
TinMan: Eliminating Confidential Mobile Data

Exposure with Security Oriented Offloading

Yubin Xia†, Yutao Liu†, Cheng Tan†, Mingyang Ma†, Haibing Guan§, Binyu Zang†, Haibo Chen†

Shanghai Key Laboratory of Scalable Computing and Systems

†Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§Department of Computer Science, Shanghai Jiao Tong University

Abstract

The wide adoption of smart devices has stimulated a fast

shift of security-critical data from desktop to mobile devices.

However, recurrent device theft and loss expose mobile de-

vices to various security threats and even physical attacks.

This paper presents TinMan, a system that protects confi-

dential data such as web site password and credit card num-

ber (we use the term cor to represent these data, which is

short for Confidential Record) from being leaked or abused

even under device theft. TinMan separates accesses of cor

from the rest of the functionalities of an app, by introducing

a trusted node to store cor and offloading any code from a

mobile device to the trusted node to access cor. This com-

pletely eliminates the exposure of cor on the mobile devices.

The key challenges to TinMan include deciding when and

how to efficiently and transparently offload execution; Tin-

Man addresses these challenges with security-oriented of-

floading with a low-overhead tainting scheme called asym-

metric tainting to track accesses to cor to trigger offloading,

as well as transparent SSL session injection and TCP pay-

load replacement to offload accesses to cor. We have imple-

mented a prototype of TinMan based on Android and demon-

strated how TinMan protects the information of user’s bank

account and credit card number without modifying the apps.

Evaluation results also show that TinMan incurs only a small

amount of performance and power overhead.

1. Introduction

Mobile devices are superseding desktop computers as a pri-

mary computing platform, thanks to the mobility, constant

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EuroSys’15, April 21–24, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2741948.2741977

connectivity and application diversity. Nowadays, such de-

vices are routinely used in security-sensitive contexts, e.g.,

personal finance, enterprise business [31], or even mili-

tary [41]. As a result, mobile devices have been aggregating

an increasing amount of users’ sensitive data.

Problem. Our motivation comes from two facts: first, the

plaintext of confidential data may exist in memory on mo-

bile devices for a long time after being used. Yang et al. [61]

analyzed 14 popular Android apps and found sensitive data

(like login password) from the memory dump and disk dump

in 13 apps after 10 minutes. Second, an attacker can steal

the confidential data by getting the content of device mem-

ory and disk either by rootkit or spyware or gaining physical

control. This is because current software-based access con-

trol mechanisms require a large TCB (including both Linux

and Android framework) and all protections can be bypassed

by physical attacks like mobile device cold-boot attack [44].

Even if a user has wiped all of the data, an attacker can still

recover critical data from the phone [6].

Previous solutions. To protect confidential data in the

storage of mobile devices, conventional wisdom suggests us-

ing encryption and deletion. For example, a user can adopt

full-disk encryption [19, 30, 40] or BitLocker [4] to ensure

that data on disk is encrypted. However, the decryption key

is usually stored in memory in plaintext. There has also been

extensive research on in-memory data protection by leverag-

ing a trusted server [23, 61]. For example, CleanOS [61] en-

crypts sensitive data that is not recently accessed and saves

the encryption key on a trusted cloud. However, the confi-

dential data has to be ultimately decrypted in memory when

being used, and thus may be vulnerable to both malware and

physical attacks. Hence, it mainly limits but not mitigates

data exposure. Further, the TCB (Trusted Computing Base)

for commodity mobile devices is huge that includes nearly

the whole software stack. Thus, an attacker can trivially ex-

ploit the OS’s security vulnerabilities or leverage phishing

attack to get all the keys and steal the user’s confidential data.

Challenges. There are several challenges on protecting

in-memory confidential data. First, once some confidential

data has been accessed on a device, it is likely to have residue

in either memory [29] or storage [27, 52, 63], or both, as

data must be in the form of plaintext when being processed.

For example, many bank web sites require the client to hash

the plaintext of the user’s account and password, and use

the hash value for login [1, 21]. However, after the login,

the plaintext of password or hash value might remain on

the device for a long time [61]. Even if an app explicitly

deletes the confidential data after use, the underlying operat-

ing system may still have data residue in many places, such

as the file system log, page cache, socket buffer, swapped

files, or any other freed but not cleared memory pages and

disk blocks [47]. An attacker may retrieve the confidential

data from these locations. Second, it is hard to identify all

the residue of confidential data on a device. Simply search-

ing the plaintext of confidential data in memory and storage

is not enough, since the data might be encrypted while the

key is vulnerable. Third, the design of new solutions should

be practical and deployable. It should be general and require

no modification to existing apps, while the overhead intro-

duced on both performance and power consumption should

be modest.

Our solution. Since it is almost impossible to ensure

the security of confidential data if it has ever existed on

devices, we use a different method: storing no confidential

data on the device, and thus the device will have nothing

to lose when it is stolen. We classify sensitive data on a

mobile device, and focus on the most critical one, named

cor (short for COnfidential Record), as shown in Figure 1.

Examples of cor include password, bank account, social

security number, credit card number, whose access patterns

differ significantly from regular private data such as emails,

messages, photos, which are directly manipulated by the

user. Our observation is that since the privacy of the cor

is of vital importance, the plaintext of cor is usually not

displayed on mobile devices, even to the users themselves.

Thus, from user’s perspective, there is no difference between

accessing cor locally and remotely, which makes our on

demand offloading possible.

M
o

re
 c

o
n

fi
d

e
n

ti
a

l

Encryption

or deletion

Offloading

cor

Private

Data

Private

Data

(c) TinMan(b) Traditional Methods

General DataGeneral Data General Data

(a) No Protection

Figure 1: TinMan separates cor from regular private data and en-

forces its protection

In this paper, we present TinMan, a system that aims at

protecting cors by completely eliminating them on a device,

so that there is no way for an attacker to steal cor from the

device even if she can physically control the device. TinMan

achieves this by ensuring that all cors are stored and ac-

cessed exclusively on a trusted node, which can be a server

inside a company or a virtual machine on a trusted cloud,

other than the device itself. Instead of requiring applications

to split the logic of accessing cor and use some new APIs

provided by the trusted node, TinMan introduces a security-

oriented offloading mechanism to seamlessly support exist-

ing applications. TinMan stores a placeholder for each cor

on the device, while all of the cors are stored on a trusted

node. Each placeholder has the same size as the correspond-

ing cor and is tracked using tainting mechanism. When an

application accesses some tainted placeholder, TinMan mi-

grates the application execution to the trusted node to access

the corresponding cor, and migrates it back after that.

Different from traditional offloading mechanisms like

COMET [25], which are typically implemented at the ap-

plication level, security-oriented offloading usually involves

multiple levels including the native library and the OS, as

Figure 2 shows. In TinMan, we develop two techniques

to enable multi-level offloading, named SSL session injec-

tion and TCP payload replacement, which are used to make

states synchronized at SSL layer and TCP layer, respec-

tively. The application level states are synchronized based

on COMET [25]. We also develop an optimization named

asymmetric taint tracking to minimize the overhead intro-

duced by taint tracking on the mobile device.

OS

Native

Java

OS

Native

Java

SSL

App

TCP

App

Offloaded part Offloaded part

a) Application-level offloading b) Multi-level offloading

On-demand offloading

SSL Session Injection

TCP Payload Replacement

Figure 2: System involved offloading

Evaluation on real-world applications. We have imple-

mented a prototype of TinMan with on-demand offloading,

and asymmetric taint tracking on Android1 to demonstrate

its effectiveness and efficiency. We use the BankDroid app

and the default Android web browser as examples to demon-

strate how TinMan protects a user’s account information and

credit card numbers. Our evaluation shows that TinMan only

introduces small performance and power overhead, since the

portion of offloaded code (e.g., web login and payment) in

an app is small.

Contributions. In summary, TinMan makes the follow-

ing contributions:

1. A novel scheme for protecting cors on the mobile device

by completely eliminating their exposure on the device.

1 The mechanism of TinMan is general and not necessarily coupled with

Android.

2. A design of security-oriented offloading that contains

multi-level of state synchronization, which requires no

application modification.

3. A working prototype based on Android, and case studies

using BankDroid and the default Android web browser.

The evaluation results illustrate the effectiveness and

small overhead incurred in TinMan.

2. Problem and Overview

2.1 Motivation

In this section we further describe our motivation in two as-

pects: critical data exposure and data stealing through either

software or hardware attack.

For the first aspect, Yang et al. [61] analyzed 14 popular

Android apps by searching critical data like login password

in memory dump, and found that 13 apps left such data

in plaintext in memory 10 minutes after using them. Such

data could exist in all kinds of system cache, swapped files,

any freed but not cleared memory pages or disk blocks, and

so on [47]. Even worse, since it is usually not convenient

to type on small screens, most users choose to save some

confidential data (e.g., passwords) on the device to avoid

typing them everytime, which could further increase data

residues in the system.

For the second aspect, the openness of the mobile soft-

ware stack and its wide adoption have stimulated not only a

burst of mobile applications, but also an explosive growth of

malware [68] that divulges users’ security-sensitive data. As

long as the user’s device is infected by rootkit malware, any

data on the device is in danger since the operating system

which can read any data in memory is now controlled by the

malware. Even if a mobile device is not rootkited, there are

also many ways for an attacker to gain full control over it

if given physical access, even with its screen locked. Many

bugs have been reported that allow attackers to bypass the

lockscreen [3, 7–10]. For example, on a 2013 Sony Xperia

phone, an attacker could easily bypass the lockscreen by en-

tering “*#*#7378423#*#*” as an emergency call and then

clicking on “NFC Diag Test” [10].

Worse still, the convenience for carrying also makes

mobile devices highly vulnerable to theft and loss [5, 16].

This exposes users’ confidential data to not only software-

based threats [3, 7–10] , but also physical attacks [11, 44].

In more sophisticated attacks, Thomas Cannon [11] has

demonstrated cracking a locked HTC mobile phone by a

special SIM card and a specially formatted MicroSD card

and gained full access. Muller et al. [44] issued cold boot

attacks on a Samsung Galaxy Nexus phone, which had an

encrypted disk partition to store user’s data. They retrieved

the encryption key stored in memory and successfully de-

crypted the disk partition. Thus, how to protect confidential

record in memory against software or even physical attack,

is an important and urgent problem.

As mentioned, TinMan distinguishes cor (e.g., password

and credit card number) from other private data (e.g., pho-

tos and emails), and offers stronger protection for cor. We

argue that the security of cor is more significant than the

rest. Most apps are backed by powerful cloud servers and act

as an entry point to the cloud, thus usually the phone itself

only stores a small piece of data. For example, the default

Mail app on iPhone just shows the latest 50 mails. How-

ever, if a cor (e.g., the password of user’s account) is leaked,

an attacker can access any data on the cloud. Further, many

cor are related to finance, e.g., credit card number. If such

data are retrieved by an attacker, it could directly result in

financial loss to users or companies. Finally, the US military

announced that it would equip soldiers with Android equip-

ment for accessing classified documents [41], which makes

the cor stealing problem even more serious.

2.2 Goals

Our primary goal is to offer strong protection of confidential

data (cors) even under physical threats. More specifically,

the goals are as following:

1. No plaintext of cor on mobile devices: In order to ensure

zero residue of cor on the mobile device at any time, our

design requires that no plaintext of cor would ever exist

on the device.

2. Minimal TCB on mobile device: Our system should not

depend on the security of software stack on the mobile

device.

3. Transparency to applications: The system should mostly

retain backward compatibility to support existing apps so

that it is not very hard to adopt in the existing software

stack.

4. Design for mobiles: The design should consider the re-

source scarcity of mobile devices, especially the battery

consumption.

2.3 Threat Model

Our threat model considers any form of data stealing, in-

cluding application-level, OS-level and even hardware-level

in the mobile devices. TinMan makes no assumption on any

software running on the mobile device. This assumption sig-

nificantly reduces the TCB on the mobile device comparing

with other systems such as KeyPad [23] or CleanOS [61] that

need to trust all software running on the device. An attacker

can install any malware or even reinstall a malicious OS on

the device, or tamper with the device physically at any time.

The trusted node used for storing and accessing cors is

trusted at all times. It can be considered as a service provided

by the device manufacturer as a value-added service.As long

as a user trusts the device vendor, it is straightforward for

them to trust the trusted node. Another way is for the users

to deploy such services themselves. For example, a company

can use its private cloud to do so. The trusted node is con-

sidered to be more secure than mobile devices thanks to its

professional administration and physical protection.

We assume that the initialization of cor on the trusted

node is done in a safe environment in advance, which is

a one-time effort. When users want to access cor on the

device, they can select from a list of cor description instead

of typing (e.g., the password) into the device. An example is

shown in Section 4.1.

2.4 Background on COMET

TinMan leverages the offloading engine of COMET [25].

COMET is an open-source project based on Android’s

Dalvik virtual machine that offloads computating-intensive

workloads from mobile phone to a more powerful server.

It uses DSM (Distributed Shared Memory) to synchronize

memory states between endpoints, which also enables full

multi-threading support and migration of a thread at any

point during execution. By taking full advantages of Java’s

memory consistency model, COMET establishes a “happen-

before” relationship between operations by synchronization

primitives within an app, and minimizes the need of state

synchronization. Such design greatly simplifies the system

and also reduces the performance overhead.

2.5 Design Overview of TinMan

In order to eliminate cor exposure, TinMan introduces a

trusted node to store and access cor. It introduces a new

mechanism, named on-demand offloading, that migrates

only the logic that processes cor to the trusted node for

execution, and leaves most logic of an app executing on

the mobile device, thus can keep good user experience and

cause little performance overhead. In order to avoid app

modification, TinMan saves placeholders on the client. It

taints these placeholders and tracks their data flow using a

modified TaintDroid. As long as a placeholder is accessed,

the app is migrated to the trusted node. After the access,

the app is migrated back to the mobile device, as Figure 3

shows. More details are in Section 3.1. We also optimize the

tainting mechanism to reduce the overhead, as presented in

Section 3.5.

On-demand offloading brings a new problem on SSL

based network I/O: how can the trusted node transparently

join an SSL session established between the client and a

web site? For example, when a client needs to send a cor

(e.g., credit card number) to Amazon, it does not have the

real data of cor, which is stored on the trusted node. Thus,

the process of cor sending must be done by the trusted

node. However, since the connection session is established

between the app on the client and Amazon, the trusted node

must join the session without awareness of either the app or

Amazon. TinMan solves this problem by supporting multi-

level offloading, which involves not only at the application

level, but also the native library and the operating system.

Thus, the entire process of cor sending is migrated to the

trusted node, and the states of SSL and TCP session are kept

Client Trusted Node

corOrdinary Object Executed Code Non-Executed Code Access

Offload

App App

Placeholder

Back

JVM

Lightweight Tainting Heavyweight Tainting

JVM

Access

Policies

SSL

TCP

SSL

TCPCapture & redirect Payload replace

Session-injection Session-injection

O
n
-d
e
m
a
n
d

Trigger Offloading

Figure 3: Design Overview of TinMan

synchronized between the client and the trusted node to keep

apps unmodified, as shown in Figure 4.

Client Trusted Node Server

{Ordinary HTTP Request}

{HTTP Response}

{HTTP Request

with placeholder}

{HTTP Response}

{HTTP Request

with COR plaintext}

Figure 4: Communication between client, trusted node and server.

The trusted node sends HTTP requests containing cor and syncs

states with the client.

3. Security-oriented Offloading

This section describes the design and implementation de-

tails. There are two questions need to be considered:

1. Which parts of an app should be offloaded and how to

identify these parts automatically?

2. How to enable multi-level offloading without modifica-

tion to apps?

For the first question, TinMan uses taint tracking to monitor

cor accessing as trigger points of offloading, and ensures that

all the access to cor are executed on the trusted node. For

the second question, since TinMan leverages COMET for

application-level offloading, this section will focus on two

other layers: SSL and TCP offloading.

3.1 On-demand Offloading

A cor is a piece of data that is extremely critical and that it

is even not displayed to users. TinMan uses five metadata to

represent each cor, as shown in Table 1. Each cor’s plaintext

is tainted with a unique ID on the trusted node, and the

corresponding placeholder is tainted with the same ID on

the client. The initialization of cor tainting is done by the

user without entering the plaintext of cor into the device.

Examples of initialization can be found in Section 4.

Field Description cor

ID Unique for each cor

Plaintext Stored exclusively on the trusted node

Placeholder Dummy data on client with the same size of cor

Description Shown to the user for selection (optional)

Whitelist A list of legal domains that the cor could be sent to

Table 1: cor abstraction

We have two observations on the access pattern of cor,

which show that it is practical to offload cor accessing. First,

the amount of code that accesses cor in an application is

relatively small. Take BankDroid as an example, only the

code shown in figure 5 is offloaded, which indicates that

most of the app logic is executed on the client.

public String open(String url, List<NameValuePair>
postData, boolean forcePost) throws
ClientProtocolException, IOException {

this.currentURI = url;
String response;
String[] headerKeys = (String[])this.headers.keySet().toArray(

new String[headers.size()]);
String[] headerVals = (String[])this.headers.values().toArray(

new String[headers.size()]);
ResponseHandler<String> responseHandler =

new BasicResponseHandler();
HttpUriRequest request;

if ((postData == null || postData.isEmpty()) && !forcePost) {
request = new HttpGet(url);

}
else {

((HttpPost)request).setEntity(new
UrlEncodedFormEntity(postData, this.charset));

}
if (userAgent != null)

request.addHeader("User-Agent", userAgent);
for (int i = 0; i < headerKeys.length; i++)

request.addHeader(headerKeys[i], headerVals[i]);
response = httpclient.execute(request, responseHandler,

context);
this.currentURI = request.getURI().toString();
return response;

}

O
ff
lo
a
d
e
d

Figure 5: The offloaded part of BankDroid code. The postData and

request are cor. No change to app is needed.

Our second observation is that cor access has both spatial

and temporal locality. We tracked the propagation of cor and

data generated from cor, and found that most of the tainted

data during cor accessing on the trusted node are temporary

and do not need to be synchronized to the client, which

significantly reduces the data transferred through network.

TinMan builds the application-level offloading engine on

COMET [25], which is a DSM based offloading mechanism.

In order to support security-oriented offloading, it is not

allowed to synchronize the plaintext of cor to the mobile

device. In another word, for an app, the memory on both the

client and the trusted node are identical, except for the cor

parts. For cor, the offloading engine will only transfer its ID

between the mobile device and the trusted node, then the two

sides will fill the memory with placeholder and cor plaintext,

respectively.

To enable on-demand offloading, TinMan tracks the

dataflow of placeholders on the client. An app will be mi-

grated to the server only when it accesses a placeholder. The

app will be migrated back to the client in two cases: (1) cor

has not been accessed on stack for a predefined threshold of

duration; (2) the app invokes a non-offloadable native func-

tion, such as I/O operations or functions provided by third

party libraries. One exception is that, if a cor is being sent

through network, the operation must be done by the cooper-

ation of the client and the trusted node, as described below.

3.2 SSL Offloading: Session Injection

TinMan implements security-oriented offloading by migrat-

ing a part of an SSL session from the mobile device to the

trusted node. The basic process works like this: an app estab-

lishes an SSL session with some server and communicates

with the server using it. When the app needs to send a cor

to the server, it is migrated to the trusted node to send one

or more SSL records, and migrated back after that. Thus,

the cor is actually sent by the trusted node. Two questions

arise: which states of an SSL session should be synchro-

nized? Does the state synchronization violate our security

requirements?

The first question depends on the encryption methods

used by different versions of SSL. If an app uses stream

encryption, such as RC4 or CBC, such offloading needs to

synchronize SSL states. For different cipher algorithms, the

states of an SSL session that need to be synchronized be-

tween the mobile device and the trusted node are different.

For example, if RC4 is used, each block is independent of the

others. Thus, only the metadata (e.g., session key, encrypted

method) of SSL session will be sent from mobile device to

the trusted node. If an app uses CBC, then the state syn-

chronization depends on the version of the algorithm. Before

TLS-1.1 (Transport Layer Security), the process of CBC in

SSL was shown in the top part of figure 6. Each SSL record

uses the last ciphertext block of the previous record as its IV

(Initialization Vector). The first SSL record uses a random

number as its IV, and attaches the IV with the record. Such

mechanism is known as implicit IV. However, the practice

of re-using the last ciphertext block of a message as the IV

for the next message is widely known to be insecure. 2 Thus,

from TLS-1.1, each SSL record uses a separated IV, aka.,

explicit IV, as shown in the bottom part of figure 6.

2 BEAST attack [2] (CVE-2011-3389)

Encrypt

Plaintext-1

Ciphertext-1

XORIV

Encrypt

Plaintext-2

Ciphertext-2

XOR

Encrypt

Plaintext-3

Ciphertext-3

XOR

Encrypt

Plaintext-1

Ciphertext-1

XORIV-1

Encrypt

Plaintext-2

Ciphertext-2

XOR

Encrypt

Plaintext-3

Ciphertext-3

XORIV-2

a) CBC with implicit IV (before TLS-1.1)

b) CBC with explicit IV (TLS-1.1 and after)

Encrypt

Plaintext-4

Ciphertext-4

XOR

Encrypt

Plaintext-4

Ciphertext-4

XOR

16-byte 16-byte

SSL Record-1

16-byte 16-byte

SSL Record-2

Figure 6: CBC using implicit and explicit IV.

For apps using explicit IV, since each SSL record is in-

dependent of the others, TinMan can be used without syn-

chronizing IVs back to the mobile device. In order to make

TinMan work even if an app uses CBC with implicit IV, both

the mobile device and the trusted node need to send their

last ciphertext block to each other as IV, which might leak

the plaintext of cor to the mobile device.

Encrypt

Block-12

Ciphertext-12

XOR

Encrypt

Block-13

Ciphertext-13

XOR

Encrypt

Block-11

Ciphertext-11

XOR

Encrypt

Block-10

Ciphertext-10

XOR...

SSL Record-1 SSL Record-2 SSL Record-3

Trusted NodeClient Client

Figure 7: An example of secret leakage through synchronizing IV

in CBC using implicit IV.

Take figure 7 as an example, the mobile device needs

to send ciphertext-11 to the trusted node as IV, and the

trusted node also needs to send back ciphertext-12 to the

mobile device to continue the SSL session. From the mobile

device’s perspective, the IV it gets from the trusted node is

actually the ciphertext of block-12. Thus, it is easy for the

mobile device to derive plaintext of block-12 by decrypting

the ciphertext of block-12 and then XORing with ciphertext-

11, as following:

P12 = decrypt(C12)key ⊕ C11

where P stands for plaintext, C stands for ciphertext, and ⊕

stands for XOR operation. Now the mobile device is able to

get the plaintext of block-12, which contains cor.

In order to protect against such an attack, TinMan mod-

ifies the SSL library on the client to make it use an SSL

version newer than TLS-1.0. In the SSL protocol, the client

and server negotiate the version of SSL to use during the

handshake phase: In a ClientHello message, the client first

sends the highest version number that it supports. The server

is then supposed to pick the most recent protocol version that

both support. In our evaluation, the Android SSL library and

all the web sites we test support TLS-1.2. Thus, we modify

the Android SSL library to check and ensure that the SSL

version used by apps must be newer than TLS-1.0.

3.3 TCP Offloading: Payload Replacement

In order to keep cor from the mobile device, the SSL record

containing cor must be sent by the trusted node. One naive

way is that, before the client sending the SSL record with

placeholder, it synchronizes the TCP states, including the

sequence number etc., to the trusted node. The trusted node

uses the states to generate a TCP header and the cor to

generate the packet payload, and sends the packet to the web

server. After that, the trusted node synchronizes the TCP

states back to the client, which continues to run as if it has

sent the packet.

However, such an implementation is intrusive since it

needs to change the TCP stack of both the client and the

trusted node. In order to avoid such a modification, TinMan

adopts a mechanism named payload replacement. Basically,

the client first generates a packet with the placeholder. The

packet is then redirected to the trusted node instead of being

sent to the server. The trusted node replaces the payload of

the packet with cor, and then sends it out. The packet is sent

by the trusted node on behalf of the client, thus the server is

not aware of the process of payload replacement.

Client Trusted Node Server

Wait

Capture & Redirect

Check & Replace & Send

Need to send out cor
{SSL States}

{TCP Packet}

Confirm wait

{Reframed

TCP Packet}

Reply

1

2

3

4

6

Wait

5

Figure 8: Process of payload replacement

The detailed process is shown in figure 8. 1© As long as

the client needs to send cor through network, the SSL library

will first send its SSL states to the trusted node, including the

SSL session key. 2© The trusted node then waits for a redi-

rected packet. 3© The client sets a packet filter to capture

the packet. It then continues to send the data, which goes

through the TCP stack to generate a packet. The packet is

captured by the filter, and is redirected to the trusted node.

Now, the client is waiting for a reply from the server. 4© The

trusted node first checks the access policies (see Section 3.4),

and then generates a new payload with cor encrypted with

the SSL session key, and replaces the original payload of the

packet. The TCP header is not changed, whose source ad-

dress is the client’s IP and destination address is the server’s

IP. After that, the trusted node sends the reframed packet out.
5© Once the server receives the packet, it just processes as if

the packet is sent by the client, and sends a reply to the client.
6© The client continues to run after it receives the reply.

3.4 Security Enforcement on Trusted Node

An attacker who has gained control over the client may cause

the trusted node send cors to some malicious server to steal

cors by running malicious code on the client which will

then be offloaded to run on the trusted node. In order to

defend against such attacks, TinMan introduces two kinds of

binding on the trusted node to restrict the way of accessing

cor by the offloaded code.

The first binding is between the application and the cor.

For example, TinMan can set a rule to ensure that the pass-

word of Facebook could only be accessed by Facebook’s of-

ficial app. The trusted node identifies an application by the

hash of its dex 3 file. Every time a cor is accessed, the trusted

node will calculate and check the hash to ensure that the run-

ning application has the access permission. This binding can

also prevent phishing attacks, where a malicious app pre-

tends to be Facebook’s official app and accesses user’s login

password. Once the app is offloaded, the trusted node will

identify that it has no permission and refuse its access to cor

due to the mismatch of hashes. Meanwhile, a user can re-

quest the trusted node to revoke access permission of cor to

prevent abusing cor. For example, if a user realizes that her

phone is stolen, she can revoke all the cor access permissions

from the lost device.

The second binding is between cor and a target domain.

For example, TinMan can set a rule to state that “the pass-

word of Facebook could only be sent to the domains belong

to Facebook website”, or “the private key of bitcoin cannot

be sent out”, etc. Thus, when a cor is sent out, the target do-

main will be checked to ensure the user-defined rules are not

violated. One potential problem is that the granularity of do-

main sometimes can be coarse-grained. For example, an at-

tacker who has controlled a mobile device may make the de-

vice post the user’s Facebook password to the attacker’s own

Facebook page as a comment. In this attack, the password

is still sent to some IP within Facebook’s domain, thus the

trusted node will send the password to that IP. We observe

that most well-known web sites use dedicated machines for

3 A dex file is a compressed file that contains Android executable files

authentication, like Facebook, Google, Linkedin, etc. The IP

addresses of the authentication machines are different from

other machines. Thus, the trusted node will reduce the range

of the whitelist to only the IPs that are responsible for au-

thentication for password to solve the problem above. The

address list is kept by the trusted node, which will be up-

dated periodically.

The trusted node also deploys app analysis tools to im-

prove the security. When an application is offloaded, the

trusted node first checks whether the application is one of

the known malware by calculating the hash of the code and

search in a malware hash database. Currently we only apply

a relative small database with around 1,000 malware. It is

straightforward to leverage existing static analysis based on

our framework. It is our future work to deploy more dynamic

analysis methods on TinMan. Meanwhile, all of the cor ac-

cess activities on the trusted node are logged for auditing.

Each record includes timestamp, application hash, cor ID

and network domain. Any abnormal activity will be reported

to the user.

3.5 Optimization: Asymmetric Tainting

In TinMan, tainting is used on both the mobile device and the

trusted node. On the mobile device, tainting is used only to

trigger offloading, which is a much simpler scenario than the

one on the trusted node. We classify the propagation of taints

into four types, and find that only two of them are needed on

the client. Thus, we adopt a lightweight tainting mechanism

on the mobile device for optimization, while leave the full-

fledged one on the trusted node.

There are two types of data in Java: primitive-type data

(e.g., int, double, long, object reference), and objects. The

stack of a Java application only contains primitive-type data,

while the heap only contains objects. Correspondingly, there

are four types of data transmission, as shown in Table 2.

int

Ref-1

Ref-2

Obj-A

Obj-B

Ref-3

①COPY

Stack Heap

T

T

long

int

Ref-1

Obj-A

Obj-B

Ref-2

①COPY

Stack Heap

T

T

long

long

②GET
long

③ADD

T

T

T long
④PUT

T

Obj-C

Obj-D

(a) Client-side tainting (b) Server-side tainting

TTaintOperationPoint to

long
T

Obj-C②GET

N
o

 t
a

in
t

o
n

 t
h

e
 s

ta
ck

 o
f

cl
ie

n
t

Trigger

Offloading

Figure 9: Asymmetric tainting on the mobile device and the trusted

node. Only heap-to-heap and heap-to-stack are needed on the mo-

bile device.

Since the JVM ensures that each data must be moved

from heap to stack before being accessed, the mobile device

only needs to handle heap-to-heap propagation of taints, and

Type Example On client On trusted node

heap to heap 1© in fig 9-a, 1© in fig 9-b Yes Yes

heap to stack 2© in fig 9-a, 2© in fig 9-b Yes Yes

stack to stack 3© in fig 9-b No Yes

stack to heap 4© in fig 9-b No Yes

Table 2: Four types of taint propagation

handle heap-to-stack by triggering offloading and leaving

everything else to the trusted node. The other two types of

operations will not occur on the mobile devices.

More specifically, the heap-to-heap operations include

object clone, arraycopy and memcopy. Take clone as an

example, when an object is being cloned, the JVM creates a

new object on the heap and fills it with data from the original

object. In this process, both objects are on the heap and no

data are transferred to the stack. Only the generated object

needs to be tainted. The operations of object clone are rare

in a typical Java program. A more common case is copying

a reference instead of cloning an object. It is noted that a

reference of a tainted object is not tainted itself. Copying

such a reference will not trigger any taint propagation, since

the new reference also points to the same tainted object.

The taint propagations between stack and heap are a little

more complicated. We use following piece of code to ex-

plain.

1. // passwd is tainted

2. concat_1(String s, String passwd) {

3. char c = passwd.charAt(0);

4. char d = c;

5. s.append(d);

6. }

Figure 10: Example of taint propagation between stack and heap

Initially, the string passwd is tainted and s is not tainted;

both objects are on the heap. c is a variable of primitive-

typed Char on the stack. At line 3, when c is assigned the

value returned by method charAt(), there is a GET operation

that transfers data from the heap to the stack, and c is then

tainted. Line 4 is a stack-to-stack operation, where d will be

tainted on the stack. At line 5, d will be PUT from the stack

to s on the heap, and the object s is then tainted.

1. // passwd is tainted

2. send(Socket s, String user, String passwd) {

3. String httpRequest;

4. httpRequest = "username=" + user;

5. httpRequest += "&passwd=";

6. httpRequest += passwd; // migrate to server

7. s.send(http_request); // migrate back

8. }

Figure 11: Example of offloading triggering

During the four types of taint propagation, stack-to-stack

operations are the most common, and thus bring most per-

formance overhead. In TinMan, tainting on the client is used

only for triggering offloading. There are two types of oper-

ations on tainted objects that will cause offloading: first is a

heap-to-stack operation, such as the instruction at line 3 in

the above concat 1 code snippet. The second is heap-to-heap

operation that will generate a new cor ID, such as the code

at line 6 of the send code snippet, where the data of passwd

is concatenated to httpRequest. The other two types of oper-

ations of cor do not exist on the client, since if so, there must

be some heap-to-stack operations before, which will trigger

the offloading. Thus, the two types of taint propagation do

not need to be implemented on the client.

The trusted node adopts a full-fledged taint tracking

mechanism, which tracks the tainted data in both stack and

heap to keep the accuracy of tainting. It not only handles

data propagation for primitive types on the stack, such as

add, move or multiple, but also handles data transferring

between heap and stack. It intercepts Java data movement

opcodes to implement taint propagation, which is similar to

prior work [20]. Such tainting in the trusted node is precise

and heavyweight, and is used as to support extensions of

security monitoring (e.g., cor access control) on the trusted

node by combining the two types of tainting mechanisms

together. TinMan incurs low performance overhead on the

mobile device, while still keeping the accuracy of tainting.

Another way to reduce the performance overhead on the

mobile device is to adopt selectively tainting, which enables

tainting only for certain security critical apps instead of all.

A user needs to specific those critical apps.

3.6 Other Implementation Details

Instead of building all functionalities from scratch, Tin-

Man extends COMET [25] to support security oriented on-

demand offloading, and ports TaintDroid [20] with asym-

metric tainting. The tainting module on both client and

server is about 3,870 LOC (Lines Of Code) by using #ifdef

to share the code. To implement on-demand offload, we

modify around 1,730 LOC, including functions for offload-

ing triggering, cor synchronization, SSL session injection

and TCP payload replacement. We also optimize to syn-

chronize less states on the initialization stage. On the client,

we slightly modify the Android application framework to

change the edit widget to display cor list for the user to se-

lect, as well as I/O operations, including accessing disk for

storing and loading taint label. This adds around 550 LOC.

Also on the client, we use iptable to capture the packet con-

taining cor placeholder. Our modified SSL library will mark

such packets by writing a specific value in type field of SSL

record. (There only 4 types of SSL record while the type

field has 8 bits.)

4. Use Cases

TinMan offers a platform to offload security-critical opera-

tions from mobile devices to a trusted node. Such platform is

general and can be leveraged to benefit different apps. In this

section we present two typical examples: protecting pass-

word of various banks used in BankDroid, and credit card

number used in a web browser.

4.1 Protecting Password in Applications

(a) Original System (b) Edit Widget in TinMan

Figure 12: BankDroid. User selects a password instead of typing it.

We use BankDroid, a popular bank account management

application on Android, as an example. BankDroid is an

application that can retrieve user’s bank transactions and

show them in a nice form. We assume that the user has

already initialized all the passwords as cor on the trusted

node, with proper descriptions.

When BankDroid is opened for the first time, it will ask

the user to enter account and password for different banks. A

modified password widget will display a list of description

of all the cor, as shown in Figure 12. The widget is a part

of Android framework, thus no modification of the app is

needed. Instead of typing the password, a user selects the

corresponding password from the list. Then the app will

use the corresponding cor placeholder as password, which

is tainted and tracked. The entire process is transparent to

BankDroid.

Some bank site requires hash of account/password for lo-

gin. When BankDroid calculates the hash of password, it ac-

tually accesses the tainted placeholder and triggers offload-

ing. Then, the client migrates BankDroid to the trusted to

calculate the hash of account/password. The tainting mecha-

nism on the trusted node ensures that the hash value is a new

cor.

When the calculation is done, BankDroid is migrated

back to the phone. From the app’s perspective, it now gets

a hash value, which actually is another placeholder. It then

tries to send the placeholder of hash value to the bank site.

The SSL layer then synchronizes session states to the trusted

node, and marks the SSL record. Once the packet with the

marked data is sent out, it is intercepted and redirected to

the trusted node. The trusted node is waiting for the packet

since SSL state synching. It receives the packet, checks the

access control policies, and reframes the packet with cor as

its payload. It then sends the packet out to the web server on

behavior of the client. The web server, which is not aware of

the whole payload replacement process, receives the request

and replies.

Since TinMan allows a user to select password instead of

typing them, then some others (like his kids) might also be

able to access those apps if the user does not use a PIN code

to lock the phone. In order to ensure only the user can access

cor, one solution is to add a local authentication every time a

cor is selected. Such check has nothing to do with either the

application or the server. It can be done either by software

like a PIN code or some existing hardware devices such as a

fingerprint checker.

4.2 Protecting Credit Card Number in Browser

It is common to use credit cards for online payment. For

example, when registering to attend a conference, the user

is required to fill a web form and use credit card to pay

the registeration fee. All of the credit card information is

needed, including the card number, the expiration date, the

security code, and other information. If the user enables the

auto-fill option of browser, these data may be on the device

permanently and could be retrieved by an attacker.

By using TinMan, we modify the rendering engine of

default browser to add a dropdown list widget adjacent to

each input widget. A user will choose the cor of credit card

number, security code, etc. from the menu instead of typing

them. Similar with the protection of password in last section,

only placeholders of credit card information are stored on the

mobile phone.

On the trusted node, we could make following access

control policies. First, the target must be in a pre-defined

domain whitelist. Second, the access must be done during a

time window, e.g., 10:00 am to 10:00 pm. Third, the access

frequency could not exceed a preset limitation, e.g., four

times per day. Fourth, all of the access operation will be

logged for future auditing.

5. Security Analysis and Discussion

Given physical access to a mobile device, an attacker has

three ways of attacking to retrieve or access the cor: 1)

scanning the entire memory and storage of the phone and

searching residues of cor, 2) install malware/rootkit on the

device to steal cor from memory, or 3) attacking the trusted

node to retrieve cor directly. This section will discuss each

in detail, as well as the limitations of TinMan.

5.1 Eliminating cor Exposure on Device

The first attack is eliminated in TinMan, since the system

ensures that no plaintext of cor will ever exist on a mobile

device. However, since we require that the cor-stub must

have equal size with cor, the length of cor is not protected.

5.2 Defending Malware and Phishing Attack

TinMan can protect cor from phishing attacks using access

control on the trusted node. For example, a user can bind

the password of Citibank with only the official app and the

domain “citibank.com”. Suppose that the mobile phone has

been compromised and shows a fake web site or malicious

app to the user. The user selects the password instead of

typing it, as mentioned in Section 4.1, and then clicks the

“login” button. Then the application or browser is migrated

to the trusted node to execute. The password will not be sent

to the fake site or be used by the malicious app.

5.3 Security of the Trusted Node

TinMan relies on the security of the trusted node, in both the

storage of cor and the execution of offloaded code. However,

the trusted node faces threats from both outside hackers

and inside malicious administrators (if the trusted node is

deployed in a company or on a public cloud). An attack can

also pretend to be a legal user and migrate some malware on

the trusted server to execute, which may further get control

of the server and steal other users’ cor. In order to enforce

the security of the trusted node, a lot of traditional methods

could be leveraged, including cloud security, web security,

intrusion detection, etc., which are beyond the scope of this

paper.

Users may be unwilling to store passwords for personal

accounts (e.g., Facebook) on a server owned by his employer

for privacy reasons. In such case, a user can deploy different

trusted nodes for different passwords to avoid putting all

eggs in one basket. Further, deploying passwords on multiple

sites can also tolerate various kinds of service failure.

By decoupling the cor storage and access from mobile

device to a trusted node, it also brings several new benefits

for security. For example, more powerful static and dynamic

analysis can be deployed on the trusted node, as well as

secure auditing, etc. The trusted node can check a migrated

app before running it to filter any known malware, and can

also monitor its behavior during runtime. Any abnormal

activity will be reported to the user. All of the cor access

activities on the trusted node could be logged for auditing.

5.4 Discussion

Non-cor private data. TinMan does not protect the data that

must be visible to users. For example, although the password

of an email account is protected, the data of email itself is in

plaintext on the device for being displayed. The protection of

general privacy data could be done through existing systems

such as KeyPad and CleanOS, which is orthogonal to our

work. TinMan focuses on protecting cor and could be seen

as a complementary to previous work.

Protect cor from abusing. TinMan can protect the confi-

dentiality of the cor, but cannot eliminate cor abuse. For ex-

ample, if an attacker steals a mobile phone that is not locked,

and uses it to login Facebook and check the phone owner’s

chatting history, then TinMan cannot defend against such at-

tack, but can rely on users’ explicit revocation of accesses

of the lost device. Such an attack can be defeated by using

more secure authentication technologies, such as biological

authentication. Another way is to adopt more effective dy-

namic analysis on the trusted node, which can detect user’s

abnormal behavior and give some warnings. Even without

these technologies, TinMan can still ensure that user’s pass-

word of Facebook is not exposed to the attacker, and any

login activity is logged and cannot be denied. Once the user

notices that the device is lost, he/she can revoke the permis-

sion of cor access to prevent future attacks.

Attack time window. An app might not require password

to login everytime it is activated. One scenario is that after

the first time of login using password, the app saves a tempo-

rary token generated by the server for authentication in later

communication. Since the token is not visible to the trusted

node, it is not tainted or tracked. Although such token can

reduce the overhead of performance and network traffic of

TinMan, it also causes a time window for attacker to bypass

TinMan. Shortening the time-to-live of the token can shrink

the attack time window. Such attack has many in common

with the cor abusing, but TinMan ensures that in either case

the cor itself is still protected which can prevent password

reuse attack. For some cors like credit card number, each

access requires a new authentication. Thus there is no such

attack time window in these cases.

Connectivity requirement. TinMan requires that the mo-

bile device be online while accessing cor. If the device is of-

fline, e.g., during a flight, the cor is not available. We think

this requirement will affect little users’ experience. We argue

that most scenarios of accessing cor would already require

network connectivity, such as web login or online banking,

so TinMan does not add more requirements. Another issue is

that an attack may use DoS attack on the trusted node which

leads to DoS on the user.

Network policy on the trusted node. We require to

deploy the trusted node on a machine without IP egress

filtering, or make the machine set policies to allow legal IP

address switching. Otherwise, if the trusted node employs

egress filtering, it might treat the TCP header switching as

IP spoofing attack and refuse to send the reframed packet.

Usability implications. TinMan changes a user’s behav-

ior when using password or credit card number. First, the

user needs to setup her/his own cor on the trusted node. This

task is relatively trivial since the number of cor is usually

small. For example, typically a user has less than five pass-

words [18] for all of her/his online accounts. This process

can also be done in a batch if the user uses some password

management tools such as LastPass. Second, when a user

needs to use cor, e.g., during web login, she/he will select

one from the list instead of typing them on the device. If

a user reuses a password for a non-critical account, which

is a common case, she/he can initialize a password with the

name “My General Password” and select it for multiple sites.

If a user needs to create a new account with a new password,

she/he can choose “Generate New Password” in the menu to

let the trusted node create a password. By avoiding typing

on the small screen, TinMan can actually improve the user

experience.

Compatibility. TinMan modifies the Android framework

as well as the JVM. It also requires apps to use system’s SSL

library, which is modified to enable session injection. If an

app uses its own SSL library, then TinMan currently cannot

be used to protect its cor. In our evaluation of top 100 apps

on Google Play, all of them use system’s SSL library.

6. Performance Evaluation

In this section, we evaluate the performance overhead of the

TinMan system. The evaluation is conducted on a Samsung

Galaxy Nexus smartphone, with Android 4.1 installed as the

default system. The phone has a 1.2 GHz TI OMAP4460

CPU, a 1 GB memory, 16 GB internal storage, a 1750 mAh

Battery and 1280x720 display. We deploy the trusted node

in a PC with 2.8 GHz Intel i5-2300 quad-core CPU, 8 GB

memory, 500 GB disk, and 100/1000 Mbps NIC. We conduct

the end-to-end evaluation in both Wi-Fi and 3G network

environment.

6.1 Micro-benchmark Performance

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Sieve Loop Logic String Float Method Overall Score

C
a
ff
e
in

e
M

a
rk

 3
.0

 S
c
o
re

20.1%
9.6%

Original system
TinMan (symmetric-taint)

TinMan (asymmetric-taint)

Figure 13: Caffeinemark results

We first use Caffeinemark, a computation-intensive work-

load, to evaluate the performance overhead of TinMan. We

use three configurations: the original one, the one with

full-fledged tainting, and the one with asymmetric tainting.

The results show that the average performance overhead

of TinMan using asymmetric tainting is only 9.6%. If the

client uses a full-fledged tainting mechanism (similar with

TaintDroid), then the average overhead is 20.1%. TinMan

achieves better performance in asymmetric tainting since it

only tracks heap-to-stack and heap-to-heap operations, but

not stack-to-heap and stack-to-stack operations.

The original Android platform has significantly better

performance than TinMan in the String benchmark. This

is because some optimizations of string operations enabled

in the original Android system are disabled in TinMan for

tainting. Meanwhile, the ratio of heap-to-stack operation is

very high in the String benchmark, which is also one of the

reasons of the performance degradation. Since there is no cor

data in these benchmark, the overhead is mainly caused by

the tainting mechanism. For normal apps without accessing

cor, the overhead should be lower since a typical app usually

spends most of the time waiting for users’ input and is not

computation intensive.

6.2 End-to-end Performance

We measure the latency of the different applicaitions login

process under both Wi-Fi and 3G network using the original

Android and our TinMan system. The offloading engine re-

quires to transfer the entire app binary (i.e., the dex file) from

the mobile phone to the trusted node the first time, which is

a one-time effort. The measurements in the TinMan system

are done after warm-up (i.e., the trusted node already has the

dex files of the apps). The results are shown in Figure 14

and Figure 15. In the Wi-Fi network environment, the av-

erage latency of application login using TinMan increases

from 4.0s to 5.95s, where the DSM-based offloading takes

0.8s in average and SSL/TCP offloading related overhead

is 1.2s in average. When using the 3G network, in average,

the latency increases from 5.4s to 8.2s, where the offloading

takes 1.2s and the other overhead is 1.6s. As login is a kind

of low frequency operation, such overhead is acceptable.

The time for warm-up depends on the size of apps’ dex

files. For example, the dex file of paypal app is around 2MB

and it takes about 8 seconds to transfer from the client to the

trusted node. The warm-up is needed only once for each app,

thus it does not hurt the performance of normal runs.

6.3 Offloading Overhead

We also count the code that will be offloaded to the trusted

node and measure the network consumption when running

login operations in different applications.

Apps Off. Code
Sync. Off. Init. Off. Dirty

Times (KB) (KB)

paypal 10274 (4.7%) 2 768.5 24.3

ebay 2835 (2.4%) 4 759.8 16.6

github 1672 (2.0%) 3 603.0 4.9

askfm 1791 (1.7%) 4 716.6 18.7

Table 3: Offload code, times of synchronization and the network

consumption of login for different applications

To count the percentage of the code offloaded when a cor

is accessed, we log every function invocation in the trusted

node, and count the overall function invocations during the

login phase. As shown in table 3, the number in the first

column (e.g., 10274) represents the total number of method

invocation in the trusted node, and the percentage (e.g.,

4.7%) is the proportion of the offloaded code in the total

 0

 3

 6

 9

 12

 15

Original
TinMan

Original
TinMan

Original
TinMan

Original
TinMan

E
la

p
s
e

d
 T

im
e

 (
S

e
c
o

n
d

s
)

WiFi

7.1

9.4

3.6

5.2

2.3

4.1

3.0

5.1

Original login
On-demand offload

SSL/TCP offload

askfmgithubebaypaypal

 0

 3

 6

 9

 12

 15

Original
TinMan

Original
TinMan

Original
TinMan

Original
TinMan

E
la

p
s
e

d
 T

im
e

 (
S

e
c
o

n
d

s
)

3G

9.2

12.3

4.5

6.9

3.8

6.6

4.3

6.9

Original login
On-demand offload

SSL/TCP offload

askfmgithubebaypaypal

Figure 14: Break down of applications login time in Wi-Fi

network environment, after warming up

Figure 15: Break down of applications login time in 3G network

environment, after warming up

 90

 92

 94

 96

 98

 100

 0 10 20 30

B
a
tt

e
ry

 C
a
p
a
c
it
y
 (

%
)

Time (Minutes)

Original login power
TinMan login power

 88

 90

 92

 94

 96

 98

 100

 0 10 20 30

B
a
tt

e
ry

 C
a
p
a
c
it
y
 (

%
)

Time (Minutes)

Play Game Browse Web Watch Video

Original power
TinMan power

Figure 16: Battery level changing, runs stress test to repeat

login for 30 minutes

Figure 17: Battery level changing, each 10 minutes runs differ-

ent workloads, without login operations

number of method invocation. The data show that less than

5% of the code is offloaded, thus most of the code runs on

the mobile device.

Besides, we count the number of times of DSM-based

synchronization, either from the mobile phone to the trusted

node, or vice versa. We find that in these test cases, the syn-

chronization happens for three reasons: first, when the code

in the mobile phone accesses a tainted object; second, when

the code in the trusted node invokes a native method that can-

not be offloaded; third, when a “happen-before” relationship

needs to be established while the lock is held by the other

end (as happens in the github test). In all the cases, the times

of synchronization are less than 4, since the accesses to cor

typically involve only a small portion of data.

Table 3 also shows the amount of state transferred dur-

ing login operations. At the very beginning of the offload-

ing, one initial heap synchronization will happen. This first

sync phase will transfer a large number of states, most of

which will never change later. Thus we show the amount of

data transferred during the subsequent dirty field synchro-

nization, which is a few to tens of KB in most cases.

6.4 Power Consumption

In order to illustrate the power consumption impact of Tin-

Man, we conduct a stress test on login operations. We con-

secutively run PayPal login for 30 minutes in both Android

and TinMan, and get the remaining battery every 10 seconds.

As shown in Figure 16, after 30 minutes, Android system has

93% battery left, while TinMan has 91%. Since the offload-

ing just happen in a very small period of time, it has little

affect on the power consumption.

We also evaluate the power consumption caused by client

side tainting. The tainting mechanism on the mobile device

must be enabled at all times to monitor if any cor placeholder

is getting accessed, thus we focus on how tainting on the

phone will affect the power consumption. Our evaluation

has three phases to run three typical applications, each with

10 minutes. In the first phase, a user plays AngryBird for

10 minutes. In the second phase, the phone is used to skim

various Wikipedia web pages, with figures and texts. In the

third phase, the user plays a local 720p video for 10 minutes.

The battery level is recorded every 10 seconds. We perform

the test on Android as well as using TinMan, and the results

are shown in Figure 17. The curves indicate that TinMan

only occurs small amount of power overhead.

7. Related Work

TinMan retrofits some prior techniques such as taint tracking

and computation offloading, but is the first to combine and

extend them to protect (non-interactive) confidential data

without trusting the entire mobile stack. This section briefly

relates TinMan to state of the art.

Taint Tracking: Taint tracking, also known as informa-

tion flow tracking, has been intensively used for defend-

ing attacks and privacy protection [13, 66]. For example,

Haldar et al. [28] use taint tracking to defend against SQL

injection attacks by instrumenting the Java String class.

Chandra et al. [12] instrument Java byte-code to support

fine-grained information flow tracking. Similarly, Nair et

al. [45] instrument the Kaffe JVM. TaintDroid [20] imple-

ments system-wide information flow tracking on the An-

droid system. Compared to prior work, TinMan leverages a

new asymmetric tainting mechanism across the mobile de-

vice and trusted node, which is lightweight on the client to

minimize overhead and is full-fledged on the trusted node

to retain precision. Pebbles [57] uses tainting to infer the

application level semantic from the OS level, and develops

security tools based on the semantics. Pebbles can be com-

plementary to TinMan to automatically identify more types

of cor.

Computation Offloading: There are many systems de-

signed for computing offloading, including Hera-JVM [39],

MAUI [17], CloneCloud [15], Cuckoo [34], JESSICA2 [69],

and COMET [25]. These systems are designed to improve

performance and lower energy usage by offloading parts of

a mobile application to a more powerful remote compute

resource. None of these systems leverage offloading to ad-

dress security issues like TinMan. ECOS [24] presents an

enterprise-centric offloading system that addresses the se-

curity needs of mobile applications. It selectively encrypts

offloading communication to protect the transmission of pri-

vate data. TinMan has different goals and focuses on protect-

ing cor from device theft.

Cloud-based Security Services for Mobile Devices:

The wide adoption of mobile devices also stimulates lots

of protection systems [14, 23, 33, 35, 38, 46, 51, 60, 61],

among which the cloud is increasingly being used to offer

security as a service. Keypad [23] and CleanOS [61] are two

typical systems that leverage the cloud as a backend service

for encryption and storage. Mackenzie et al. [38] present

a cloud-based authentication system with capture-resilient

cryptography. Some researchers try to offer antivirus service

by cloud, such as SmartSiren [14], CloudAV [46], and Thi-

nAV [33]. Similarly, Paranoid Android [50] uses record and

replay to synchronize states between the phone and cloud

and deployed security enforcement on the cloud. TinMan

focuses on protecting cor and could be considered as com-

plementary to these work. It can also leverage existing work

like [64, 65, 67] to enhance the security of the trusted node.

Memory-less Computing: Memory-less computing [22,

26, 42, 43, 48, 49, 56, 58, 62], also known as CPU-bound

computing, removes plaintext of critical data from RAM and

puts it only in CPU (i.e., cache or registers) during compu-

tation to defend against physical attacks. These solutions are

effective to protect keys for local RSA encryption/decryp-

tion, but it also relies on a huge TCB including the entire OS.

Architectural support for private data protection [36, 37, 53–

55, 59] is a strong way to protect both confidentiality and

integrity of data even under physical attacks, by only plac-

ing plaintext data in on-chip CPU cache and encrypting the

data when being stored to the main memory. However, there

is no such commodity processor available so far.

Secure Execution: PrivExec [47] provides secure execu-

tion as an OS service and allow applications to execute in

a private execution. TinMan could be considered as a sim-

ilar method that provides secure access to cor as a service

at the granularity of arbitrary code instead of an entire ap-

plication. DARKLY [32] is another system that leverages a

similar approach to operating secure critical data (e.g., cam-

era raw data). An application can operate such data through

some API defined by trusted libraries, which run in an envi-

ronment isolated with the application. TinMan also separates

the code of an application and runs all the code accessing

cor on the trusted node. TinMan differs with those systems

in both the threat model and the implementation.

8. Conclusion and Future Work

This paper presents TinMan, a system aiming at protecting

Confidential Record (cor) on mobile devices. TinMan places

all cors only on a trusted node and puts corresponding place-

holders on the mobile device. By combining taint tracking

and on demand offloading using distributed shared memory,

TinMan ensures no exposure of plaintext of cors on mobile

devices and thus can protect cors from rootkit malware and

even sophisticated physical attacks. Experimental evaluation

confirms the security and efficiency of TinMan.

In the future, we’ll further reduce the overhead caused

by offloading. On the trusted node side, we plan to deploy

more sophisticated static and dynamic analysis technologies

to monitor cor access, and leverage massive knowledge and

statistical analysis to detect anomaly behavior to further

enhance the security of critical data access.

9. Acknowledgements

We thank our shepherd Rüdiger Kapitza and the anony-

mous reviewers for their insightful comments. This work

is supported by a research grant from Huawei Technolo-

gies, Inc., China National Natural Science Foundation (No.

61303011), the Program for New Century Excellent Tal-

ents in University, Ministry of Education of China (No.

ZXZY037003), a foundation for the Author of National Ex-

cellent Doctoral Dissertation of PR China (No. TS0220103006),

the Shanghai Science and Technology Development Fund

for high-tech achievement translation (No. 14511100902), a

research grant from Intel and the Singapore NRF (CREATE

E2S2).

References

[1] Alipay. http://www.alipay.com.

[2] Beast attack on client-side ssl. http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2011-3389.

[3] Cve-2013-6271. http://www.cvedetails.com/cve/CVE-2013-

6271/.

[4] Bitlocker drive encryption technical

overview. http://technet.microsoft.com/en-

us/library/cc766200%28WS.10%29.aspx, 2009.

[5] Lookout mobile security. lost and found: The

challenges of finding your lost or stolen phone.

blog.mylookout.com/blog/2011/07/12/lost-and-found-

the-challenges-of-finding-your-lost-or-stolen-phone, 2011.

[6] Break out a hammer: You’ll never be-

lieve the data ’wiped’ smartphones store.

http://www.wired.com/gadgetlab/2013/04/smartphone-

data-trail/all/, 2013.

[7] Critical app flaw bypasses screen lock on up to 100 million an-

droid phones. http://arstechnica.com/security/2013/04/crital-

app-flaw-bypasses-screen-lock-on-up-to-100-million-

android-phones/, 2013.

[8] Samsung galaxy s iii has a lockscreen

bug; security can be easily bypassed.

http://www.brighthand.com/default.asp?newsID=19867&news

=Samsung-Galaxy-S-III-Unlock-Screen-Bug-Lets-Security-

Be-Bypassed, 2013.

[9] Skype for android lockscreen bypass.

http://seclists.org/fulldisclosure/2013/Jul/6, 2013.

[10] Xperia z security flaw exposed as lock screen bypassed.

http://www.xperiablog.net/2013/03/25/xperia-z-security-

flaw-exposed-as-lock-screen-bypassed/, 2013.

[11] T. Cannon and S. Bradford. Into the droid: Gaining access to

android user data, 2012.

[12] D. Chandra and M. Franz. Fine-grained information flow

analysis and enforcement in a java virtual machine. In ACSAC,

pages 463–475. IEEE, 2007.

[13] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T.

Chong. From speculation to security: Practical and efficient

information flow tracking using speculative hardware. In 35th
International Symposium on Computer Architecture, 2008.

ISCA’08., pages 401–412. IEEE, 2008.

[14] J. Cheng, S. H. Wong, H. Yang, and S. Lu. Smartsiren: virus

detection and alert for smartphones. In MobiSys, pages 258–

271, 2007.

[15] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.

Clonecloud: elastic execution between mobile device and

cloud. In EuroSys, pages 301–314, 2011.

[16] F. C. Commission. Announcement of new ini-

tiatives to combat smartphone and data theft.

www.fcc.gov/document/announcement-new-initiatives-

combat-smartphone-and-data-theft, 2012.

[17] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,

S. Saroiu, R. Chandra, and P. Bahl. Maui: making smart-

phones last longer with code offload. In MobiSys, pages 49–

62. ACM, 2010.

[18] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang.

The Tangled Web of Password Reuse. In NDSS, pages 23–

26, 2014.

[19] S. M. Diesburg and A.-I. A. Wang. A survey of confidential

data storage and deletion methods. ACM Computing Surveys

(CSUR), 43(1):2, 2010.

[20] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth. Taintdroid: an information-flow

tracking system for realtime privacy monitoring on smart-

phones. In OSDI, pages 1–6, 2010.

[21] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,

P. Leach, A. Luotonen, and L. Stewart. Http authentication:

Basic and digest access authentication, 1999.

[22] B. Garmany and T. Müller. Prime: private rsa infrastructure

for memory-less encryption. In Proceedings of the 29th An-

nual Computer Security Applications Conference, pages 149–

158. ACM, 2013.

[23] R. Geambasu, J. P. John, S. D. Gribble, T. Kohno, and H. M.

Levy. Keypad: an auditing file system for theft-prone devices.

In EuroSys, pages 1–16, 2011.

[24] A. Gember, C. Dragga, and A. Akella. Ecos: practical mobile

application offloading for enterprises. In Hot-ICE, 2012.

[25] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and

X. Chen. Comet: code offload by migrating execution trans-

parently. In OSDI, pages 93–106, 2012.

[26] L. Guan, J. Lin, B. Luo, and J. Jing. Copker: Computing with

private keys without ram. 2014.

[27] P. Gutmann. Data remanence in semiconductor devices.

In Proceedings of the 10th conference on USENIX Secu-

rity Symposium-Volume 10, pages 4–4. USENIX Association,

2001.

[28] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propaga-

tion for java. In ACSAC, pages 9–pp. IEEE, 2005.

[29] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul,

J. Calandrino, A. Feldman, J. Appelbaum, and E. Felten. Lest

we remember: cold-boot attacks on encryption keys. Commu-

nications of the ACM, 52(5):91–98, 2009.

[30] G. Inc. Android honeycomb encryption.

http://source.android.com/tech/encryption/android crypto

implementation.html.

[31] P. Institute. The lost smartphone problem.

http://www.mcafee.com/us/resources/reports/rp-ponemon-

lost-smartphone-problem.pdf, 2011.

[32] S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly:

Protecting user privacy from perceptual applications. In IEEE

Symposium on Security and Privacy, 2007.

[33] C. Jarabek, D. Barrera, and J. Aycock. ThinAV: truly

lightweight mobile cloud-based anti-malware. In ACSAC,

pages 209–218, 2012.

[34] R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo:

a computation offloading framework for smartphones. In

MobiCASE, pages 59–79. Springer, 2012.

[35] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li.

Building trusted path on untrusted device drivers for mobile

devices. In Proceedings of 5th Asia-Pacific Workshop on

Systems, page 8. ACM, 2014.

[36] D. Lie, C. Thekkath, and M. Horowitz. Implementing an

untrusted operating system on trusted hardware. In Proc.

SOSP, 2003.

[37] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,

J. Mitchell, and M. Horowitz. Architectural support for copy

and tamper resistant software. In Proc. ASPLOS, pages 168–

177, 2000.

[38] P. MacKenzie and M. K. Reiter. Networked cryptographic

devices resilient to capture. In IEEE Symposium on Security

and Privacy, pages 12–25. IEEE, 2001.

[39] R. McIlroy and J. Sventek. Hera-jvm: Abstracting processor

heterogeneity behind a virtual machine. In HotOS, 2009.

[40] Microsoft. 2003. encrypting file system in windows xp

and windows server 2003. http://technet.microsoft.com/en-

us/library/bb457065.aspx.

[41] M. Milian. U.s. government, mil-

itary to get secure android phones.

http://www.cnn.com/2012/02/03/tech/mobile/government-

android-phones/index.html, 2012.

[42] T. Müller, A. Dewald, and F. C. Freiling. Aesse: a cold-boot

resistant implementation of aes. In Proceedings of the Third

European Workshop on System Security, pages 42–47. ACM,

2010.

[43] T. Müller, F. C. Freiling, and A. Dewald. Tresor runs encryp-

tion securely outside ram. In USENIX Security Symposium,

pages 17–17, 2011.

[44] T. Müller and M. Spreitzenbarth. Frost. In Applied Cryptog-

raphy and Network Security, pages 373–388. Springer, 2013.

[45] S. K. Nair, P. N. Simpson, B. Crispo, and A. S. Tanenbaum.

A virtual machine based information flow control system for

policy enforcement. Electronic Notes in Theoretical Com-

puter Science, 197(1):3–16, 2008.

[46] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV: N-version

antivirus in the network cloud. In USENIX Security, pages

91–106, 2008.

[47] K. Onarlioglu, C. Mulliner, W. Robertson, and E. Kirda.

Privexec: Private execution as an operating system service. In

IEEE Symposium on Security and Privacy, 2007.

[48] J. PABEL. Frozencache mitigating cold-boot attacks for full-

disk-encryption software. In 27th Chaos Communication

Congress (Berlin, Germany, 2010.

[49] T. P. Parker and S. Xu. A method for safekeeping crypto-

graphic keys from memory disclosure attacks. In Trusted Sys-

tems, pages 39–59. Springer, 2010.

[50] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.

Paranoid android: versatile protection for smartphones. In

ACSAC, pages 347–356, 2010.

[51] K. P. Puttaswamy, C. Kruegel, and B. Y. Zhao. Silverline:

toward data confidentiality in storage-intensive cloud applica-

tions. In Proceedings of the 2nd ACM Symposium on Cloud

Computing, page 10. ACM, 2011.

[52] J. Reardon, S. Capkun, and D. A. Basin. Data node encrypted

file system: Efficient secure deletion for flash memory. In

USENIX Security Symposium, pages 333–348, 2012.

[53] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin. Us-

ing Address Independent Seed Encryption and Bonsai Merkle

Trees to Make Secure Processors OS- and Performance-

Friendly. In Proc. MICRO, pages 183–196, 2007.

[54] W. Shi, H.-H. S. Lee, M. Ghosh, and C. Lu. Architectural

support for high speed protection of memory integrity and

confidentiality in multiprocessor systems. In Proc. PACT,

pages 123–134, 2004.

[55] W. Shi, H.-h. S. Lee, and C. Lu. High Efficiency Counter

Mode Security Architecture via Prediction and Precomputa-

tion College of Computing. In Proc. ISCA, 2005.

[56] P. Simmons. Security through amnesia: a software-based solu-

tion to the cold boot attack on disk encryption. In Proceedings

of the 27th Annual Computer Security Applications Confer-

ence, pages 73–82. ACM, 2011.

[57] R. Spahn, J. Bell, M. Z. Lee, S. Bhamidipati, R. Geambasu,

and G. Kaiser. Pebbles: Fine-grained data management ab-

stractions for modern operating systems. 2014.

[58] P. Stewin. A primitive for revealing stealthy peripheral-

based attacks on the computing platforms main memory. In

Research in Attacks, Intrusions, and Defenses, pages 1–20.

Springer, 2013.

[59] G. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas.

AEGIS: architecture for tamper-evident and tamper-resistant

processing. In Proc. Supercomputing, 2003.

[60] C. Tan, H. Li, Y. Xia, B. Zang, C.-K. Chu, and T. Li. Precrime

to the rescue: defeating mobile malware one-step ahead. In

Proceedings of 5th Asia-Pacific Workshop on Systems, page 5.

ACM, 2014.

[61] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu,

and N. Sarda. Cleanos: Limiting mobile data exposure with

idle eviction. In OSDI, 2012.

[62] A. Vasudevan, J. McCune, N. Qu, L. Van Doorn, and A. Per-

rig. Requirements for an Integrity-Protected Hypervisor on

the x86 Hardware Virtualized Architecture. In Proc. Trust

and Trustworthy Computing, pages 141–165, 2010.

[63] M. Y. C. Wei, L. M. Grupp, F. E. Spada, and S. Swanson.

Reliably erasing data from flash-based solid state drives. In

FAST, volume 11, pages 8–8, 2011.

[64] Y. Xia, Y. Liu, and H. Chen. Architecture support for guest-

transparent vm protection from untrusted hypervisor and

physical attacks. In 2013 IEEE 19th International Symposium

on High Performance Computer Architecture, HPCA’13.,

pages 246–257. IEEE, 2013.

[65] Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting

violation of control flow integrity using performance counters.

In Proc. DSN, 2012.

[66] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.

Making information flow explicit in histar. In Proceedings of

the 7th symposium on Operating systems design and imple-

mentation, pages 263–278. USENIX Association, 2006.

[67] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor :

Retrofitting Protection of Virtual Machines in Multi-tenant

Cloud with Nested Virtualization. In Proc. SOSP, pages 203–

216, 2011.

[68] Y. Zhou and X. Jiang. Dissecting android malware: Charac-

terization and evolution. In IEEE Symposium on Security and

Privacy, 2012.

[69] W. Zhu, C.-L. Wang, and F. C. Lau. Jessica2: A distributed

java virtual machine with transparent thread migration sup-

port. In Cluster Computing, pages 381–388. IEEE, 2002.

