypervisor can have full access to guest-VM

memory, and thus cannot work under some hypervisor-secure

systems [26, 27, 28].

4. Reducing Read/Write Set

Unlike some unrestricted transactional memory propos-

als [21, 29] in the research community, commodity proces-

sors like Intel’s Haswell and Sun’s Rock [11] are usually built

with limited read/write set to track memory accesses during

transactional execution. Hence, when running some VMI

tools that access a large portion of guest VM’s state, the trans-

action may not make forward progress due to capacity aborts

where transactional memory accesses exceed the maximum

read and write set.

TxIntro is further refined with awareness of the limited

working set for a transaction. First, TxIntro optimizes the

two dimensional address translation described in section 2.2,

which consumes much more memory accesses than it is re-

quired due to address translation, to reduce potentially large

read set. Second, TxIntro leverages the asymmetric read-

/write set feature of Intel’s Haswell processor by using a two-

phase VMI to further reduce read set and minimize write set.
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Figure 6: Statistics regarding working set optimization to do VMI for

different tools (the unit is byte). Ori-x, invm-x and 2phase-

x mean the read/write set for basic, in-VM core planting

and two-phase VMI version of TxIntro accordingly.

4.1. In-VM Core Planting

As discussed in section 2.2, a single memory access to

guest VM requires two-dimensional walk of both guest VM’s

page table as well as a hash table. This will significantly in-

crease the working set of the VMI code. Figure 6 shows the

working set of 9 VMI tools, many of which significantly ex-

ceed the maximum read/write set of a single transaction can

hold. To address this issue, we propose an approach called

In-VM Core Planting, which stealthily plants a virtual core

running the VMI code into guest VM’s space.
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VM cores.

First, to make the implanted core see the same mapping

from GPA to HPA with the guest VM, TxIntro first makes a

copy of the extended (or nested) page table of the VM, and

marks all the pages as read-only to avoid the VMI code from

mistakenly modifying the guest VM’s memory, as shown in

Figure 7. Then TxIntro further appends a small amount of

memory to the implanted core with read/write permission.

This part of memory is used only on the implanted core. It

is invisible and unaccessible to the guest VM.

Second, TxIntro creates an in-VM page table to run the

VMI code. The page table is stored in the appended memory.

In the L1 page table directory, the entries of kernel address

directly point to the L2 page entries existing in the guest VM

memory. Thus the VMI code shares the mapping of kernel

address space with the guest VM. The VMI code is running

in ring-0, thus it can directly access the kernel memory.

Finally, TxIntro loads the code and data sections of the

VMI program to the appended memory, and sets the PC of

the implanted core to the start of VMI code. It then issues

VMLAUNCH/VMRESUME to run the VMI code. During

the execution, TxIntro ensures that no external interrupt will

be delivered to the implanted core, all the related pages are

pinned to avoid any page fault, and the TLB shoot down in-

terrupt is intercepted to keep guest TLB in sync. At the end

of the VMI code is a cpuid instruction, which will cause a

VMEXIT and trap to the hypervisor.

By the carefully manipulated extended page table and in-

VM page table, the VMI code can access all the kernel mem-

ory without two-dimensional walk of page tables in software.

This significantly decreases the working set of typical VMI

code. Figure 6 also shows the working set of optimized VMI

tools using core planting, which is significantly reduced and

can mostly fit into the working set of a typical VM.

Note that the above approach does not compromise strong

isolation and stealthiness of traditional VMI approaches. This

is because the planted core is completely invisible from the

guest VM and the VMI code is only with read-only access

to the guest VM data. Hence, neither the VMI code nor the

guest VM can tamper with the other peer.

4.2. Two-phase VMI-Copy

Though in-VM core planting significantly reduces the

working set of typical VMI tools, the write set of some VMI

tools still exceeds the capacity of RTM on typical processors,

as shown in Figure 6. To address this issue, TxIntro leverages

the asymmetric read/write set of commodity RTM and is built

with a two-phase VMI-copy approach to further reduce read

set and minimize write set.

Specifically, instead of directly running VMI-copy code

within a transaction, TxIntro runs in two phases. The first

phase runs the main VMI-copy code on the implanted core

to directly execute in the address space of the guest VM, and

without stopping other execution in the guest VM. During the

first phase, other than recording the VMI related data (like pid,



foreach task in tasks_list: 

     allprocs.add(invm_read(task->pid_offset))

foreach run_task in runqueue_tree: 

     runprocs.add(invm_read(run_task->pid_offset))

state = _xbegin()

if state == OK: /* transaction begin */

foreach lock in related_lock_set: 

     if lock is unavailable, then  _xabort()

Phase-1: copy VM data

Phase-2: check consistency

pre_run:

else /* transaction abort */

      goto pre_run

foreach pid in runprocs: 

     check_if_pid_in_allprocs(pid, allprocs)

alarm_if_needed() VMI end

Do VMI check

inline unsigned long invm_read(addr_t *addr) {

     vmi_read_addr[vmi_read_counter] = addr

     vmi_read_value[vmi_read_counter] = *addr

     vmi_read_counter++

     return *addr

}

in Transaction

in VM

Out of VM

foreach i less than vmi_read_counter:

     if *(vmi_read_addr[i]) != vmi_read_value[i], then _xabort()

_xend() /* transaction end successfully */

start_proc  invm_read(init_task)

tasks_list  invm_read(start_proc + tasks_offset)

runqueue_tree  invm_read(start_proc + cfs_rq_offset)

Figure 8: Example code of two-phase VMI-copy.

process names), TxIntro also collects all of the guest memory

access trace: a table of guest virtual addresses vmi_read_addr

and their corresponding dereferenced values vmi_read_value.

As the guest VM is still executing, the values might be out-of-

date or inconsistent.

In the second phase, TxIntro starts a transaction using _xbe-

gin provided by RTM. In the very beginning of the trans-

action, TxIntro checks the related synchronization variables

(e.g., locks) protecting the data structures related to the VMI

code. If any of the variables indicate that the corresponding

data structures are being modified, the transaction aborts and

the entire VMI-copy process reruns. Note that if the check-

ing passes, all of the touched synchronization variables have

been put in the read set of RTM. After that, TxIntro begins

the consistency checking by simply verifying if the currently

dereferenced value of every vmi_read_addr entry equals to

its previous dereferenced value stored in vmi_read_value.

As shown in Figure 8: (1); if there is no change in the col-

lected memory during the VMI-copy process, which is most

likely, then the consistency checking passes and the transac-

tion ends normally, which means the VMI data we collected

in phase-1 is consistent and can be used for further analy-

sis; (2); if there’s any write on the collected memory during

the VMI-copy process, then there must be some dereferenced

values not equaling to the collected ones, which means data

collected in phase-1 may not be consistent, and will cause a

retry of VMI-copy; (3); if no collected memory changes dur-

ing phase-1, but there are some memory modifications dur-

ing phase-2, since the synchronization variables are touched

at the beginning of phase-2, it will cause retry of VMI-copy

due to transaction conflict abort. However, since the last two

cases rarely happen, and the second phase runs very fast, the

impact of false positives is small. Even if they occur, it simply

requires restarting transactions from the beginning, without

causing actual false alarms on VMI.

5. Implementation and Applications

5.1. Implementation Status

We have implemented a working prototype of TxIntro

based on Xen and it supports Linux as the guest VM. TxIn-

tro mainly modifies the management VM (i.e., domain-0), as

well as a few changes to the Xen hypervisor to support in-VM

core planting. TxIntro currently runs on Intel Haswell pro-

cessor. TxIntro currently uses the extended page table [30] to

isolate the planted core from other cores of the guest VM. But

there is no fundamental limitation to support shadow page ta-

ble. TxIntro makes no modification to guest VMs. In total,

TxIntro adds or changes around 1,500 and 840 SLOCs to the

domain-0 and Xen hypervisor accordingly.

To monitor updates to critical kernel data structures, one

critical issue is precisely knowing which address is mod-

ified. One intuitive approach would be using the in-

formation provided by HTM aborts. For example, the

RTM_RETIRED.ABORTED event in Intel’s Precise Event-

based Sampling (PEBS) describes transaction abort informa-

tion. However, though the field of Data Linear Address orig-

inally appears in Haswell’s specification, Intel later removed

it from the ABORTED event. We use another workaround

by leveraging other PEBS events: HITM and MISS 5. Before

a transaction, we first read all of the critical data to ensure

they are loaded into the cache. Then we enable monitoring

any HITM and MISS events. After that, the transaction starts

and all of the critical data is read again. Since the data is in

cache, the memory read in transaction will likely not trigger

any HITM or MISS events. When there is a transaction abort,

we first read all of the data structure again, and stop the mon-

itoring. Now we should get some PEBS records, since there

must be some other cores changing one or more addresses

of the critical data. By checking the records, we usually can

get the linear addresses of data that has been modified, and in-

voke the corresponding VMI tools. In occasional cases where

there is no such record6, we simply issues all VMI tools,

which is still very efficient as shown in section 6.2. Retriv-

5MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM, and

MEM_LOAD_UOPS_RETIRED.L1_MISS. Suppose core-1 is accessing

some memory location that has been changed by core-2. If the data has not

yet been written back to memory, core-1 will get an HITM event. Otherwise

it will get a MISS event.
6The current RTM contains some suspicious behavior not well docu-

mented. We did encounter such a case several times during evaluation and

didn’t have a good reason for this.



ing exact conflicting address here is so complicated, that we

strongly recommend restoring the Data Linear Address field

to ABORTED event.

5.2. Applications of TxIntro

Rootkit Descriptions

adore-ng hide process, module, self, log; local root escalation

average-coder hide process, module, self, log, tcp; local root escalation

dbg-reg give root right to process; hide self

wnps hide process, module, self, port, file; key logger; root shell

int3backdoor give root right to process

ipid passive covert channel for sending message

kbdv3 backdoor that allow root access

kbeast hide process, self, port, file; key logger; root escalation

override hide process, port

ktextmod give root right to process to kill

dkomhide hide process, module, port using DKOM technique

Table 1: Rootkits descriptions

We have used TxIntro to write 9 VMI tools to detect a set of

kernel rootkits, including control-flow based hooking and di-

rect kernel object manipulation, as shown in Table 1. Table 2

lists the major attacking means involved in these rootkits.

For control-flow based hooking, as most of the memory

pages (e.g., IDT, kernel text section, etc.) are set to read-only,

kernel mode rootkits usually change pages to read/write by

unsetting WP (write protection) bit in CR0 to alter them. As a

result, most of the above data structures do not have synchro-

nization variables to protect them, except the packet handler

list (ptype_all), whose consistency is ensured by ptype_lock

and RCU. Thus packet handler check VMI tool should touch

the ptype_lock and the corresponding RCU write lock, as

mentioned in section 3.

For direct kernel object manipulation (DKOM), we then

need to leverage some invariants that may not be broken in

order to make the kernel work correctly. The most common

hooking targets include process list, module list and TCP port

hash table, to hide processes, modules and TCP port accord-

ingly. To defend against them, TxIntro’s checking tools need

to compare two different views of these states to detect hid-

den ones. To infer when a checking is necessary, TxIntro

adds some critical data structures that are not frequently up-

dated to the read set of TxIntro’s monitor. For example, Tx-

Intro monitors the module related states like kset_list_lock,

module_mutex and module lists to infer when a module has

been inserted, and thus a checking would be necessary. Simi-

larly, TxIntro monitors the hash table (i.e., listening_hash and

lhash_lock) when a TCP port is created or removed. However,

it is usually not worthwhile to monitor process creation and

deletion, which happens frequently.

As shown in Table 2, a single rootkit usually uses multiple

attacking means. Hence, the VMI tool library in TxIntro are

written according to the common approaches used by rootkit

and user can easily combine these tools together, by either

simply running each tool in turn, or putting the check code

into a single transaction by using nested transactions.

5.3. Programming Efforts

Writing a VMI tool using TxIntro is mostly similar to other

ones like LibVMI and thus share similar assumptions with

prior VMI systems, e.g., requires states to be checked reach-

able through some global data structures. One difference lies

in that it needs to know the related synchronization variables,

which are usually easy to infer through looking at the defi-

nition of data structures. This has already been an essential

process of writing a VMI tool. Alternatively, one can use

some dynamic algorithms like lockset [31] to automatically

derive synchronization variables associated with a data struc-

ture. Another difference is that TxIntro needs to write a sim-

ple abort handler, which can usually be automated. Table 2

also lists the SLOCs of the 9 VMI library tools, which is of

small code size. Actually, one graduate student in our group

can write a typical VMI tool within one hour.

6. Evaluation

6.1. Security Evaluation

To evaluate the effectiveness of TxIntro, we have used 9

VMI tools to detect the 11 rootkits shown in Table 1. These

rootkits are implemented as Loadable kernel module (LKM),

which runs in privileged mode to directly manipulate kernel

memory, CPU register, etc. Though in theory they can change

anything in the kernel, our survey of existing rootkits indi-

cates that many of them choose to hook kernel function point-

ers and tend to lurk in the shadow.

In summary, the VMI tools of TxIntro successfully detect

all 11 rootkits shown in table 2. Many of them are very sophis-

ticated. For example, dbg-reg is a rootkit that provides trans-

parent syscall hooking, but without modifying IDT or syscall

table. It makes use of the debug register by setting break-

points on both syscall handler and sysenter in DR0 (debug

register 0) and DR1 registers. Hence, subsequent syscall will

cause breakpoint to fire, and the patched do_debug handler

places global read watch on sys_call_table[__NR_syscall]

in DR2. When this syscall is called, do_debug will place

function pointer to hooked syscall in the task’s EIP register,

which finally implements transparent syscall hook. Although

this rootkit utilizes the debug registers that TxIntro cannot

touch using transactional memory, it actually has to patch the

do_debug handler using either IDT or kernel text hooking.

Hence, TxIntro can detect it by monitoring the IDT handler

code and the first (Debugger) entry.

To detect hidden module, the current policy is comparing

the module lists derived from procfs (module list) and sysfs

(kset object list). Unfortunately, using this policy, TxIntro

failed to detect hidden module attack in wnps, which uses a

sophisticated means to tamper with the modules lists in both

procfs and sysfs. However, this is not an essential limitation

with TxIntro and we plan to use more sophisticated policies

to detect such a case in future. Fortunately, using the VFS ops



Rootkit
Control flow based hook DKOM based hook

Detected?
Syscall table IDT Kernel text VFS ops DebugReg Packet handler Process hide Module hide Socket hide

adore-ng
⊕ ⊕

!

average-coder
⊕

!

dbg-reg
⊕ ⊕

!

wnps
⊕ ⊕ ⊕

!

int3backdoor
⊕

!

ipid
⊕

!

kdbv3
⊕

!

kbeast
⊕ ⊕ ⊕

!

override
⊕

!

ktextmod
⊕ ⊕

!

dkomhide
⊕ ⊕ ⊕

!

lines of code 170 135 150 185 140 125 225 175 275

Table 2: Techniques used by rootkits and the corresponding VMI tools

hook VMI tool, TxIntro can successfully detect this rootkit.

In all cases, TxIntro’s monitoring module will timely de-

tect updates to the monitored data structures like IDT, syscall

table and module list, and then issue related VMI tools to de-

tect the rootkits.

False positive/Negatives: As the combat between rootkits

and rootkit detectors will continue, VMI tools written in TxIn-

tro may have false negatives in not detecting some new kernel

rootkits. A poorly written VMI tool may generate false pos-

itives as well. This can be mitigated by using new rootkit

detection policies. Here, TxIntro mainly focuses on provid-

ing a mechanism to accommodate different detection policies.

Note that, due to some suspicious transactional aborts in cur-

rent Haswell processor 7, the monitoring part of TxIntro may

falsely cause transactional aborts and cause some VMI tools

to be executed. This will not lead to false positives, as TxIn-

tro still relies on the results of VMI tools. Fortunately, such

events happen rarely.

6.2. Performance Evaluation

To evaluate the efficiency of TxIntro, we measure the slow-

down in performance and QoS experienced by the guest VM

when VMI tools are executing. We also illustrate the statis-

tics regarding the VMI tools, including the execution time

and abort rate of each VMI tool.

The platform we use is an Intel machine with a Haswell

machine with 4 cores (8 hardware threads using hyper-

threading), running at 3.4 GHz and 32 GB memory. Xen is

with version 4.2. We use Linux 3.2 as the OS for the man-

agement VM and Linux 2.6.24 as the guest production VM.

Each guest VM is configured with 2 virtual cores and 2 GB

memory. We use SPECINT 2006 [32] and PARSEC [33] to

evaluate the performance slowdown and Darwin Streaming

Server to evaluate the service disruption.

Performance Slowdown: Figure 9 and Figure 10 illus-

trate the performance overhead of running SPECINT 2006

and PARSEC while running the 9 VMI tools every 5 seconds.

The results show that even in a worst case TxIntro incurs neg-

7For example, we even encountered conflict aborts when running a single

threaded application.

nigible performance slowdown. This is expected as TxIntro

runs isolated from the production VM. Note that there is a

small performance varition of running PARSEC in our VM,

even after running it for 5 times. However, the overall perfor-

mance is similar.

Service disruption: To measure the service disruption of

TxIntro on guest VMs, we run all 9 VMI tools every 5 sec-

onds. This represents a worst-case stress test where a system

administrator constantly issues introspection operations. Fig-

ure 11 illustrates the average delay of all 40 clients. TxIn-

tro has similar average delays with a VM without performing

VMI, where the differences are caused by run-to-run varia-

tions. As the server delay remains negative, this indicates that

the clients have sufficient buffers and thus TxIntro causes no

impact to clients. We also collect the maximum delay per-

ceived by clients and TxIntro is also with similar values with

a VM not being introspected (omitted here for brievity).

VMI execution time: We also measure the execution time

of each VMI tool, as shown in Table 3. As the basic scheme

of TxIntro may not work due to excessive working set, we

only provide the execution time of the optimized versions.

As shown in the table, TxIntro is only with a few tens of mi-

croseconds for many VMI tools. The worst case is netstat,

which spends around 3,674 microseconds due to touching a

large number of states. This is orders of magnitude smaller

than prior VMI tools like Virtuoso [9] and VMST [34] that

take several to tens of seconds to run a simple VMI tool. This

short execution time, together with the significantly reduced

working set of typical VMI tools (Figure 6), make TxIntro

suitable to run large and complex VMI tools.

ps lsmod netstat systbl idt ktext vfs-ops dr ph

181 71 3,674 9 14 79 32 4 3

Table 3: Execution time (us) for different VMI tools

Conflict abort rate: We also collect the transaction abort

rate when the guest VM is building the Linux kernel in paral-

lel (with many forks). Specifically, we run our test 8 times for

each of the 9 tools, thanks to the fast execution of our tools,

no conflict abort happens in 8 of the 9 tools’ execution, ex-

cept the ps tool. For the ps tool, 6 of 8 runs abort and then
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Figure 9: SPECINT 2006 perf. overhead. Figure 10: PARSEC perf. overhead. Figure 11: Darwin streaming sever delay.

retry only once before success. Similarly, in the security eval-

uation, conflict abort seldom happens for the 9 tools unless

the rootkit modifies the related data structure like runqueue

or process lists.

7. Related Work

Virtual Machine Introspection: Garfinkel and Roseen-

blum are the first to propose using an “out-of-VM” approach

called virtual machine introspection (VMI) to do security

checking. Due to the advantage of strong isolation from the

VM being monitored, VMI has been intensively studied for

secure systems [1, 2, 35, 4, 3, 5, 9, 34, 6]. VMware has also

provided a product called vShield that uses a security VM to

check the file systems of monitored VMs [36].

Similar to TxIntro, Kruiser [24] also aims at making the

monitoring process and guest virtual machine concurrently.

However, Kruiser is specifically targeted to heap memory

monitoring to detect heap overflow attacks. It uses a ticket-

like versioning lock to synchronize monitoring process and

guest VM and requires changing kernel memory management

code in guest VMs. In contrast, TxIntro is a general frame-

work for VMI and is transparent to guest VMs, thanks to the

strong atomicity of hardware transactional memory.

KI-Mon [37] instead designs and implements dedicated

hardware to monitor updates to critical data structures in OS

kernel to preserve kernel integrity. A special-purpose pro-

cessor snoops system buses to interpret updates to monitored

data structures, which, however, can only monitor updates un-

til they have been flushed from cache to memory8. If there

is suspicious updates, KI-Mon pulls host memory to do fur-

ther checking. As the dedicated processor is not synchronized

with guest VM’s execution, there is no guarantee that the

memory snapshot is consistent. By using the strong atomicity

of HTM, TxIntro overcomes these issues and runs directly on

commodity processors.

Many other systems focus on exploring the applications

of VMI [1, 4, 5] and how to easily construct introspection

tools [2, 9, 34, 6]. For example, LibVMI [2, 16] provides a

library to ease the task of writing VMI tools. Virtuoso [9]

and VMST [34] instead leverage binary code reuse to auto-

mate the process of writing VMI tools, but at the cost of long

VM pausing duration (more than 20s for a simple VMI tool

called getpsfile 9 in Virtuoso) and significant performance

8They assume a write-through cache design, which is not the case for

commdoity x86 processors
9It fetches the name of the executable for a given PID.

slowdown (9.3X for user-level VMI tools and up to 500X

for kernel-level VMIs), which limit their uses in online mon-

itoring [9]. Exterior [6] further supports changes to a lim-

ited set of kernel state, but still requires pausing the mon-

itored VM and excessive performance overhead (23X over-

head compared to QEMU).

Currently, there has been very limited consideration of con-

sistent issues. Many systems require pausing the VM be-

ing monitored, which, however, cannot guarantee consistent

states as the kernel might be paused in a state where an update

to data structures is still in progress. Virtuoso [9] chooses to

wait the monitored VM into user mode before starting VMI.

However, there may be a risk regarding the time of check to

time of use (TOCTTOU) between the status checking and the

real pausing for VMs with multiple cores.

TxIntro resembles existing VMI systems in many aspects,

but does not need to pause VMs and is with a consistent view

on VM states and negligible performance overhead.

Using Transactions for Security: Researchers have inves-

tigated using transactional memory to monitor data invari-

ants [38, 39] in user code. Harris and Simon Peyton use

software transactional memory (STM) in Haskell to actively

monitor programmer-specified data structure invariants [38]

by hooking STM conflict handlers. Butt et al. [39] further

show such functionality can be implemented using hardware

transactional memory (HTM) by using a HTM simulator of

LogTM-SE [40]. Unlike the monitoring functionality in Tx-

Intro, these systems are intrusive in requiring wrapping the

monitored code in a HTM region, while TxIntro leverages

the strong atomicity of a HTM (i.e., Intel’s RTM) and makes

no assumption about the unmodified monitored code. Further,

TxIntro is the first to use HTM for virtual machine introspec-

tion by applying to kernel code inside a VM and runs on a

real hardware with restricted HTM features, while prior sys-

tems are for user-level code and runs either on STM or on a

full-fledged HTM using a simulator. Hill et al. [38] make a

case of leveraging the access summary in LogTM-SE [40] to

support watchpoints. TxIntro further shows that it is possible

to leverage the strong atomicity of HTM to infer when a VMI

might be necessary and describes the challenges and solutions

of monitoring key data structures. Further, TxIntro also lever-

ages HTM to provide consistent and concurrent VMI and is

built with several techniques to conquer the limited and asym-

metric read and write set in commodity HTM.

Chung et al. [41] show how hardware transactional mem-

ory can be used to solve metadata races during security



checks using binary translation. Birgisson et al. [42] describe

a system to ease checking of authorization policies using soft-

ware transactional memory. Specifically, they group a set of

policy checks as well as accesses to authorization policies

into transactions, such that it is unlikely to miss some security

checks. However, it requires instrumenting operating system

code using transactions, which is intrusive and may be impos-

sible for RTM due to frequent permanent aborts by systems

events like I/O instructions.

Overall, TxIntro departs from existing work using trans-

actions for security by applying it to VMI, and is the first to

leverage the strong atomicity of RTM to ensure consistent and

concurrent introspection.

Leveraging Commodity Hardware for Software Secu-

rity: TxIntro continues the line of research in leveraging com-

modity hardware features for software security and reliabil-

ity, including performance counters [43, 44], control specu-

lation [45, 46] and ECC memory [47]. TxIntro adds to the

literature by showing that the strong atomicity of commodity

hardware transactional memory can be leveraged for concur-

rent and consistent virtual machine introspection.

8. Discussion and Limitation

Missed monitoring time window: TxIntro might miss some

updates to critical data structures when two updates happen

simultaneously. This is because, the first update will trig-

ger a transaction abort, making the second update not be

detected as the monitoring code is handling the transaction

aborts. This is a fundamental limitation with TxIntro using

HTM for VMI. Fortunately, these cases are rare in practice as

it is unlikely that a rootkit updates two data structures simul-

taneously10. Even so, the missed time window is small and

the rootkit may likely be detected during rescan as TxIntro

will perform a VMI to related data structure ultimately.

Frequent aborts due to racy execution: A rootkit writer

may leverage the mechanism of TxIntro to impede the VMI

code from being successfully executed, like frequently touch-

ing the synchronization states in the read set of TxIntro. How-

ever, as TxIntro is executed stealthily without being known

from guest VMs, the rootkit has no knowledge of which data

it would access, thus has to frequently touch all of the syn-

chronization states. This may disturb normal execution and

provide visible clues to user, which violates the goal of rootk-

its being stealth. Further, TxIntro can use frequent aborts as a

sign to infer the rootkit’s existence and report such suspicious

events to users to take further actions (e.g., pausing the VM

to do VMI).

Huge read/write set not fitting in cache: It would be pos-

sible that a complex VMI tool that requires touching a large

number of guest states, which makes it hard to fit into the

maximum read/write set provided by the processor. For such

cases, TxIntro would have to require programmers to split

10Our experiences with more than 10 kernel rootkits confirm this.

their VMI code into several stages so that each stage can be

fit into the read/write set. Fortunately, our optimizations have

actually enabled writing of large and complex VMI tools that

would be otherwise impossible. Further, we expect forthcom-

ing commodity processors to support larger working set.

Policies vs. mechanisms: It is possible that a rootkit writer

may develop rootkits that cannot be easily detected by exist-

ing VMI tools, e.g., by breaking the heuristics relied on by

VMI tools [48]. This is essentially a typical long-term com-

bat between attackers and defenders. Here, we focus on the

mechanisms for VMI, and thus defenders can use TxIntro to

provide more sophisticated rootkit detection tools (i.e., poli-

cies). For example, it can leverage invariants from hardware

states to derive correct view on guest VM [3].

Interference with kernel’s future usage of HTM: With the

adoption HTM to OS kernel, TxIntro might interfere with ker-

nel’s normal usages of HTM, e.g., aborting a normal kernel

transaction. We believe this is a common issue of VMI. How-

ever, other similar tools not using HTM (e.g., directly inspect-

ing kernel variables) may always abort normal kernel trans-

actions with conflicting accesses due to the strong atomicity

of HTM, while TxIntro may abort less normal kernel trans-

actions depending on the abort policy. Further, the interfer-

ence caused by TxIntro is unlikely to be serious as Two-phase

VMI-Copy optimization already makes transaction execution

time very short, and thus minimizes the chance of conflicting.

9. Conclusion and Future Work

We presented TxIntro, a novel approach that leveraged

commodity hardware transactional memory (HTM) support

to provide concurrent and consistent virtual machine intro-

spection. Based on the strong atomicity provided by HTM,

TxIntro was completely transparent and caused almost no dis-

ruption to guest virtual machines. TxIntro was carefully de-

signed with two techniques to reduce the read and write set in

commodity best-effort HTM such that a large VMI tool can

still run using our framework. TxIntro was shown to be useful

by stealthily detecting 11 popular kernel rootkits and incur-

ring negligible performance overhead and service disruption

to guest VMs.

We plan to extend our work in several directions. First,

TxIntro currently does introspection only and does not di-

rectly modify the states of guest VMs. We plan to extend

TxIntro so that it can directly kill and remove kernel rootkits

from outside the VM. Second, we plan to incorporate prior ap-

proaches [9, 34] to automate the process of writing VMI tools.

Third, we plan to deploy TxIntro to other HTM platforms to

see the performance implications.
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