
Dissertation Submitted to Shanghai Jiao Tong University
for the Degree of Doctor

FAST DISTRIBUTED TRANSACTION
PROCESSING USING RDMA AND NVM

Candidate: Xingda Wei

Student ID: 017037910004

Supervisors: Prof. Binyu Zang, Prof. Rong
Chen, Prof. Haibo Chen

Academic Degree Applied for: Ph.D. of Engineering

Speciality: Computer Science

Affiliation: School of software, SEIEE

Date of Defence: May 24, 2021

Degree-Conferring-Institution: Shanghai Jiao Tong University

FAST DISTRIBUTED TRANSACTION PROCESSING
USING RDMA AND NVM

ABSTRACT

Fast distributed transaction processing is a key pillar inmodern datacen-
ter computing. However, distributed transaction processing is notoriously
slow due to the cost of coordination among multiple nodes and logging for
high availability and durability. The emergence of new hardware features, in-
cluding fast network (RDMA), and fast storage-class memory (NVM) bring
opportunities for reducing the cost of transaction processing. To fully utilize
these hardware features, it is crucial to develop methodologies to bridge the
semantic gap between distributed transactions and new hardware features,
and abstractions for coordinating different hardware efficiently.

This thesis builds DrTM+X, a distributed transaction system that fully
leverages the power of RDMA and NVM. DrTM+X is over one order of mag-
nitude faster than distributed transaction systems without these hardware
features. It also has a significant performance increase compared to state-
of-the-art systems with RDMA and NVM.

The high performance of DrTM+X is enabled by three approaches. First,
we conduct the first systematic study to summarize design guidelines to best
utilize RDMA and NVM together, as well as abstractions for systems to
transparently apply the summarized guidelines. We show with careful de-
signs, transactions can fully leverage the high performance of RDMA and
NVM. Second, we design learned cache, the first machine learning method
to bridge the semantic gap between ordered data access of transactions and
the hardware features of RDMA. It reduces the network roundtrips for or-
dered key-value access with RDMA from 𝑂(logN) to 𝑂(1). Third, we design

— I —

hybrid schemes to tame the complexities of accelerating concurrency control
with RDMA. We propose the first phase-by-phase analysis to select the best
RDMA primitives for OCC, and DST to differentiate the processing of read-
only transactions for higher concurrency. DST eliminates the performance
bottleneck of traditional MVCC under RDMA.

Our thesis shows that fully leveraging new hardware features for trans-
actions requires a careful system design. The techniques introduced in this
thesis can also be applied broadly in various contexts. For example, our
summarized hardware abstractions have benefited other RDMA-NVM sys-
tems, while DST helps to improve the performance and scalability of existing
databases.

KEY WORDS: Distributed Transaction, Remote Direct Memory Access,
Non-volatile Memory, Concurrency Control, Learned Index

— II —

Contents

Chapter 1 Introduction . 1
1.1 Opportunities and challenges of using RDMA and NVM for distributed

transactions . 2
1.2 Thesis contributions . 5
1.3 Thesis overview . 8
1.4 Open-source code . 8

Chapter 2 A Study of using RDMA and NVM . 9
2.1 Evaluation clusters . 9
2.2 R2: a high-performance execution framework with RDMA.. 10

2.2.1 Background on RDMA .. 10
2.2.2 Basic design of R2 . 11
2.2.3 Optimizations review and passive ACK . 13
2.2.4 A primitive-level performance analysis . 15
2.2.5 Summary: offloading when completion is required 18
2.2.6 Related work on RDMA-aware optimizations . 18

2.3 RDPMA: fast remote persistent memory with RDMA and NVM.. 19
2.3.1 Introduction . 19
2.3.2 Background on NVM .. 21
2.3.3 Methodology . 24
2.3.4 Design advice for RDMA-NVM systems . 28
2.3.5 RDPMA and improved system design . 37
2.3.6 Summary . 39
2.3.7 Related work on NVM .. 40

2.4 Discussion and future trends . 40
2.5 Conclusion . 41

Chapter 3 Learned cache for RDMA-based Ordered Key-value Store 43
3.1 Background of RDMA-based ordered key-value store . 44
3.2 Analysis of RDMA-based ordered key-value stores. 46

— III —

3.3 An overview of XStore . 48
3.4 Design and implementation of XStore . 51

3.4.1 Data structures . 52
3.4.2 Client-direct operations . 56
3.4.3 Server-centric operations . 58
3.4.4 Durability . 62
3.4.5 Scaling out XStore. 63

3.5 Implementation of XMODEL . 63
3.5.1 Implementation of ML models . 63
3.5.2 ML Model selection. 64

3.6 Discussion . 67
3.7 Evaluation . 68

3.7.1 Experimental Setup . 68
3.7.2 YCSB performance . 69
3.7.3 Effects of optimizations . 73
3.7.4 Production workload performance . 74
3.7.5 Scale-out performance . 74
3.7.6 Model (re-)training and expansion . 74
3.7.7 Memory footprint of XCACHE . 76
3.7.8 Data distribution . 77
3.7.9 Durability . 77

3.8 Related work on learned index . 78
3.9 Conclusion . 78

Chapter 4 Phase-by-phase Analysis for Hybrid RDMA-enabled Concurrency
Control . 79
4.1 Background on RDMA-enabled distributed transactions 79
4.2 One-sided vs. Two-sided: an on-going debate . 80
4.3 A phase-by-phase performance analysis . 81

4.3.1 Execution (E) . 83
4.3.2 Validation (V) . 85
4.3.3 Commit (C) . 87
4.3.4 Logging (L). 88
4.3.5 Read-only transaction (R+V). 90

— IV —

4.4 DrTM+H: Fast transactions using hybrid schemes . 91
4.4.1 Design of DrTM+H . 91
4.4.2 Performance evaluation . 92
4.4.3 Comparison against prior designs . 93

4.5 Discussion . 97
4.5.1 Related work on RDMA-enabled systems . 97

4.6 Conclusion . 98

Chapter 5 Using DST for Scalable Multi-version Concurrency Control 99
5.1 Background and motivation . 101

5.1.1 Target systems . 101
5.1.2 MVCC and timestamps . 101
5.1.3 Analysis of network overhead . 105

5.2 Decentralized scalar timestamp (DST) . 108
5.2.1 Timestamps in read-write transaction . 108
5.2.2 Timestamps in read-only transaction . 111
5.2.3 Proof of correctness . 113
5.2.4 Hybrid timestamp and bounded staleness. 114
5.2.5 Failure and recovery . 116

5.3 Generality of DST . 116
5.3.1 A guideline for integrating DST . 117
5.3.2 Case study . 117

5.4 Discussion . 119
5.5 Evaluation . 120

5.5.1 DrTM+H . 121
5.5.2 MySQL cluster . 124
5.5.3 Rococo . 124
5.5.4 A study of DST cost . 125

5.6 Related work on timestamps . 126
5.7 Conclusion . 128

Chapter 6 Put It All Together: A Fast Distributed Transaction System 129
6.1 RDMA-friendly storage layer . 129

6.1.1 Evaluations . 130

— V —

6.2 RDMA-friendly transaction execution layer . 131
6.3 Supporting durability with RDPMA . 133

6.3.1 Evaluations . 134
6.4 Conclusion . 135

Conclusion . 137

Bibliography . 139

— VI —

Chapter 1 Introduction

Fast transaction processing is a key pillar for many systems, including but not lim-
ited to web service, stock exchange, and e-commerce. Due to the increasing amount of
data volume, a common way to support transaction processing is to partition the data
through many shards. This necessitates distributed transactions. Distributed transactions
with serializability and high availability provide a powerful abstraction to programmers.
They give them an illusion of a single machine that executes transactions with strong
consistency and never fails.

24

4

24
24

24

“… only 4% of wall-clock time
is spent on useful data processing …”

Michael Stonebraker,
“The Traditional RDBMS Wisdom is All Wrong”

Latching
Recovery

Locking
Buffer
Pool

Useful work

Figure 1–1 Costs of executing transactions. Reproduced from Michael Stonebraker [1].

Unfortunately, distributed transactions are notoriously slow, due to the cost of co-
ordination among multiple nodes and logging for high availability and durability. Even
single-node transaction processing has a high cost. Michael Stonebraker has once said
that “The traditional RDBMS wisdom is all wrong ... as only 4% of wall-clock time is
spent on useful data processing, while the rest is occupied with buffer pools, locking,
latching, recovery” [1], illustrated in Figure 1–1. In distributed transactions, these costs
are further magnified by slow remote node communications and providing stronger prop-
erties (i.e., high availability). For example, locking remote data in the distributed trans-
action has a much higher overhead than single-node systems because network latency is
order-of-magnitude higher than local memory access even under fast networks [2]. Mean-
while, distributed transactions have to additionally synchronize multiple data replicas to
achieve high availability.

— 1 —

People have been seeking to improve the performance of (distributed) transaction
processing for decades [3-20]. Early works focused on improving the algorithmic prop-
erties in transaction protocols. For example, Rococo [19] proposes a new concurrency
control method to avoid aborts in distributed transactions. Meanwhile, recent work has
revealed that co-designing transactions with new hardware features can bring huge per-
formance improvements [3, 7, 13, 17, 21]. For example, Silo is a centralized database that
optimizes optimistic concurrency control (OCC) [22] with multi-core platforms. FaRM
is a distributed transaction system that co-design OCC with advanced networking fea-
tures. By carefully designing the system with modern hardware features, FaRM and Silo
can achieve orders-of-magnitude better performance than traditional transaction systems.

This dissertation focuses on using the emerging datacenter hardware technologies,
namely RDMA (Remote Direct Memory Access) and NVM (Non-volatile Memory)
(§1.1), to reduce the costs in distributed transactions. RDMA is a fast networking fea-
ture widely adopted in modern datacenters. NVM is a fast storage-class memory. They
both provide new hardware features that distributed transactions can use to reduce the
execution costs.

A straightforward approach of applying new hardware features to distributed
transactions—adopting the backward-compatible primitives provided by the new
hardware—can clearly improve the performance of transactions. However, this approach
fails to fully utilize the advanced features of the new hardware, and thus, results in in-
ferior performance (e.g., see §3.2) Differently, we try to answer a natural question: how
can we build a fast distributed transaction system that can fully utilize the features of
RDMA and NVM? In the later section (§1.1), we will see that it’s non-trivial to answer
this question because first, distributed transaction processing has a semantic gap between
new hardware features. Second, a careful system design is required to efficiently bridge
heterogeneous hardware together.

1.1 Opportunities and challenges of using RDMA and NVM for dis-
tributed transactions

Based on the current technology trends, it seems that Moore’s law would come to an
end, and Dennard scaling would break down [23]. Hence, people can hardly improve the
performance of transactions by simply switching to the next-generation CPU. Besides, it
is more challenging for general-purpose CPUs to keep the step with rapid advances in fast

— 2 —

networking, especially in bandwidth [24]. Therefore, people are starting to co-designing
systems with RDMA [2, 13, 17-18, 25-37], a fast networking feature with offloading
capabilities; co-designing systems with NVM [38-50], a fast storage-class memory; and
both [13, 18, 51-57].

Remote direct memory access (RDMA) is a high-bandwidth and low-latency net-
working feature. It provides datagram communication (two-sided primitive), together
with offloading technology (one-sided primitive): the network card can directly access
the memory of remote machines bypassing kernel and remote CPUs. Therefore, one-
sided primitive has both high communication performance and high CPU utilization. Re-
searchers from industry and academia have been using RDMA to boost the performance
of distributed transactions, usually by orders of magnitudes [13, 17-18, 25]. Besides
leveraging two-sided primitive to optimize the communications in the distributed trans-
action [25], one can also offload the transaction protocol with one-sided primitive [13,
17]. Hence, RDMA can possibly reduce the cost of remote locking shown in Figure 1–1.

Non-volatile memory (NVM) is a storage class memory. Compared to traditional
storage like SSD, it can provide higher bandwidth and lower latency. Besides, it is also
byte-addressable, which means that other devices (e.g., CPU or RDMA) can directly ac-
cess it as DRAM. People can leverage NVM to reduce the buffering cost and logging cost
required for recovery in transaction processing (Figure 1–1).

Challenges of adopting RDMA and NVM for distributed transactions. Though
RDMA and NVM pose an optimistic direction for reducing the costs in distributed trans-
actions, we face two key challenges in fully utilizing them for transactions:

• Limited offloading capability. Only using two-sided primitive—the backward
compatible primitive of RDMA—cannot fully leverage the power of it. This is be-
cause CPUwould first become the bottleneck (§3.2). However, one-sided RDMA
only has limited offloading capabilities, i.e., the NIC only supports simple mem-
ory read/write. Therefore, simply offloading transactions to one-sided RDMA
will cause network amplification [25], degrading the overall utilization of RDMA.
This dilemma further opened a recent active debate over which RDMA primitive,
namely one-sided or two-sided, is better suited for distributed transactions [13,
17, 25, 58]. This dissertation will present how to close this debate with a new
phase-by-phase analysis of optimizing RDMA-enabled distributed transactions

— 3 —

5'0$ 190

+DUGZDUH

([HFXWLRQ�IUDPHZRUN

.H\�YDOXH�VWRUH

&RQFXUUHQF\�FRQWURO�	�ORJJLQJ

6WXG\

$EVWUDFW

6XSSRUW

R2 (§2.2) RDPMA (§2.3)

XStore (§3)

DrTM+H (§4) DST (§5)

Figure 1–2 DrTM+X (§6): a bottom-up approach to build a fast distributed transaction processing
system.

(§4). We will further show how to leverage machine learning-based methods to
efficiently offload complex operations to one-sided RDMA (§3).

• Uncoordinated heterogeneous hardware. NVM has the appealing feature of
byte-addressability, which means one-sided RDMA can directly access NVM.
This observation allows us to achieve the best of both worlds: leveraging one-
sided RDMA to bypass CPU and use NVM for fast persistent operations. Unfor-
tunately, RDMA and NVM are designed in an “uncoordinated” manner, meaning
they are not specifically designed for each other. As a result, RDMA-NVM sys-
tems may suffer from inferior performance when accessing NVM with RDMA.
For example, our initial experiment demonstrates that the performance of remote
write is far from the limits of NVM (§2.3.3) when using one-sided RDMA to
write NVM directly. Hence, it is imperative to conduct a thorough study of the
inferior performance and provide optimizations to efficiently coordinate RDMA
and NVM together. Unfortunately, as production NVM is just recently publicly
available, we lack such a study. This dissertation will first present a systematic
study on how to best leveraging NVM with RDMA before optimizing distributed
transactions with them (§2.3).

— 4 —

1.2 Thesis contributions
This thesis focuses on reducing the costs for executing distributed transactions using

RDMA and NVM. To tackle the challenges mentioned in §1.1, we take a bottom-up
approach, as illustrated in Figure 1–2. At the bottom, we first conduct a systematic study
on how to efficiently use RDMA and how to effectively glue RDMA and NVM together.
Based on the study, we build two execution frameworks (R2 (§2.2) and RDPMA (§2.3))
to abstracted the optimizing details away from upper systems. By building other system
components atop of R2 and RDPMA, we can effectively prevent inefficiency caused by
improper usage of hardware features. Going up, we split the transactional processing
into several layers (e.g., concurrency control) and examined how each of them can be
effectively designed with RDMA or NVM (§3, §4 and §5). Finally, we combined our
proposed techniques into a single platform (§6) to provide fast distributed transactions.
In summary, this thesis makes the following five contributions:

• A systematic study on how to best use RDMA and NVM (§2).) We conduct a
systematic study to summarize optimization hints that the system designer can use
to program with RDMA, and to exploit NVM with RDMA better. Specifically,
we demonstrate how system configurations, NVM access patterns, and RDMA-
aware optimizations affect the efficacy of systems that use RDMA and NVM.
Based on the summarized hints, we build two systems to fully utilize RDMA and
NVM and hide detailed optimizations. R2 is a distributed execution framework
designed with RDMA, and RDPMA is a remote persistent memory library designed
for RDMA and NVM. These two systems form the basis of the systems presented
in later chapters. Finally, we also demonstrate how to use R2 and RDPMA to im-
prove the performance of existing systems beyond distributed transactions. m

• An RDMA-friendly ordered key-value store using a learned approach (§3).
Ordered key-value store is an important building block in distributed transactions,
e.g., supporting secondary-index. Since querying the key-value entry over the
network is costly, RDMA has gained considerable interest in network-attached
ordered key-value stores. However, due to the limited abstraction provided by
one-sided RDMA, traversing the remote tree-based index in ordered key-value
stores with it becomes a critical obstacle, causing an order-of-magnitude slow-
down and limited scalability due to multiple roundtrips. Using index cache with

— 5 —

conventional wisdom—caching partial data and traversing them locally—usually
leads to limited effect because of unavoidable capacity misses, massive random
accesses, and costly cache invalidations. On the other hand, the CPU would be-
come the bottleneck for two-sided RDMA-based ordered key-value stores.
We argue that the machine learning (ML) model is a perfect cache structure for
the tree-based index termed learned cache. Based on it, we design and implement
XStore, an RDMA-based ordered key-value store with a new hybrid architecture
that retains a tree-based index at the server to perform dynamic workloads (e.g.,
inserts) using two-sided RDMA and leverages a learned cache at the client to
perform static workloads (e.g., gets and scans) using one-sided RDMA. The key
idea is to decouple ML model retraining from index updating by maintaining a
layer of indirection from logical to actual positions of key-value pairs, which al-
lows a stale learned cache to continue predicting a correct position for a lookup
key. Evaluations on micro and production workloads demonstrate the efficiency
of XStore: it can outperform the state-of-the-art one-sided and two-sided-based
ordered key-value stores by up to 5.9× (from 2.7×).

• A phase-by-phase approach to finding the optimal primitive choice for
RDMA-enabled distributed transactions (§4). There is currently an active
debate on which RDMA primitive (i.e., one-sided or two-sided) is optimal for dis-
tributed transactions. Such a debate has led to a number of optimizations based on
one RDMA primitive, which was shown with better performance than the other.
We perform a systematic comparison between different RDMA primitives with
a combination of various optimizations using representative OLTP workloads.
More specifically, we investigate the implementation of optimistic concurrency
control (OCC) by comparing different RDMA primitives using a phase-by-phase
approach with various transactions from TPC-C, SmallBank, and TPC-E. Our
results show that no single primitive (one-sided or two-sided) wins over the other
on all phases. We further conduct an end-to-end comparison of prior designs on
the same codebase (R2) and find none of them is optimal.
Based on the above analysis, we build DrTM+H, a new hybrid distributed trans-
action system that always embraces the optimal RDMA primitives at each phase
of transactional execution. Evaluations using popular OLTP workloads includ-
ing TPC-C and SmallBank show that DrTM+H achieves over 7.3 and 90.4 million

— 6 —

transactions per second on a 16-node RDMA-capable cluster respectively. This
number outperforms the pure one-sided and two-sided systems by up to 1.89X
and 2.96X for TPC-C with over 49% and 65% latency reduction.

• A scalable and general timestamp method to enable MVCC for distributed
transactions (§5). Multi-version concurrency control (MVCC) can unleash more
concurrency for the read-only transaction, a common workload in modern data-
center applications [59]. However, the traditional centralized timestamp scheme
used to support MVCC may become a performance and scalability bottleneck,
especially in fast RDMA-enabled transactions. We present DST, a decentralized
scalar timestamp scheme to scale distributed transactions using multi-version
concurrency control. DST is efficient in storage and network by being a scalar
timestamp but requiring no centralized timestamp service for coordination. The
key observation is that concurrency control (CC) protocols like OCC and 2PL al-
ready imply a serializable order among concurrent read-write transactions through
conflicting database tuples. To this end, DST piggybacks onCC protocols tomain-
tain the timestamp ordering with low cost and no new scalability bottleneck for
read-write transactions. DST further provides snapshot reads with bounded stale-
ness by using a hybrid scalar timestamp (physical clock and logical counter).
DST is a general timestamp method, i.e., not specific to RDMA-enabled transac-
tions. To demonstrate the generality of DST, we provide a general guideline for
the integration of DST and further show the effectiveness by using three represen-
tative transactional systems (i.e., DrTM+H (§4), MySQL cluster [60], and Ro-
coco [19]) with different CC protocols. Experimental results show that DST can
achieve more than 95% of optimal performance (using Read Committed) with-
out compromising correctness. With DST, DrTM+H achieves up to 1.8X higher
peak throughput for TPC-E and outperforms other timestamp schemes by 6.3X
for TPC-C. DST also leads up to 1.9X and 2.1X speedup on TPC-C for MySQL
cluster and Rococo, respectively.

• A fast distributed transaction processing systemusingRDMAandNVM(§6).
We propose DrTM+X, a fast distributed transaction processing system that incor-
porates all the above systems. Specifically, DrTM+X leverages XStore to support
efficient ordered data accesses in distributed transactions, uses DrTM+H and DST

— 7 —

for concurrency control and equips a fast logging system for high availability and
durability with RDPMA.

1.3 Thesis overview
This thesis is structured following the bottom-up approach of DrTM+X (Figure 1–2):

In §2, we provide the necessary background on RDMA and NVM, our systematic study
on them and how we build R2 and RDPMA based on the study. §3 presents XStore, the
storage backend of DrTM+X. §4 provides necessary background on RDMA-enabled dis-
tributed transactions, and presents DrTM+H, an RDMA-enabled distributed transaction
system with optimal RDMA primitive choices. In §5, we present DST, an efficient times-
tamp scheme to support MVCC over DrTM+H. Finally, §6 summarizes how we apply the
systems in previous chapters for fast distributed transaction processing.

1.4 Open-source code
The systems and tools presented in this dissertation are available online:
• R2 (§2.2): https://github.com/wxdwfc/r2.git
• RDPMA (§2.3): https://github.com/SJTU-IPADS/librdpma
• XStore (§3): https://github.com/SJTU-IPADS/xstore
• DrTM+H (§4) and DrTM+X (§6): https://github.com/SJTU-IPADS/drtmh
• DST (§5): https://github.com/SJTU-IPADS/dst

— 8 —

https://github.com/wxdwfc/r2.git
https://github.com/SJTU-IPADS/librdpma
https://github.com/SJTU-IPADS/xstore
https://github.com/SJTU-IPADS/drtmh
https://github.com/SJTU-IPADS/dst

Chapter 2 A Study of using RDMA and NVM

Designing distributed transactions with RDMA and NVM requires a clear under-
standing of how to best utilize these advanced hardware features. In this chapter, we
conduct a thorough systematic study on how to fully exploit RDMA’s high performance
and how to efficiently glue RDMA and NVM together. We study and collect vari-
ous RDMA or RDMA-NVM related optimizations—scattered from different sources—
into one systematic study. We also propose new optimizations that address the limita-
tions of the existing study. These optimizations are backed by an open-source set of
tools (https://github.com/wxdwfc/r2.git and https://github.com/SJTU-IPADS/librdpma)
for empirically evaluating their effects. We believe such a study can also benefit future
system co-design with RDMA and NVM.

Based on the study, we built two systems with all the studied optimizations. R2 is a
high-performance execution framework designed with RDMA (§2.2). RDPMA is a library
for efficient reading/writing NVM using RDMA (§2.3). It built upon R2 by extending
it with NVM. These two systems are the foundations of systems presented in the later
chapters.

Roadmap. Since we use empirical analysis to study the effects of different optimiza-
tions, we will start with a brief overview of our evaluating clusters (§2.1). Then, we will
present the design of R2 (§2.2) and RDPMA (§2.3).

2.1 Evaluation clusters
Without explicit mention, we use two clusters for the evaluations throughout the

dissertation, VAL and R74V. Table 2.1 summaries their hardware configurations.

VAL. It is a rack-scale RDMA-capable cluster with 16 machines. Each machine has
with two 12-core Intel Xeon E5-2650 v4 processors, 128GB of RAM, and two ConnectX-
4MCX455A 100Gbps Infiniband NIC via PCIe 3.0 x16 connected to aMellanox SB7890
100Gbps InfiniBand Switch. ConnectX-4 is a representive RDMA-capable NIC with
high performance [58, 61]. Without explicit mention, we conduct all RDMA-related
experiments on val.

— 9 —

https://github.com/wxdwfc/r2.git
https://github.com/SJTU-IPADS/librdpma

Table 2–1 Measurement clusters.

Cluster #Nodes Descriptions

VAL 16 2 × Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM, 2 × ConnectX-4 IB RNIC (100Gbps)

R74V 1 2 × Intel Xeon Gold 5215M (10 cores), 384GB DRAM, 2 x ConnectX-5 IB RNIC (100Gbps),

1x 1.5T NVM (12x Optane DIMM)

6 2 × Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM, 2 × ConnectX-4 IB RNIC (100Gbps)

R74V. This cluster is also a rack-scale RDMA-capable cluster. R74V has 7 machines
in total, six of them have the same hardware configurations as the one in VAL. The left
machine has equipped with Optane PM: it has two 10-core Intel Xeon Gold 5215M pro-
cessors, 384GB DRAM and two ConnectX-5 MT27800 100Gbps Infiniband NIC. We at-
tach six NVM DIMMs to each processor, allowing them to achieve the maximum (ideal)
bandwidth of Optane PM (320Gbps for read and 100Gbps for write). All machines are
connected to a Mellanox SB7890 100Gbps InfiniBand Switch.

2.2 R2: a high-performance execution framework with RDMA
R2 is the base execution framework used by later systems in this dissertation. It has

integrated withmost of the state-of-the-art RDMA-aware designs, as well as our proposed
optimizations. This section presents its design and an evaluation of its performance. We
start with a brief overview of RDMA.

2.2.1 Background on RDMA

RDMA is a fast networking feature with high throughput (e.g., 100Gbps bandwidth),
low latency (e.g., 2𝜇s), and low CPU overhead. Representative implementations of
RDMA include InfiniBand (IB) and RDMA over Converged Ethernet (RoCE). RDMA is
well-known for its one-sided primitives (READ/WRITE①): RDMA-capable NIC (RNIC)
can directly read/write the server memory bypassing the server CPU. RDMA also pro-
vides two-sided primitives (SEND/RECV) that are similar to message passing.

QP and the programming model of RDMA. RDMA hosts use queue pair (QP) to
issue RDMA requests, which has one send queue and one completion queue. Figure 2–1

① We may use READ/WRITE as one-sided RDMA READ/WRITE.

— 10 —

One-sided Primitive

CLIENT

CPU RNIC RNIC CPU

post-send

poll-comp

SERVER CLIENT

CPU RNIC RNIC CPU

post-send

poll-comp

SERVER

poll-comp

post-send

Two-sided Primitive

DMA Network Flow MMIO

R
P
C

DRAM

Figure 2–1 An overview of different RDMA primitives.

presents the workflow of these two primitives. To issue an RDMA request (e.g., one-
sided RDMAREAD), the host calls post_send, which uses memory-mapped IO (MMIO)
to post the request to the send queue. If the host marks the request as signaled, then it
can further obtain the completion event of the sent request, e.g., whether the payload of
the READ has been fetched to the host, by polling the completion queue via poll_comp.

Table 2–2 Different transport modes of QP and supported operations. RC, UC, and UD stand for
Reliable Connection, Unreliable Connection, and Unreliable Datagram, respectively.

SEND/RECV WRITE READ/ATOMIC
RC 3 3 3

UC 3 3 7

UD 3 7 7

It is worth noting that QPs have various transport modes, each supports different sets
of primitives (see Table 2–2). The Reliable Connected (RC) mode supports all RDMA
primitives, while the Unreliable Datagram (UD) mode only supports two-sided primitive
(SEND/RECV). On the other hand, UD is connectionless so the application can use fewer
UD QPs than RC QPs [25].

2.2.2 Basic design of R2

QP creation. When building R2, we found how the system creates QP can significantly
affect the primitive performance posted by the QP. More specifically, the system creates
QP from a context exposed by the user-space RDMA driver (ibv_contenxt). We use

— 11 —

 0

 30

 60

 90

 120

 150

1 4 8 12 16 20 24

T
hr

ou
gh

pu
t (

M
 r

eq
s/

s)

Number of threads

Per-thread context
Shared context

 0

 20

 40

 60

 80

1 8 16 32 64 128 256 384Th
ro

ug
hp

ut
 (M

 re
qs

/s
)

Payload size (bytes)

UD SEND/RECV
RC SEND/RECV
RC WRITE w/ IMM

Figure 2–2 (a) The performance of RDMA WRITE using different QP creation strategies. (b) A
comparison of different RDMA-enabled RPC implementations.

a dedicated context to create QPs for each thread; otherwise, there will be false synchro-
nizations within the driver even each thread uses its own QP. The performance impact is
shown in Figure2–2(a). The root cause is that each QP uses a pre-mapped buffer to send
MMIOs to post requests while the buffer may be shared. The buffer is allocated from a
context according to Mellanox’s driver implementation, where each context has limited
buffers. For example, the mlx4 driver [62] uses 7 dedicated buffers and 1 shared buffer.
This means that if the context is used to create more than 8 QPs, then extra QPs have
to share the same buffer. Even if each thread uses one exclusive QP, the throughput of
a shared context drops by up to 63% with the increase of threads. The overhead comes
from synchronizations on the shared MMIO buffer.

One-sided primitive. Each thread manages n RC QPs to connect to n machines. We
use standard Verbs API to post a one-sided request to the QP corresponding to the ma-
chine. RDMA WRITE requests with payloads less than 64 bytes are inlined to improve
throughput [30]. Note that we do not simply wait until the completion of the opera-
tion (§2.2.3): we execute other application requests or RPC functions for better utilizing
CPU and network bandwidth.

Two-sided primitive. Unlike one-sided primitive which has a simple and straightfor-
ward implementation, there are many proposed RPC implementations (two-sided prim-
itive) atop of RDMA [2, 25, 30, 51, 63-64]. They can be categorized into SEND/RECV
verb based [25], RDMA WRITE based [2, 51, 63-64] and hybrid one [30].

We use SEND/RECV verbs over UD QP as our two-sided implementation in R2 for

— 12 —

three reasons. First, in a symmetric setting, SEND/RECV verbs over UD has better perfor-
mance than other implementations over RDMA, especially for transaction systems [25].
This is also confirmed in our experiment (see Figure 2–2(b)). Second, based on our
studies of one-sided RDMA performance, one-sided RDMA based RPC is unlikely to
outperform UD based RPC especially for small messages. The peak throughput of one-
sided WRITE reaches 130M reqs/s when the payload size is smaller than or equal to 64
bytes (Figure 2–4). For an RPC communication, two RDMA WRITEs are required (one
for send and one for reply). Thus, the peak throughput of RPC implemented by one-sided
RDMA operations is about 65M reqs/s, lower than that of the implementation based on
SEND/RECV over UD (79M reqs/s).

Discussions. SEND/RECV over UD does not provide a reliable connection channel.
Therefore, it may be unfair to compare it to RC based two-sided implementations which
have reliability guarantees. However, since RDMA network assumes a lossless link layer,
UD has much higher reliability than expected [25]. Further, packet losses can be effi-
ciently handled by transaction’s protocol [25] or RPC layer [65].

2.2.3 Optimizations review and passive ACK

Since RDMA is a well-explored recent years, many optimizations have been pro-
posed in prior work to better leverage it [2, 30, 63, 66]. R2 has integrated most of these
optimizations. We further propose a new optimization, Passive ACK, which improves
RDMA primitives when the completion acknowledgement (ACK) of the request is not
on the critical path of the application.

Coroutine (CO). Although the latency of RDMA operations reaches several microsec-
onds, it is still higher than the execution time of many applications [25]. Thus, it is worth
to use coroutines to further hide the network latency by sending multiple requests from
different transactions in a pipelined fashion. FaSST [25] uses coroutine to improve the
throughput of its RPC. FaRM [2, 13] optimizes both one-sided operations and RPCs
using an event loop to schedule transactions with RDMA operations. We use a set of
coroutines to execute application logic at each thread. Each coroutine yields after issuing
some network requests (including both one-sided and two-sided ones), and they resume
the execution until they receive the completions of one-sided requests (or the replies of

— 13 —

symmetric
model

C
L
I
E
N
T

R
N
I
C

R
N
I
C

S
E
R
V
E
R

m
s
g
#
1

Message Piggybacking

Request

C
L
I
E
N
T

S
E
R
V
E
R

m
s
g
#
1

m
s
g
#
2

m
s
g
#
2

C
L
I
E
N
T

R
N
I
C

R
N
I
C

S
E
R
V
E
R

m
s
g
#
1

C
L
I
E
N
T

S
E
R
V
E
R

m
s
g
#
1

m
s
g
#
2

Reply

Request
+Reply

Figure 2–3 A sample of passive ACK for two-sided primitive.

two-sided RPCs). Typically, a small number of coroutines is sufficient for RDMA latency
hiding (e.g., 8) [25].

R2 follows FaSST [25] by using coroutine from Boost C++ library to manage con-
text switches between clients when issuing network requests. Boost coroutine is efficient
in our experiments, which has very low overhead for context switch (about 20 ns).

Outstanding requests (OR). Even coroutine overlaps computation with I/O from dif-
ferent transactions, it is still important to send requests from one transaction in parallel.
This further increases the utilization of RNICs and reduces the end-to-end latency of
transactions, i.e., there is no need to wait for the completion of one request before issuing
another one. For example, the read/write set of many OLTP transactions can be known
in advance [67]. Therefore, it is possible to issue these reads and writes in parallel.

Doorbell batching (DB). There are several ways to issue multiple outstanding requests
to RNIC. A common approach is to post several MMIOs corresponding to different re-
quests. On the other hand, doorbell batching rings a doorbell to notify RNIC to fetch
multiple requests by itself using DMA [66]. MMIO is costly which usually requires hun-
dreds of cycles. Therefore, doorbell batching can reduce CPU overhead on the sender
side and make a better usage of PCIe bandwidth, since it only requires one MMIO per
batch to ring the doorbell.

One restriction of doorbell batching is that only requests from one QP can be fetched
by the RNIC in a batched way. This means that different one-sided requests cannot be
batched together if they are not sent to the same machine. Due to this limitation, doorbell
batching is usually applied to two-sided implementation based on UD QP [25].

— 14 —

Passive ACK (PA). The performance can be further improved if the completion of re-
quests (ACK) is done off the critical path of transactional execution. We achieve this by
acknowledging the request passively.

For one-sided primitive, the request is marked as unsignaled, and then the comple-
tion of the request is confirmed passively after a successful polling of one subsequent
signaled request. This avoids consuming RNIC’s bandwidth.① For two-sided primi-
tive, the optimization has the potential to double the throughput in a symmetric model
by piggybacking the reply messages with the request messages. As shown in Figure 2–3,
passive ACK can save half of the messages (replies).

It should be noted that not all of the completions can be acknowledged passively. For
example, one-sided READ requires a completion event; otherwise, the application does not
know whether the read is successful or not. Fortunately, as we will see in the later chapter
(§4.1), in transactional execution, a transaction is considered to be committed when the
log has been successfully written to all backups (see Figure 4–1). Hence the write-back
request at the commit phase can be acknowledged passively.

2.2.4 A primitive-level performance analysis

In this section, we present the basic performance of different RDMA primitives,
on R2 including raw RDMA performance and the performance of micro-benchmarks.
The micro-benchmarks simulate common transactional workloads. These experimental
results serve as the guideline for using the appropriate primitives for transactions.

Experiment setup. We conduct the experiments on theVAL cluster. We run 24 worker
threads (same as the number of available cores per machine) on each machine in our
experiments. Each worker thread runs an event loop to execute transactions, handles
RPC requests, and polls RDMA events. The events of RDMA including the completion
of one-sided RDMA requests and the reception of RPC requests/replies.

RDMA raw performance. Prior work has shown that two-sided primitives have better
performance and scalability than one-sided ones [25]. They draw this conclusion from
from an old generation of RNIC (ConnectX-3). Further, they only show the poor scala-
bility of one-sided primitive using small payloads (less than 32 bytes). We extend their

① Verbs from the same send queue are processed in a FIFO manner [68].

— 15 —

 0

 30

 60

 90

 120

 150

1 8 16 32 64 128 256 384

T
hr

ou
gh

pu
t (

M
 r

eq
s/

s)

Payload size (bytes)

 0

 30

 60

 90

 120

 150

1 8 16 32 64 128 256 384

T
hr

ou
gh

pu
t (

M
 r

eq
s/

s)

Payload size (bytes)

One-sided(READ)
One-sided(WRITE)

One-sided(ATOMIC)
Two-sided

Figure 2–4 A comparison of one-sided and two-sided primitives using (a) a 16-node cluster and (b)
an emulated 80-node connection setting. RDMA ATOMIC only supports the 8-byte payload.

evaluation [25] on raw RDMA performance to show that: one-sided primitives have bet-
ter performance than two-sided ones using 16 nodes, as shown in Figure 2–4(a). More
importantly, the scale of the cluster only affects one-sided primitives with small pay-
loads. For example, with our emulated 80-node connection setting, one-sided primitives
still outperform two-sided ones when data payloads are larger than 64 bytes.

Emulating massive RDMA connections. On our 16-node cluster, we create 5 RC QPs to
connect to each machine at each worker. The number of QPs (5x16 QPs per thread) is
sufficient to run in an 80-node cluster. We choose the QPs randomly to post upon issuing
a request. Note that the total number of QPs (960 per NIC) has exceeded the total number
of QPs that can be cached at RNIC.

Primitive evaluation. Figure 2–4(a) presents the evaluation results of the primitive anal-
ysis. For read operations, one-sided primitives (READ) outperform two-sided ones by up
to 1.6X when payload size is below 64 bytes, and by up to 1.37X for larger payloads.
For write operations, one-sided primitives (WRITE) outperform reads on small payloads
but get a similar trend on large payloads (from 1.03X to 1.35X). Note that we do not
incur memory copy overhead for two-sided primitives, as done in prior work [25], since
adding such overhead will affect the performance of two-sided ones, especially for large
messages.

Figure 2–4(b) further presents the results on an emulated 80-node connection set-
ting. The performance of one-sided READ becomes slow-growing with the decrease of
payloads from 128 bytes. This is because RNIC experiences QP cache misses at this
time.① However, one-sided READs can still outperform two-sided primitives when pay-

① We use PCIe counters (pmu-tools (https://github.com/andikleen/pmu-tools)) to measure QP cache misses.

— 16 —

https://github.com/andikleen/pmu-tools

 0

 2

 4

 6

 8

 10

 12

One-sided Two-sided

1.
0X

6.
2X

8.
2X

8.
2X

1.
0X

5.
7X

8.
2X

8.
4X

T
hp

t p
er

 m
ac

hi
ne

(M

 r
eq

s/
s)

base
+coroutine
+outstanding
+doorbell

 0

 4

 8

 12

 16

 20

 24

One-sided Two-sided

1.
0X

7.
3X

11
.0

X
11

.7
X

13
.3

X

1.
0X

6.
5X

6.
7X 8.

2X
16

.2
X

T
hp

t p
er

 m
ac

hi
ne

(M

 r
eq

s/
s)

base
+coroutine
+outstanding
+doorbell
+passive-ACK

Figure 2–5 A comparison of one-sided and two-sided primitives for multiple-object (a) reads and
(b) writes with 64-byte payloads.

loads are larger than 64 bytes. Because the cost of data transfer instead of QP cache
misses dominates the performance for larger payloads.

A final takeaway is that, although one-sided ATOMIC is relatively slow [66], it can
still achieve 48M reqs/s on each machine, which is much higher than the requirements of
many workloads (e.g., TPC-C). Therefore, the performance will not be the main obsta-
cle to leverage one-sided atomic primitives in transactional execution (e.g., distributed
spinlock). We evaluate this approach in the transactional workload (§4.3.2).

Micro-benchmarks. Better performance in raw throughput does not always mean bet-
ter performance in real applications. We use two micro-benchmarks to compare how
different primitive performs under common transactional workloads, and how previous
optimizations affect the performance (Figure 2–5).

Effects of optimizations. We first show how existing optimizations improve the perfor-
mance of each primitive from Figure 2–5. Coroutine, outstanding requests and doorbell
can be applied to both workloads.

Coroutine hides the latency and improves the performance of one-sided and two-
sided by 7X and 6.46X, respectively. Adding outstanding requests by posting more re-
quests per batch further improve the throughput due to better uses of RNIC’s processing

— 17 —

capability.
Doorbell batching does not always improve the performance of one-sided primitive,

but it constantly improves the throughput of two-sided ones. This is because doorbell
batching can only apply to a single QP, which is suitable for UD-based two-sided imple-
mentation. On the contrary, one-sided requests are sent through multiple RC QPs, which
reduces the chances of using doorbell batching. Further using doorbell batching requires
bookkeeping the status of posted requests, which adds additional overhead.

2.2.5 Summary: offloading when completion is required

By enabling passive acknowledgement (PA), the performance of one-sided WRITE
is further improved by 1.13X, while that of two-sided primitive is nearly doubled (1.96X)
due to the reduction of half of the messages (for reply). This makes the only case where
two-sided outperforms one-sided. Otherwise, one-sided primitive always has better per-
formance than two-sided ones. This is consistent with the results in Figure 2–4. For
example, multiple READs can achieve peak throughput about 8.43M, which is close to
the raw performance of one-sided READ (about 86.9M per machine).

2.2.6 Related work on RDMA-aware optimizations

FaRM [2] proposes a set of techniques to mitigate cache pressure of RNIC, includ-
ing using huge page to reduce page entries stored in RNIC and sharing QPs between
threads to reduce the connections. HERD [30] first discovers the benefits of using UD
QPs for messaging to improve performance and scalability. A recent guideline paper of
RDMA [66] describes several optimizations on better leveraging RDMA features, includ-
ing using doorbell mechanism to post a batch of requests. It also studies how low-level
factors (e.g., payload inlining) impact the overall performance. FaSST [25] argues that
UD, though unreliable as its name, has high reliability in modern datacenters because
RDMA assumes a lossless link layer. Hence, UD QP is well suited for two-sided primi-
tives. Finally, LITE [63] proposes a kernel indirection layer for RDMA which improves
the scalability and programmability of RDMA. Many of such optimizations can be used
cumulatively to improve performance. We apply all of them in R2 except for LITE. LITE
requires modifying the kernel and it is also not designed for our scenario.

— 18 —

2.3 RDPMA: fast remote persistent memory with RDMA and NVM
Remote persistent memory is a key building block in distributed systems, which pro-

vides reading/writing over persistent memory through the network. This section presents
the design of RDPMA, an efficient library to provide remote persistent memory using
RDMA and NVM.

2.3.1 Introduction

People have been studying remote persistent memory with emerging hardware tech-
nologies like Remote DirectMemoryAccess (RDMA) andNon-VolatileMemory (NVM)
for many years, including but not limited to databases [13, 18, 21, 25, 57-58], file sys-
tems [51-52, 69], key-value stores [2, 70], and distributed sharedmemory systems [53-54,
56]. These RDMA-NVM systems can either leverage NVM to persistently store the data
or use it as DRAM to extend DRAM capacity.

Unfortunately, few systematic studies examined how to best leverage NVM with
RDMA, since production NVM is only publicly available via Intel Optane DC persistent
memory [71] (Optane PM①) until recently. Except for a few systems [56, 72], prior
work either uses emulated NVM [52-53] or simply treats DRAM as NVM [13, 18, 51,
58]. Without such a study, system developers are unclear whether existing RDMA-NVM
designs are efficient for Optane PM due to the following three reasons. First, emulating
NVMwith RDMA is particularly challenging because, to the best of our knowledge, most
NVM emulators use CPU for the emulation [73]. However, RDMA may access NVM in
a CPU-bypassing manner. Second, a recent study revealed that even the emulator could
not faithfully simulate many Optane PM features [74]. Finally, a few systems evaluated
with Optane PM do not consider its unique performance characteristics [56].

Our initial experiments further demonstrate that RDMA-NVM systems suffer from
inferior performance when they treat NVM as DRAM. For example, the performance of
remote write over remote persistent memory is far from the limits of NVM (§2.3.3) af-
ter switching the memory used in a remote write benchmark from DRAM to NVM: 16B
one-sided RDMA WRITE only achieves 29% of NVM’s ideal write throughput. Hence,
it is imperative to conduct a thorough study of the inferior performance and provide op-
timizations to mitigate the inefficiency.

① Since we exclusively studyOptane PM in this dissertation, we use the termsNVMandOptane PM interchangeably
throughout the presentation.

— 19 —

There have been valuable studies on how to efficiently use NVM [74] with CPU and
how CPU cache may affect the efficiency of RDMA with NVM [72]. Yang et al. [74]
provide optimizations for the CPU to best utilize Optane PM. We study their findings on
RDMA-NVM systems and confirm the importance of their optimizations. Nevertheless,
we found some of the optimizations are suboptimal when considering RDMA.We further
present optimizations that are best suited for RDMA onNVM. Kalia et al. [72] is the most
relevant work: we share the same goal of improving RDMA’s performance with NVM.
Specifically, they identify how CPU cache could hinder RDMA from fully utilizing NVM
write bandwidth. We made a similar observation during our study. Besides, we also
study other RDMA-NVM related factors, including inappropriate system configurations
(§2.3.4.1) and application access patterns (§2.3.4.2).

Finally, existing systems use two network roundtrips to implement persistent write
atop RDMA and NVM [75] because existing RDMA hardware is unaware of NVM. We
argue that RDMA-NVM systems should consider broadly explored RDMA-aware opti-
mizations [30, 66] to improve the persistent write performance with RDMA. With the
help of known RDMA-aware optimizations, RDMA only needs one roundtrip for remote
persistent write on the current hardware platforms (§2.3.4.3).

In this chapter, we conduct a thorough systematic study on how to best utilize NVM
with RDMA to build remote persistent memory. Our focus is on remote write, i.e., the
client issues write to the server NVM, either using one-sided or two-sided RDMA. The
remote NVM read performance is close to that of DRAM (§2.3.3). Specifically, we made
the following three contribution:

A summary of optimization hints (H1–H9) to best utilize NVMwith RDMA (§2.3.4).
We study and collect various RDMA-NVM related optimizations—scattered from dif-
ferent sources—into one systematic study. We also propose new optimizations (H6–H8)
that address the limitations of the existing study. The summarized hints are categorized
into system configuration advice (§2.3.4.1), access pattern advice (§2.3.4.2) and RDMA-
aware advice (§2.3.4.3). We empirically demonstrate how these hints help to fully utilize
NVM for different RDMA primitives, i.e., RDMA can attain close to NVM write band-
width and processing power.

RDPMA: a well-tuned remote persistent memory library integrated with H1–H9
(§2.3.5). We use the summarized hints to build RDPMA, and use it to analyze and im-

— 20 —

CX5

RNIC

L3 Cache

C0 C9…

Processor

Xeon(R) Gold

100Gbps

IB/RoCE

Optane

Memory

NVM

PCIe
3.0

128Gbps

WRITE
100Gbps

READ
320Gbps

XCtrl

3D-XPoint

Persistent

XBuffer

XPLine

256B

CacheLine

64B

M
e
m
o
r
y

C
o
n
t
r
o
l
l
e
r

PCIe

Figure 2–6 Hardware components of a node with NVM in an RDMA-capable cluster.

prove the design of an representive RDMA-NVM systems, Octopus [51]. Octopus is a
distributed file system designed for RDMA and NVM. We find that there is still signifi-
cant room for improvement in it because it is designed when no production is available.
RDPMA helps to improve the I/O throughput of file data operations in Octopus by up to
2.4X (from 1.2X). The results strongly suggest we need further revisiting the design and
implementations of existing RDMA-NVM systems, especially those not designed for Op-
tane PM.

In later chapter (§6.3), we will also present how to use RDPMA to optimize the per-
formance of durable distributed transactions.

2.3.2 Background on NVM

Figure 2–6 presents typical hardware components of a nodewithNVM in anRDMA-
capable cluster. RDMA-capable NIC (RNIC) andNVMare attached to the processor, and
they communicate with each other via the PCI Express (PCIe) bus.

2.3.2.1 Optane PM (NVM)

Intel OptaneDCpersistentmemory [71] (Optane PM) is the first commercially avail-
able NVM. Besides a huge performance gain compared to traditional persistent storage
(e.g., SSD), Optane PM also provides a DRAM-like memory interface. Thus, CPU can
use load and store/non-temporal store① (ntstore) to read and write it, and

① non-temporal store has the same semantic as store except that it bypasses the CPU cache.

— 21 —

RNIC can access it through PCIe read/write transactions.
Our study relies on an in-depth look at how Optane PM handles reads/writes. The

right half of Figure 2–6 presents an overview of its components. Data is stored in NVM
DIMMs (3D XPoint), while XController (XCtrl) transforms the read/write requests from
the processor/PCIe into read/write requests to 3D XPoint. XCtrl has two important fea-
tures. First, it receives requests in cacheline (CLine) granularity (64B), while 3D XPoint
stores data in XPLine granularity (256B). Such a difference in granularity may incur read-
/write amplification. Second, in order to reduce write amplification, XCtrl has a small
write-combining buffer (XBuffer) that merges adjacent cacheline writes into one XPLine
write. Note that read requests also compete for XBuffer with write requests [74].

Persistent domain. Data is persistent once it reaches the node’s persistent domain. On
the current hardware platform, the persistent domain comprises the Optane PM and the
processor’s memory controller, as shown in Figure 2–6. Future hardware will further
extend the persistent domain to the processor cache [76]. Nevertheless, the scope of the
persistent domain is orthogonal to the results of this chapter. We describe its impact in
§2.4 in more detail.

Optane PM counters. Optane PM provides various useful counters① that we use to
analyze its behavior: NReadReq and NWriteReq record how many 64B read and write
requests are received byXCtrl, while NMediaRead and NMediaWrite record howmany
bytes are read/written by 3D-XPoint Media. Based on these counters, we calculate the
counter rates and use the counter rates to compute the read/write amplification of NVM:
e.g., NMediaWrite 𝑟𝑎𝑡𝑒 / (NWriteReq 𝑟𝑎𝑡𝑒 ×64) measures the write amplification of
Optane PM.

2.3.2.2 RDMA with NVM

Since NVM have the same interface as DRAM, RDMA can read and write it like
DRAM (as shown in Figure 2–1). One-sided RDMA primitives communicate with Op-
tane PM through PCIe read/write transactions, while two-sided RDMA uses server CPU
to read/write Optane PM②. When different RDMA primitives access NVM, several fac-

① Measured via ipmctl [77].
② Although two-sided RDMA can use PCIe read/write transactions to write messages to Optane PM, we omit the

discussion of such a case because its mechanism is the same as one-sided RDMA WRITE.

— 22 —

CLIENT

RNIC

SERVER Cache

NVM

RNIC

P

Data REQ RESP
WRITE

w DDIO

WRITE

w/o DDIO

! " #

P

Figure 2–7 Three execution flows of using one-sided RDMA to write the server NVM. Note that
without proper configurations, all three request flows are possible. The client uses the MMIO to post
the WRITE request (REQ), and the client RNIC generates the response (RESP) via DMA. When
DDIO (§2.3.2.2) is enabled, RNIC writes to the server’s last level cache (LLC). Otherwise, RNIC
directly writes to Optane PM. P denotes the persistent point of the data, i.e., when the client can

ensure the WRITE is persistent.

tors may impact their efficacy:

Access granularity. RNIC, CPU and NVM (including XController and 3D XPoint)
have different access granularities. Requests that do not match the device granularity
cause extra read/write requests to the NVM. Hence, systems should carefully tune their
NVM access patterns for different RDMA primitives (§2.3.4.2). Table 2–3 summarizes
the access granularities of different devices.

Table 2–3 Access granularities of different hardware components.

CPU PCIe XController 3D XPoint
Granularity CLine CLine CLine XPLine
Payload 64B 64B 64B 256B

DDIO. Data Direct I/O (DDIO) [78] aims to improve the server cache locality of the
DMA-ed data, which allows the last level cache (i.e., L3 Cache) as the primary destination
of the RNIC’s DMA-ed data (e.g., one-sided RDMA WRITE and two-sided RDMA).
However, it is not friendly to Optane PM (§2.3.4.1).

Persistence. Two-sided primitives can use extended CPU instructions (e.g., clwb) to
ensure that the write to NVM is persistent. However, one-sided RDMA has no such
instruction. Thus, one-sided RDMA-NVM WRITE is not persistent.

— 23 —

Figure 2–7 depicts three possible execution flows of one-sided RDMA-NVM
WRITE on the current hardware platforms, only in the second case that the data is per-
sistent (·). In the first case (¶), the data is not persistent because it still resides in the
volatile processor cache when the client receives the response. In the third case (¸), the
data is cached at the RNIC’s internal buffer when the client believes the write has finished.
RNIC is not in the persistent domain (see Figure 2–6).

Implementing persistent one-sided RDMAWRITE over current hardware (i.e., guar-
antee to achieve · in Figure 2–7) requires specific configurations and extra one-sided re-
quests: we should first disable DDIO to bypass the processor cache and then send an extra
one-sided RDMA READ to the same QP issued the WRITE [79] to flush the previously
cached WRITEs. These two steps guarantee the WRITE is executed as the second case
in Figure 2–7. However, a strawman implementation of this strategy uses two network
roundtrips for a single write [75]. We describe optimizations for persistent WRITE in
§2.3.4.3.

2.3.3 Methodology

This section describes the optimization target of RDPMA. RDPMA focuses on remote
write. i.e., the client issues write requests to the server NVM using either one-sided or
two-sided RDMA. For remote read, we find it has close performance to that of DRAM
due to the asymmetric read/write performance feature (§2.3.2.1) of NVM.

To empirically analyze the read/write features of RDMA with NVM, we conduct
a microbenchmark to evaluate the performance of remote read and remote write imple-
mented by different RDMA primitives on R74V (§2.1). In this benchmark, each client
sends read/write requests with different payloads to the server’s NVM via RDMA, similar
to prior work [2, 30, 58, 80]. The request addresses are chosen randomly. For one-sided
RDMA, the client directly uses its primitives to implement remote read and remote write.
For two-sided RDMA, the client sends messages to the server, and the server reads/writes
NVM with memcpy after receiving the messages. We implement the benchmark on R2.
Unless otherwise mentioned, we report the per-socket peak throughput or bandwidth of
reading/writing NVM through RDMA.

Figure 2–8 and Figure 2–9 present the performance of remote read on DRAM
and NVM for one-sided and two-sided RDMA, respectively. For large payloads
(e.g., 2,048B), the read performance of NVM is close to that of DRAM for both one-

— 24 —

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1K 2K

T
hp

t (
M

 r
eq

s/
se

c)

Payload size (bytes)

DRAM

NVM

One-sided RDMA READ

 0

 20

 40

 60

 80

 100

 120

16 32 64 128 256 512 1K 2K

RNIC limit

B
an

dw
id

th
 (

G
bp

s)

Payload size (bytes)

One-sided RDMA READ

Figure 2–8 A comparison of one-sided RDMA READ performance on DRAM and NVM, (a)
throughput and (b) aggregated bandwidth.

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1K 2K

T
hp

t (
M

 r
eq

s/
se

c)

Payload size (bytes)

DRAM

NVM

LIMIT

Two-sided RDMA READ

 0

 20

 40

 60

 80

 100

 120

16 32 64 128 256 512 1K 2K

RNIC limit

B
an

dw
id

th
 (

G
bp

s)

Payload size (bytes)

Two-sided RDMA READ

Figure 2–9 A comparison of two-sided RDMA READ performance on DRAM and NVM, (a)
throughput and (b) aggregated bandwidth. LIMIT is measured when the server directly returns to

the client without reading the payload.

sided and two-sided primitives (99% and 90%). Reading NVM can hardly become a
bottleneck in RDMA-NVM systems since NVM has a much higher read bandwidth than
RNIC (320Gbps vs. 100Gbps). Note that for small reads (e.g., 16B), two-sided RDMA
READ still suffers from obvious throughput degradation: it only achieves 59% of the
DRAM read throughput. This is because CPU has much a higher read latency when
reading NVM compared to DRAM (271ns vs. 82ns)①. In contrast, increased NVM read
latency has negligible impact on one-sided RDMA READ since the PCIe latency is the
dominant factor (~1000ns [82]).

① Measured by Intel Memory Latency Checker (MLC) [81].

— 25 —

 0

 20

 40

 60

 80

 100

16 32 64 128 256 512 1K 2K

T
hp

t (
M

 r
eq

s/
se

c)

Payload size (bytes)

DRAM

NVM

NVM-OPT

One-sided RDMA WRITE

 0

 20

 40

 60

 80

 100

 120

16 32 64 128 256 512 1K 2K

RNIC limit

B
an

dw
id

th
 (

G
bp

s)

Payload size (bytes)

One-sided RDMA WRITE

Figure 2–10 A comparison of one-sided RDMA WRITE performance on DRAM and NVM, (a)
throughput and (b) aggregated bandwidth. NVM-OPT applies the optimizations from §2.3.4.

 0

 10

 20

 30

 40

 50

 60

16 32 64 128 256 512 1K 2K

T
hp

t (
M

 r
eq

s/
se

c)

Payload size (bytes)

DRAM

NVM

NVM-OPT

LIMIT

Two-sided RDMA WRITE

 0

 20

 40

 60

 80

 100

 120

16 32 64 128 256 512 1K 2K

RNIC limit

B
an

dw
id

th
 (

G
bp

s)

Payload size (bytes)

Two-sided RDMA WRITE

Figure 2–11 A comparison of two-sided RDMA WRITE performance on DRAM and NVM, (a)
throughput and (b) aggregated bandwidth. LIMIT is measured when the server directly returns to

the client without writing the payload. NVM-OPT applies the optimizations from §2.3.4.

Unlike remote read, the performance of remote write is much slower than that of
DRAM, as shown in Figure 2–10 and Figure 2–11. More importantly, these results are
not optimal because the measured performance is far from the theoretical limit of NVMor
RDMA. For example, one-sided RDMAWRITE can achieve only 29% of the NVM peak
write throughput (15M vs. 52M reqs/sec①) for small 16B writes. Further, one-sided and
two-sided RDMA saturate only 38% and 12.5% of the NVM’s peak write bandwidth for
large 2,048B writes, respectively. Therefore, there is significant room for improvement.

① We estimate the NVM peak write throughput by dividing its peak write bandwidth (100Gbps) with the size of
XPLine (256B).

— 26 —

Table 2–4 A summary of design advice, optimization hints, and whether the hints can apply to a
specific RDMA primitive. 3 indicates a positive optimization effect, and “–” means the hint does
not target the case. DB and OR states for optimizations doorbell batching and outstanding request

discussed in §2.2.3, respectively.

Optimization hints One-sided Two-sided

H1. Avoid cross-socket NVM accesses 3 3

H2. Limit concurrent access to a single NVM DIMM for two-sided - 3

H3. Disable DDIO; if DDIO must be enabled, use two-sided RDMA 3 -

H4. Use ntstore instead of store for large writes - 3

H5. Use XPLine granularity (256B) for writes 3 3

H6. Use PCIe DW granularity (64B) for small writes (i.e., < XPLine) 3 -

H7. Use cacheline granularity (64B) with ntstore for small writes - 3

H8. Use less atomic operations on NVM 3 3

H9. Use OR with DB for persistent WRITE 3 -

The approach of RDPMA. To understand why remote write has inferior performance,
we conduct a systematic study to summarize various performance-relevant factors for
RDMA towrite NVM. Inspired by a recent CPU-specific NVM study [74], wemainly fol-
low two directions. First, we investigate what system configurations can affect RDMA’s
efficiency with NVM (§2.3.4.1). Second, we study which access patterns from RDMA
are friendly to NVM (§2.3.4.2). For each direction, we empirically study whether known
NVM optimizations are necessary or optimal for RDMA. The results show that some se-
tups are not necessary, while some optimizations are sub-optimal for RDMA. To this end,
we present new optimizations by fully considering NVM characteristics with RDMA. Fi-
nally, we use existing RDMA optimizations to improve the persistent write of one-sided
RDMA atop of NVM (§2.3.4.3).

A preview of RDPMA. Figure 2–10 and Figure 2–11 present the optimized version of
one-sided and two-sided RDMA NVM write with RDPMA (NVM-opt). After applying
all the optimizations, they have significantly better performance and achieve close to the
NVM limit. For example, one-sided 16B RDMA NVM WRITE achieves 45M reqs/sec,
87% of the ideal peak throughput of NVM write.

— 27 —

 0

 20

 40

 60

 80

 100

 120

16B One-sided WRITE

80

15

30 31 34

45

T
hp

t (
M

 r
eq

s/
se

c)

DRAM +NVM +H1 +H3 +H5 +H6

 0

 30

 60

 90

 120

2048B One-sided WRITE

88

29 29 32

76 76

B
an

dw
id

th
 (

G
bp

s)

Figure 2–12 Factor analysis of the optimizations used to improve NVM write performance atop of
one-sided RDMA WRITE under (a) small payload (16B) and (b) large payload (2,048B). We do not

include H8 as it does not target remote write. Note that the error bars are small.

2.3.4 Design advice for RDMA-NVM systems

This section summarizes design advice and optimization hints for high-performance
RDMA-NVM systems, as shown in Table 2–4. We present both new optimizations
(e.g., Hint 6, H6) and brief descriptions of known optimizations. Further, we show that
some known optimizations that only consider CPU accessing NVM are sub-optimal for
RDMA (e.g., H5). Among these optimizations, H1–H8 applies to systems that use Op-
tane PM as volatile storage and persistent storage, whileH9 only targets systems that use
Optane PM as persistent storage.

We make two assumptions about the hardware components. First, the RNIC is a
PCIe-based device, which holds for most existing RNICs [66]. Second, the NVM is Op-
tane PM [71], the first (and only) commercially available NVM device. Unless otherwise
stated, we use the same remote write microbenchmark in §2.3.3 for the study.

2.3.4.1 Configuration advice

A prior CPU-specific NVM study [74] has provided valuable configuration setups
(e.g., NUMA setup) for the CPU to better utilize NVM. We summarize these setups
in H1 and H2. A natural question to answer is: do RDMA-NVM systems require the
same setups? Our study reveals that first, RDMA-NVM systems should also consider
H1. Meanwhile, one-sided RDMA does not necessarily require H2 as the CPU. Finally,
RDMA introduces a new configuration option, H3. Succinctly, the configuration advice
for RDMA-NVM systems is the following three optimization hints:

H1. Avoid cross-socket NVM accesses;

— 28 —

 0

 20

 40

 60

 80

 100

 120

16B Two-sided WRITE

39

15 19 19

29 35

LIMIT=54

T
hp

t (
M

 r
eq

s/
se

c)

DRAM +NVM +H1 +H4 +H5 +H7

 0

 30

 60

 90

 120

2048B Two-sided WRITE

84

8

19

52

64 64

LIMIT=85

B
an

dw
id

th
 (

G
bp

s)

Figure 2–13 Factor analysis of the optimizations used to improve NVM write performance atop of
two-sided RDMA for (a) small payload (16B) and (b) large payload (2,048B). LIMIT is measured as
the server directly returns to the client without writing the payload. We do not include H8 as it does

not target remote write. Note that the error bars are small.

H2. Limit concurrent access to a single NVM DIMM for two-sided RDMA;
H3. Disable DDIO; If DDIOmust be enabled, use two-sided RDMA for large NVM

writes;

Hint H1. Yang et al. [74] found that the NVM write bandwidth of a socket could
be halved from other sockets. Since an RNIC leverages its attached socket to access
NVM from another socket (see Figure 2–6), slow cross-socket NVM accesses also im-
pact RDMA-NVM systems. Figure 2–13 and Figure 2–12 illustrate this: removing cross-
socket access improves the baseline two-sided and one-sided RDMA write performance
by up to 2.4X (8Gbps vs. 19Gbps) and 2X (15M vs. 30M reqs/sec), respectively. Thus,
RDMA-NVM systems should also avoid cross-socket NVM accesses.

Apply H1. Readers may wonder whether H1 is feasible in real systems. One strategy
to apply H1 is first attaching one RNIC for each socket, and then treating each socket as
a logical node in a cluster. Such a setup is common in RDMA-capable systems [13, 17,
83-85], and it naturally avoids cross-socket NVM access. Furthermore, even if there are
insufficient RNICs for each socket to have a dedicated RNIC, one can adopt the techniques
in IOctopus [86] to apply H1. Using IOctopus, one RNIC can simultaneously commu-
nicate with multiple sockets. Hence, RDMA can directly access the NVM bypassing the
attached socket.

— 29 —

 0

 4

 8

 12

 16

 20

 24

 5 10 15 20

Single NVM DIMM limit

B
an

dw
id

th
 (

G
bp

s)

Number of server threads

CPU WRITE
Two-sided WRITE

 0

 4

 8

 12

 16

 20

 24

 10 20 30 40 50

Single NVM DIMM limit

B
an

dw
id

th
 (

G
bp

s)

Number of clients

One-sided WRITE

Figure 2–14 Effects of concurrent accesses to a single NVM DIMM for (a) two-sided RDMA and
(b) one-sided RDMA WRITE using a 2048B payload. The write bandwidth limit of a single NVM
DIMM is about 16Gbps (one-sixth of the evaluating Optane PM). Note that we have enabled all

other optimizations for both RDMA primitives in this experiment.

Hint H2. Another observation from Yang et al. [74] is that the CPU fails to scale up
when writing to a single NVM DIMM. This phenomenon also affects two-sided RDMA
because it uses CPU to write to the NVM. As shown in Figure 2–14(a), compared to using
four threads at the server to handlewrites, two-sidedRDMA-NVMwrite bandwidth drops
37% when using 20 threads. Note that to avoid interference from other factors, we have
enabled all other optimizations hints in this experiment. Therefore, system designers
should also reduce concurrent access to a single NVM DIMM for two-sided RDMA. In
practice, designers can control which DIMM to access by selecting the appropriate NVM
addresses [74]. For example, assuming the starting address of the NVM is 4KB-aligned,
and the NVM is interleaved on 6 DIMMS, the first and seventh 4KB is on the first DIMM,
and the second 4KB is on the second DIMM, etc.

Does one-sided RDMA suffer from the same issue? To quantify this, we further con-
duct an experiment to measure the concurrent write performance of one-sided RDMA-
NVMWRITE. In this benchmark, we increase the number of clients that send concurrent
one-sided RDMA WRITE to a single NVM DIMM, and measure their aggregated band-
width. Figure 2–14(b) presents the results: one-sided RDMA WRITE scales well with
the increased number of concurrent requests. This implies that one-sided RDMA is more
robust when concurrently accessing a single NVM DIMM.

To the best of our knowledge, it remains unknown why the CPU cannot scale up
when accessing a single NVM DIMM. Yang et al. [74] suspected that the high NVM

— 30 —

W DDIO

Rand

RDMA

WRITE

RNIC

L3 cache
NVM

Sequential (w/o DDIO)

Sequential

Figure 2–15 DDIO changes the sequential accesses of RNIC into random accesses.

access latency may cause head-of-line blocking effects at the processor. Similarly, we
suspect that the RNIC can scale well for one-sided RDMA because the increased latency
of NVM access is not that significant compared to PCIe latency.

Hint H3. One important RDMA-specific configuration is whether to enable DDIO,
which controls the destination of one-sided RDMAWRITE (§2.3.2.2). A prior study has
revealed that DDIO has a huge performance impact on one-sided RDMA-NVM WRITE
for large payloads [72]; we also made a similar observation during the study. Conse-
quently, H3 is an important configuration setup for RDMA-NVM systems.

Figure 2–16(a) shows the effects of DDIO on one-sided RDMA-NVM WRITE.
Since large RDMA-NVMWRITE is more sensitive to DDIO, we use a bulk write bench-
mark where a single client issues a sufficient large payload to measure the peak bandwidth
ofWRITE.With DDIO enabled, we observe thatWRITE can only reach half of the NVM
peak bandwidth (42Gbps vs. 100Gbps). On the other hand, theWRITE can achieve close
to NVM peak bandwidth with DDIO disabled.

Ideally, the client should saturate the RNIC(NVM) bandwidth in this benchmark.
However, it fails because DDIO changes the sequential writes from RNIC to random
writes to NVM. Figure 2–15 illustrates this: the RNIC first sequentially writes the data
into the cache, after that the cache randomly evicts the data to the NVM. Random writes
cannot saturate NVM bandwidth because NVM has less chance to merge adjacent writes
to avoid write amplification (see §2.3.2.1).

— 31 —

 0

 20

 40

 60

 80

 100

 120

1K 2K 4K 8K 16K 32K 64K128K

RNIC/NVM limit

B
an

dw
id

th
 (

G
bp

s)

Payload size (bytes)

enable DDIO
disable DDIO

One-sided RDMA WRITE

 0

 50

 100

 150

 200

 250

1K 2K 4K 8K 16K 32K 64K128K

W
rit

e
am

pl
ifi

ca
tio

n
(%

)

Payload size (bytes)

enable DDIO
disable DDIO

One-sided RDMA WRITE

Figure 2–16 (a) Effects of DDIO to bulk one-sided RDMA-NVM WRITE, (b) write amplification
analysis of one-sided RDMA-NVM WRITE. Note that we have enabled all other optimizations in

this experiment.

Measuring the write amplification of DDIO. To quantify the effect of DDIO, Fig-
ure 2–16(b) analyzes the write amplification of NVM① with different configurations. We
can see that enabling DDIO incurs a roughly 2X write amplification to NVM WRITE,
which explains why the bandwidth is halved for a large payload (e.g., more than 64KB).

Implications for RDMA-NVM systems. If the systems must use one-sided RDMA
WRITE to saturate the NVM bandwidth, we recommend considering H3 to turn off the
DDIO first. The system can statically enable/disable DDIO via the BIOS setups [52]
or dynamically adjust the bits in Integrated I/O (IIO) Configuration Registers [87-89] at
runtime. We follow prior work [89] to use configuration registers to configure DDIO at
runtime.

Limitations of disabling DDIO. On the current hardware platform, the DDIO con-
figuration affects all the devices on a processor. Thus, server CPU will have a poorer
cache locality for DMA-ed data (e.g., messages in two-sided primitives) with DDIO dis-
abled, resulting in degraded two-sided RDMA performance. For example, we measured
a 57% peak throughput drop (54M vs. 23M reqs/sec) of two-sided RDMA primitives
after disabling DDIO. Therefore, the current RDMA-NVM systems will make a trade-off

① We measure the write amplification of DDIO via NVM counters. §2.3.2.1 describes the measurements in more
detail.

— 32 —

between the bandwidth of one-sided RDMA NVM WRITE and the performance of two-
sided RDMA. Considering the limitations of disabling DDIO, we extend H3 as follows:

H3 (extended). If DDIO must be enabled, use two-sided RDMA for large NVM
writes;

Two-sided RDMA can leverage the CPU at the server to fully utilize NVM [74]. Hence,
RDMA-NVM systems can adopt a hybrid approach for implementing NVM write based
on the request payload size.

2.3.4.2 Access pattern advice

Tuning systems NVM access pattern according to the Optane PM’s features is crit-
ical to NVM-aware systems. Known optimizations for CPU include choosing the ap-
propriate CPU instructions and using the proper access granularity [74]. We summarize
these hints in H4–H5:

H4. Use ntstore instead of store for large writes;
H5. Use XPLine granularity for writes;

Both hints can also benefit RDMA-NVM systems. However, we foundH5 is not optimal
when considering RDMA, especially for small writes, because it incurs huge network
amplification. For example, applying H5 only improves the performance of 16B one-
sided RDMA NVM WRITE by 1.1X (31M vs. 34M reqs/sec), which remains far from
NVM’s ideal processing rate (52M reqs/sec). In this case, H5 will incur 16X (256B
vs. 16B) network amplification to one-sided RDMA WRITE. Since moving 256B data
to DRAM over RDMA is even slower than NVM ideal processing rate (37M vs. 52M
reqs/sec, as shown in Figure 2–10), the network would first become the bottleneck for
small writes.

To this end, we found the key for small writes to fully utilize NVM is to avoid
sending unnecessary read requests to the NVM. As we have mentioned in §2.3.2.1, NVM
read requests compete for XCtrl processing power with NVM write requests. Hence,
unnecessary read requests would drastically reduce the NVMwrite throughput. This fact
allows using a smaller access granularity to saturate NVM’s processing rate with RDMA.

CPU and RNIC generate an extra read request to NVM if the payload of the write
request does not fit their access granularities (i.e., cacheline and PCIe DW). They exe-
cute such a write request in a read-modify-write pattern to avoid overwriting the original

— 33 —

0x40 0x40+640x40+8

PCIe WRITE (0x40,8)

1 NVM Read
(0x40,64)

2 NVM Write
(0x40,64)

XCtrl

Figure 2–17 An example of PCIe partial write: PCIe sends two NVM requests when writing 8B at
address 0x40.

content. Thus, using the CPU/RNIC access granularity is sufficient to prevent sending
unnecessary reads from the device to NVM. Based on this observation, we first propose
H6–H7 to complementH5 for small writes. Further, since the read-modify-write pattern
is not friendly to NVM, we also proposeH8 to suggest systems use fewer such operations.
Specifically, we propose the following hints to complement H4–H5:

H6. For one-sided RDMA, use PCIe data word (64B) granularity when the payload
is smaller than XPLine;

H7. For two-sided RDMA, use cacheline granularity (64B) with ntstore when
the payload is smaller than XPLine;

H8. Use less atomic operations on NVM;

Hint H6. PCIe issues write in a read-modify-write pattern with PCIe partial-write.
Figure 2–17 shows a concrete example where the RNIC uses PCIe to write 8B at 0x40.
It will first send a read request to the NVM to read the data word at 0x40 (¶). Then, it
overwrites the entire data word according to the write request (·).

Figure 2–12(a) presents the optimized performance of H6 to one-sided RDMA
WRITE: it improves the performance of 16B WRITE to 87% of the NVM’s peak write
throughput (45M vs. 52M reqs/sec). The result is 1.3X faster than applying H5 thanks
to the reduced network amplification. Figure 2–18(a) further examines how eliminating
PCIe partial write helps to prevent sending read requests to the NVM. We apply H6 by
first aligning the written address to PCIe DW (+1. Align to PCIe DW), and then padding
the payload size (+2. Pad to PCIe DW) to a multiple of PCIe DW. As we can see, af-
ter applying both steps, one-sided RDMA WRITE does not issue a read request to the
NVM. Consequently, small WRITEs (e.g., no larger than 64B) can reach close to the

— 34 —

 0

 50

 100

 150

 200

 250

 16 32 48 64 80 96 112 128

R
ea

d
/ W

rit
e

(%
)

Payload size (bytes)

One-sided NVM WRITE
+1. Align to PCIe DW
+2. Pad to PCIe DW

 0

 50

 100

 150

 200

 250

 16 32 48 64 80 96 112 128

R
ea

d
/ W

rit
e

(%
)

Payload size (bytes)

+3. Pad to Cacheline
+2. Use nt-store
+1. Align to Cacheline
Two-sided NVM WRITE

Figure 2–18 The ratio of extra NVM read per write of (a) one-sided RDMA WRITE and (b)
two-sided RDMA on the remote write benchmark. Aligning and padding the write payload to device

access granularity (e.g., PCIe DW) is sufficient to avoid unnecessary NVM reads for one-sided
RDMA WRITE. On the other hand, two-sided RDMA further needs to use ntstore.

NVM processing limit.
We should mention that reducing the PCIe partial write may also benefit one-sided

RDMA-DRAMWRITE. However, our experiments show that it may even have a negative
effect on DRAM WRITE. For example, the 16B DRAM WRITE has a 25% performance
degradation on our testbed after applying H6.

Hint H7. Similar with H6, H7 suggests how to prevent read-modify-write for two-
sided RDMA. As shown in Figure 2–12, it improves the 16B two-sided RDMA-NVM
WRITE performance by 1.8X (19M vs. 35M reqs/sec). To apply H7, two-sided RDMA
should use ntstore together with use cacheline granularity (+1. Align to Cacheline
and +3. Pad to Cacheline, as shown in Figure 2–18(b)). This is because, the CPU would
pre-fetch the cacheline using NVM read with store. As shown in Figure 2–18(b), two-
sided RDMA-NVMWRITE always achieves a 100% read/write ratio even after using the
proper access granularity.

Hint H8. A lesson learned fromH7–H8 is that the read-modify-write access pattern is
not friendly to NVM. Atomic operations (e.g., one-sided RDMA ATOMIC compare and
swap) naturally follow a read-modify-write pattern. Worse, the designer cannot apply
prior hints to optimize atomic operations. For instance, one-sided RDMA ATOMICs
cannot apply H6 since they use a fixed 8B granularity. Consequently, we suggest using

— 35 —

fewer atomics on NVM for RDMA. Note that we are not suggesting disabling atomics,
but moving the data for atomic operations (e.g., spinlock) from NVM to DRAM whenever
possible.

Discussion of H6–H8. Although applyingH6 andH7maywaste NVM storage for stor-
ing the padding, while adopting H8 could change the persistent semantic of atomic data,
we believe H6–H8 is actionable in real systems. This is because there are many scenar-
ios in RDMA-NVM systems that can use H6-H8 without wasting storage or changing
the application semantics. For instance, existing RDMA-NVM enabled databases [2, 13,
17, 25, 58] do not require the lock to be persistent. Thus, we can safely move their lock
metadata from NVM to DRAM. Furthermore, distributed logging [2, 13] naturally uses
padding to accommodate future logs. Thus, applying H6 to logging does not introduce
additional storage overhead. Finally, as we will present in §2.3.5, H6–H8 can have huge
performance improvements for existing systems.

2.3.4.3 RDMA-aware advice

We conclude our study of building efficient persistent remote memory with RDMA
and NVM by discussing how known RDMA-aware optimizations can mitigate the inef-
ficiency of implementing persistent write atop existing hardware platforms. As we have
mentioned in the introduction, a strawman approach to implementing persistent write
using one-sided RDMA requires two network roundtrips: the first WRITE attempts to
store the data to NVM, while the second READ ensures that the written data is flushed
to the persistent domain (e.g., Optane PM). Fortunately, it is possible to leverage well-
known RDMA-aware optimizations to avoid the additional network roundtrip of READ.
H9 summarizes this fact:

H9. Enable outstanding request with doorbell batching for one-sided persistent
RDMA WRITE.

Specifically, outstanding request [30] allows us using the completion of READ as the
completion of the WRITE, as long as the two requests are sent to the same QP. Since the
READ to persist the WRITE must be post to the same QP as the WRITE (§2.3.2.2), we
no longer need to wait for the first WRITE to complete. Thus, this optimization reduces
the wait time of the first network roundtrip. Applying outstanding request to persistent
WRITE is correct because first, later READ flushes previously WRITE [79], and RNIC

— 36 —

processes requests from the same QP in a FIFO order [68].
Based on outstanding request, doorbell batching [66] further allows us to send the

READ and WRITE in one request using the more CPU and bandwidth efficient DMA,
reducing the latency of posting RDMA requests.

On our testbed, a single one-sided RDMA request takes 2𝜇s. Thus, a strawman
implementation of remote persistent write uses 4𝜇s. After applyingH9, one-sided remote
persistent write takes 3𝜇s latency to finish.

2.3.5 RDPMA and improved system design

In this section, we first present how we use the results of our study to implement
RDPMA (§2.3.5.1), an efficient remote persistent memory library. Then, we use RDPMA to
optimize existing RDMA-NVM systems (§2.3.5.2).

2.3.5.1 RDPMA

RDPMA provides simple yet straightforward remote persistent read/write interfaces.
We build it on R2 to fully leverage its RDMA-aware optimizations (§2.2). RDPMA further
transparently adopts most our summarized hints (§2.3.4) to better leverage NVM with
RDMA. We don’t incorporate all the hints since several hints depend on the application
semantic (e.g., H1). The upper system (e.g., DrTM+X) can manually add these optimiza-
tions (§6.3).

Specifically, RDPMA provides the following interfaces:

Alloc. The system must use Alloc to allocate the memory for reading/writing. It
returns a fat pointer encoding the memory addresses and payload. For safety reasons,
RDPMA does not support reading/writing NVM with arbitrary pointers. This is be-
cause, RDPMA heavily applies aligning/padding to achieve better performance (e.g.,H6 in
§2.3.4). If the user passes a pointer that points to an improperly aligned/padded memory,
RDPMA would corrupt the memory content.

Read. Given a fat pointer allocated from Alloc, Read transfers its content to the caller.
The caller can specific which RDMA primitive to use. Since reading NVM is efficient
with RDMA, RDPMA does not apply any specific optimization to the basic implementation
of different RDMA primitives (§2.3.3).

Write. It overwrites the original content pointed by the fat pointer returned from Al-

— 37 —

loc. Like Read, the caller can choose which RDMA primitive to use. For each RDMA
primitive, RDPMA adopts the relative optimizations summarized in Table 2–4.

PWrite. Compared to Write, PWrite additionally provides persistency, i.e., when
the call returns, RDPMA guarantees the written data must reaches the persistent domain
(§2.3.2.1). For one-sided primitive, RDPMA optimizes one-sided based Write with H9.
For two-sided primitive, RDPMA adds sfence after a two-sided based Write.

2.3.5.2 Improved system design: Octopus

Existing or future RDMA-NVM systems can benefit from our summarized opti-
mization hints (§2.3.4) and RDPMA. In this section, we present how we use these hints to
improve the performance of an representative open-source RDMA-NVM systems, Oc-
topus [51]. Octopus is a distributed file system designed for RDMA and NVM. It is
designed when no production NVM is available.

Overview. Octopus uses a distributed NVM pool to store the file system metadata and
its file data blocks. It achieves high throughput and bandwidth for reading/write file data
throughClient-Active Data I/O: the client directly read/write a file’s data block using one-
sided RDMA READ/WRITE. Besides Client-Active Data I/O, Octopus also leverages
RDMA-enabled distributed transactions to update the filesystem metadata. Its transac-
tional protocol use one-sided RDMA ATOMICs to coordinate conflicting metadata op-
erations.

Optimizations. We focus on improving Octopus’s Client-Active Data I/O because the
distributed transaction is not supported in its current public available codebase①. Never-
theless, we believe our findings can also improve distributed transaction performance in
Octopus, e.g., using H8 to improve its lock performance. Specifically, we port Octopus
to use RDPMA for reading/writing files that are also allocated with RDPMA.

2.3.5.3 Evaluation

We follow the Data I/O benchmark in the Octopus paper [51] for the evaluation. In
this benchmark, each client writes a fixed payload to a random location in a randomly

① https://github.com/thustorage/octopus

— 38 —

https://github.com/thustorage/octopus

 0

 200

 400

 600

 800

 1000

1K 4K 16K 64K 256K 1M

T
hp

t (
K

 r
eq

s/
s)

Payload

DRAM
+NVM

+OPT(H1-H8)
+Persist

+OPT(H9)

 0

 30

 60

 90

 120

1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 (

G
bp

s)

Payload

Figure 2–19 Data I/O (a) throughput and (b) bandwidth of Octopus (Multiple Clients).

chosen file. The client first uses two-sided RDMA to query the file metadata (e.g., data
block addresses). Then, it writes the data payload with one-sided RDMA WRITE.

Comparing targets. In Figure 2–19, DRAM is the vanilla Octopus using DRAM to
emulate the NVM pool. +NVM uses Optane PM as NVM pool, and +OPT(H1-H8)
applies our optimizations to +NVM with RDPMA. +Persist further adopts an existing
approach [75] to support synchronous durable file write atop pf+OPT(H1-H8). Finally,
+OPT(H9) leverages H9 to reduce network roundtrips for persistence of +Persist.

Performance. As shown in Figure 2–19, +OPT(H1-H8) improve +NVM by up to
2.4X (from 1.2X), mainly due to applying H3. Without H3, Octopus’s client-active I/O
cannot fully saturate NVM’s write bandwidth because it uses one-sided RDMA WRITE
with DDIO enabled to write to the NVM. Further, +OPT(H9) outperforms +Persist by
1.06X (from 1.02X), thanks to the reduced RDMA roundtrips for persistent write.

2.3.6 Summary

This section conducts a systematic study on better leveraging RDMA and NVM to
build efficient remote persistent memory. Based on the study, we build RDPMA; a re-
mote persistent memory library integrated with the studied optimizations. Evaluation of
RDPMA on existing RDMA-NVM systems confirms its benefits. We believe our summa-
rized hints as well as experiences in applying them to existing systems can benefit future
systems developers when designing systems with RDMA and NVM.

— 39 —

2.3.7 Related work on NVM

RDMA-NVM systems. RDPMA continues the line of research of using RDMA and
NVM to improve the performance and reliability of distributed systems [13, 18, 51-57].
Kashyap et al. [90] explores the trade-offs of using different methods to ensure NVM
write persistence with RDMA. They conduct their experiments on emulated NVM. The
study in this section instead focuses on Optane PM. Orion [52] is a distributed file system
designed for RDMA and NVM. It does not consider RDMA-ware optimizations (i.e.,H9)
and chooses two-sided RDMA for the persistent write. We believe RDPMA can provide
better design decision for it. Hotpot [54] uses RDMA and NVM to build a distributed
persistent shared memory. AsymNVM [56] proposes an asymmetric architecture to use
NVM with RDMA. Though AsymNVM is evaluated with Optane PM, it does not con-
sider the performance features of Optane PM. Hence, we believe RDPMA can improve its
performance on Optane PM.

NVM-aware systems. Except for RDMA-NVM systems, researchers are building
NVM-aware systems for decades, including but not limited to file systems [38-40], NVM-
aware data structures [41-42], key-value stores [43], NVM-aware JVM [44-45], and
transactions on NVM [46-50]. Like RDMA-NVM systems, most of them use emulated
NVM since there is no commercially available NVM at that time. We hope the study in
this section can further inspire future research on revisiting previous NVM-aware systems
on Optane PM.

2.4 Discussion and future trends
Generality of the study. Our study focuses on specific RNIC (Mellanox ConnectX-
4, Mellanox ConnectX-5) and NVM (Intel Optane DC Persistent Memory), while other
hardware devices may yield different results. Nevertheless, we believe these RNICs are
representative RNICs, as recent generations of Mellanox RNICs (e.g., Connect-IB) all
share the same architecture. Moreover, Optane PM is the only commercially available
NVM. Finally, we also provide open-source tools that the developers can use to examine
their design choices under different hardware configurations.

Next-generation NVM. The next-generation of NVM not only has a better perfor-
mance but also provides a larger scope of persistent domain. First, it will have a 25%

— 40 —

higher bandwidth [91]. Second, it will include the processor cache in its persistent do-
main [76]. This feature is desirable for one-sided RDMA since one-sided RDMA no
longer depends on DDIO for WRITE to be persistent (§2.3.2.2). Consequently, the de-
signer does not need to make a trade-off between one-sided persistence and two-sided
RDMA performance (§2.3.4).

On the other hand, the new features of next-generation NVM are unlikely to change
the advice of our study. First, the primary focus of our study is how to avoid NVM write
becoming the bottleneck in RDMA-NVM systems (§2.3.3), even when NVM write has
a comparable performance with RDMA (see Figure 2–6). Thus, the 25% bandwidth im-
provement of the next-generation NVM is insufficient to twist the performance compar-
isons between RDMA and NVM, since future generations of RDMA will have much
higher bandwidth. For example, RNIC with 200Gbps bandwidth has already been com-
mercially available [92], which is 2X higher than our evaluated RNIC. Besides perfor-
mance, the enhanced functionality of next-generation NVM, i.e., putting cache in the
persistent domain, is also unlikely to address the current performance issue caused by the
cache. This is because the random cache eviction is still not suitable for NVM. Mean-
while, an extra one-sided RDMA READ is still required to ensure persistence as long as
the RNIC is not re-designed.

Suggestions to hardware designers. There are proposals to extend RDMA to coop-
erate with NVM, e.g., Talpey et al. [93] proposed to add a one-sided commit primitive to
support one-side persistent RDMAWRITE. Nevertheless, our study reveals that existing
proposals are insufficient: the hardware designers not only need to consider hardware
extensions to support more functionality, but also should consider extensions for bet-
ter performance. For instance, adding an RDMA-version of ntstore, e.g., one-sided
non-temporal RDMA WRITE that allows the WRITE to bypass the cache—can greatly
improve the flexibility in configuring DDIO for RDMA-NVM systems (§2.3.4).

2.5 Conclusion
Designing high-performance systems with RDMA and NVM requires a clear under-

standing of these hardware features. This chapter provides a systematic study on how to
efficiently use RDMA and how to best utilize NVMwith RDMA. Based on the study, we
built two systems. R2 is an execution framework designed with RDMA features, while

— 41 —

RDPMA is an efficient remote persistent memory library built upon RDMA and NVM.
Integrating R2 and RDPMA to existing systems can lead to up to 2.2X better performance.
Over the later chapters, we will discuss how DrTM+H, XStore and DrTM+X build upon
R2 and RDPMA.

— 42 —

Chapter 3 Learned cache for RDMA-based Ordered
Key-value Store

This chapter presents the design of XStore, an in-memory network-attached key-
value store designed for RDMA. Network-attached in-memory key-value stores have be-
come the foundation of modern databases [13, 26, 94]. RDMA (Remote Direct Mem-
ory Access) has recently generated considerable interests in these key-value stores (aka
RDMA-based KVs) in both academia [17, 30, 95] and industry [2, 26, 96], as it enables
direct access to the memory of remote machines with low latency and CPU/kernel by-
passing. However, leveraging RDMA to ordered key-value stores encounters a significant
obstacle—traversing the tree-based index with one-sided RDMA primitives is costly and
complex. This is because it usually requires multiple network round trips (e.g., 𝑂(logN))
and rapidly saturates bandwidth.

Many recent academic and industrial efforts [13, 28, 97] therefore proposed index
caching to reduce RDMA operations. Yet, the conventional wisdom on implementing
cache—replicating partial data and accessing them locally—does not work well with the
tree-based index, and the drawbacks are amplified by maintaining the tree-based cache
with RDMA primitives. First, the tree-based index can be large, so that the cache would
suffer from unavoidable capacity misses. Second, the cache would aggravate random
memory accesses and further increase the end-to-end latency. Third, updating the tree-
based index may recursively invalidate the cache and cause false invalidation due to path
sharing.

Inspired by recent research [98]—using machine learning (ML) models as an alter-
native index structure, we propose to leverage ML models as the (client-side) RDMA-
based cache for the (server-side) tree-based index, termed learned cache. Specifically,
the client uses learned cache to predict a small range of positions for a lookup key and
then fetches them using one RDMAREAD. After that, the client uses a local search (e.g.,
scanning) to find the actual position and fetches the value using another RDMA READ.
Although usingMLmodels as the index seems efficient (a few floating/int operations) and
cheap (a small memory footprint) for static workloads (e.g., gets), it is also notoriously
slow (frequently retraining ML models) and costly (keeping data in order) for dynamic
workloads (e.g., inserts).

— 43 —

The key contribution described in this chapter is XStore, and fast RDMA-based
ordered key-value store using our proposed learned cache. To address the challenges im-
posed by dynamic workloads, we propose a hybrid architecture that retains a tree-based
index at the server to perform dynamic workloads (e.g., inserts) and leverages a learned
cache at the client to perform static workloads (e.g., gets and scans). The hybrid archi-
tecture not only provides separate and appropriate execution paths for both workloads,
but also simplifies the mechanism to guarantee the correctness of concurrent local and
remote operations.

We have implemented XStore by extending a concurrent 𝐵+𝑡𝑟𝑒𝑒 [3] on R2
(§2.2). Evaluations using the YCSB benchmarks [99] with two synthetic and one real-
world [100] datasets, as well as two production workloads from Nutanix [101] show that
a single XStore server can achieve over 80 million read-only requests per second. This
number outperforms state-of-the-art RDMA-based ordered key-value stores (i.e., DrTM-
Tree [18], Cell [28], and eRPC+Masstree [65]) by up to 5.9× (from 3.7×). For workloads
with inserts, XStore still provides up to 3.5× (from 2.7×) throughput speedup, achiev-
ing 53M reqs/s. The learned cache also reduces client-side memory usage significantly
and further provides an efficient memory-performance tradeoff. For example, it can save
99% memory at the cost of 20% peak throughput, compared to caching the whole index.
In §6.1 we will further evaluates the effectiveness of XStore in distributed transactions.

3.1 Background of RDMA-based ordered key-value store
This section present the environment XStore targets. XStore focuses on in-

memory key-value (KV) stores that adopt the client-server model (network-attached) [30,
95, 102-103] and range index structures (tree-backed) [28, 97, 104]. The server hosts
both key-value pairs and indexes in main memory and handles requests from multiple
clients concurrently. The client interacts with the server through a library that provides
basic key-value interfaces, including GET(K), UPDATE(K,V), SCAN(K,N)①, INSERT(K,V), and
DELETE(K), as well as more complex operations built atop them.

Figure 3–1 presents two design choices for RDMA-based ordered key-value store.

Server-centric design (S-RKV) [17, 25, 65]. An obvious design is to take a traditional
KV store and reimplement the communication layer (e.g., RPC) using RDMA primitives.

① SCAN(K,N) provides a form of range query that retrieves first (up to) N key-value pairs, where their keys are larger
than or equal to K.

— 44 —

RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

pos v

polling
RNIC

Value

Server

Index

CPURNICCPU

Client

GET(k)

Cache

Server-centric RKV Client-direct RKV

tr
a
v
e
rs
in
g

N
e

tw
o

rk

N
e

tw
o

rk

v

RDMA

DMA/
MMIO

k

k pos

pos

RPC

Figure 3–1 The architecture of RDMA-based key-value stores: (a) server-centric RKV and (b)
client-direct RKV.

As shown in Figure 3–1a, the clients ship their requests to the server via RDMA network
using one round trip for each; the server traverses the tree-based index and performs the
request locally. The server-centric design allows access to the server-side store with only
two RDMA operations (one for sending and one for receiving), no matter how complex
the index structures are, thereby avoiding multiple round trips and message size amplifi-
cation [25]. However, this design exploits only high performance (low latency and high
bandwidth) but not CPU efficiency (remote CPU bypassing) of RDMA network at the
server, which limits the scalability of these KV stores with the increase of clients.

Client-direct design (C-RKV) [13, 28, 97]. The adoption of RDMA makes it practical
to allow clients to access data hosted on the server directly, thereby permitting an al-
ternative (client-direct) design that relaxes the burden on server CPUs. To simplify the
mechanism for consistency, this design is restricted to read-only requests (i.e., GET and
SCAN) in most systems [2, 28, 95]. The choice is also motivated by the read-dominated
nature of real applications [20, 105]. As shown in Figure 3–1b, the clients use one-sided
RDMA operations to traverse the tree-based index and fetch the value directly for read-
only requests; the server still needs to perform the rest of requests (i.e., UPDATE, INSERT,
and DELETE) locally. The client-direct design can shift the CPU load on the server to the
clients, which would alleviate the bottleneck (from CPU to network), especially on high-
bandwidth networks (e.g., 100Gbps). However, it may consume extra network round
trips for traversing the tree-based index due to the lack of richness of RDMA primitives,
causing an order-of-magnitude slowdown (e.g., 11× slowdown in Figure 3–3a). For ex-
ample, recent work [28, 97] uses RDMA READs to traverse remote 𝐵+𝑡𝑟𝑒𝑒 index and
invariably incurs multiple network round trips (𝑂(logN) [106]).

— 45 —

 0

 20

 40

 60

 80

 100

1 50 100 150 200

C
P

U
 u

til
iz

at
io

n
(%

)

Number of client processes

S-RKV

C-RVS

YCSB C

 0

 40

 80

 120

 160

 200

1 50 100 150 200

B
an

dw
id

th
 (

G
bp

s)

Number of client processes

S-RKV

C-RKV

Network Limit

YCSB C

Figure 3–2 A comparison of server-side (a) CPU and (b) network bandwidth utilization for
state-of-the-art server-centric (S-RKV) and client-direct (C-RKV) RDMA-based KV stores.
Workload: YCSB C (100% read), using 100M keys with a uniform distribution. Testbed: The

server has two 12-core CPUs and two 100Gbps RNICs.

Recently, index caching has been proposed to reduce network round trips for index
traversal by RDMA-based systems [13, 17, 28, 107-108], namely, the client caches the
server-side index locally. It aims at reducing RDMA READs for fetching the position of
the value (aka lookup), instead of caching the value directly.① Thus, an optimal result
with index caching only needs two RDMA operations per request (one for lookup and
one for read).

3.2 Analysis of RDMA-based ordered key-value stores
In this section, we analyze existing RDMA-based ordered KVS presented in §3.1.

CPU is the primary scalability bottleneck in the server-centric design. Figure 3–2 com-
pares the hardware resource utilization (CPU and network bandwidth) between S-RKV
and C-RKV with the increase of clients. For S-RKV, the server rapidly saturates all
CPUs (24 cores) but just consumes 11% of network bandwidth. It implies that CPU
first becomes the performance bottleneck and limits the scalability with the increase of
clients, especially when deploying fast networks. This also runs counter to the recent
trend of building servers in modern datacenters with CPU-bypassing networks [13, 63,
109]. As shown in Figure 3–3a, S-RKV reaches the peak throughput of around 24M

① Considering RDMAperformance degradation with increasing payload size [30], the client will only cache internal
nodes [28, 108] and not directly fetch a batch of keys and (inline) values to avoid bandwidth amplification [28,
106].

— 46 —

 0 20 40 60 80

Throughput (M reqs/s)

e.g., DrTM-Tree

e.g., Cell

7M vs. 78M

YCSB C

All (optimal)
6 levels
5 levels
4 levels
3 levels
2 levels
1 level

No cache
C-RKV
S-RKV

 0 10 20 30 40

Median Latency (µs)

NIC IDX
CPU IDX
NIC VAL

CPU
NIC

YCSB C

All (optimal)
6 levels
5 levels
4 levels
3 levels
2 levels
1 level

No cache
C-RKV
S-RKV

 0

 10

 20

 30

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
 r

eq
s/

s)

Time (s)

No
1L
2L
3L
4L

5L
6L

All

S-RKV C-RKV

YCSB D

Figure 3–3 A comparison of server-side (a) peak throughput, (b) end-to-end median latency at low
load, and (c) throughput timeline for state-of-the-art server-centric (S-RKV) and client-direct

(C-RKV) RDMA-based KV stores. Workload: YCSB C (100% read) and YCSB D (95% read and
5% insert), using 100M keys with a uniform distribution. Testbed: The server has two 12-core

CPUs and two 100Gbps RNICs.

reqs/s. Traversing tree-based index occupies most of CPU time, as it involves massive
random memory accesses. On our testbed, we measured that one CPU core can perform
43 million 64-byte random reads per second at full speed. Thus, each core can only pro-
cess up to 1.8M reqs/s for traversing a (8-level) 𝐵+𝑡𝑟𝑒𝑒 with 100M keys, even putting
other CPU and network costs aside.

Costly RDMA-based traversal is the key obstacle in the client-direct design. C-RKV
allows the client to traverse the server-side index directly by using one-sided RDMA
READs, which can thoroughly bypass server CPUs (see Figure 3–2a). However, RDMA-
based index traversal usually requires multiple network round trips (e.g., 𝑂(logN) for
tree-based index) and saturates the network bandwidth quickly. As shown in Figure 3–
3a, RDMA-based traversal limits the peak throughput of C-RKV to 7 million requests
per second, even much lower than that of S-RKV. Using index caching at the clients
can reduce RDMA operations by traversing index nodes locally. On our testbed, the
throughput of C-RKV with index caching, similar to state-of-the-art design (Cell [28]),
peaks at 14.5M reqs/s, as each request takes 4 RDMAREADs (down from 8) for traversal.

Tree is not a proper structure for RDMA-based index cache. To our knowledge, existing
RDMA-based index caches use homogeneous structures to store partial index nodes,
similar to the conventional design. For example, each client replicates tree nodes and
traverses them locally before accessing the tree-based index hosted on the server [13, 28,
97].

First, the tree-based index can be large [25, 110-111], and the traversal demands

— 47 —

multiple random accesses from the root to the leaf node. Thus, each client can only
cache nodes near the root (e.g., top four levels [28]) to minimize thrashing and maximize
hits [13, 28]. Yet, the index cache still suffers from unavoidable capacity misses (bottom
node levels). In Figure 3–3a, for a read-onlyworkload, the effect of RDMA-based caching
for tree-based index is dominated by inner node levels cached. The optimal throughput (a
whole-index cache) reaches 78M reqs/s using one RDMA READ for each traversal (fetch
the position of the value), 3.3× better than S-RKV.

Second, traversing tree-based index is a memory-intensive but low-compute opera-
tion. The homogeneous index cache can just alter the type of memory accesses (i.e., re-
mote and local), instead of reducing the number of memory accesses (𝑂(logN)). Hence,
despite the index cache, traversing tree-based index would still incur massive random
accesses and suffer from CPU cache misses, TLB misses, and RNIC’s page translation
cache misses. As shown in Figure 3–3b, even caching the whole index, the end-to-end
latency of C-RKV is still 80% higher than S-RKV, and the CPU cost on index cache
(CPU_IDX) occupies close to 30%.

Third, updates to the tree-based index (i.e., inserts and deletes) might propagate
the changes from the leaf level to the root node, so that the index updates would prob-
ably invalidate the cache recursively [97] and cause false invalidations (path sharing).
It would result in frequent cache misses and RDMA READs to retrieve updated index
nodes. Worse yet, the more tree nodes cached, the more performance degrades. Further,
preserving traversal consistency for dynamic workloads demands sophisticated detec-
tion schemes (e.g., fence keys [112-113]) and incurs additional overhead. As shown in
Figure 3–3c, the optimal throughput significantly drops to 25M reqs/s with severe per-
formance fluctuations, just because of 5% inserts.

3.3 An overview of XStore

Opportunity: ML Models. XStore is motivated by an attractive observation from the
learned index [98]—a range index (e.g., 𝐵+𝑡𝑟𝑒𝑒) that finds the position of a given key
inside a sorted array approximates the cumulative distribution function (CDF) of the keys
in the index. As shown in Figure 3–4, suppose the values have been sorted according to
the lookup keys, the CDF (the red curve) is a mapping from the (sorted) keys to the
(sorted) positions of their values, namely CDF(K) returns the actual position of the value
corresponding to K. Prior work [98] proposes to approximate the shape of a CDF using

— 48 —

pos

key

CDF

LR0 LRM-1

min_err

max_err

Model
-min_err

pos

+max_err

actual

K (sorted)

(sorted)

2-level

Recursive
Model

key

key

pos

NN

Figure 3–4 An example of using ML models to predict the position within a sorted array for a
given key.

machine learning (ML) models, like neural nets (NN) and linear regression (LR), since
they are able to learn a wide variety of distributions. As an alternative range index, the
ML model is trained with every key to record the worst over- and under-prediction of a
position (i.e., min- and max-error). In Figure 3–4, given a lookup key (K), the model
(the black curve) can predict a position (pos) with a min- and max-error (min_err and
max_err), and a local search (e.g., scanning) around the prediction is used to get the
actual position. To further reduce the prediction error, a hierarchy of simple models
(e.g., recursive-model index [98]) is used to partition the key space, where the model at
level L picks the model at level L+1 based on the key.

Our approach: Learned Cache. The key idea behind XStore is to leverage machine
learning (ML)models as (client-side) RDMA-based cache for the (server-side) tree-based
index, termed “learned cache”. The unique features of machine learning models can
fundamentally overcome the drawbacks in the conventional wisdom for RDMA-based
index caching (see §3.2). First, instead of using a homogeneous structure to cache a
partial index, theMLmodel can cache thewhole index at the cost of accuracy. Therefore,
using the learned cache can completely avoid capacitymisses, and each lookup only needs
one RDMA READ. Further, the ML model is also famously memory-efficient (e.g., two
parameters per LR model). Thus, the learned cache can match the optimal throughput of
conventional design (a whole-index cache) but with practical memory consumption.

Second, instead of finding the actual position by traversing a tree-based index with
𝑂(logN) random memory accesses, the ML model can approximately predict a range of
positions for a lookup key by performing a single multiplication and addition (e.g., linear
regression). It implies that the learned cache might also reduce the end-to-end latency,

— 49 —

RNIC

Value

Server

XTree

CPURNICCPU

Client

GET(k)

XCache

N
e
tw
o
rk

v

Models

[-,+]

k

[-,+]

pos

training

RNIC RNIC CPU

XCacheModels

INSERT(k,v)

k

Client

v
RDMA

DMA/MMIO

bkgd

Models

polling

k

Key

N
e
tw
o
rk

Figure 3–5 The hybrid architecture behind XStore: client-direct operations (left) and
server-centric operations (right).

even compared to a whole-index cache, due to fewer CPU cache and TLB misses at the
clients.

Finally, instead of fine-grained and recursive invalidation in the tree-based cache for
accurate predictions, theMLmodel can reduce and delay cache invalidations since it only
needs to provide approximate predictions. Updates to the index might only decrease the
accuracy of the (partial) ML model. Thus, the learned cache can significantly save inval-
idation cost in terms of network round trips and bandwidth usage, especially compared
to a whole-index cache.

Challenge: Dynamic Workloads. Dynamic workloads (e.g., inserts and deletes) would
violate an (unrealistic) assumption of ML-based approach that all key-value pairs are
stored in sorted order by key [98]. However, retraining ML models and keeping data in
order are slow and costly, which is hard to match the high performance of in-memory
key-value stores (tens of millions of requests per second). An intuitive solution is to
maintain a delta index (e.g., 𝐵+𝑡𝑟𝑒𝑒) for (in-place or buffer-based) inserts and then pe-
riodically compact it with the learned index (data merging and model retraining) [111,
114]. Unfortunately, it cannot work well with RDMA-based index caching. First, addi-
tional RDMA-based lookups on the delta index would incur more network round trips and
severely increase the latency. Second, it is also hard to cache a fast-changing (tree-based)
delta index at the clients. Finally, the data and model compaction definitely interrupts
(RDMA-based) remote accesses and completely invalidates the learned cache. Hence,
how to make learned cache keep pace with dynamic workloads at low cost becomes a
key challenge.

— 50 —

Overview of XStore. XStore is an in-memory ordered key-value store using a client-
server model, where the server and the clients are connected with a high-speed, low-
latency network with RDMA.① Using ML models as the index (aka learned index) is
famously efficient and cheap for static workloads (e.g., gets and scans), while it is notori-
ously slow and costly for dynamic workloads (e.g., inserts and deletes). It is because the
inserts would amplify the prediction error and incur model retraining frequently. Prior
work [98, 114-115] relies more on the profit from efficiently handling static workloads to
amortize the negative influence on dynamic workloads. We argue that the learned cache
opens the opportunity to solve this dilemma. Unlike prior work [98, 114-116], which
replaces or augments the tree-based index with the learned index, we propose a hybrid
architecture that retains the tree-based index at the server to handle dynamic workloads
and uses the learned cache at the clients to handle static workloads.

Figure 3–5 shows the architecture of XStore. The server hosts a 𝐵+𝑡𝑟𝑒𝑒 index
(XTREE) in the main memory and stores key-value pairs at the leaf level physically, like
the common practice. Each client interacts with the server through a library, which
hosts a local learned cache (XCACHE). XStore uses the client-direct design for read-
only requests (i.e., GET(K) and SCAN(K,N)) and the server-centric design for the rest (i.e.,
UPDATE(K,V), INSERT(K,V), and DELETE(K)). For client-direct operations, like GET(K) in Fig-
ure 3–5, the client first predicts a range of positions for the key K using XCACHE and
then fetches them using one RDMA READ. Finally, the client uses a local search to find
the actual position and fetches the value using another RDMA READ. For server-centric
operations, like INSERT(K,V) in Figure 3–5, the client uses RPC over RDMA to ship the
request to the server. The server searches the lookup key K by first traversing the 𝐵+𝑡𝑟𝑒𝑒
index and then inserts the new KV pair (K,V). XStore will partially retrain ML mod-
els for updated tree nodes in the background, and each client will individually fetch the
models for XCACHE on demand.

3.4 Design and implementation of XStore
We describe the design and implementation of XStore in this section. We start by

presenting two main data structures at the server and the clients, respectively (§3.4.1).
Then we elaborate on how XStore implements client-direct operations (§3.4.2) and

① The client may not be the end user but the computation node or the front-end of RDMA-based datacenter appli-
cations [2, 13, 26, 28, 30, 95, 97].

— 51 —

server-centric operations (§3.4.3). Finally, we discusse how to support durability (§3.4.4)
and scale-out (§3.4.5) in XStore.

3.4.1 Data structures

XTree. At the server, XStore retains a 𝐵+𝑡𝑟𝑒𝑒 index (XTREE) and stores key-value pairs
at the leaf level physically, like common practice, as illustrated in the left part of Figure 3–
6. XTREE follows the basic design of a concurrent 𝐵+𝑡𝑟𝑒𝑒 [3, 104], except that the leaf
node (LN) is optimized for remote reads. Specifically, the leaf node consists of a 24-
bit incarnation (INCA), an 8-bit counter (CNT), a 32-bit right-link pointer to next sibling
(NXT), keys with N slots (K0..K𝑁−1) and values with N slots (V0..V𝑁−1), as described in
the following table.

INCA The incarnation of the leaf node
CNT The number of key-value pairs stored
NXT The offset to the next leaf node if exists
K0..K𝑁−1 The keys of key-value pairs (at most N)
V0..V𝑁−1 The values of key-value pairs (at most N)

Every leaf node is allocated from an RDMA-registered memory region managed by
a slab allocator. The node can store at most N key-value pairs in sorted order. For brevity,
we assume fixed-length key-value pairs here.① To save the size of RDMA READ for
lookup, XStore stores keys and values separately but continuously. This setup can avoid
storing the address of the value. For instance, the client can fetch N keys from the leaf
node and calculate the (remote) address of the expected value locally (a fixed offset from
its key). Moreover, XStore uses incarnation checks [2, 17] to guarantee the consistency
of remote accesses. The incarnation in the leaf node is initially zero and is monotonically
increased when the leaf node is reused (e.g., split or free). The number of slots (N) can
be tuned for RDMA performance (e.g., 16).

XCache. Each client hosts a local learned cache (XCACHE), which consists of a 2-level
recursive ML model (XMODEL) and a translation table (TT). As illustrated in the right
part of Figure 3–6, given a lookup key, XMODEL is used to predict a range of positions

① Similar to prior RDMA-based key-value stores [2, 17, 28], XStore currently supports fixed-length key and
fixed/variable-length value. For variable-length value, the leaf node should store a 64-bit fat pointer [2, 37]
(the size and the position of the value) instead of the value. We discuss how to support variable-length key in §3.6
and leave it to future work.

— 52 —

B+Tree

Client

LN LN

CNTINCA K0..KN-1 V0..VN-1

Leaf
Node

valueskeys

key

Trans.

Table

LR0 LRM-1

NN

TT Entry

0316364

LLN:

valid

Server

XModel

TT
INCAALN1

XTree XCache

POS[..]

POS[..]Logical

Actual

CNT
7

NXT

LN

Figure 3–6 The main structures in XStore: XTREE and XCACHE.

(POS[..]) within a sorted array (logically stitching together all leaf nodes of XTREE).
XStore assumes machine learning (ML) models can effectively learn various data dis-
tributions. We describe how XStore configures models in §3.5 in details.

The ML model demands the positions (virtual address) of leaf nodes are always
sorted by the keys. However, it is almost impossible for dynamic workloads, since the
insertion of key-value pairs may insert a new node at the leaf level and break the sorted
order of leaf nodes. To this end, the XStore server maintains an additional translation
table (TT) for leaf nodes that translates logical positions to actual positions. Each client
caches a part of the table on demand. The entry of TT is located by the logical leaf-node
number (LLN) and consists of a valid bit, a 31-bit actual leaf-node number (ALN), a 24-bit
expected incarnation (INCA), and an 8-bit counter, as shown in Figure 3–6. The client can
calculate the (host) virtual address of the target leaf node using ALN and the base address
of an RDMA-registered memory region. Further, the match of incarnation between TT’s
entry and target leaf node guarantees that the leaf node has not been reused.

Training models and TT. The server (re-)trains a 2-level ML model (XMODEL) with a
translation table (TT) over XTREE’s leaf nodes in the background, and each client (re-)fills
the learned cache (XCACHE) on demand. Figure 3–7 shows the pseudo-code of training a
XMODEL and TT from scratch. Starting from a sorted array of keys with logical positions
(line 4), we first train the top model. Based on the prediction of the top model, we then
evenly partition keys into M sub-models (line 9). Finally, we train each sub-model on a
sorted array of its keys with a private logical position at a leaf node granularity (line 12-
21) and calculate min- and max-error for every sub-model (line 22). Note that the keys in
the leaf node across sub-models will be trained by both of sub-models. Moreover, each

— 53 —

▸ M: Max. number of sub-models

▸ N: Max. number of keys in each leaf node

TRAIN_XMODEL(xmodel)

▸ train top-model

1 cdf = [] ▸ training set

2 pos = 0

3 foreach k in xtree ▸ in sorted order

4 cdf.add(k, pos++)

5 xmodel.top = new LR trained on cdf

▸ assign keys to sub-models

6 kset = [][] ▸ key set for each sub-model

7 foreach k in xtree

8 mid = xmodel.top.predict(k) × M

9 kset[mid].add(k)

▸ train sub-models

10 for i in [0:M)

11 TRAIN_SUBMODEL(xmodel.subs[i],

MIN(kset[i]), MAX(kset[i]))

TRAIN_SUBMODEL(model, min, max)

12 cdf = [] ▸ training set

13 LLN = 0 ▸ logical leaf-node number

14 start = xtree.find_lnode(min)

15 end = xtree.find_lnode(max)

16 for lnode in [start:end]

17 pos = LLN × N

18 foreach k in lnode.keys ▸ key-sorted order

19 cdf.add(k, pos++)

20 model.tt[LLN++] = {1, ALN(lnode),

lnode.inca, lnode.cnt}

21 model = new LR trained on cdf

22 model.calc_err(cdf) ▸ calculate min/max_err

XModel {

Model top ▸ LR: k → [0,1)

Model[M] subs ▸ LR: k → [0,pos) w/ min/max_err

}

Figure 3–7 Pseudo-code of training XMODEL and TT over XTREE.

sub-model has independent logical positions and an own translation table, making it easy
to retrain a sub-model individually when necessary.

In practice, training XMODEL is fast and low-cost, since (1) all of the models in
XMODEL are simple linear/multi-variate regression models, can be efficiently trained;
(2) XMODEL can be partially retrained at a sub-model granularity; and (3) the top model
can be trained over a sampled data. As an example, for 100M keys, XMODEL with 500K
sub-models takes about 4 seconds to train the top-model and 8 microseconds for each

— 54 —

LOOKUP(key, &addr)
1 mid = xmodel.top.predict(key) x M

2 model = xmodel.subs[mid]

3 pos = model.predict(key) ▸ prediction

4 start = (pos - model.min_err)/N ▸ lnode ID

5 end = (pos + model.max_err)/N ▸ lnode ID

6 rdma_doorbell = []

7 for n in [start:end] ▸ from LLN to ALN

8 entry = model.tt[n] ▸ TT entry

9 if entry.valid == 0 then

10 return invalid ▸ fallback

11 ra = RA(entry.ALN) ▸ remote address

12 rdma_doorbell.add(ra)

▸ one RDMA to read disjoint memory regions

13 lnodes = RDMA_READ(rdma_doorbell)

14 for n in [start:end]

15 lnode = lnodes[n-start]

16 entry = model.tt[n]

17 if entry.inca != lnode.inca then

18 entry.valid = 0 ▸ invalidation

19 return invalid ▸ fallback

20 for i in [0:lnode.cnt) ▸ local search

21 if key == lnode.keys[i] then

22 addr = calc remote addr of ith value

23 return found

24 return not_found ▸ non-existent key

Figure 3–8 Pseudo-code of LOOKUP operation based on XCACHE.

sub-model using a single thread. Further, the client can fill a 500K sub-models XCACHE
from scratch in less than one second.

A memory-performance trade-off. The ML model is famously memory-efficient [98].
In XMODEL, the basic sub-models are 14B large and consist of two 32-bit floating-point
model parameters①, two 8-bit min- and max-error, and a 32-bit TT size. Thus, XMODEL
with 500K sub-models only needs less than 6.7MB. In contrast, TT might dominate the
memory usage of XCACHE. For 100M keys, suppose each leaf node has 16 slots (N) and
is half-full, TT requires nearly 100MB (15% of the tree-based index). In practice, each
client could cache sub-models and TT entries on demand, and even just cache XMODEL
to save 99% memory at the cost of 20% performance (using one RDMA READ to fetch
a few TT entries).

① LR may use more floating-points for prediction.

— 55 —

3.4.2 Client-direct operations

XStore adopts the client-direct design (§3.1) for read requests, namely GET(K) and
SCAN(K,N), as shown in the left part of Figure 3–5.

3.4.2.1 GET

Given a key, the client uses XCACHE to lookup the remote position of the value using
one RDMAREAD in the common case, replacing RDMA-based traversal in a tree-based
index. As shown in Figure 3–8, the client first uses XMODEL to predict leaf nodes that
cover the lookup key (from start to end) and then calculates the actual (remote) address
of these leaf nodes with TT (line 11). The client can use one RDMAREADwith doorbell
batching to fetch disjoint memory regions if necessary (line 13).① Note that the unit of
remote read is a leaf node (N keys with a 64-bit header); it is themost likely to read just one
leaf node due to the low prediction error of XMODEL. Next, the client uses a local search
(e.g., scanning) to find the key from leaf nodes retrieved (line 20-23) and calculates the
remote address of the value if it is found (line 22). Finally, the client uses another RDMA
READ to fetch the value. Note that any invalid TT entry (line 9 and 17) would result in
a fallback path, which ships the GET operation to the server and fetches updated models
and TT entries using a single request (i.e., server-centric design).

3.4.2.2 SCAN

SCAN(K,N) implements a form of range query that returns first (up to) N key-value
pairs (in order by key), starting with the next key at or after K. The client first uses the
lookup operation with K to determine the remote address of the first key-value pair (larger
than or equal to K) and then predicts the leaf nodes that contain the next N key-value pairs,
with the help of TT. The translation table provides the number of key-value pairs (CNT)
and the actual remote address (ALN) of adjacent leaf nodes (LLN) in sorted order by key.
Thus, the client can use one RDMA READ with doorbell batching to fetch these leaf
nodes, including keys and values. In general, XStore only requires two RDMA READs
for each range query. In the rare case, the unexpected result, such as an invalid leaf node
(incarnationmismatch) due to dynamic workloads, would cause a fallback path, similar to
GET. Note that the range query in XStore is also not atomic with respect to updates and

① One RDMA READ can only read a continuous memory region. Yet, we can use an RDMA-aware optimization
called doorbell batching [66] to read multiple disjoint memory regions in one network roundtrip.

— 56 —

4 75 8 13 171 18 20113

0

1

2

3

4

5

6

7

9

LR0(6):[3,4]=>{5,7}

max

LR0(2):[0,1]=>{1,2}

pos

min

12 14 15

8

LR1(19):[7,8]=>{18,20}

key

{1,2,4,5,7} LR0 LR1 {13,17,18,20}

keys={1,2,4,5,7,13,17,18,20}

min

max

LR1

LR0

Non-existent

NN

16 196

CDF

LR0(10):[6,7]=>{17,18}

102

Augmentation

Examples:

Figure 3–9 An example of the prediction for non-existent keys.

inserts as usual [28, 104]; it could be implemented by applications (e.g., transaction [13,
108]).

3.4.2.3 Non-existent keys

Intuitively, the MLmodel guarantees to find all keys have been trained since it stores
the worst over- and under-prediction for a CDF (i.e., min- and max-error). However, for
non-existent keys, the model should be monotonic to guarantee the correct upper and
lower bound of a prediction [117-118], so that a local search could make sure the lookup
key does not exist (see line 24 in Figure 3–8). Hence, XMODEL adopts monotonic models
(e.g., linear regression). As shown in Figure 3–9, for a non-existent key (KEY=6), the sub-
model LR0 can provide a proper prediction (LR0(6)=[3,4]) that covers the non-existent key
(KEYS={5,7}).

However, a hierarchy of models might leave a gap of non-existent keys between
neighboring models. Consequently, it still might provide a wrong prediction for these
non-existent keys, even if every model is monotonic. For example, the top model
selects LR0 for KEY=10 (non-existent), and then LR0 will return a wrong prediction
(LR0(10)=[6,7]) that cannot determine whether the key does not exist or the model is out
of date from the results (KEYS={17,18}). Worse yet, the non-existent key is common in
the range query (e.g., SCAN(K,N)), which demands to retrieve first (up to) N keys larger

— 57 —

than or equal to K. As illustrated in Figure 3–9, the lookup (LR0(10)) for a range query
SCAN(10,3) will miss a key (KEY=13), so the result (KEYS={17,18,20}) is also wrong.

Data augmentation. To remedy this, we augment the training set of sub-models to cover
the gap of non-existent keys between neighboring models. However, data augmentation
would increase the prediction error. We thus carefully add a boundary key to both sub-
models, which can fill the gaps with minimal overlap between models. For example, in
Figure 3–9, we add a non-existent key in the gap (KEY=10) with the position of a previous
KEY=4 into both sub-models (LR0 and LR1). After that, the lookup of non-existent keys
would always return a correct prediction. Further, since the keys in the leaf node across
sub-models have been trained by both, there is no need for data augmentation in most
cases.

3.4.3 Server-centric operations

XStore clients use a server-centric design and communicate with the server to per-
form UPDATE(K,V), INSERT(K,V), and DELETE(K) operations, as shown in the right part of
Figure 3–5. The server updates XTREE concurrently and retrains XMODEL in the back-
ground.

Correctness. The correctness condition in XStore is no lost keys [104]: the reader must
return a correct value for a given key, regardless of concurrent writers. Specifically, when
a reader and a writer run concurrently, the reader should return either the old or the new
value in an atomic way.

Concurrency. The hybrid architecture behind XStore not only provides separate and
appropriate execution paths for static and dynamic workloads (see Figure 3–5), but also
simplifies the mechanism to guarantee the correctness of concurrent operations. It is
critical to the performance of RDMA-based systems due to the lack of richness of RDMA
primitives [58]. In Figure 3–10, by using the learned cache (XCACHE), XStore restricts
(client-direct) remote accesses to the leaf nodes (the dotted red arrow). Thus, we can
avoid using sophisticated mechanisms to retrofit a concurrent tree-based index [28].

XTREE reuses an HTM-based concurrent 𝐵+𝑡𝑟𝑒𝑒 [3]① to coordinate concurrent in-
dex updates (e.g., node splits) and lookups on internal nodes, without the concern of

① The implementation is based on Intel’s restricted transactional memory (RTM), a mature feature available on
modern Intel CPUs (e.g., Skylake).

— 58 —

LN

GET(k)

INSERT(k,v)

B+Tree

Client

LN

Server

SCAN(k,n)

UPDATE(k,v)DELETE(k)

LN

XCache

w
r
i
t
e

N
e
tw
o
rk

RDMA read

r
e
a
d

Figure 3–10 The access types of different operations for the main components in XStore. Red
and blue arrows denote read and write accesses.

RDMA-based remote accesses. For leaf nodes, XStore follows the technique proposed
in DrTM+R [18]. Each tree operation at the server is enclosed within an HTM region,
that provides strong atomicity in a single machine [119]. In addition, the strong consis-
tency feature of RDMA (where an RDMA operation will abort an HTM transaction that
accesses the same memory location [17]) further extends the atomicity when encounter-
ing remote accesses. Moreover, as the RDMA operation is only cache-coherent within
a cache line, XStore adopts versioning [2] for consistent remote reads across multiple
cache lines. For the data stored in the leaf node across multiple cache lines, a 16-bit
version number is stored both in the header of data and at the start of each cache line.
The remote reader matches these versions to detect inconsistent read and must retry if the
versions differ. Note that XStore hides these versions to applications by automatically
converting the data on reads and writes. Finally, the key is also stored in the header of its
value, which guarantees consistent remote reads to the key and the value separately.

3.4.3.1 UPDATE

For UPDATE(K,V), the server first traverses XTREE to reach the leaf node and updates
the value with V if the key (K) exists. Note that since the update to the value will not
change the index, it will not influence the learned cache and belongs to static workloads.

Optimization: position hint. Server-side UPDATE(K,V) can also benefit from the learned
cache, especially when the server CPU becomes a bottleneck. For instance, the client
can use XCACHE to predict a position (the remote address of leaf nodes) for the key (see
line 1-12 in Figure 3–8) and then ship the update request together with the position hint
to the server. The server first checks the leaf nodes (by matching incarnation) according
to the hint and updates the value if successful. Then it might skip index traversal and

— 59 —

relax the burden on server CPUs. This optimization would increase the performance of
update-heavy workloads, like YCSB A (50% update and 50% read).

3.4.3.2 INSERT and DELETE

INSERT(K,V) and DELETE(K) are shipped to the server and performed on XTREE, as is
usual on 𝐵+𝑡𝑟𝑒𝑒. The in-place inserts and deletes require moving many key-value pairs
within a leaf node to preserve the order of keys. Thus, XTREE chooses not to keep key-
value pairs sorted within a leaf node, which can avoid moving key-value pairs and reduces
working set in the HTM region. Note that the lookup based on the learned cache will not
be affected since it fetches all keys (N) of a leaf node. For DELETE(K), we always overwrite
the key and value slot for K with the last key-value pair in the leaf node and update the
counter (CNT). Further, the empty leaf node will not be reclaimed to avoid thrashing and
model retraining. For INSERT(K,V), we directly append K and V to the key and value slots
in the leaf node if K does not exist (see K𝐴 in Figure 3–11). Inserting a key-value pair
into a full leaf node will result in a node split (see K𝐵 in Figure 3–11). A new leaf node
is allocated, and all key-value pairs (plus the new one) are evenly assigned to two leaf
nodes in sorted order by key. The original leaf node should increment its incarnation,
which makes the clients realize the split. The rest of the split process will execute on the
tree index as well as usual.

Retraining and invalidation. The insert of a new leaf node (aka a split) will break the
sorted (logical) order of leaf nodes and cause model retraining.

An interesting observation behind our solution is that TT decouples model retraining
from index updating and allows a stale combination of XMODEL and TT to provide a
correct prediction for the lookup key as long as it is not overlapped with a split. This is
because any insert will not cause data movement across leaf nodes, except the split node.
For example, LR8 initially maps K𝐴 to logical node number LN2, which stores the leaf’s
physical address 102. After leaf node LN1 splits due to inserts (a new leaf node with
physical address 327), the latest logical node number for K𝐴 is LN3 after retraining. Yet,
the stale TT still maps K𝐴 to physical address 102, the correct position of K𝐴. Thus, the
client can still use a combination of stale models and TTs to find the keys as long as they
are not overlapped with split leaf nodes.

Based on this, after a split, the server will individually retrain the sub-model and
its translation table in the background (see TRAIN_SUBMODEL in Figure 3–7) and perform

— 60 —

K..K K..K

Client

LLN:

Server

0 1

KKK K..K

2 3 9

KKKK

0 1 2 8

1001 1011 3271 1021 1041

LLN:

100 101 102 104ALN:

I

I

INCA I

I

I

IINCA

1001 1010 1021 1081I INCA I I

INCA

INCA

327

Leaf Nodes:

re-training LR8

XTree

LR0

NN

TT

LR8

TT

RDMA

SPECULATIVE

EXECUTION

split

sub-model

KA

KB

ALNINCA

valid

GET(KA)

XCache

Figure 3–11 An example of model retraining for LR8 due to a split of LN101. The leaf node is named
by its actual leaf-node number (ALN).

all kinds of operations as usual based on XTREE. Meanwhile, the clients can still directly
perform read-only operations based on XCACHE. The incorrect prediction can be detected
by incarnation mismatch between the leaf node and cached TT entry (line 17 in Figure 3–
8) and results in a fallback, which ships the operation to the server. The client will update
XCACHE with a retrained model and its translation table fetched by the fallback. Noted
that concurrent splits will not affect model retraining in progress and just make it stale.
The new incarnation of the split leaf node ensures the client with this new (stale) model
to realize the change of concurrent splits. Each split will issue a retraining task. The
training thread currently does not merge or optimize the pending tasks to the same sub-
model since it happens very rarely.

Optimization: speculative execution. A split of leaf node just moves the second half of
its key-value pairs (sorted by key) to its new sibling leaf node. Therefore, the prediction to
the split node must still be mapped to this node or its new sibling, like LN101 and LN327
in Figure 3–11. Based on this observation, speculative execution is enabled to handle
the lookup operation on a stale TT entry (i.e., failed incarnation check). The client will
still find the lookup key in the keys fetched from the split leaf node. If not found, the
client will use its right-link pointer to fetch (the second half) keys from its sibling (one
more RDMA READ). It means there is roughly half of the chance to avoid incurring
a performance penalty. Currently, we only consider one sibling before using a fallback
since a cascading split happens rarely. This optimization is important for insert-dominate

— 61 —

workloads (e.g., YCSB D) since insert operations and retraining tasks might keep server
CPUs busy; the fallbacks will also take server CPU time.

Model expansion. The growing size of key-value pairs in the ML model will likely in-
crease the prediction error, resulting in performance degradation. Prior work [114] uses
a sophisticated model split to adapt its learned structure for dynamic workloads, which
demands physical data moving and atomic top-model replacement. Differently, XStore
supports model expansion that increases the number of sub-models in XMODEL at once
(e.g., doubling) when necessary (e.g., exceeding a threshold of min- and max-error). The
model expansion requires a complete training (see Figure 3–7) on XTREE to build a new
version of XMODEL and TT. Note that model expansion will not affect any requests per-
formed by both the server and the client for several reasons. First, training models will
not change or move data. Second, the top model can be trained over incomplete data.
Third, the conflicting sub-model retraining could be made up later. Finally, the client
can use the originally learned cache during model expansion. Moreover, after deleting a
large number of key-value pairs, XStore can also resize XMODEL to shrink the number
of sub-models using a similar process.

3.4.4 Durability

XStore should log writes (updates, inserts, and deletes) to log files stored in reliable
storage for persistence and failure recovery (e.g., server’s local disk). As RDMA-based
remote accesses are restricted to reads (lookups, gets, and scans), they will not involve in
logging and recovery. In addition, XMODEL and TT are tightly associated with XTREE
(e.g., virtual address). Thus, they should be rebuilt after recovery.

To ensure correct recovery from amachine failure, XStore reuses the existing dura-
bility mechanism in the concurrent tree-based index extended by XTREE, like version
numbers [3, 104]. Each worker thread at the server appends the log (key, value, and ver-
sion) to its in-memory log buffer. A corresponding logging thread, sharing the same core
with the worker thread, writes out the log buffer to its log file in the background. The log-
ger batches the log entries to avoid the storage backend becoming the bottleneck. During
recovery, XStore scans log files to sort logs of the same key by its version number and
applies the latest log of keys in parallel. Finally, XStore rebuilds XMODEL and TT by
training over recovered XTREE.

— 62 —

3.4.5 Scaling out XStore

XStore follows a coarse-grained scheme [97], the dominant solution, to distribute
an ordered key-value store span multiple servers (scale-out). XStore first assigns key-
value pairs to the servers based on a range-based partitioning function for the keys. Then
each server constructs XTREE individually for its assigned key-value pairs and further
trains a corresponding XMODEL and TT. Note that the boundary keys should be added to
the training set to cover the gap of non-existent keys between neighboring servers.

The client maintains a separate learned cache for each server and uses the same
partitioning function to decide which server should perform a given request. Based on it,
the client can perform requests as mentioned in §3.4.2 and §3.4.3, with one exception—
SCAN(K,N) reads a range of key-value pairs, which can spanmultiple servers. For instance,
after the lookup of K on a specified server, the client might find that the expected number
(N) exceeds the remaining key-value pairs in this server. Starting from the first logical
leaf node on the next server, the client can predict the leaf nodes that contain the rest of
key-value pairs. Finally, the client uses one RDMA READ for each server involved to
fetch these leaf nodes.

3.5 Implementation of XModel
XStore assumes XMODEL can effectively learn various data distributions (e.g., log-

normal [98, 114-115]). XStore has also pre-built with various machine learning (ML)
models for XMODEL, including linear regression (LR), multivariate linear regression
(MLR), and fully-connected neural nets (NN). The NN can be configured with the num-
ber of layers, the number of neurons and which activation function to use. We implement
XMODEL with static polymorphism such that it can use different models without the cost
of virtual function calls. The user can also deploy customized models by implementing
the model trait defined by the XMODEL.

In this section, we describe how we implement various ML models (§3.5.1), and
how XStore chooses ML models for various data distributions (§3.5.2).

3.5.1 Implementation of ML models

Implementing different ML models efficiently from scratch is non-trivial. We use
Intel Math Kernel Library (MKL) [120], an efficient math library and PyTorch [121], a
powerful ML framework to implement different ML models.

— 63 —

For linear models (LR and MLR), we use LAPACKE_dgels in MKL for training.
LAPACKE_dgels directly calculates the optimal parameters of linear models, which has
two benefits compared to the common iterative training procedure (e.g., Stochastic Gradi-
ent Descent [122]). First, training models with LAPACKE_dgels is fast. For example, it
can train a 1000-KVs dataset in less than 50𝜇𝑠. In comparison, iterative training may take
several seconds to converge. Second, training linear models with LAPACKE_dgels is
automatic; i.e., the designer does not need to tune the hyperparameter to train the optimal
parameters. Automatic training is particularly important in XStore because the sub-
model is retrained by the server automatically (§3.4.3) under dynamic workloads. For
predictions of linear models, we use floating-point arithmetic to implement them since
they are simple (i.e., simple multiplications and additions).

Since we cannot directly calculate the optimal parameters of NN, we train it us-
ing stochastic gradient descent with Pytorch, which is efficient and powerful on training.
However, we found Pytorch is not suitable for prediction in XStore due to its high invo-
cation cost. For example, it takes 31𝜇s to predict with a two-layer NN with one hidden
layer of 16 neurons. This invocation latency is an order of magnitude higher than the
latency of RDMA (2𝜇s). Kraska et al. [98] has also made a similar observation on Ten-
sorFlow [123], another popular ML framework. Since existing ML frameworks are not
optimized for ultra-low latency prediction, we manually implement the NN prediction
by first extracting the learned parameters from Pytorch, and then implement the forward
pass using lightweight MKL. For small NN models (e.g., a two-layer NN with a hidden
layer of 64 neurons), XStore can finish prediction within 1𝜇s.

3.5.2 ML Model selection

To best utilize XMODEL, the designer should balance predict accuracy, memory con-
sumption and retraining cost when selecting ML models. Using linear models that are
efficient on training (§3.5.1) is a common setup for prior learned index [98, 114-115].
However, linear models cannot learn sophisticated data distribution well. Using complex
models like NN can improve the accuracy. However, they require more memory to store
the parameters and are slower on (re-)training.

We now describe our experiences in choosing ML models for XMODEL from sub-
model (level 1) to top-model (level 0). Our focuses are on linear models (i.e., LR and
MLR)) and Neural Nets (NN).

— 64 —

(Sorted) Key

P
o
s

1-NN

CDF

(Sorted) Key
P
o
s

1-LR

CDF

(Sorted) Key

P
o
s

3-LR

CDF

Setup Train Mem Err

1-NN 3s① 228B 27

1-LR 20𝜇s 8B 46

3-LR 20𝜇s 24B 15

Figure 3–12 A comparison of the learned cumulative distribution function (CDF), the retrain speed
(Train), the memory usage (Mem), and the prediction error (Err) using different sub-model setups
on a 100-key OpenStreetMap [100] dataset. The keys are float vectors of dimension 2 (total 8B).

Setup: 1-NN uses one three-layer fully-connected NN where each hidden layer has 4 neurons as the
sub-model, and the NN uses ReLU as the activation function; 1-LR uses one LR as the sub-model;

3-LR uses three sub-models where each sub-model uses LR.

Sub-model. XStore chooses the LR for the sub-model due to the following two obser-
vations. First, the sub-model has tight memory constraints: XMODEL typically uses one
sub-model to predict tens or hundreds of keys. Complex models like NN is not memory
efficient for such small datasets since it still needs a non-trivial amount of memory to
achieve high accuracy. As shown in Figure 3–12, NN achieves 41% smaller prediction
error than LR at the cost of 29X more memory ③.

Second, a sub-model is frequently retrained under the dynamic workload. Thus,
XCACHE requires a high retrain speed of sub-model. However, NN is much slower on
training compared to linear models. As shown in Figure 3–12, NN uses 3s to converge to
the optimal parameters. Consequently, it is not practical to dynamically retrain NN when
there are insertions.

One might wonder whether using LR alone can learn complex dataset well. We
found LR does have high prediction error (46) for the 100-key irregular OpenStreetMap
dataset (Figure 3–12). To remedy this, we suggest using more models to reduce the over-
all prediction error, which is typically more memory-efficient than NN. This is based on
the observation that reducing the number of keys partitioned to a sub-model can signifi-
cantly reduce the sub-model prediction error in a recursive-model index [98]. As shown
in Figure 3–12, using three LR sub-models achieves a smaller prediction error (15) com-
pared to NN, while it only uses 11% of the NN memory.

② We use CPU to train the NN in this experiment. We tried with GPU but found that it is slower. Since the sub-model
model and training-set are small, invoking GPU and copying data to GPUwill dominate the training performance.

③ We tune the NN architecture to achieve the best accuracy within a limited memory budget (256B).

— 65 —

P
os

Sorted (Key)

NN
LR

CDF

 0

 100

 200

 300

 0 20 40 60 80 100

#K
ey

s/
m

od
el

Model ID

NN
LR
Ideal

 0

 10

 20

 30

 40

 0 20 40 60

M
ed

ia
n

la
te

nc
y

(µ
s)

Throughput (M reqs/s)

LR
NN

Figure 3–13 A comparison of Neural Nets (NN) and Linear Regression (LR) for the top-model of
XCACHE on a lognormal dataset with 10,000 keys. The keys are 8B integers. The NN has one

hidden layer with 8 neurons using 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation, while the XMODEL has 100 sub-models. We
skip MLR in this experiment because it has the same results as LR. (a) The CDF of the dataset and
the learned CDF of different models. (b) The number of keys partitioned to each sub-model. (c) A

comparison of throughput-latency using different top-models on a 100% read workload.

P
os

Sorted (Key)

MLR
LR

CDF

 0

 100

 200

 300

 0 20 40 60 80 100

#K
ey

s/
m

od
el

Model ID

MLR
LR
Ideal

102

103

104

 96

 97

 98

 99

 0

 10

 20

 30

 40

 0 20 40 60

M
ed

ia
n

la
te

nc
y

(µ
s)

Throughput (M reqs/s)

LR
MLR

Figure 3–14 A comparison of Multi-variate Linear Regression (MLR) and Linear Regression (LR)
for the top-model of XCACHE on the OrderLine table in TPC-C with 10,000 keys. The keys are 8B
integers. The MLR model uses 4 predictors, while the XMODEL has 100 sub-models. We skip NN in
this experiment because MLR is sufficient to learn the distribution. (a) The CDF of the dataset and
the learned CDF of different models. (b) The number of keys partitioned to each sub-model. (c) A

comparison of throughput-latency using different top-models on a 100% read workload.

Top-model. Different from sub-model, we suggest using complex model for the top-
model to achieve high accuracy, so as to evenly partition keys into sub-models (§3.4.1).
Top-model can use a complex model because it has less memory constraint and is rarely
retrained in XStore. More specifically, XStore only uses one top-model for all the keys.
Thus, the increase of memory usage in top-model is negligible to the XCACHE. Further,
the top-model is only retrained upon model expansion (see §3.4.3), which is rare.

To see how the top-model accuracy affects the overall performance of XStore, Fig-
ure 3–13 and Figure 3–14 compare the performance of XStore with different top-model
setups using lognormal dataset and TPC-C dataset [124], respectively. The lognormal

— 66 —

dataset is widely evaluated by prior learned index [98, 114, 116]. As shown in Fig-
ure 3–13c, XStore has 1.46X higher peak throughput when using NN as the top-model
compared to LR. LR does not evenly partition keys to sub-models since it cannot per-
fectly learn the non-linear lognormal dataset (Figure 3–13a). As a result, it has a greater
variance of the number of keys partitioned to each sub-model compared to NN (3751 vs.
640 in Figure 3–13b). This greater variance causes a larger prediction error compared to
NN (11.5 vs. 8.1). Note that using NN as the top-model consumes 12% more XMODEL
memory than LR.

Figure 3–14 further presents the results on TPC-C, the de facto standard for OLTP
workloads. We generate the dataset by sampling keys from the OrderLine table in TPC-
C. The table uses four fields for the primary key: Warehouse ID, District ID, Order ID,
and OrderLine ID. Although each field in the primary key follows a linear distribution,
the overall key as a binary is non-linear (see Figure 3–14a). Thus, it cannot be effectively
learned by LR. As shown in Figure 3–14b, LR partitions most keys to a few sub-models
and leaves others empty, resulting in a large variance of the number of keys partitioned to
each sub-model. Meanwhile, we can use MLR with four predictors to model the TPC-C
OrderLine key distribution. As a result, XStore with MLR achieves 4.1X higher peak
throughput than XStore with LR at the cost of 1% more XMODEL memory.

3.6 Discussion
Support variable-length keys. XStore currently supports fixed-length key and
variable/fixed-length value. This is not a significant constraint for distributed transac-
tions, since their data typically has a schema.

To support variable-length key, XStore should store a fat pointer in the leaf node
of XTREE (instead of the actual key), which encodes the size and position of the key.
Though this scheme can traverse variable-length key locally by CPUs (i.e., server-centric
design), it would be hard to do it efficiently by using one-sided RDMA READs (i.e.,
client-direct design). This is because XStore has to retrieve the actual keys using an
additional RDMA READ for each (line 21 in Figure 3–8). Therefore, XStore further
stores a fixed hash code of the key within the fat pointer. Consequently, the client could
directly compare the hash codes instead of keys, after fetching the leaf node for a given
key. Note that the actual (variable-length) key should be checked to avoid a hash collision.
For example, the client can fetch the value associated with the key.

— 67 —

Table 3–1 YCSB workload description. R, U, I, M, and S denote read, update, insert,
read-modify-update, and scan, respectively. Scan accesses N values, where N is uniformly distributed

in [1,100].

YCSB A B C D E F

Type R : U R : U R R : I S : I R : M

Ratio (%) 50 : 50 90 : 10 100 95 : 5 95 : 5 50 : 50

Table 3–2 Data distribution description for evaluating datasets.

Name Description Workloads

L Linear YCSB[99], Nutanix[101]

NL Noised linear YCSB[99]

OSM Longitude location Open Street Map[100]

3.7 Evaluation
3.7.1 Experimental Setup

Without explicit mention, we evaluate XStore on the VAL cluster (see Table 2–1),
and use one server machine and (up to) 15 client machines for XStore.

Workloads. We use YCSB [99] and two production workloads from Nutanix [101]. Our
main focus is on YCSB as it contains various types of workloads [125]: update heavy
(A), read mostly (B), read only (C), read latest (D), short ranges (E), and read-modify-
write (F). Table 3–1 shows a summary of YCSB workloads (A-F). Since small requests
dominate in real-life workloads [126], we evaluate KV stores with 100 million KV pairs
initially (a 7-level tree-based index and a leaf level), where 8-byte key and 8-byte value are
used, similar to prior work [28, 65, 104, 114]. Both Uniform and Zipfian key distributions
are evaluated for all YCSB workloads. Note that YCSB D only has Uniform and Latest
key distributions; the client is likely to query its recently inserted keys in Latest distribu-
tion. In addition, each client generates their insert key uniformly and randomly in YCSB
D and E. The two production workloads both have a profile of 57:41:2 write:read:scan ra-
tio, while the access patterns of them are relatively uniform (Prod1) and skewed (Prod2),
respectively. Both of them have 500 million KV pairs with 8-byte key and 64-byte value.
Finally, besides the default data distribution of the above workloads, we also use two
synthetic and one real-life datasets (see Table 3–2) to study the behavior of learned cache
in depth.

— 68 —

Comparing targets. We compare XStore to three state-of-the-art RDMA-based ordered
KV stores: DrTM-Tree [18] and eRPC+Masstree [65] (server-centric design), as well
as Cell [28] (client-direct design). eRPC+Masstree (EMT) adopts eRPC [65] (RDMA-
based RPC library) to extend Masstree [104] (in-memory ordered KV store). We imple-
ment DrTM-Tree and Cell in the same framework to provide an apple-to-apple compar-
ison with two typical designs, but also because DrTM-Tree uses similar 𝐵+𝑡𝑟𝑒𝑒 [3] and
RDMA library [58] with XStore, and Cell is not open-source.① We further consider
RDMA-Memcached v0.9.6 [127] (RMC) in our experiments, which is an RDMA version
of memcached [128], a widely used network-attached KV in industry.

All systems fully utilize all of the 24 CPU cores (with hyperthreading disabled) and
two RNICs. As EMT and RMC cannot use multiple NICs simultaneously, we deploy
two instances at the server on different sockets, and each instance uses the RNIC at-
tached to that socket. This actually makes them faster during experiments since it avoids
cross-socket synchronizations. XStore uses (up to) two auxiliary threads to train ML
models in the background for dynamic workloads. XTREE is configured with a fanout of
16. XMODEL uses 500K sub-models for static workloads and 2M models for dynamic
workloads to avoid model expansion during evaluation (because XStore can insert more
than 150M KV pairs in 60s). In addition, without explicit mention, we disable logging in
all systems and evaluate XStore with all the optimizations (e.g., speculative execution)
enabled.

3.7.2 YCSB performance

Figure 3–15 compares the peak throughput of various RDMA-based key-value stores
for YCSB with Uniform and Zipfian distributions. Note that RMC performs poorly in all
experiments as it is bottlenecked by CPU synchronizations [64, 96]. So we omit the
discussion of it.
Read-only workload (YCSB C). For Uniform distribution, XStore can achieve 82 mil-
lion requests per second, even a little higher than the optimal throughput (a whole-index

① For DrTM-Tree, our experimental results were confirmed by the authors. For Cell, we follow the same caching
strategy—the client caches nodes at least four levels above the leaf node at the clients with LRU policy to minimize
churn andmaximize hits. Based on a comparison against published numbers, we believe that the large performance
difference between XStore and other systems (e.g., 27M reqs/s from our implementation vs. 0.95M reqs/s from
Cell [28] for YCSB A with Zipfian distribution) offsets performance variations due to system and implementation
details.

— 69 —

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7.
5

6.
7

10
.2

Uniform

5.
7

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

DrTM-Tree

Cell

XStore

EMT

RMC

 0

 20

 40

 60

 80

 100

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-E YCSB-F

7.
3

6.
7

10
.3

Zipf/Latest

5.
7

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

DrTM-Tree

Cell

XStore

EMT

RMC

Figure 3–15 Comparison of throughput on various RDMA-based KVs using YCSB. Note that RMC
does not support range queries.

cache), since it only uses one RDMA READ to fetch one leaf node per lookup; the pay-
load is 16B smaller by avoiding a sophisticated mechanism for consistency (i.e., min-max
fence keys [28]). The prediction error of XCACHE is just 0.74. This number outperforms
EMT, DrTM-Tree, and Cell by 3.9×, 3.7×, and 5.9×, respectively. Both DrTM-Tree and
EMT are bottlenecked by server CPUs, while Cell is bottlenecked by RDMA amplifi-
cations; it still needs four RDMA READs to traverse tree nodes even index caching is
enabled.

For Zipfian distribution, XStore can still outperform EMT, DrTM-Tree, and Cell
by 2.4×, 2.5×, and 4.6×, respectively. The systems with server-centric design perform
better due to better CPU cache locality. However, the peak throughput of XStore drops
by 18% since RDMA has relatively poor performance when massive clients read a small
range ofmemory simultaneously. We suspect that our current RNIC (ConnectX-4) checks
conflicts between one-sided RDMA operations based on request’s address [66], so that
these operations may compete for NIC’s internal processing resources, even if there is no
conflict.
Static read-write workloads (YCSB A, B, and F). For update-heavy workloads (YCSB
A), XStore is still bottlenecked by server CPUs for handling updates. However, com-
pared to server-centric KVs (e.g., DrTM-Tree and EMT), the clients in XStore can di-
rectly perform read requests with the help of learned cache, which completely bypasses

— 70 —

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Time (s)

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Time (s)

DrTM-Tree
Cell

Optimal
XStore

Figure 3–16 The performance timeline of YCSB D with (a) Uniform and (b) Latest workloads.

server CPUs. Therefore, XStore can still provide up to 3.1× and 3.2× (from 2.4× and
2.6×) throughput improvements for Uniform and Zipfian distributions, respectively, com-
pared to other KVs. For read-mostly workloads (YCSB B), the speedup of throughput in
XStore further reaches up to 5.4× (from 3.4×). There are two reasons: (1) the read re-
quests are less skewed interleaved with (10%) updates, compared to read-only workloads
(YCSBC); (2) the server of XStore has not been saturated (less than 40% of CPU utiliza-
tions); thus it is still sufficient to perform updates, compared to update-heavy workloads
(YCSB A). The performance of XStore on YCSB F is somewhere in between since it
has about 75% reads.
Dynamic workloads (YCSB D and E). The throughput of every system is impacted by
dynamic workloads due to the contention between reads and inserts. For DrTM-Tree
and EMT, the contention happens on the tree-based index. For XStore and Cell, the
performance slowdown is mainly due to cache invalidations. However, Cell only caches
the top four levels, where node split is rare. The overhead in XStoremainly comes from
two parts: (1) cache invalidations would increase RDMA operations due to fallbacks
(RDMA-based RPC) and speculative execution (50% one more RDMA READ); (2) a
dynamic dataset is always harder to learn than a static dataset due to the randomly inserted
new keys; the prediction error would stably increase to 8.3 for YCSB D.① Fortunately,
the clients can still use stale learned cache for most read requests, and model retraining is
also very fast. Thus, for YCSB D, XStore can provide up to 3.5× and 3.2× (from 2.7×
and 1.9×) speedup and achieve 53M and 48M reqs/s throughput for Uniform and Latest
distributions, respectively. For YCSB E, the performance is dominated by scanning a

① The data distribution of dynamic workloads (i.e., YCSB D and E) is close to noised linear (NL). Hence, XStore
can only achieve 61M reqs/s for YCSB D with 2M models even no inserts (see Figure 3–20b and Figure 3–23a).

— 71 —

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

M
ed

ia
n

la
te

nc
y

(µ
s)

Throughput (M reqs/s)

DrTM-Tree
Cell

XStore
EMT
RMC

 0 5 10 15 20

Median Latency (µs)

NIC RPC

NIC IDX CPU IDX

NIC VAL

Optimal

RMC

EMT

XStore

Cell

DrTM-Tree

Figure 3–17 Comparison of (a) throughput-latency and (b) end-to-end median latency at low load
for YCSB-C with a uniform distribution.

large range of KV pairs. Thereby the performance difference is relatively small, and
XStore outperforms other systems by up to 1.8× (from 1.4×).

Figure 3–16 further shows the timelines for YCSB Dwith Uniform and Latest work-
loads. The optimal throughput of tree-based index cache can only achieve about 25M
reqs/s, more than 3× lower than its read-only throughput (78M reqs/s), and suffers from
severe performance fluctuations due to frequent cache invalidations, especially for Uni-
form distribution. For Latest distribution, each client will focus on a small range of KV
pairs (latest inserted by itself), which significantly reduces cache misses and invalidations
due to accessing internal nodes split by other clients. XStore preserves relatively high
throughput and has steady cache invalidation rates, 5% for Uniform, and 21% for Latest.
It is mainly because stale learned cache can still provide a correct prediction for most read
requests. The speculative execution also helps to halve the rate (from 10% to 5%). In ad-
dition, in Latest distribution, each client will frequently access KV pairs just inserted. If
the insert incurs a node split, XStoremight not fetch a new model immediately (wait for
model retraining) and would increase cache misses.
CPU utilizations of XStore. Note that XStore uses two auxiliary threads to retrain
XMODEL for dynamic workloads, causing increased server CPU usage. Yet, XStore still
saves server CPUs compared to server-centric KVs (e.g., DrTM-Tree) due to handling
read requests in the clients. For example, DrTM-Tree saturates all CPUs (24 × 100%)
for YCSB D, while XStore just consumes under half for serving insert requests and
retraining sub-models.
End-to-end latency. Figure 3–17a shows the throughput-latency curves for YCSB C
with a uniform distribution. Due to space limitations, we omit other workloads that are

— 72 —

similar. When using few clients (low load), server-centric KVs have lower latency, as
one RPC round trip is faster than two one-sided RDMA operations, namely DrTM-Tree
(NIC_RPC) vs. XStore (NIC_IDX and NIC_VAL) in Figure 3–17b. However, the
throughput of them (e.g., DrTM-Tree) is saturated by CPUs much earlier (about 20M
reqs/s), and the latency would rapidly collapse. On the other hand, the latency of Cell
is limited by multiple RDMA READs for each lookup (NIC_IDX) even at low load. In
contrast, XStore only needs one RDMA READ, thanks to the learned cache. As a refer-
ence, we provide the latency of using whole-index cache (Optimal) that also takes just one
RDMAREAD. However, traversing tree-based index locally still takes more time (2.14µs
in CPU_IDX) due to many random memory accesses, compared to XStore (0.35µs).
Moreover, XStore can keep low latency at much high load (82M reqs/s with median
latency of 16µs) by eliminating CPU bottleneck at the server.

 0

 30

 60

 90

 120

YCSB-A YCSB-B YCSB-C YCSB-F

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

XStore w/o PH XStore w/ PH

 0

 20

 40

 60

 80

 100

YCSB-D YCSB-E

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

XStore w/ SE

XStore w/o SE

Figure 3–18 Effects of optimizations (a) position hint (PH) to UPDATE and (b) speculative execution
(SE) to INSERT on YCSB uniform workload.

3.7.3 Effects of optimizations

Position hint. Reducing server-side tree traversal with client-side XCACHE is effective
for the server-centric UPDATE. As shown in Figure 3–18a, position hint improves the
performance of YCSB A, B and F by 1.56X, 1.01X and 1.53X, respectively. It is mostly
effective in YCSB A, which is a write-heavy workload with 50% updates. On the other
hand, it does not affect YCSB C since YCSB C is a read-only workload.
Speculative execution. Figure 3–18b exams the impact of speculative execution. It im-
proves YCSB D by 1.23X thanks to the reduced invalidation rate (§3.7.2) under dynamic
workloads. On the other hand, speculative execution has little effect to YCSB E because
YCSB E has nearly no invalidations: the performance of YCSB E is dominated by scan-
ning a range of KV pairs.

— 73 —

 0

 20

 40

 60

Prod1 Prod2

P
ea

k
T

hp
t (

M
 r

eq
s/

s) DrTM-Tree

Cell

XStore

EMT

Nutanix

 0

 60

 120

 180

 0 1 2 3 4 5 6

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

Number of server RNICs

Uniform

Zipfian

YCSB C

Figure 3–19 (a) Performance comparison with production workloads. (b) Scalability of XStore on
YCSB C with the increase of RNICs.

3.7.4 Production workload performance

Figure 3–19a shows the peak throughput of XStore and other systems on twowrite-
intensive production workloads, similar to YCSB A. The performance is also mainly bot-
tlenecked by server CPUs due to 57% of writes. In the first workload (Prod1), XStore
outperforms DrTM-Tree, EMT, and Cell by 1.44×, 1.55×, and 1.35×, respectively. The
speedup in the second workload (Prod2) increases to 1.75×, 1.80×, and 1.60× since this
workload is more skewed.

3.7.5 Scale-out performance

Figure 3–19b shows the scalability of XStore with up to 6 server RNICs (3 server
machines). We scale XStore by range-based partitioning a YCSB dataset with 600M
keys into different numbers of RNICs. The performance is measured using up to 13 client
machines (26 RNICs) with a read-only workload. For a uniform request distribution,
XStore achieve a peak throughput of 145M reqs/s, which is limited by the number of
client machines. Note that, on our testbed, XStore needs about eight client RNICs to
saturate one server RNIC. XStore scales to 1.97× and 2.81× by using 2 and 3 server
RNICs, respectively. For a skewed request distribution (Zipfian), XStore just reaches
92M reqs/s by using 6 server RNICs since most requests (more than 35%) are sent to one
RNIC. It throttles the entire system.

3.7.6 Model (re-)training and expansion

Figure 3–20a shows the throughput of training models using one or two threads and
model invalidation speed for dynamic workloads (YCSB D and E). Empirically, using

— 74 —

 0

 300

 600

 900

 1200

 1500

 1800

5 10 20 100 200

S
pe

ed
 (

K
 m

od
el

s/
s)

Average keys per model

1 thread

2 threads

YCSB E invalidation

YCSB D invalidation

 0

 15

 30

 45

 60

 75

 90

 0 0.4 0.8 1.2 1.6 2 2.4 2.8

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

Insertion speed (M reqs/s)

2 threads

1 thread

Figure 3–20 (a) Comparison between sub-model retraining and invalidation speed. (c) Performance
of XStore with the increase of insertion speed.

 0

 20

 40

 60

 80

-40 -30 -20 -10

#models: 100K
#keys: 10M

T
hp

t (
M

 r
eq

s/
s)

-2 -1 0 1 2 3 4 5 6 7 8

training-start model-commit: 4s

#keys: 20M #models: 200K

Model Expansion

Time (s)
20 30 40

Figure 3–21 Performance timeline with model expansion.

two threads for model retraining is sufficient for XStore to reach a throughput of 53M
reqs/s (YCSBD).XStore can retrain sub-models individually and takes 8µs on average to
retrain a model with 200 keys. Note that the insertion speed reaches about 2.65M reqs/s
for YCSB D (5% inserts). For dynamic workloads, the throughput of XStore would
decrease when stale sub-models can not retrained in time. To quantify the performance
overhead, we evaluate XStore with the increase of insertion speed, similar to YCSB
D (except that one client is dedicated to insert key-value pairs with a given speed, and
the rest of clients still issue reads). As shown in Figure 3–20b, the throughout drops
below 40% (61M vs. 37M reqs/s) under the peak insertion speed (2.8M reqs/s, limited
by server CPUs) when using a single retraining thread. Further, when using two threads,
the performance degradation is limited to 13%.

Finally, the growing size of KV pairs in the ML model will likely increase the pre-
diction error, resulting in performance degradation. XStore supports model expansion
to increase models in the background if needed. As shown in Figure 3–21, starting from
10M keys and 100K models, several clients continuously insert KV pairs, and the perfor-

— 75 —

 0

 200

 400

 600

 800

 1000

500K 1M 5M 10M 20M

A whole-tree index
(optimal)

M
em

or
y

us
ag

e
(M

B
)

Number of models

TT

XModel

XCache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Uniform

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

Memory usage (MB)

Learned cache
Tree-based cache

 0

 20

 40

 60

 80

 100

 0 30 60 90 120 150

Zipfian

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

Memory usage (MB)

Learned cache
Tree-based cache

Figure 3–22 (a) Memory usage of learned cache (XCACHE). Comparison of peak throughput
between learned cache and tree-based cache with different memory footprint at the client for YCSB

C using (b) Uniform and (c) Zipfian distributions.

mance of XStore slowly degrades for read requests. When the average number of keys
per model exceeds 200 (a user-defined threshold), the server starts to train a newXMODEL
with double sub-models (200K) in the background from 0s to 4s, with negligible over-
head. After that, the server will commit the new model, and clients could individually
fetch new sub-models on demand. The performance resumes rapidly in 2s.

3.7.7 Memory footprint of XCache

Figure 3–22a presents the memory usage of XCACHE with the increase of sub-
models for 100M KV pairs. Note that the entire XTREE has 654MB internal nodes. The
size of TT depends on the number of leaf nodes. Since each leaf node has 16 slots for KV
pairs, TT occupies around 98MB as the tree-based index is half-full. Thus, TT would
dominate the memory usage for a small XMODEL since each sub-model is 14B large.
To achieve peak throughput, XMODEL with 500K sub-models is enough for read-only
workloads (YCSB C) with 100M KV pairs, while it needs 2M sub-models for dynamic
workloads (YCSB D) with 250M KV pairs.

As shown in Figure 3–22b and Figure 3–22c, compared to conventional tree-based
index cache, XStore can provide competitive performance with much lower memory
footprint at the clients, even (almost) no memory footprint. XCACHE prefers to store
XMODEL, which may only occupy 1% memory (6.8M vs. 654MB). It means that, for
YCSB C with Uniform and Zipfian distributions, XStore can achieve 74% and 87% of
optimal throughput (a whole-index cache), where the client uses one additional RDMA
READ to fetch several 8-byte TT entries for each lookup. Even if the client only stores
a 16-byte top model, XStore can still achieve about 40M reqs/s by using one RDMA
READ to fetch a 14-byte sub-model first.

— 76 —

 0

 20

 40

 60

 80

 100

500K 1M 5M 10M 20M

P
ea

k
T

hp
t (

M
 r

eq
s/

s)

Number of models

L

NL

OSM
 0

 2

 4

 6

 8

 10

500K 1M 5M 10M 20M

M
ed

ia
n

La
te

nc
y

(µ
s)

Number of models

L

NL

OSM

Figure 3–23 Comparison of (a) peak throughput and (b) median latency on XStore with the
increase of models for various data distributions (see Table 3–2).

Table 3–3 The impact of durability on the throughput (M reqs/s) of XStore.

YCSB (Uniform) A B C D E F

w/o logging 41 80 82 53 10.2 36

w/ logging 31 78 82 51 9.9 33

3.7.8 Data distribution

We further evaluate XStore on a 100M-key dataset with different data distributions
(Table 3–2) using a read-only workload (YCSB C). Since the throughput of XStore is
sensitive to the prediction error due to bandwidth amplification, XStore requires more
simple sub-models (e.g., LR) to learn complex data distributions (e.g., OSM) for the same
prediction error. For example, as shown in Figure 3–23a, XStore requires about 20M
sub-models for OSM to achieve a peak throughput of 80M reqs/s. On the other hand,
the median latency at a low load is relatively stable (see Figure 3–23b) for various data
distributions, as the latency of RDMA is insensitive to payload sizes [35].

3.7.9 Durability

To study the overhead of logging for durability, we evaluate the peak throughput
of XStore for various YCSB workloads with logging enabled. As shown in Table 3–3,
the performance drops by up to 24% for update-heavy workloads (e.g., YCSB A) due
to additional writes to SSD. On the other hand, it does not degrade the performance of
read-heavy workloads much (e.g., YCSB C), because first first, XStore executes read
operations (e.g., GET) using one-sided RDMA primitives bypassing the logging threads
thoroughly. Second, XStore flushes the logs in a batched manner [104] to hide the
impact of slow storage (§3.4.4).

— 77 —

3.8 Related work on learned index
The learned cache used in XStore is motivated by earned index. Specifically,

Kraska et al. [98] argue that all existing index structures can be replaced with machine
learning (ML) models, which are termed “learned index”. They further propose several
example learned indexes for various index structures, e.g., tree-based range index. As
the original learned indexes focus on static workloads, there have been several efforts of
adapting learned indexes to handle dynamic workloads [114-115, 129]. XIndex [114]
adds a delta index to each sub-model in a learned index and proposes a new concurrent
RCU-based compaction scheme to split models. Adapting RCU to XStore for dynamic
workloads is inefficient, because updating the index after model retraining requires syn-
chronizing with all the clients in this approach. ALEX [115] uses a gapped array to
accommodate new key-value pairs, similar to the leaf node of XTREE. However, it is non-
trivial to enable the gapped array in a distributed xstoretem since it requires complex co-
ordinations when expanding the array upon full. Bourbon [116] is a log-structured merge
(LSM) tree that leverages the learned index to speedup lookups. FITING-TREE [111] is a
form of a learned index to balance prediction error and memory cost. It uses extra sorted
buffers to store inserts and merges them back when reaching a threshold. SIndex [130]
is a concurrent learned index for variable-length string keys.

3.9 Conclusion
XStore is an RDMA-based in-memory ordered key-value store with a new hybrid

architecture to leverage ML model as RDMA-based index cache. We term this cache
as “leaned cache”. With the help of the learned cache, XStore avoids the costly index
traversal in traditional RDMA-based ordered key-value store. By maintaining a layer of
indirection, XStore further decouples the MLmodel retraining from index updating and
allow a stale learned cache to continue predicting a correct position of a lookup key. To
minimize the cost of learned cache misses, XStore was built with a set of optimiza-
tions like speculative execution. Evaluations with YCSB benchmarks and production
workloads confirmed the benefit of designs in XStore compared to the state-of-the-art
RDMA-based ordered key-value stores.

Distributed transactions can leverage XStore to accelerate data retrieval over sec-
ondary indexes, where ordered accesses are common. We will discuss it in §6.1.

— 78 —

Chapter 4 Phase-by-phase Analysis for Hybrid
RDMA-enabled Concurrency Control

This chapter presents DrTM+H, a distributed transaction processing system designed
with RDMA. Distributed transaction used to seem slow [131]. Yet,the prevalence of fast
networking features such as RDMA (§2.2) has boosted the performance of distributed
transactions by orders of magnitudes [13, 17-18, 25].

Though there aremany transactional systems designedwith RDMA (§4.1), it is often
challenging for system designers to choose the best design, due to the lack of a systematic
study on these designs. People are also debating over how to choose RDMA primitives
for transactions recently (§4.2). To this end, DrTM+H conducts the first systematic study
on how different choices of RDMA primitives and designs affect the performance of
distributed transactions.① Our phase-by-phase analysis reveals that none of them has the
optimal performance (§4.3). Based on the analysis results, DrTM+H can provide better
performance than the prior designs (§4.4).

4.1 Background on RDMA-enabled distributed transactions
There is an active line of research in using RDMA for serializable distributed trans-

actions [13, 18, 25]. Most of such systems use variants of optimistic concurrency con-
trol (OCC) for consistency [22] and variants of primary-backup replication (PBR) for
availability [132]. PBR uses fewer round trips and messages to commit one transaction
than Paxos [13], which fits distributed transactions in a well-connected cluster.

Although these systems have different design choices and leverage different RDMA
primitives, they use a similar transaction protocol (OCC)② to execute and commit seri-
alizable transactions. The operations performed in the protocol can be briefly summa-
rized as four consecutive phases, as shown in Figure 4–1. A transaction first executes
by reading the records in its read set (Execution). Then it executes a commit proto-
col, which locks the records in the write set and validates the records in the read set

① Note that optimizing distributed transaction protocol is not the focus of this chapter.
② While DrTM [17] implements a two phase locking (2PL) scheme using HTM and RDMA, it provides no high

availability support and a later version [18] uses a variant of OCC to provide high availability. We are not aware
of other RDMA-enabled distributed transaction systems using 2PL. Hence, we focus on OCC in this chapter.

— 79 —

C

P1

B1

P2

B2

EXECUTION VALIDATION LOGGING COMMIT

lock

read

write

write

write&
unlock

committed
serialization

point

validate

Figure 4–1 A phase-by-phase overview of transaction processing with OCC. C, P, and B stand for
the coordinator, the primary and the backup of replicas, respectively. P1 is read and P2 is written.

The dashed, solid, and dotted lines stand for read, write, and hardware ack operations, and rectangles
stand for record data.

is unchanged (Validation). If there is no conflicting transaction, the coordinator sends
transaction’s updates to each backup and waits for the accomplishment (Logging). Upon
successful, the transaction will be committed by writing and unlocking the records at the
primary node (Commit). Note that the execution order of the protocol is very impor-
tant. For example, the transaction is considered to be committed if and only if the log
replies have been received [13, 25]. Thus the commit phase must be executed after the
completion of logging.

Read-only transaction is an important building block for modern applications [59].
OCC use a two-phase protocol to execute it: the first phase reads all records (Read), and
then the second phase validates all of them have not been changed (Validation).

4.2 One-sided vs. Two-sided: an on-going debate
Recently, there is an active debate over which RDMA primitive, namely one-sided

or two-sided, is better suited for distributed transactions. One-sided primitive (e.g., READ,
WRITE, and ATOMIC) provides higher performance and lower CPU utilization [2, 13, 17-
18]. On the other hand, two-sided primitive simplifies application programming and is
less affected by hardware restrictions such as the limitation of RNIC’s cache capacity [25,
30].

It is often challenging for system designers to choose the right primitive for trans-
actions based on previous studies. Most work on RDMA-enabled transactions presents

— 80 —

a new system built from scratch and compares its performance with previous ones us-
ing other codebases. Some only compare the performance of different primitives or de-
signs using micro-benchmarks. This makes their results hard to interpret: differences in
hardware configurations and software stacks affect the observable performance. Further,
different RDMA primitives may significantly affect the overall performance [30, 66].

There have been several valuable studies in the database community in comparing
different transactional systems [133-134]. Harding et al. [134] conduct a comprehensive
study on how different transaction protocols behave under different workloads in a dis-
tributed setting using a single framework. However, for a particular protocol, there may
be many different implementations which have very different performance, especially
when embracing new hardware features like RDMA.

In this dissertation we present the first systematic study on how different choices of
RDMA primitives and designs affect the performance of distributed transactions. Un-
like most previous research efforts which compare different overall systems, we compare
different designs within a single, well-tuned execution framework designed for RDMA
(§2.2). Our goal is to provide a guideline on optimizing distributed transactions with
RDMA, and potentially, for other RDMA-enabled systems (e.g., distributed file sys-
tems [32, 51] and graph processing systems [34-36]).

4.3 A phase-by-phase performance analysis
Our systematic study adopts a phase-by-phase analysis with different RDMA prim-

itives. The goal is to answer how to choose RDMA primitives for RDMA-enabled trans-
actions. A phase-by-phase analysis can effectively find the best choice of OCC-based
RDMA-enabled transactions because OCC executes all phases in a strictly serial order
(§4.1).

To provide an apple-to-apple comparison on different primitives and transactions,
we conduct our analysis on R2 (§2.2.2). Table 4–1 summaries whether we apply the
optimization discussed in §2.2.3 at different phases of transactional execution. Below is
some highlights of the analysis results:

• One-sided primitive is faster when the number of round trips is the same and the
completion acknowledgement of requests are required (§4.3.1,4.3.2,4.3.4,4.3.5).

• It is always worth checking and filling the lookup cache for one-sided primitive,
even using two-sided primitive (§4.3.1).

— 81 —

Table 4–1 A summary of optimizations on RDMA primitives at different phases (§2.2.3). OR, DB,
CO and PA stand for outstanding request, doorbell batching, coroutine, and passive ACK. RW and RO

stand for read-write and read-only transactions. I and II stand for one-sided and two-sided
primitives.

OR DB CO PA

I II I II I II I II

RW

E 7 7 7 3 3 3 7 7

V 3 3 3 3 3 3 7 7

L 3 3 7 3 3 3 7 7

C 3 3 3 3 3 3 3 3

RO
R 7 7 7 3 3 3 7 7

V 3 3 7 3 3 3 7 7

• One-sided primitive is faster, even using more network round trips, for CPU-
intensive workloads (§4.3.1).

• Two-sided primitive with passive ACK has comparable or better performance
than one-sided (§4.3.3).

In this chapter, we focus on in-memory distributed transactional processing that does
not provide durability. In §6.3, we will present how to use RDPMA (§2.3) to support
durability for DrTM+H using Optane PM.

Benchmarks. We use two popular OLTP benchmarks, TPC-C [124] and
SmallBank [135], to measure the performance① of every phase with different
primitives, since they represent CPU-intensive and network-intensive workloads respec-
tively. We use a partitioned data store where data is sharded by rows and then distributed
to all machines. We enable 3-way logging and replication to achieve high availability,
namely each primary partition has two backup replicas.

TPC-C simulates an order processing application. We scale the database by deploy-
ing 384 warehouses to 16 machines. We use this benchmark as a CPU-intensive work-
load. TPC-C is known for good locality: only around 10% of transactions access remote
records. To avoid the impact of local transactions, which our work does not focus on, we
only run new-order transaction of TPC-C and make transactions always distributed,

① We scale up the concurrent requests handled by the server to achieve the peak throughput.

— 82 —

which is a major type of transaction (45%) and representative in TPC-C.①

SmallBank simulates a simple banking application. Each transaction performs simple
reads and writes operations on account data, such as transferring money between differ-
ent users. We use this benchmark as a network-intensive workload because transaction
only contains simple arithmetic operations on few records. We do not assume locality
as previous work [25], which means that all transactions use network operations to exe-
cute and commit transactions. To scale the benchmark, we deploy 100,000 accounts per
thread, while 4% of records are accessed by 90% of transactions.

Symmetric model. We use a symmetric model in our experiments as prior RDMA-
enabled distributed transactions [13, 17-18, 25]. In a symmetric model, each machine
acts both a client and a server.

4.3.1 Execution (E)

Overview. In the execution phase, the transaction coordinator fetches the records a
transaction reads. This requires traversing the index structure and fetching the record.
We can simply send an RPC to remote server to fetch the record, which only requires one
round-trip communication. On the other hand, we can also leverage one-sided RDMA
READs to traverse the data structure and read the record. This typically requires multiple
round trips but saves remote CPUs. Prior work has proposed two types of optimizations
to reduce the number of round trips required by one-sided primitives [2, 17, 28-29].

RDMA-friendly key-value store. Many hash-based data structures can be optimized to
reduce the number of RDMA operations for traversing the remote server to find the given
key, these include cuckoo hashing [29], hopscotch hashing [2], and cluster hashing [17].
We adopt DrTM-KV [17], a state-of-the-art RDMA-friendly key-value store in all exper-
iments.

RDMA-friendly index cache. The ideal case for one-sided primitive is to use one one-
sided READ to get the record back. DrTM [17] introduces a location-based cache to elim-
inate the lookup cost (one RDMA READ) in the common case. FaRM [13] and Cell [28]
use a similar design for caching the internal nodes of B-tree. In our experiment, we main-
tain a 300MB index cache on each machine, which will be used and filled in the execution

① For brevity, we refer to our simplified TPC-C benchmark as TPC-C/no.

— 83 —

phase. Note that the index cache is quite effective since a relatively small cache is usu-
ally enough for skewed OLTP workloads [126, 136-139], such as SmallBank [135],
TATP [140], and YCSB [99].

Evaluation. Figure 4–2 compares the performance of using one-sided and two-sided
primitives for the execution phase on TPC-C/no and SmallBank, respectively. Two-
sided uses one RPC to fetch the record. One-sided fetches records with at least two one-
sided READs (one for index and one for payload). One-sided/Cache always fetches the
indexes from the local index cache and then get the record from a remote server using a
single one-sided READ. This presents an ideal case for the performance of the execution
phase using one-sided primitives.

TPC-C/no: One-sided/Cache outperforms Two-sided by up to 1.45X in throughput (from
1.26X), and the median latency is only around 69% of Two-sided (from 89%). The ben-
efits mainly come from the better performance of one-sided READs. Two-sided outper-
forms One-sided (no cache) by up to 1.28X in throughput. Without caching, the coordi-
nator requires an average of double round trips (one for lookup and another for read) to
fetch one record.

Interestingly, when increasing the number of coroutines, the peak throughput of
One-sided (no cache) outperforms that of Two-sided (about 13%). The median latency
is also slightly better when using more than 10 coroutines. The performance gain comes
from lower CPU utilization on each machine. This confirms the benefits of using one-
sided primitives when remote servers are busy [28-29]. The adaptive caching scheme in
prior work [28-29] can be used to get better performance by balancing CPU and network.

SmallBank: Not surprisingly, One-sided/Cache still outperforms Two-sided by up to
1.36X in throughput due to the better performance and CPU utilization of one-sided
READ. However, compared to One-sided (no cache), the speedup of peak throughput
for Two-sided reaches up to 2.01X (from 1.13X). This is due to two reasons. First, with-
out location-based cache, one-sided uses more round trips to finish the execution phase.
Further, the performance of Smallbank is bottlenecked by network bandwidth since it
is a network-intensive workload.

Summary. If one round-trip RDMA READ can retrieve one record using the index
cache, one-sided primitive is always a better choice than two-sided one. Otherwise, two-

— 84 —

 0

 0.1

 0.2

 0.3

 0.4

 0 0.4 0.8 1.2 1.6 2

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

Two-sided
One-sided
One-sided/Cache

 0

 10

 20

 30

 40

 0 6 12 18 24 30

M
ed

ia
n

la
te

nc
y

(µ
s)

Thpt per machine (M txns/s)

Two-sided
One-sided
One-sided/Cache

Figure 4–2 The performance of (a) TPC-C/no and (b) SmallBank with different implementations
of Execution phase.

sided primitive should be used when servers are not overloaded. Hence, a hybrid scheme
should be used in the execution phase. Specifically, we should always enable the index
cache and look from it before choosing either one-sided primitive (on cache hit) or two-
sided primitive (on cache miss). We should also always refill the cache even if two-sided
primitive is chosen upon a miss.

4.3.2 Validation (V)

Overview. To ensure serializability, OCC atomically checks the read/write sets of the
transaction in the validation phase. The coordinator first locks all records in the transac-
tion’s write set and then validates all records in the read/write set to ensure that they have
not been changed after the execution phase.

Lock. RDMA provides one-sided atomic compare and swap operations (ATOMIC), which
can be used to implement distributed spinlock [17-18]. Although ATOMIC is slower than
other two-sided primitives, on recent generation of RNIC (e.g., ConnectX-4), ATOMIC
can achieve 48M reqs/s, which is sufficient for many OLTP workloads (e.g., TPC-C).
More importantly, the throughput of two-sided primitive (76M) was evaluated with an
empty RPC workload. When locking the record in the RPC routine, the impact of CPU
efficiency may change the relative performance of one-sided and two-side primitives.
This is especially the case for the symmetric model adopted by transaction systems [13,
17-18, 25-26], when the servers are busy processing transactions.

Validate. Different from the execution phase, a single RDMA READ is enough to retrieve
the current version of the record for validation, thanks to caching the index in the execu-

— 85 —

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.3 0.6 0.9 1.2 1.5

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

Two-sided
One-sided

 0

 15

 30

 45

 60

 75

 0 2 4 6 8 10 12

M
ed

ia
n

la
te

nc
y

(µ
s)

Thpt per machine (M txns/s)

Two-sided
One-sided

Figure 4–3 The performance of (a) TPC-C/no and (b) SmallBank with different implementations
of locking in Validation phase.

tion phase of the transaction. Therefore, one-sided primitive is always a better choice for
read-only records compared to two-sided one, according to the results in §2.2.

Optimization. OCC demands the validation should start exactly after locking all
records [7, 13]. This takes two round trips for every read-write record in the valida-
tion phase. Fortunately, the locked record can be validated immediately since it can not
be changed again. Therefore, each read-write record can be handled by both one-sided
and two-sided primitives in one round trip. For one-sided, the RDMA READ request will
be posted just after the RDMA CAS request in a doorbelled way to the same send queue
of target QP, since they are processed in a FIFO manner. Further, with passive ACK, the
CAS request can be made unsignaled (§2.2.3). For two-sided, the RPC routine will first
lock the record and then read its version. On commodity x86 processors, compiler fences
are sufficient to ensure the required ordering.

Restriction of RDMA atomicity. Currently, the key challenge for using one-sided primi-
tive (RDMA ATOMIC) for distributed locking is that ATOMIC cannot correctly work with
CPU’s atomic operations (e.g., CAS). To remedy this, local atomic operations must also
use RNIC’s atomic operations [17], which will slow down the validation phase of local
transactions. Leveraging advanced hardware features, like hardware transactional mem-
ory (HTM), can overcome this issue [17].

Evaluation. Figure 4–3 compares the performance of using one-sided and two-sided
primitives for the validation phase on TPC-C/no and SmallBank, respectively. Since
the read/write sets are the same in TPC-C/no and SmallBank, one-sided will send one
ATOMIC and one READ sequentially to lock the record and retrieve the current version in

— 86 —

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0 0.2 0.4 0.6 0.8 1.0

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

Two-sided
One-sided
Two-sided + PA
One-sided + PA

 0

 15

 30

 45

 60

 75

 0 2 4 6 8 10

M
ed

ia
n

la
te

nc
y

(µ
s)

Thpt per machine (M txns/s)

Two-sided
One-sided
Two-sided + PA
One-sided + PA

Figure 4–4 The performance of (a) TPC-C/no and (b) SmallBank with different implementations
of Commit phase.

one round trip. We can see in Figure 4–3 that for both workloads, one-sided primitive
(ATOMIC) is faster, even it has lower peak throughput.

Summary. Although RDMA ATOMIC is slower than other RDMA network primitives,
it may not be the bottleneck for many applications and can further improve the perfor-
mance of many workloads. If the atomicity between RNIC and CPU will not cause a per-
formance issue, One-sided RDMA ATOMIC is a better choice to implement distributed
locking due to high CPU efficiency. Otherwise, two-sided primitive is preferred in this
phase since local CASs are much faster than RNIC’s CASs.

4.3.3 Commit (C)

Overview. In the commit phase, the coordinator first writes the updates of the transac-
tion back and then releases the locks. One-sided WRITE can be used to implement the
commit operation with two requests, one to write updates back and one to release the
locks (i.e., zeroing the lock state of the record).

Similar to the validation phase, two one-sided WRITEs (one to write the update back
and one to release the lock) will be posted sequentially to the sameQP in a doorbelledway,
which preserves the required ordering (release after write-back). Therefore, the commit
phase can be handled by both one-sided and two-sided primitives in one round trip.

Optimization with passive ACK. Since the transaction is considered to be committed after
the completion of logging, the completion of the commit message can be acknowledged
passively by piggybacking with other messages. Thus we enable passive ACK optimiza-
tion to both one-sided and two-sided primitives in the commit phase.

— 87 —

 0

 0.2

 0.4

 0.6

 0.8

0 0.2 0.4 0.6 0.8 1.0

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

Two-sided
One-sided

 0

 30

 60

 90

 120

 0 1 2 3 4 5 6 7

M
ed

ia
n

la
te

nc
y

(µ
s)

Thpt per machine (M txns/s)

Two-sided
One-sided

Figure 4–5 The performance of (a) TPC-C/no and (b) SmallBank with different implementations
of Logging phase.

Evaluation. Figure 4–4 presents the performance of TPC-C/no and SmallBank using
different commit approaches. Note that we use two-sided as the validation implementa-
tion in this experiment. This is because one-sided ATOMICs cannot work correctly with
the commit phase with two-sided primitive due to the atomicity issue with our current
RNIC.

For both workloads, without passive ACK, one-sided WRITEs are faster due to bet-
ter CPU utilization at the receiver’s side. With passive ACK, two-sided is faster. This is
because, although two-sided primitive costs more CPU at the receiver side, it can save
CPU at sender side due to doorbell batching [66] (see Table 4–1). One-sided primitive re-
quires multiple MMIOs to commit multiple records, while two-sided primitive can chain
these requests by using one doorbell. Passive ACK can further save the cost of two-sided
primitives when sending the replies back. These results match up with the results ob-
served in our primitive-level performance analysis (§2.2.3).

Summary. To commit transactions, two-sided primitive with passive ACK is a better
choice.

4.3.4 Logging (L)

Overview. In the logging phase, the coordinator writes transaction logs with all updates
to all backups. After receiving the completion acknowledgements from all backups, the
transaction commits. The coordinator will notify backups to reclaim the space of logs
lazily by updating records in-place.

One-sided primitive. To enable logging with one-sided RDMA WRITE, each machine

— 88 —

Table 4–2 A summary of execution time (cycles) and payload size (bytes) in different phases for
TPC-C and SmallBank.

TPC-C SmallBank

Time Payload Time Payload

Execution 342 68 678 71
Validation 454 157 185 105
Logging 363 1006 134 149
Commit 108 34 87 20

maintains a set of ring-buffers for remote servers to log. The integrity of the log is en-
forced by setting the payload size at the begin and end of the message, inspired by pre-
vious work [2]. Note that since we use RC (Reliable Connection) QP to post one-sided
WRITEs, the logging is considered success after polling the ACK from the RNIC. We
use two-sided primitive to reclaim the log since it must involve remote CPUs [13]. Since
log reclaiming is not on the critical path of transactional execution, this request can be
marked as unsignaled and the claiming can be done in the background.

Two-sided primitive. Logging with two-sided primitive is relatively simple. The RPC
routine copies the log content to a local buffer after receiving the log request, and then it
sends a reply to the sender. The log reclaiming can also be executed in the background.

Evaluation. Figure 4–5 presents the performance of TPC-C/no and SmallBank us-
ing different logging approaches. For both of them, one-sided logging always has higher
throughput and lower latency than its two-sided counterpart, thanks to offloading write
operations to one-sided primitives. Using one-sided logging increases the throughput of
TPC-C/no and SmallBank by up to 1.29X (from 1.24X) and 1.12X (from 1.10X), re-
spectively. One-sided logging has more improvements in peak throughput in TPC-C/no
since the payload size of logs in TPC-C is much larger than that of SmallBank (1,006B
vs. 149B), as shown in Table 4–2.

Summary. Since the logging phase can be offloaded using one-sided RDMA WRITEs
with one round trip, one-sided primitive is always preferred to write logs.

— 89 —

0

0.5

1.0

1.5

2.0

2.5

 0 0.05 0.1 0.15 0.2 0.25 0.3

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

Two-sided + Two-sided
One-sided + Two-sided
One-sided + One-sided
One-sided/Cache + One-sided

Figure 4–6 The performance of customer-position in TPC-E with different implementations
of the read-only transaction (Read and Validation phases).

4.3.5 Read-only transaction (R+V)

Overview. Weuse a simplified two-phase protocol to run read-only transactions as prior
work [59]. The first phase reads all records like the execution phase, and the second phase
validates that the versions of all records have not been changed, which is similar to the
operations in the validation phase for the records in read set. For single-key read-only
transactions, the validation phase can be ignored. These transactions are popular in many
OLTP workloads (e.g., TATP [140]), as reported by prior work [13, 25].

Evaluation. With a proper sharding, there is no distributed read-only transaction in
TPC-C, which needs remote data accesses. Further, there is only one single-key read-
only transaction in Smallbank (i.e., Balance), which does not require the second
phase (validation) [13, 25]. Therefore, we use the customer-position transaction
in TPC-E [141] to evaluate the performance of distributed read-only transactions.

TPC-E. is designed to be a more realistic OLTP benchmark, which simulates the work-
load of a brokerage firm. One of well-known characteristics is the high proportion of
read-only transactions, reaching more than 79%. The customer-position transaction
is read-only and has the highest execution ratio. It simulates the process of retrieving the
customer’s profile and summarizing their overall standing based on current market values
for all assets. The assets prices are fetched in a distributed way.

Figure 4–6 compares different choices of primitives for distributed read-only trans-
actions. As expected, by offloading read operations to RNICs and bypassing remote
CPUs, using one-sided primitives for both the read and validation phases can gain the

— 90 —

 0
 1
 2
 3
 4
 5
 6
 7
 8

3 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of machines

DrTM+H
DrTM+H/80

 0

 25

 50

 75

 100

3 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of machines

DrTM+H
DrTM+H/80

Figure 4–7 The performance of DrTM+H with the increase of machines for (a) TPC-C/no and (b)
SmallBank.

best performance in both throughput and latency. One-sided outperforms Two-sided by
about 10% in peak throughput (0.19 vs. 0.21), and the median latency is around 80%
of Two-sided. Enabling the index cache (One-sided/Cache) in the read phase will fur-
ther improve the peak throughput by close to 20% (0.25 vs. 0.21) and reduce the median
latency more than 20%.

Summary. The hybrid scheme used in the execution phase (see §4.3.1) is also suitable
to the first phase, and one-sided READ is always a better choice for the second phase
(see §4.3.2). For single-key read-only transactions, a single one-sided READ is usually
efficient.

4.4 DrTM+H: Fast transactions using hybrid schemes
In this section, we conclude our studies of using RDMA for transactions by show-

ing how to improve the performance of prior designs by choosing appropriate primitives
and techniques at different phases of transactional execution. This leads to DrTM+H, an
efficient distributed transaction system using hybrid schemes.

4.4.1 Design of DrTM+H

DrTM+H optimizes different phases of the transaction by choosing the right primi-
tives guided by our previous studies (§4.3). It supports serializable transaction with log
replication for high availability. Currently, we have not implemented the reconfiguration
and recovery, which is necessary to achieve high availability. Yet, since our replication
protocol is exactly the same as the one used in FaRM [13], DrTM+H can use its method

— 91 —

to recover from failure.

Execution. DrTM+H uses a hybrid design of one-sided READs with caching and two-
sided RPC. If the record’s address has been cached locally, one RDMA READ is sufficient
to fetch the record. Otherwise, DrTM+H uses RPC to fetch the record and its address.

Validation. DrTM+H uses one-sided ATOMIC for validation if there is no atomic issue (
e.g., Network accesses do not conflict with local ones). Otherwise two-sided is preferred
since using RDMA atomic operations will slow down local operations [17].

Logging. DrTM+H always uses one-sided WRITEs to replicate transaction logs to all
backups and uses two-sided primitive to lazily reclaim logs on backups.

Commit. DrTM+H uses one-sided WRITEs to commit if one-sided ATOMIC is used in the
validation phase. Otherwise DrTM+H uses two-sided RPC. DrTM+H always uses passive
ACK optimization since the completion of commit message is not on the critical path of
transactional execution.

Using outstanding request with speculative execution. In §4.3.1, we disable the out-
standing request optimization at the execution phase to avoid requiring advance knowl-
edge of read/write set. However, this usually means that transaction must fetch records
one-by-one, which increases the latency of a single transaction.① We found that even
the record has not been fetched to local, the transaction can still speculatively execute
until the involved value is really used. This can greatly reduce the lifespan of a transac-
tion. For example, the remote records required by new-order transaction in TPC-C are
independent. Thus DrTM+H uses speculative execution to fetch these records in parallel.

4.4.2 Performance evaluation

Figure 4–7 presents the throughput and scalability of DrTM+H using TPC-C/no and
SmallBank. To show that DrTM+H’s usage of one-sided primitive has good scalability
on a larger-scale cluster, we use the QP setting which is enough to run on an 80-node
cluster (DrTM+H-80). Each thread uses 80 QPs (16x5) to connect to 16 nodes and chooses
the usage of QP in a round-robin way.

① We still send multiple requests in parallel for different transactions using coroutines.

— 92 —

 0
 100
 200
 300
 400
 500
 600

c=1 c=16

1.
00

X
0.

96
X

1.
22

X
1.

56
X

1.
55

X 2.
07

X 2.
96

X

1.
00

X
1.

02
X

1.
14

X
1.

17
X

1.
27

X
1.

39
X

1.
42

X

T
hp

t p
er

 m
ac

hi
ne

(K

 r
eq

s/
s)

Base Two-sided
+One-sided/Read
+One-sided/Logging
+One-sided/Cache
+One-sided/Validation
+Passive-ACK
+Outstanding

 0

 0.1

 0.2

 0.3

c=1

1.
00

X
0.

94
X

0.
78

X
0.

60
X

0.
58

X
0.

46
X

0.
37

X

90
th

 la
te

nc
y

(m
s)

 0

 1

 2

 3

c=16

1.
00

X
1.

09
X

0.
83

X
0.

84
X

0.
79

X
0.

73
X

0.
58

X

90
th

 la
te

nc
y

(m
s)

Figure 4–8 The contribution of optimizations to (a) throughput and (b,c) latency to TPC-C/no for
DrTM+H using 1 and 16 coroutines, respectively. Optimizations are cumulative from left to right.

Performance and scalability. DrTM+H scales linearly with the increasing of machines.
The throughput of TPC-C/no and SmallBank decrease 5% and 9% on the emulated 80-
node connection setting, respectively. SmallBank is more sensitive to the number of QPs
since its payload size is much smaller than that of TPC-C/no. However, SmallBank is
still 1.3X higher than a pure two-sided solution in throughput, with a significant decrease
in the tail latency. The 50𝑡ℎ (median), 90𝑡ℎ, and 99𝑡ℎ latency are reduced by 22%, 39%,
and 49%, respectively.

Factor analysis. To investigate the contribution of the primitive choices in DrTM+H,
we conduct a factor analysis in Figure 4–8. Due to space limits, we only report the ex-
perimental results of TPC-C/no; SmallBank is similar. First, we observe that using
one-sided primitives can significantly improve the throughput and latency when servers
are underloaded (1 coroutine). This is because one-sided primitive has lower CPU uti-
lization and lower latency compared to two-sided one. Second, by increasing coroutines,
the two-sided implementation has close throughput with one-sided one. However, a hy-
brid scheme in DrTM+H improves both median and tail latency. Finally, when leverag-
ing RDMA, the number of round trips has more impacts on latency but not throughput,
especially for CPU-intensive workloads (e.g., TPC-C). When using 16 coroutines, the
throughput increases even using more network round trips (adding one-sided READs).
This is because coroutines hide most of waiting for request’s completion while one-sided
primitive has lower CPU utilization.

4.4.3 Comparison against prior designs

There have been several designs to optimize transactional execution using RDMA.
To understand the effects of RDMA primitive decisions, we implemented and evaluated

— 93 —

Table 4–3 A review of the existing RDMA-enabled transaction systems. I and II stand for
one-sided and two-sided primitives.

RW-TX RO-TX

E V L C R V

FaRM I II+I I II I I
DrTM+R I I+I I I+I I I
FaSST II II II II II II
DrTM+H I/II I/II I I/II I/II I

emulated versions of FaRM [13], DrTM+R [18] and FaSST [25].① We adopted the same
codebase and transaction protocol (OCC) of DrTM+H, but choosing the RDMA primitives
and techniques at different phases of transactional execution as the originals. Table 4–3
summarizes the primitives used in the three systems and compares the performance of
emulated versions of them with DrTM+H. Note that all existing optimizations on RDMA
primitives are enabled, including coroutine, outstanding requests, and doorbell batching.

Emulating FaRM. FaRM [13] is designed to run transactions atop of a global mem-
ory space over RDMA networking. FaRM uses one-sided READ at the execution/logging
phase and one-sided WRITE at the logging phase, as well as a hybrid choice at the val-
idation phase. Moreover, FaRM adopts an RDMA-friendly memory store (FaRM-KV)
proposed in their prior work [2]. Our emulated store (DrTM-KV) has been shown to have
a comparable performance even without the location cache [17]. Further, our two-sided
RPC implementation has also better performance than the implementation in FaRM [25].
Hence, we believe our emulated version has similar or even better performance compared
to the vanilla FaRM.

Emulating DrTM+R. DrTM+R [18] offloads all network operations to one-sided
RDMA primitives for CPU efficiency, including using one-sided ATOMIC for locking re-
mote records in the validation phase. Further, DrTM+R exploits hardware transactional
memory (HTM) [142] to handle local transactions, but does not leverage coroutines to

① FaRM is not open-sourced, DrTM+R depends on hardware transactional memory, and FaSST uses a simplified
OCC and protocol.

— 94 —

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 0.1 0.2 0.3 0.4 0.5 0.6

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (M txns/s)

FaSST-OCC
DrTM+R
FaRM
DrTM+H

 0

 30

 60

 90

 120

 150

 0 1 2 3 4 5 6 7

M
ed

ia
n

la
te

nc
y

(µ
s)

Thpt per machine (M txns/s)

FaSST-OCC
DrTM+R
FaRM
DrTM+H

Figure 4–9 An end-to-end comparison of different designs on (a) TPC-C/no and (b) SmallBank.

obtain higher throughput. To focus on comparing different choices of RDMA primitives,
our emulated version disables HTM (similar to the implementation of DrTM-OCC [143])
but enables coroutine optimization.

Emulating FaSST. FaSST [25] proposes a well-optimized RPC implementation based
on two-sided primitives for running transactions. Since our framework provides a simi-
lar UD-based RPC implementation, it is straightforward to emulate FaSST by using two-
sided primitives at all phases of transactional execution. Note that FaSST uses a sim-
plified OCC protocol [25] by moving lock operations from the validation phase to the
execution phase. To avoid confusion, we use FaSST-OCC to name the pure two-sided
implementation on our platform with OCC protocol.

Evaluation. Compared to other prior designs, DrTM+H always embraces the best
performance in terms of latency and throughput. Figure 4–9 presents our results.
DrTM+H has the best throughput than previous designs with the right choice of RDMA
primitives and a set of optimizations to better leverage the chosen primitive. On
TPC-C/no, DrTM+H’s throughput is up to 2.96X of FaSST (from 1.41X), up to 1.89X of
DrTM+R (from 1.12X) and up to 2.50X of FaRM (from 1.21X). When using 16 corou-
tines, the median latency is reduced by 33%, 23% and 34%, respectively. We broke down
the performance improvements in §4.4.2. FaRM optimizes baseline two-sided (FaSST)
by using one-sided operation for logging and execution. DrTM+R further adds location
cache and use one-sided for validation and commit. In TPC-C/no, FaRM and DrTM+R
outperforms FaSST due to better leveraging one-sided primitives for CPU-intensivework-
loads. DrTM+R outperforms FaRM due to the usage of location cache at the execution

— 95 —

0

0.04

0.08

0.12

0.16

0.20

FaS
ST-O

CC
FaR

M

DrT
M

+R

DrT
M

+H

A
ve

ra
ge

 la
te

nc
y

(m
s)

Commit
Logging

Validation
Execution

0

0.4

0.8

1.2

1.6

2.0

FaS
ST-O

CC
FaR

M

DrT
M

+R

DrT
M

+H

A
ve

ra
ge

 la
te

nc
y

(m
s)

Commit
Logging

Validation
Execution

Figure 4–10 The latency breakdown of TPC-C/no using (a) 1 coroutine and (b) 16 coroutines.

phase and the usage of atomics at the validation phase. FaSST has a comparable per-
formance to FaRM for SmallBank since two-sided primitive is faster at the execution
phase.

Latency breakdown. To study the performance influence of choosing RDMA primitives,
we further show a latency breakdown in each phase for different designs in Figure 4–10.
By leveraging one-sided READs, the latency of the execution phase is reduced by 13%
and 41% in FaRM and DrTM+R respectively—for one coroutine. Increasing the number
of coroutines can narrow the performance gap by hiding the latency of network opera-
tions. Further, FaSST can outperform FaRM by 22% when using 16 coroutines, since
FaRM requires more network round trips to read remote data. To remedy this, DrTM+R
enables the location-based cache [17] for one-sided operations and achieves the lowest
latency (less than 0.7ms). In the validation phase, DrTM+R has the lower latency by
offloading lock operations to RDMA NICs. Using one-sided WRITEs, the latency of the
logging phase in DrTM+R and FaRM is reduced by about 69% and 75% respectively,
compared to using two-sided primitives (FaSST). Finally, DrTM+H can always choose
appropriate RDMA primitives to embrace the latency reduction at each phase. Note that
DrTM+H has the lowest latency at the commit phase due to enabling Passive ACK opti-
mization (§2.2.3), such that receiving the acknowledgement of commit messages is done
off the critical path.

— 96 —

4.5 Discussion
Trends, features, and extensions. Our studies focus on Mellanox ConnectX-4 RNIC.
Previous generations of RNICs like ConnectX-3 yields slower performance of one-sided
READs. However, we have seen a trend that one-sided primitives become faster and more
scalable in recent RNICs, from Connect-IB to ConnectX-4 to ConnectX-5. Further, new
generation RNIC may introduce more features for one-sided primitives. For example,
ConnectX-5 has integrated with NVMe over Fabrics [144], suggesting an optimistic opin-
ion about providing offloading features in modern data centers.

On the other hand, one-sided primitive still has many limitations due to the lack of
expressiveness [17]. For example, it is not competent for complicated operations, like
searching in a sorted store. Furthermore, one-sided primitive is unlikely to have orders
of magnitude higher performance than messaging, because we have also seen a trend on
providing fast messaging rate in later generation RNICs [145]. Hence, how to properly
choose the right primitive is very important given a specific workload. This chapter gives
an example of how to optimize transactional processing with a combination of different
primitives in a phase-by-phase way. The resulting system and insights may be reused for
further studies.

Some proposed RDMA extensions, including the coherence of atomic operations,
atomic object reads [146], and multi-address atomics [147], may provide further explo-
ration spaces once being commercialized. We believe that there will be a continued line of
research in this field with more new features, implementations and application domains.

Emulating a large-scale RDMA cluster. Currently, we mainly focus on emulating
massive RDMA connections in a rack-scale cluster, because QP cache misses will dom-
inate the impact on the performance of various primitives. Consequently, we do not
consider other scalability issues in a real large-scale RDMA cluster. For example, a large
cluster has to use multiple layers of RDMA networking such as multiple switches or con-
gestion control mechanism [148].

4.5.1 Related work on RDMA-enabled systems

Besides distributed transactions [13, 17-18, 25-27], a large number of systems have
used RDMA features to improve performance. These include but not limited to key-value
stores [2, 28-31], distributed file systems [32, 51], consensus algorithms [33] and graph

— 97 —

processing systems [34-37]. Such systems also have different RDMA primitive choices
according to their own demands. We hope our study of DrTM+H can further inspire an
optimal use of RDMA primitives for these systems.

4.6 Conclusion
DrTM+H is the first systematic study on how different choices of RDMA primitive

affect the performance of transactional execution. Unlike previous studies, it compares
different primitives and techniques using one well-optimized RDMA framework. This
makes the comparison of techniques and primitives comparable and comprehensive. The
main observation of DrTM+H is that no single primitive is the winner all the time, even
at different phases of transactional execution. It then adopts a hybrid solution which uses
the most appropriate primitive at each phase of transactions. This not only improves the
throughput but also reduces the latency of transactions. Finally, our study gives hints
about whether it is cost-effective to offload RDMA one-sided, or just use two-sided for
easy porting. We hope it can stimulate and provide a guideline for future system co-design
with RDMA.

— 98 —

Chapter 5 Using DST for Scalable Multi-version
Concurrency Control

As we have presented in the last chapter, by co-designing OCC with RDMA,
DrTM+H can fully utilize RDMA for RDMA-enabled distributed transactions. However,
in workloads dominated by read-only transactions, the OCC protocol used in DrTM+H
can perform poorly due to excessively aborts. As shown in Figure 5–1, there is a notable
performance gap between using OCC and read committed (RC) protocol for TPC-E.

Read-only transactions are common and requires strong transactional isolation. For
instance, our examination of TPC-E [141], a sophisticated online transaction process-
ing benchmark that models stock exchange, uncovers that 79% of transactions are read-
only ones at run time. Facebook has also reported that 99.8% of accesses to its dis-
tributed data store is reads [105], and these reads require strong transactional isolation
with writes [149]. Enforcing transactional isolation for read-only transactions is chal-
lenging, because one such transaction may fork into thousands of sub-queries [149].

Multi-version concurrency control (MVCC) is a common approach [150-151] to
unleash the parallelism between concurrent readers and writes. By maintaining multiple
database snapshots, readers can read tuples from a stale snapshot while writers can con-
currently write the tuples. Therefore, nearly all commercial database has adoptedMVCC,
including but not limited to PostgreSQL [152], Oracle [153], MySQL/InnoDB [154],
Hekaton [5], and SAP HANA [155].

While MVCC extracts more concurrency from transactions (especially for read-only
transactions), it does not necessarily attain optimal performance and/or scalability im-
provement (see Figure 5–1). MVCC relies on a timestamp to delimitate different snap-
shots, while maintaining timestamp ordering at scale (§5.1.3) is costly. More specif-
ically, a centralized sequencer (timestamp oracle) is usually used to provide snapshot
timestamp to transactions, which reflects a total order among transactions (i.e., global
timestamp (GTS)). However, such a mechanism not only adds more communications but
also causes overly-constrained concurrency control for read-write transactions, leading
to performance degradation and scalability bottlenecks [156]. Vector timestamp (VTS),
which leverages a clock per worker or machine, only mitigates the scalability bottleneck
of centralized timestamp schemes but causes more network traffic, which grows linearly

— 99 —

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 3 6 9 12 15

M
ed

ia
m

 la
te

nc
y

(m
s)

Throughput (M txns/s)

RC/Incorrect
OCC

OCC+VTS
OCC+GTS

 0

 1

 2

 3

 4

0 0.5 1.0 1.5 2.0 2.5

M
ed

ia
m

 la
te

nc
y

(m
s)

Throughput (M txns/s)

RC/Incorrect
OCC

OCC+GTS
OCC+VTS

Figure 5–1 Performance of (a) TPC-E and (b) TPC-C on DrTM+H using different CC protocols and
TS schemes (see §5.5 for details). GTS and VTS stand for using OCC protocol, while the read-only
transactions read the snapshots delimitated by GTS and VTS. RC/Incorrect stands for using RC

protocol, which can provide optimal performance, but at the expense of correctness.

with the increase of workers or machines in the system.
This chapter presents DST (decentralized scalar timestamp), a scalable timestamp

mechanism for MVCC without a centralized sequencer or vector timestamps. DST is
motivated by a key observation: transaction ordering provided by existing CC protocols
already implies serializable ordering among transactions, which can be reused to main-
tain timestamp ordering in a lightweight and scalable way. This is because any pair of
conflicting transactions must have conflicting accesses to a particular tuple. Thus, the
later transaction should see the timestamp of the former transaction from the conflicting
tuple and have a larger timestamp. By piggybacking on CC protocols to derive a scalable
timestamp, DST avoids the performance overhead and scalability bottleneck in existing
centralized approaches.

Besides high performance and scalability, DST is also a general timestamp mecha-
nism: we have ported it to three representative transactional systems with different CC
protocols, namely DrTM+H (§4, OCC), MySQL cluster [60] (2PL), and Rococo [19].
Further, DST does not depend on specific hardware features (e.g., RDMA). The exper-
imental results on three clusters show that DST can achieve more than 95% of optimal
performance (using RC protocol) without compromising correctness. With DST, DrTM+H
achieves up to 1.8X and 6.1X performance improvements for TPC-E and TPC-C. DST is
also up to 1.7X and 6.3X faster than the state-of-the-art solutions of centralized timestamp
schemes.

— 100 —

5.1 Background and motivation
5.1.1 Target systems

We design DST for general distributed transactions over database data partitioned
to multiple storage nodes. The client’s transaction request is handled by a coordinator,
which interacts with storage nodes for executing the transaction. During the transaction’s
execution, the coordinator may send read/write requests to read/write data from the stor-
age nodes; or send transactional requests (e.g., lock or unlock) according to the database’s
concurrency control protocol. It may batch requests (e.g., write and unlock) to avoid extra
network roundtrip.

Our goal is to support serializable read-only transaction that never aborts, and does
not interfere with read-write transaction. Further, it is desirable to execute reads in the
read-only transaction in one-roundtrip, i.e., the coordinator can retrieve a consistent view
of the data from the storage nodes in one request.

5.1.2 MVCC and timestamps

A common approach to support serializable read-only transaction without interfer-
ing with read-write transaction is through multi-version concurrency control (MVCC).
When designingMVCC systems, designers have twomajor considerations comparedwith
single-version mechanisms [151]. The first is how to cheaply allocate a globally-ordered
version for updating tuples transactionally. Deciding the version installed with tuples
should have minimal impacts on read-write transactions. The second is how to efficiently
allocate a freshly-stable version for reading tuples consistently. Read-only transactions
should have access to consistent snapshots with low latency and high freshness. MVCC
schemes typically adopt the concept of timestamps for tuple versions. However, it is non-
trivial to design a general timestamp scheme that supports efficient snapshot reads while
incurring minimal overhead for broad CC protocols.

To motivate the design of DST, we start by briefly reviewing how existing timestamp
schemes are applied to two-phase locking (2PL) forMVCCand snapshot reads [151, 157].

Global timestamp (GTS). This approach leverages a timestamp service, namely times-
tamp oracle, to manage globally ordered timestamps [5, 158-159]. It provides two func-
tions for MVCC systems, as shown in Figure 5–2. First, the read-write transaction con-
tacts the oracle for a commit timestamp (GlobalTS) at the commit phase. Upon a successful

— 101 —

2PL with global timestamp (GTS)

At Oracle: ▸ timestamp server

+ GlobalTS ▸ monotonic global timestamp

+ StableGTS ▸ snapshot global timestamp

+ Queue ▸ pending global timestamp

INSTALL(gts):

+1 add gts to Queue

STABILIZE(): ▸ run asynchronously

+1 for each gts in Queue do

+2 if gts is ready then

+3 dequeue gts and gts → StableGTS

At Workeri: ▸ i denotes the worker number

WRITE(tx,	id,	data)

1 acquire lock

2 add �id,	data� to tx.wset

READ(tx,	id)

1 acquire lock and get latest �data�

2 add �id,	data� to tx.rset

3 return �data�

COMMIT(tx)

+1 tx.TS ← Oracle.GlobalTS ▸ network round trip

2 for each w in tx.wset do

:3 update �w.data,	tx.TS� and release lock

3 for each r in tx.rset do

4 release lock

+5 Oracle.INSTALL(tx.TS) ▸ network round trip

ROTX(tx) ▸ snapshot read

+1 tx.TS ← Oracle.StableGTS

+2 for each r in tx.rset do

+3 get �r.data� up to tx.TS

Figure 5–2 Using GTS (i.e., blue code lines) to enable consistent snapshots for read-only
transactions with 2PL. +N and :N denote new and modified lines of code respectively.

commit, this transaction creates a new version denoted by the commit timestamp for each
tuple in the write set (line:3 of COMMIT) and sends back the committed timestamp to the
oracle (line:5). Second, the read-only transaction contacts the oracle for a read times-
tamp (StableGTS) and retrieves tuples in the read set with versions no larger than the read
timestamp (line:2-3 of ROTX).

Given the specification of extensions to 2PL with GTS in Figure 5–2, we analyze
the transaction behavior in the case shown in Figure 5–3 to explain the design of GTS.

— 102 —

StableGTS

C=1

A=B

B=2

C A

4 53 6

3 3 53 6

GlobalTS

4

5

6

W1:

W2:

W3:

A

B 5

0 50 0

0

5

0 1

5 2

3

id

C
ts

(value)

value

B

A=3

B

EXECUTION

MVSTORE
1 1 5

62

1 4 6411

2

time

time

TX3

TX4
TX2

TX1

A

multi-version

A A=Bread write remoteTX

INSTALL

commit TS

4 TS

Figure 5–3 A sample case of using GTS, where four transactions (TX1-TX4) operate on three
tuples (A, B, and C).

There are four transactions (TX1–TX4), which operate on three tuples (A, B, and C). Note
that non-conflicting transactions TX1 (green) and TX2 (orange) are both forced to acquire
GlobalTS according to the specification. This operation is necessary to maintain the global
timestamp ordering, yet results in overly-constrained concurrency control and an extra
network round trip compared to the vanilla 2PL.

The necessity of the oracle to maintain StableGTS can be revealed with the conflict
between the timestamp order and the commit order concerning TX1 and TX2. In this case,
TX2 acquires a larger GlobalTS but commits before TX1. When read-only transaction TX4
(red) starts, it cannot simply use the latest committed timestamp (GlobalTS=5) for snapshot
reads. The snapshot would be inconsistent if the read-only transaction observes TX2 before
TX1 commits. Thus, transactions must install commit timestamps so that the oracle can
determine the read timestamp (StableGTS=3) for TX4.

Vector timestamp (VTS). To reduce the overhead of acquiring GlobalTS in the critical
path of read-write transactions, VTS replaces the global timestamp counter with a vector
of local timestamps. The vector contains a slot for each worker, which records the per-
worker timestamp. In each worker, a local counter (LocalTS) is used to assign the commit
timestamp for transactions, hence reducing one network round trip compared to GTS.
However, the oracle is retained in VTS to maintain the StableVTS with similar reasons as
GTS. Figure 5–4 shows the specification of extensions to 2PL with VTS.

— 103 —

2PL with vector timestamp (VTS)

At Oracle: ▸ timestamp server

+ StableVTS ▸ snapshot global timestamp

+ Queues ▸ pending global timestamp

INSTALL(�i:ts�,	deps)

+1 add ��i:ts�,	deps� to a Queues[i]

STABILIZE() ▸ run asynchronously

+1 for each queue in Queues do

+2 for each ��i:ts�,	deps� in queue do

+3 if deps is ready then ▸ stability protocol

+4 dequeue ��i:ts�,	deps�

+5 �i:ts� → StableVTS

At Workeri: ▸ i denotes the worker number

+ LocalTS ▸ monotonic local timestamp

WRITE(tx,	id,	data)

:1 acquire lock and get latest �i:ts�

2 add �id,	data� to tx.wset

+3 add �i:ts� to tx.deps

READ(tx,	id)

:1 acquire lock and get latest �data,	�i:ts��

2 add �id,	data� to tx.rset

+3 add �i:ts� to tx.deps

4 return �data�

COMMIT(tx)

+1 tx.TS ← LocalTS

2 for each w in tx.wset do

:3 update �w.data,	�i:tx.TS�� and release lock

4 for each r in tx.rset do

5 release lock

+6 Oracle.INSTALL(�i:tx.TS�,	tx.deps) ▸ NT round trip

ROTX(tx) ▸ snapshot read

+1 tx.TS ← Oracle.StableVTS

+2 for each r in tx.rset do

+3 get �r.data� up to tx.TS

Figure 5–4 Using VTS (i.e., blue code lines) to enable consistent snapshots for read-only
transactions with 2PL. +N and :N denote new and modified lines of code respectively.

Figure 5–5 presents a concrete case of using VTS. Each worker maintains its local
counter (W1:3, W2:2, and W3:5). The version of a tuple is represented as ⟨𝑖 ∶ 𝑡𝑠⟩, where 𝑖
is the worker ID, and 𝑡𝑠 is the commit timestamp of the transaction that writes the tuple.
The initial StableVTS is (3, 2, 5), which means that tuples with versions less than ⟨1 ∶ 3⟩,
⟨2 ∶ 2⟩, and ⟨3 ∶ 5⟩ can be consistently read by read-only transactions.

Maintaining the stable timestamp (StableVTS) becomes more complex in VTS be-
cause we cannot directly compare the per-worker timestamps [26, 160]. To convey the

— 104 —

StableVTS

C=1

A=BW1:

W2:

W3:

3
2
5

A

B 5

0 50 0

0

5

0 1

5 2

3
2
6

4
2
6

B=2

C A

3
2
6

4
3
6

3

2:3

3:6 1:4

1:2

1:23:3

3:3

B43

LocalTS

5 6

2 A=3

3

id

C

value

B

EXECUTION

MVSTORE
ts

(value)

time

time

3:61:2

2:3

2:31:41:21:41:21:2

3:3 3:3

1:2

TX3

TX4TX2

TX1

A

1:4 1:4

LocalTS

LocalTS

multi-version

A A=Bread write remote localTX

INSTALL

deps

commit TS

2:3 TS

Figure 5–5 A sample case of using VTS, where four transactions (TX1-TX4) operate on three
tuples (A, B, and C).

ordering of transactions to the oracle for deciding StableVTS, workers should collect ob-
served timestamps of accessed tuples from other workers (e.g., ⟨1 ∶ 2⟩ of C for TX2). Note
that when read-write transactions (TX1, TX2, and TX3) commit, they must send all observed
timestamps (𝑑𝑒𝑝𝑠) to the oracle (INSTALL in Figure 5–4). Moreover, read-only transac-
tions (TX4) must request the whole vector timestamp (StableVTS) from the oracle to start a
snapshot read.

5.1.3 Analysis of network overhead

We present an in-depth analysis of centralized timestamp schemes① and attribute
performance overhead and scalability bottleneck to three main aspects:

Non-scalable timestamp oracle. Prior work [7, 133, 158, 161-163] has shown that a
centralized timestamp oracle will become the scalability bottleneck of MVCC systems.
The throughput of schemes using a shared counter with atomic operations (GTS) [5, 164-
165] is limited to less than 10 M ops/s (GlobalCNT in Figure 5–6(a)). The throughput
will further decrease due to maintaining the stable timestamp for read-only transactions
(+StableTS). VTS mitigates the scalability issue by using a local counter for read-write

① For brevity, we avoid prior sophisticated optimizations (incl. batching requests [66, 158], timestamp compression
and dedicated fetch thread [26]) for timestamps in here, but enable all of them in the evaluation (§5.5).

— 105 —

 80

 35

 40

 0

 5

 10

Global TS Vector TS
TPC-E: 281 K txns/s
TPC-C: 1.64 M txns/s

SmallBank: 80 M txns/s

T
hr

ou
gh

pu
t (

M
 o

ps
/s

)

GlobalCNT
+StableTS
Network
TSOracle

Lo
ca

lC
N

T

10-2

10-1

100

101

102

103

100 101 102 103 104

TPC-C TPC-ESmallBank

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Execution time of TXs (µs)

NoTS
GTS
VTS

10-2

10-1

100

101

102

103

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of machines

Figure 5–6 (a) Analysis of peak performance and bottleneck of timestamp oracle for GTS and VTS
using a 24core machine with 10GbE. (b) The performance of read-write transactions with the

increase of execution time for different timestamp schemes. The weighted average median latency of
read-write transactions in TPC-E, TPC-C and SmallBank are labeled by red lines. (c) The

performance of read-only transactions with the increase of machines for different timestamp
schemes. All experiments are conducted on a local 16-node cluster with 10GbE network (§5.5). One
machine is dedicated for timestamp oracle, even NoTS has no need. Each machine spawns 24 server

workers.

transactions. Besides, prior work [26] avoids the mechanism for the stable timestamp
(reaching close to 40 M ops/s) at the expense of increasing transaction aborts. However,
the network will first become the bottleneck for both GTS and VTS (Network). Con-
sequently, the throughput of timestamp oracle (TSOracle) can only reach 1.26 M and
2.39 M ops/s for GTS and VTS respectively, which may be enough for TPC-E (281 K
txns/s) but far not enough for TPC-C (1.64 M txns/s) and SmallBank (80 M txns/s) even
only scaling out to 16 machines.

Using fast networks can boost the throughput of timestamp oracle, while the per-
formance of transactional systems will also increase much [13, 17, 25-26], and CPU
may first become the bottleneck [7]. Moreover, batching requests [66, 158] or dedicated
fetch thread [26] can alleviate the timestamp-related load on the network①, while these
techniques also amplify the staleness of the data retrieved by read-only transactions, and
increase the abort rate and the end-to-end latency of read-write transactions (see §5.5.1).

Costly timestamp allocation. A centralized timestamp scheme will inevitably cause extra
network communication overhead for each read-write transaction. GTS demands two
network round trips, one for obtaining the commit timestamp and one for installing it.
VTS uses per-worker local counters to assign the commit timestamp, but still demands
one network round trip to install the timestamp. Given that most transactions operate on

① We enabled these optimizations for GTS and VTS in our evaluation (§5.5).

— 106 —

tuples in local partitions [124, 135, 140], especially for read-write transactions, additional
network round trips will notably lengthen the critical section of transactions and further
increase the chance of conflicts, causing extra transaction aborts or blocking time. Thus, it
is non-trivial to hide the network round trips without sacrificing the latency of transactions
(e.g., batching requests [66, 158]).

The overhead of timestamp allocation highly depends on the execution time of trans-
actions. Hence, we implement a microbenchmark only consisting of read-write transac-
tions, which do not access any tuples and just spin in a loop for a given time. As shown in
Figure 5–6(b), the overhead of VTS is moderate (from 10% to 30%) compared to not using
timestamp schemes (NoTS), when the execution time is close to that of read-write trans-
actions in TPC-E (from 1,400𝜇s to 470𝜇s). The throughput will significantly drop more
than 80% when transactions execute in about 50𝜇s, which is similar to that of read-write
transactions in TPC-C. Further, GTS can only achieve half of VTS throughput, since it
demands one more round trip to obtain the commit timestamp.
Large traffic size. VTSmitigates the timestamp overhead by using per-worker local coun-
ters as the commit timestamp for read-write transactions. However, a critical downside
is that a whole vector of per-worker timestamps must be obtained as the read timestamp
first, and then be transferred to every tuple for performing consistent snapshot reads. In
contrast to the scalar timestamp (e.g., GTS), this overhead grows linearly with the increase
of workers or machines in the system. For most transactional workloads [124, 135, 140-
141], the size of the vector timestamp can become orders of magnitude larger than the tu-
ple size, even in a moderate-sized cluster. Using the per-machine counter in VTS (i.e., all
workers on one machine share one timestamp slot) can reduce traffic size [160]. How-
ever, these workers have to share a local counter by using atomic operations (e.g., CAS),
which will incur additional overhead on read-write transactions [26].

To demonstrate the impact of traffic size, we implement a microbenchmark only
consisting of read-only transactions, which read ten 8-byte tuples with 90% of which
being local accesses. In Figure 5–6(c), the performance collapse of VTS is due to the
increase of timestamp vector obtained from the oracle and transferred to remote tuples.
Note that GTS is still one order of magnitude slower due to extra one round-trip to fetch
the read timestamp (even scalar), compared to NoTS.

— 107 —

5.2 Decentralized scalar timestamp (DST)
This section presents the design of DST, a decentralized scalar timestamp that facili-

tates the multi-version concurrency control (MVCC) implementation for broad CC proto-
cols with efficient snapshot read support and minimal overhead. DST aims at fundamen-
tally overcoming the above drawbacks of traditional timestamp schemes. The intuition
behind it is that the timestamp scheme can piggyback on concurrency control protocols
to maintain the timestamp ordering with low cost and no new scalability bottleneck to
read-write transactions.

Roadmap. We first use two-phase locking (2PL) as an example to explain the basic pro-
tocol of DST for read-write and read-only transactions (§5.2.1 and §5.2.2). We then prove
the serializability of read-only transactions with DST (§5.2.3). One key challenge is how
to derive a consistent yet fresh snapshot. §5.2.4 introduces a hybrid scalar timestamp to
provide snapshot reads with bounded staleness (§5.2.4). Finally, we discuss the impact
of DST on the fault-tolerance scheme (§5.2.5).

5.2.1 Timestamps in read-write transaction

DST is a fully decentralized timestamp without a centralized sequencer (timestamp
oracle) to provide total order timestamps for read-write transactions and stable times-
tamps for read-only transactions. Therefore, DSTmust ensure that the derived timestamps
for read-write transactions always match the transaction ordering.

The CC protocol is used to ensure the serializable transaction ordering and provide
the following three properties, where Transaction A (TXA) commits before Transaction B
(TXB), and both of them access a conflicting tuple O.

Property 1: Write-Write. TXB’s write (WB(O)) should overwrite TXA’s write (WA(O)) or
generate a newer version.
Property 2: Write-Read. TXB’s read (RB(O)) should retrieve TXA’s write (WA(O)).
Property 3: Read-Write. TXA’s read (RA(O)) should not retrieve TXB’s write (WB(O)).

To match the transaction ordering, DST should ensure TXB’s commit timestamp (TSB) is
larger than TXA’s commit timestamp (TSA) under the above case. The general idea is to
piggyback over the CC protocol to derive a commit timestamp from conflicting tuples.
Figure 5–7 presents how DST is integrated with two-phase locking (2PL), and Figure 5–
8 illustrates the execution of sample transactions with DST. DST leverages conflicting

— 108 —

Read-write Transaction: 2PL with DST

At Workeri: ▸ i denotes the worker number

+ LocalTS ▸ monotonic local timestamp

START(x)

+1 x.TS ← LocalTS

WRITE(x,	id,	data)

:1 acquire lock and get ts

2 add �id,	data� to x.wset

+3 x.TS ← max(x.TS,	ts+1)

READ(x,	id)

:1 acquire lock and get latest �data,	ts�

2 add �id,	data� to x.rset

+3 x.TS ← max(x.TS,	ts+1)

4 return data

COMMIT(x)

1 for each w in x.wset do

:2 update �w.data,	x.TS and release lock

3 for each r in x.rset do

:4 update �x.TS� and release lock

+5 LocalTS ← max(LocalTS,	x.TS)

Figure 5–7 Specification of read-write transaction for 2PL with DST. +N and :N denote new and
modified lines of code respectively.

tuples and the above three properties to transmit commit timestamps between dependent
transactions. The additional codes for DST in WRITE, READ, and COMMIT (see Figure 5–
7) are commented on corresponding operations in the following explanations.

Write-Write property. Transaction TXA installs value (VA) with commit timestamp (TSA)
into the tuple O.

⟨VA, TSA⟩ → O

TSA → O.ts ▷ COMMIT line:2

Transaction TXB reads the timestamp of tuple O (O.ts) and installs new value (VB) with a
larger commit timestamp (TSB) into the tuple O.

— 109 —

O.ts → ts ▷ WRITE line:1

𝑚𝑎𝑥(ts+1, TSB) → TSB ▷ WRITE line:3

⟨VB, TSB⟩ → O

TSB → O.ts ▷ COMMIT line:2

In Figure 5–8, TX1 (green) commits before TX3 (purple), and both of them write tuple A.
Therefore, the commit timestamp of TX3 should be larger than that of TX1. Using DST,
TX1 installs its value (5) with its commit timestamp (TS1=4) into tuple A. After that, TX3
should derive a larger timestamp (TS3=5) from the timestamp of tuple A (A.ts=4) and use
it to install new value (3) into tuple A. Note that the write operations will update both the
tuple’s timestamp and the value’s timestamp (as a tuple may have multiple values with
different versions).

Write-Read property. Transaction TXA installs value VA with its commit timestamp TSA
into tuple O.

⟨VA, TSA⟩ → O

TSA → O.ts ▷ COMMIT line:2

Transaction TXB reads value VA of tuple O with timestamp O.ts and installs a larger commit
timestamp TSB.

O → ⟨VA, ts⟩ ▷ READ line:1

𝑚𝑎𝑥(ts+1, TSB) → TSB ▷ READ line:3

TSB → O.ts ▷ COMMIT line:4

In Figure 5–8, TX1 (green) commits before TX3 (purple), and TX1 writes tuple A before TX3
reads it. Therefore, the commit timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 installs its value 5 with its commit timestamp (TS1=4) into tuple A. After that,
TX3 reads the timestamp of tuple A (A.ts=4) and derives a larger timestamp (TS3=5).

— 110 —

Read-Write property. Transaction TXA installs commit timestamp TSA into tuple O since it
has read the value of tuple O.

TSA → O.ts ▷ COMMIT line:4

TXB reads timestamp of tuple O (O.ts) and installs new value VB with a larger timestamp
TSB into tuple O (O.ts).

O.ts → ts ▷ WRITE line:1

𝑚𝑎𝑥(ts+1, TSB) → TSB ▷ WRITE line:3

⟨VB, TSB⟩ → O

TSB → O.ts ▷ COMMIT line:2

In Figure 5–8, TX1 (green) commits before TX3 (purple), and TX1 reads tuple B before TX3
writes it. Therefore, the commit timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 reads an old value (5) of tuple B and installs its commit timestamp (TS1=4) into
tuple B. After that, TX3 will derive a larger timestamp (TS3=5) and use it to install new
value (2) into tuple B.

5.2.2 Timestamps in read-only transaction

DST ensures that the order of derived commit timestamps for read-write transactions
always matches the transaction ordering. Therefore, read-only transactions can directly
pick any timestamp (TSRO) to read a consistent snapshot by comparing its read timestamp
with the timestamps of tuples.

Since the (snapshot) read-only transaction does not follow the CC protocol
(e.g., lock/unlock tuples before/after reading values), the read-only transaction may read
a part of updates of a concurrent read-write transaction. For example, in Figure 5–8,
the read-only transaction TX4 (red) and the read-write transaction TX3 (purple) are concur-
rently executed. If TX3 commits between the read operations to tuple A and tuple B in TX4,
and then TX4 will read an old version of tuple A (5) and a new version of tuple B (2).

To ensure the serializability of read-only transactions, DST asks the read-only trans-
action to claim its operations actively before reading the tuple. It first installs its read

— 111 —

1

C=1

A=BW1:

W2:

W3:
2

A=3

C A

B

4

5

6

MVSTORE

A

B 5 5

0

0

id

C

5

1

5

7

6 45

2

2 6

1 4

0 1

7

5

76

3

B=2

B

3

4

5

7

wait

7

0 5

2 4 7

0 5 3

7

5 2

7

0

0

43
EXECUTION

TX3

TX4TX2

TX1

2 ts
(value)ts

(tuple)

2 6 2 6

1 1 1 1 5

2 2 4 2 4 2 4 5

time

time

A

4 4

A

5

2
5

LocalTS

LocalTS

LocalTS

value

4

5

6

multi-version

A A=Bread write remote localTX4 TS

Figure 5–8 A sample case of using DST, where four transactions (TX1-TX4) operate on three
tuples (A, B, and C).

timestamp (TSRO) into the tuple and waits until the conflicting read-write transaction com-
mits (e.g., the tuple is not locked), if the timestamp of the tuple is not larger than the read
timestamp (DEP_READ in Figure 5–9). Note that the read-only transaction will only wait
for at most one conflicting read-write transaction because if the concurrent read-write
transaction starts after the claim, it will definitely see the read timestamp through ac-
cessing the tuple and derive a larger commit timestamp. Consequently, the read-only
transaction will skip all of the updates from this transaction. If the concurrent read-write
transaction starts before the claim, it will hold the lock of the tuple. The read-only transac-
tion will wait until the read-write transaction commits. No matter the commit timestamp
is larger or smaller than the read timestamp, a read-only transaction can always read a con-
sistent snapshot by ignoring or reading all of the updates from conflicting transactions.
Note that CC protocols ensure the atomicity of read-write transaction’s updates.

As shown in Figure 5–8, the read-only transaction TX4 will install its read timestamp
(TS4=7) into tuples with smaller tuple timestamps (line:1 of DEP_READ in Figure 5–9).
For unlocked tuple C, TX4 will directly read the value up to the timestamp (1). For locked
tuple A and B, TX4 will wait until the concurrent read-write transaction TX3 commits. In

— 112 —

Read-only Transaction: 2PL with DST

At Workeri: ▸ i denotes the worker number

+ LocalTS ▸ monotonic local timestamp

ROTX(x) ▸ snapshot read

+1 x.TS ← LocalTS

+2 for each r in x.rset do

+3 DEP_READ(x,	r)

DEP_READ(x,	r)

+1 if r.ts <= x.TS then

+2 r.ts ← x.TS ▸ atomic (CAS)

+3 wait until r not locked ▸ if conflict

+4 get �r.data� up to x.TS

Figure 5–9 Specification of read-only transaction for 2PL with DST.

this example, since TX3 does not see the read timestamp of TX4, the commit timestamp of
TX3 is still smaller than the read timestamp of TX4 (5 vs. 7). Hence, TX4 can read all updates
from TX3 (A=3 and B=2).

5.2.3 Proof of correctness

Theorem (Serializability). DST implements serializable read-only transactions, which
always read a consistent snapshot generated by serializable read-write transactions.

Proof sketch. The intuition of the proof is that if a read-only transaction can be serialized
with read-write transactions, then it reads a consistent snapshot. We provide a proof
sketch by contradiction based on this intuition: i.e., if a read-only transaction cannot be
serialized with read-write transactions, then it leads to a contradiction. Before giving the
proof, we need to prove following two lemmas first:

Lemma 1. Given two dependent read-write transactions TX1 and TX2, if TX2 depends on
TX1, then TX2’s timestamp (TS2) is larger than TX1’s timestamp (TS1).

Proof If TX2 directly depends on TX1
①, this lemma follows directly from the algorithm

(see §5.2.1) that TX2 always calculates TS2 based TS1. If TX2 transitively depends on TX1, in a
proof by contradiction we assume TS1 is not smaller than TS2, then in the partial dependent
graph denoted by TX1 → ... → TXi → TXj ... → TX2

②, there exists TXi and TXj that TXj directly
depends on TXi, but its timestamp is not larger than TXi’s, which is a contradiction with
the first case. □
① TX2 is conflicting with TX1, and TX2 accesses the conflicting tuples immediately after TX1.
② The symbol → indicates the happen-before relation.

— 113 —

Lemma 2. Given a read-only transaction TXRO and a read-write transaction TXRW, TXRO
observes TXRW’s update on tuple O①, if and only if TXRO’s timestamp (TSRO) is not smaller
than TXRW’s timestamp (TSRW).

Proof First, if TXRO observes TXRW’s update on O, then TSRO is not smaller than TSRW.
Because TXRW updates Owith TSRW and content atomically (e.g., 2PL), TXRO waits for TXRW’s
commit. Second, if TSRO is not smaller than TSRW, then TXRO eventually observes TXRW’s
update on O. Assume TXRO does not observe TXRW’s update, then TXRO reads O before TXRW
commits its update. One situation is TXRO reads O before TXRW’s request arrives, it leads a
contradiction that TXRO update O’s timestamp to be TSRO before the read. Another situation
is TXRO reads O after TXRW calculates TSRW, but before committing its update. This leads to
the contradiction that TXRO always waits for the concurrent TXRW to commit (e.g., 2PL).□

Proof (of the Theorem) TX1 updates A, TX2 updates B, and TX2 depends on TX1. Assume
read-only transaction TXRO only observes TX2’s update on B, but does not observe TX1’s
update on A (i.e., inconsistent reads).② From LEMMA 2, we have TSRO is not smaller than
TS2, while TS1 is larger than TSRO. Therefore, we have TS1 is larger than TS2, which is
contradictory to LEMMA 1. □

5.2.4 Hybrid timestamp and bounded staleness

Hybrid timestamp. The commit timestamp of a read-write transaction is derived from the
timestamps of tuples in its read/write set, and the read timestamp of a read-only trans-
action can be any timestamp in the past, at present, or even in the future. Therefore,
the local timestamp (LocalTS) is not essential for the correctness of DST. However, the
read-only transaction may suffer from either staleness or performance issues if using an
improper read timestamp. If the read timestamp is too small (past), the read-only trans-
action may read an excessively stale snapshot. If the read timestamp is too large (future),
the read-only transaction will frequently install its read timestamp into tuples and wait
until conflicting read-write transactions commit (DEP_READ in Figure 5–9).

DST adopts a combination of physical clock and logic counter as a hybrid timestamp.
The 64-bit timestamp consists of the 48-bit physical part (high-order bits) and the 16-bit
logic part (low-order bits). DST uses a loosely synchronized clock as the physical part

① It means TXRO’s read on O happens after TXRW’s update.
② The proof is also correct for TX1 and TX2 are the same transaction.

— 114 —

and uses a monotonically increasing counter as the logical part. At the beginning of the
transaction, it will acquire a local hybrid timestamp composed of the current physical
clock and zero-initialized logic counter (START in Figure 5–7 and line:1 of ROTX in
Figure 5–9). The logical part of the hybrid timestamp is used to avoid possible overflow of
the physical part since the timestamp will be incremented when calculating the maximum
timestamp (e.g., line:3 of WRITE in Figure 5–7). On the other hand, the physical part of
the hybrid timestamp is used to ensure the read-only transaction can read a fresh snapshot.

Bounded staleness. Based on the hybrid timestamp, DST can provide snapshot reads with
bounded staleness.
Theorem (Bounded Staleness). The updates of read-write transactions can be observed
in at most 𝛥, where 𝛥 is the maximal duration any machine needs to make its local clock
increased by 2 × 𝜀, and 𝜀 is the maximal clock drift between any two machines in the
cluster.

Proof sketch. First, we prove the following two lemmas:

Lemma 1. Given a read-write transaction TXRW, its commit timestamp (TSRW) is not larger
than 𝑡𝑚 + 𝜀, where 𝑡𝑚 is the local machine time on TXRW commits.

Proof If TSRW is larger than 𝑡𝑚 + 𝜀, then there is a TXi which accesses a tuple before TXRW,
and TSi is larger than 𝑡𝑚 +𝜀. As the timestamp is calculated from its local machine time or
the tuples it accessed, we can inductively find a transaction TXj whose timestamp is larger
than 𝑡𝑚 + 𝜀, and it is calculated from its local machine time. It is a contradiction to the
maximal clock drift between any two nodes is 𝜀. □

Lemma 2. For any read-only transaction TXRO starts after TXRW commits, its read times-
tamp TSRO is larger than 𝑡𝑚 − 𝜀.

Proof This follows that TXRO calculates its timestamp based on local machine time and
the clock drift between any two nodes cannot be larger than 𝜀. □

Proof (of the Theorem) With LEMMA 1 and 2, we can have a fact that, if TXRO starts
after TXRW, then TSRO cannot be smaller than TSRW−2 × 𝜀. Since any machine is able to
increase its local machine time by 2 × 𝜀 in 𝛥, we can conclude that the updates of TXRW
will be visible in the duration of 𝛥. □

— 115 —

5.2.5 Failure and recovery

The CC protocol should provide a proper fault-tolerance scheme to recover the trans-
actional system from various failures. For example, the primary-backup replication [132]
is widely used to provide high availability in prior work [13, 18, 25]. The fault-tolerance
schemes can usually work with various timestamp schemes by replicating tuples together
with the commit timestamps of read-write transactions. However, the fully decentralized
design of DST has two sides. The advantage of this approach is to avoid handling the
failure of centralized timestamp oracle, which may cause a stop-the-world recovery [26].
The disadvantage is the potential cost to maintain the consistency of decentralized times-
tamps before and after some failure occurs.

An obvious, but costly solution is to replicate the read timestamps of read-only trans-
actions together with tuples, as the commit timestamps of read-write transactions. Be-
cause the missing read timestamp may cause a new conflicting read-write transaction to
use a smaller commit timestamp to write tuples; the read-only transaction may read some
tuples with an old version and other tuples with a new version before and after the failure
occurs, respectively.

To avoid replicating or persisting read timestamps, DST provides two alternative
solutions that can be selected according to the behavior of workloads or the CC protocol
associated. More specifically, after recovery, DST can selectively abort and re-execute
either the remaining read-only transactions that read tuples on crashed machines or the
remaining read-write transactions that write tuples on crashed machines. Consequently,
there is no additional overhead and modification associated with the normal execution of
transactions, regardless of which approach is selected.

5.3 Generality of DST
DST is a general timestamp scheme to enable efficient read-only transactions with

little impact on read-write transactions. Hence, it is easy to integrate DST with various
CC protocols, and DST can also cooperate with many optimizations [19, 163] on CC pro-
tocols. In this section, we lay out a general guideline for piggybacking DST on various
CC protocols, and demonstrate the efficacy of this guideline by applying it to three repre-
sentative transactional systems (DrTM+H, MySQL cluster, and Rococo) with different
CC protocols (OCC, 2PL, and Rococo).

— 116 —

5.3.1 A guideline for integrating DST

Read-write transaction. DST should allocate a commit timestamp for the read-write
transaction that is larger than any dependent transactions’ timestamp. Thus, two fol-
lowing tasks (RW1 and RW2) should piggyback on CC protocols.

1. select a commit timestamp larger than both the current local timestamp and the
timestamps of tuples in the read/write set. (RW1)

2. install the commit timestamp to tuples in the read/write set before the transaction
commits. (RW2)

Read-only transaction. DST should guarantee the read-only transaction can read the
value of tuples up to the read timestamp. Thus, two following tasks (RO1 and RO2)
should piggyback on CC protocols.

1. select an appropriate read timestamp according to the current local timestamp.
(RO1)

2. ensure the tuple has an equal or larger timestamp before reading its value up to
the read timestamp. (RO2)

5.3.2 Case study

We now present how we apply DST to existing systems. Note that the description
below focuses on the general comments about integrating DST; we omit a few details and
corner cases due to space limitations.

DrTM+H. Optimistic concurrency control (OCC) is widely adopted by modern transac-
tional systems [3, 5, 7, 13, 18, 25, 58, 166-167]. The read-only transaction in OCC will
take two or more rounds of reads for consistent results without MVCC and timestamp
schemes, due to conflicting read-write transactions. We use DrTM+H (§4) to demonstrate
how DST piggybacks on OCC.

For the read-write transaction, we can obtain the timestamp of tuples in the read and
write set when validating and locking them respectively and then derive a larger commit
timestamp (RW1). Before committing, we should install the commit timestamp to the
tuples in the read and write set (RW2). Note that there is no need to lock tuples in the
read set since dummy timestamps from aborted transactions are benign. For the read-only
transaction, all CC protocols share (almost) the same implementation (see Figure 5–9).
The only difference is how to wait for conflicting transactions (line:3 of DEP_READ).

— 117 —

For OCC, the conflicting read-write transaction will lock the tuple when installing its
timestamp for updates. Therefore, similar to 2PL, the read-only transaction will confirm
that the tuple is not locked before reading the value up to its read timestamp.

After applying DST to DrTM+H, DrTM+H can no longer use one-sided RDMAREAD
to execute queries in the read-only transaction. It is because the semantic of DST reads
(see Figure 5–9) is more complicated than that of the READ. Thus, DrTM+H+DST exe-
cutes DEP_READ with two-sided RDMA. This design choice may seem to contradict the
design of DrTM+H, which has shown that reads with one-sided RDMA are faster (see
§4.3). Nevertheless, with DST, DrTM+H only requires one roundtrip to commit the read-
only transaction, and the read-only transaction will never abort. Hence, we believe it is a
reasonable tradeoff. §5.5 will present how DST improves the performance of DrTM+H in
workloads with read-only transactions.

MySQL cluster. Two-phase locking (2PL) is another classic CC protocol used bymany
transactional systems [20, 60, 168]. The read-only transaction in 2PL will be blocked
without MVCC and timestamp schemes, due to conflicting read-write transactions. We
use MySQL cluster [60] (v7.6.8) to show the integration of 2PL and DST, mainly
following the specification in Figure 5–7 and 5–9.① To support the read-write lock in
MySQL cluster, the transaction only needs to install timestamp into tuples in the read
set atomically (i.e., compare-and-swap) and avoids overwriting a larger timestamp. Fur-
ther, we leverage the lock queue mechanism in MySQL cluster to wait for conflicting
transactions (line:3 of DEP_READ in Figure 5–9), which avoids spinning on the tuple.

Rococo. Rococo [19] is a research CC protocol that outperforms traditional protocols
under high contention workloads. It reorders conflicting read-write transactions instead
of aborting them. Its protocol is a two-phase mechanism. The start phase explores a
dependency graph, and then the commit phase executes conflicting transactions with a
serializable order according to the dependency graph. The read-only transaction in Ro-
coco is blocked until the completion of conflicting transactions and uses multiple rounds
for reading consistent results.

To extend Rococo② with DST, the general idea is to use the dependency graph
to collect timestamps of dependent tuples and derive a larger commit timestamp for the

① Although MySQL cluster uses read committed (RC) protocol by default, it also provides serializability by using
per-row 2PL.

② Source code: https://github.com/shuaimu/rococo.

— 118 —

https://github.com/shuaimu/rococo

read-write transaction in the start phase (RW1). Then the commit timestamp can be in-
stalled to tuples in the commit phase (RW2). For the read-only transaction, DST reuses the
blocking mechanism in Rococo to wait for conflicting transactions (line:3 of DEP_READ
in Figure 5–9).

5.4 Discussion

Performance overhead. Compared to traditional centralized timestamp schemes, DST
needs to update the timestamps of tuples in the read set for read-write transactions, which
may incur additional costs. However, these operations can easily piggyback on original
operations in CC protocols (see Figure 5–7), like the locking and the validating in 2PL and
OCC, respectively. Moreover, the read-only transaction may also update the timestamps
of tuples, while it only happens as the read timestamp is larger (DEP_READ in Figure 5–
9). Thus, using a hybrid timestamp can effectively mitigate it. To study the potential
performance overhead for DST, we designed two microbenchmarks to model the worst-
case scenarios (see §5.5.4), and the experimental results show limited cost.

Range scans and phantom reads. DST relies on the CC protocol to detect conflicts, in-
cluding range scans and phantom reads, and also needs to assign timestamps to certain
“guard” (e.g., index structures) [169-170]. For example, the next-key locking mecha-
nism [171] is widely used by 2PL to support range scans. The CC protocol acquires such
locks, and DST assigns timestamps to them. For OCC, DST assigns timestamps to the
internal nodes in the index structure as the versions during the validation phase.

The SNOW theorem. The SNOW Theorem [59] describes the fact that strict serializ-
ability (S), non-blocking read-only transactions (N), one-response from each tuple (O),
and compatible with conflicting write transactions (W) cannot be satisfied at the same
time. Yet, SNOW-optimal and latency-optimal read-only transactions can achieve three
of the above properties (i.e., N+O+W) without strict serializability (S). DST also relaxes
S to serializability for read-only transactions, and satisfies O and W apparently. DST can
simply satisfy N by letting reads return a relatively stale data. However, it may be not
reasonable; thus, DST chooses to provide bounded staleness with much fewer blocking
operations (see §5.5.4).

Session strict serializability. DST only ensures serializability to read-only transactions
rather than strict serializability, while it is equal to or better thanmost snapshot-based sys-

— 119 —

Table 5–1 Additional measurement clusters used in DST.

Cluster #Nodes Descriptions

AWS 32 r4.2xlarge (8x vCPU, 61GB DRAM, up to 10GbE)

VALE 16 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM, 1x Intel I350 10GbE

tems [15, 20, 59-60]. Further, DST can provide session guarantees [160, 172] (i.e., read-
my-write [173] and read-after-write [174] consistency), such that read-only transactions
can always observe the latest updates of read-write transactions within the same ses-
sion (e.g., issued from the same client or handled by the same server). DST returns the
commit timestamp to the session manager (e.g., client or server) after the transaction
commits. The session manager will always use the largest observed commit timestamp
as the read timestamp for successive read-only transactions.

5.5 Evaluation
Asmentioned in §5.3, we have integrated DSTwith three representative transactional

systems, namely DrTM+H, MySQL cluster, and Rococo, with different CC protocols.
We also implemented two centralized timestamp schemes (GTS and VTS) by following
the state-of-the-art [26, 158]① with many carefully tuned optimizations (e.g., batching
requests [66, 158], cooperative multitasking [25], timestamp compression and dedicated
fetch thread [26]). These optimizations have significant performance improvements on
GTS and VTS. For example, cooperative multitasking improves the peak per-machine
throughput of GTS on DrTM+H by 3.04X, and timestamp compression improves VTS by
2.7X on a 16-node cluster.
Testbed and setup. Since DST is a general timestamp scheme, besides clusters used
in Table 2.1, we also evaluate it in traditional clusters without RDMA capability (see
Table 5–1). For each system, we dedicate on machine in each cluster as the timestamp
oracle, even only GTS and VTS need. Other machines serve as both database nodes
and clients. Further, we configure these machines in a symmetric setting [13]—namely
each machine both executes transactions and store database data—to better saturate each
system’s peek performance.

① Different than Percolator [158], we use the stabilization process to avoid holding locks when acquiring write
timestamp, since it will significantly increase transaction abort rate.

— 120 —

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300 350

M
ed

ia
m

 la
te

nc
y

(m
s)

Throughput (K txns/s)

RC/Incorrect
OCC

OCC+DST
OCC+GTS
OCC+VTS

 0

 0.4

 0.8

 1.2

 1.6

1 4 8 12 16 20

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of districts

RC/Incorrect
OCC

OCC+DST
OCC+GTS
OCC+VTS

Figure 5–10 Performance of (a) TPC-E and (b) TPC-C on AWS.

Benchmarks and performance overview. As the performance benefit of using MVCC
and snapshot reads is sensitive to characteristics of read-only transactions in OLTP work-
loads, we chose three different benchmarks, namely TPC-E, TPC-C, and SmallBank,
to show the benefits of DST comprehensively. TPC-E [141] presents the workload of
a brokerage firm with a high proportion of read-only transactions (79% of the standard
mix) and complicated operations (massive range queries and distributed accesses). DST
is expected to improve the performance much compared to the vanilla CC protocols for
this target workload, with a relaxed consistency level from strict serializability to serial-
izability. TPC-C [124] simulates a warehouse-centric order processing application with
a few read-only transactions (8% of the standard mix). DST is expected to show grad-
ual improvement with the increase of execution time in read-only transactions (not affect
proportion). We increase the number of districts (one district by default) accessed by
the read-only stock-level transactions (4%). SmallBank [135] models a simple banking
application where transactions perform very simple read and write operations (less than
four) on user accounts. DST is expected not to incur perceptible overhead and show order-
of-magnitude speedup compared to centralized timestamp schemes (GTS and VTS). In
all benchmarks, DST should achieve close to optimal performance using RC (5%) but
without compromising correctness, which can be backed by the experimental results of
DST on motivating microbenchmarks (see Figure 5–6).

5.5.1 DrTM+H

This section presents the evaluation results of DST on DrTM+H. Due to space limita-
tions, we do not report the experimental results on SmallBank, which are as expected.

— 121 —

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300

M
ed

ia
m

 la
te

nc
y

(m
s)

Throughput (K txns/s)

RC/Incorrect
OCC
OCC+DST

OCC+GTS
OCC+VTS

 0

 0.5

 1

 1.5

 2

1 4 8 12 16 20

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of districts

RC/Incorrect
OCC

OCC+DST
OCC+GTS
OCC+VTS

Figure 5–11 Performance of (a) TPC-E and (b) TPC-C on VALE.

TPC-E. Figure 5–10(a) shows the results of TPC-E onAWS. TPC-E has a high proportion
of read-only transactions, and most of them are distributed. Compared to using snapshot
reads (GTS, VTS, and DST), the vanilla OCC protocol provides strict serializability and
requires an additional round to validate tuples in the read set. Thus, many read-only
transactions will abort under heavy workloads. As a reference, RC can outperform OCC
by 1.79X (yet with incorrect results), since it simply skips the validation phase. DST
achieves almost the same performance as RC, as it also avoids the validation phase and
never aborts read-only transactions. Differently, DST ensures the read-only transaction
can read a consistent yet fresh snapshot. Moreover, compared to GTS and VTS with the
same consistency level (serializability), DST can outperform the throughput of them by
1.16X and 1.72X, respectively. Because DST omits the communication to the timestamp
oracle and avoids large traffic size due to using a fully decentralized design and scalar
timestamps (see §5.1.3).

We further evaluate TPC-E on VAL. As shown in Figure 5–11(a), DST can still
achieve similar performance as RC and provides 1.13X and 1.29X speedup compared to
GTS andVTS, respectively. VTS performs slightly better onVALdue to using a relatively
smaller vector timestamp.

TPC-C. Figure 5–10(b) and Figure 5–11(b) show the peak throughput of TPC-C on AWS
and VAL with the increase of districts accessed by the read-only stock-level transactions.
Note that in default TPC-C accesses one district (the first data point of every line). Be-
sides, we retain all default settings, like the proportion of stock-level transactions (4%).

As shown in Figure 5–10(b), when accessing one district, DST has a very close
performance compared to RC. These results indicate that DST has little overhead to read-
write transactions. In comparison to DST, GTS and VTS are 6.29X and 2.93X slower than

— 122 —

 0

 1

 2

 3

 4

0 0.5 1.0 1.5 2.0 2.5

M
ed

ia
m

 la
te

nc
y

(m
s)

Throughput (M txns/s)

RC/Incorrect
OCC
OCC+DST

OCC+GTS
OCC+VTS

 0

 3

 6

 9

 12

1 4 8 12 16 20

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Number of districts

RC/Incorrect
OCC

OCC+DST
OCC+GTS
OCC+VTS

Figure 5–12 Performance of (a) TPC-E and (b) TPC-C on VAL.

RC, due to the significant cost for maintaining centralized and/or vectorized timestamps
(see §5.1.3).

OCC performs well on the original TPC-C due to the limited read-only transactions
in the standard-mix (8%). On the other hand, when increasing the execution time of read-
only stock-level transactions (by accessing more districts), the performance difference
between RC and OCC is more evident because OCC has more overheads for validating
the read-set of the stock-level. DST still performs close to RC and is 4.94X faster than
vanilla OCC (accessing 20 districts) with a relaxed consistency level. Finally, DST still
outperforms VTS and GTS by 2.29X and 3.56Xwhen accessing 20 districts, respectively.

In Figure 5–11(b), the performance of DST is also very close to RC for TPC-C on
VAL. On the other hand, the overhead of GTS and VTS still incurs up to 2.57X (from
1.95X) and 1.73X (from 1.47X) slowdown, compared with DST. Different than AWS, the
lower latency of network round-trip onVAL (90𝜇s) is beneficial for centralized timestamp
schemes, but the effect is quite limited.

Using RDMA. By using 100Gbps RDMA, the CPU may become the bottleneck in the
timestamp oracle for GTS, about 3.0M ops/s (see §5.1.3). For VTS, the timestamp oracle
will not limit the performance of TPC-E and TPC-C with only 16 machines, while the
increase of transaction abort rate (due to optimizations [26]) and large traffic size still
incur non-trivial costs, compared to the decentralized scalar timestamp (like DST).

As shown in Figure 5–12, the fast network (RDMA) inVLR has a significant positive
impact on all of the settings, as expected. For TPC-E, DST still outperformsGTS andVTS
by 1.07X, and 1.32X, respectively. RDMA reduces the overhead of centralized timestamp
allocation for GTS, while the impact of traffic size in VTS remains. For TPC-C DST is
still 4.49X (from 1.19X) and 1.76X (from 1.15X) faster than GTS and VTS.

— 123 —

0

0.5

1.0

1.5

2.0

2.5

 0 100 200 300 400

T
hr

ou
gh

pu
t (

K
 tx

ns
/s

)

Number of clients

RC/Incorrect
2PL

2PL+DST
 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
 tx

ns
/s

)

Number of clients

RC/Incorrect
2PL

2PL+DST

Figure 5–13 Performance of (a) TPC-C and (b) SmallBank for MySQL cluster with different
CC protocols on VALE.

5.5.2 MySQL cluster

We evaluate MySQL clusterwith DST by using TPC-C and SmallBank on VAL.
We increase the number of clients until the throughput is saturated. As shown in Figure 5–
13, with DST, MySQL cluster achieves up to 1.91X (from 1.09X) and 1.28X (from
1.07X) higher throughput for TPC-C and SmallBank, respectively. The main reason is
due to enabling snapshot reads to avoid blocking for the read-only transactions. It also
mitigates the contention in the read-write transactions. DST is more effective in TPC-C
since it is more sensitive to blocking time from conflicting transactions due to relatively
longer execution time compared to SmallBank. On the other hand, DST can provide
comparable performance to RC but still guarantee serializability for correctness.

5.5.3 Rococo

We follow the methodology (benchmarks and settings) in prior work [19, 59] to
evaluate Rococo on VAL.①

Figure 5–14 shows the performance of Rococo by increasing the number of con-
current requests per server. In Figure 5–14(a), using DST on Rococo can improve the
throughput of new-order transactions by 2.09X with 100 concurrent requests per server,
due to reducing transaction aborts and skipping the validation process in read-only trans-
actions. For example, less than 4% of stock-level transactions can be committed when
there are more than 50 concurrent requests per server. Thus, the server CPU is wasted

① We try our best to compare with ROCOCO-SNOW [59], which also optimizes the read-only transaction of RO-
COCO. Unfortunately, it failed to run on our testbed.

— 124 —

 0

 2

 4

 6

 8

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
 tx

ns
/s

)

Concurrent reqs/server

Rococo
Rococo+DST

 0

 60

 120

 180

 240

 0 20 40 60 80 100

M
ed

ia
n

La
te

nc
y

(m
s)

Concurrent reqs/server

Rococo
Rococo+DST

Figure 5–14 (a) Throughput of new-order transactions and (b) median latency of stock-level
transactions in TPC-C mixed workload on VALE.

0

0.5

1.0

1.5

2.0

0 100 400 600 800

M
ed

ia
m

 la
te

nc
y

(m
s)

Staleness of timestamp (ms)

DST

 0

 5

 10

 15

 20

 25

0 20 40 60 80 100

T
hr

ou
gh

pu
t (

M
 tx

ns
/s

)

Ratio of read accesses (%)

NoTS
DST

Figure 5–15 (a) The impact of latency for read-only transactions by using stale timestamp. (b) The
overhead of DST with the ratio increase of read-only accesses in read-write transactions.

on retrying and validating read-only transactions. Further, as shown in Figure 5–14(b),
Rococo+DST has a much lower median latency of (read-only) stock-level transactions,
thanks to reading a consistent snapshot by one round of execution without validation.

5.5.4 A study of DST cost

To study the overhead from blocking and additional timestamp updates in DST, we
use two workloads that share most characteristics with TPC-C. We tuned the workload
behavior to better reflect these overheads.

Blocking overhead. One read-only transaction accesses 10 tuples, while another write-
only transaction continuously updates these tuples with locking. This is considered as the
worst-case scenario for DST, since the read tuples are locked most of the time. Figure 5–
15(a) shows the impact on the median latency of read-only transactions when varying the

— 125 —

staleness of read timestamps. When using the current time (staleness=0ms) as the read
timestamp, 10% of the reads are blocked by concurrent writes, which incur 83% over-
head of the median latency (1.72ms vs. 0.96ms). With the increase of staleness (smaller
timestamp), fewer reads are blocked since the tuples have been updated with larger com-
mit timestamps. The blocking overhead becomes trivial when staleness exceeds 100ms.
Note that this is an extreme case for blocking: reads always touch the locked tuples. In
reality, we only observe about 160 and 200 blocks per second at each machine under peak
throughput for TPC-E and TPC-C, respectively.

Timestamp update overhead. Figure 5–15(b) presents the overhead of DST to read-write
transactions. Each transaction accesses 10 tuples, while some tuples are made read-only.
We can see that when all tuples are updated, there is no overhead for DST, since the
timestamp update will piggyback on the unlock operation. With the increase of read(-
only) ratio, DST adds up to 25% overhead to the overall performance. Because DST will
update the timestamp of tuples even just reading them, which requires additional syn-
chronizations using atomic operations. Fortunately, most of the read and write sets are
overlapping in OLTP workloads.

5.6 Related work on timestamps

Using timestamp for snapshot reads. A centralized timestamp is the most straightfor-
ward way to support MVCC for snapshot reads, which is widely adopted by centralized
systems [5, 164-165, 175-178]. Many distributed systems also use timestamps to pro-
vide MVCC [15, 20, 26, 156, 158, 179-180], while most of them only support weaker
isolation guarantees (e.g., Snapshot Isolation) [15, 26, 156, 158]. For example, Percola-
tor [158] uses a global timestamp oracle, and NAM-DB [26] uses vectorized centralized
timestamps. Spanner [20] is based on a combination of 2PL andMVCC developed in pre-
vious decades [157]. Spanner relies on TrueTime API to provide scalable timestamps for
strict serializable read-only transactions and snapshot reads, which requires specific hard-
ware (GPS and atomic clocks) to ensure clocks with bounded uncertainty. Further, the
read-write transactions still require blocking to ensure the match of timestamp and trans-
action ordering. DST chooses to support serializable read-only transactions with bounded
staleness. It requires no external timestamp service and does not block read-write trans-
actions. RAMP [181] introduces Read Atomic isolation and uses timestamps to identify

— 126 —

and retry inconsistent reads. TxCache [182] provides a distributed transactional cache
that always returns a consistent snapshot by lazily selecting the timestamps for transac-
tions. Causalspartan [183] also uses Hybrid Logical Clocks to optimize timestamps in
causal consistency systems.

DST naturally piggybacks timestamp allocation to existing CC protocols, which
avoids additional communications for maintaining timestamps. Further, DST can work
with a border range of CC protocols and is orthogonal to prior optimizations on CC pro-
tocols [19, 163].

Using timestamp for concurrency control. Many systems directly leverage a timestamp-
based mechanism to commit transactions orderly [14, 160, 184-188]. CLOCC [185]
combines optimistic timestamp ordering with loosely synchronized clocks, which avoids
a centralized counter for checking serializability in the original OCC protocol [22]. Gra-
nola [186] uses the timestamp based on a distributed voting mechanism to order indepen-
dent transactions deterministically and treats distributed transactions in locking mode.
TAPIR [14] uses loosely synchronized clocks at the clients in OCC’s validation for read-
write transactions. The clock drift in these systems will increase false aborts and impact
the execution of read-write transactions. On the contrary, the clock drift in DST only
affects the freshness of snapshot reads.

Several variant timestamp schemes have been proposed tomitigate the cost from fre-
quent aborts due to the violation between timestamp and transaction ordering. Lomet et
al. [189] introduce timestamp ranges to reduce transaction conflicts, while the timestamp
management is centralized. MaaT [190] uses dynamic timestamp ranges to avoid dis-
tributed locking for the atomic commitment in OCC. Further, some prior systems also
use decentralized timestamp schemes, but most of them focus on optimizing one particu-
lar CC protocol. TicToc [191] introduces a data-driven timestamp scheme for multicore
platforms, which allows each read-write transaction to compute a valid commit timestamp
from tuples before it commits. However, the read-only transaction still needs additional
validations and incurs more aborts due to conflicts. Clock-SI [192] also uses loosely syn-
chronized clocks to create consistent snapshots with fewer network round trips, while
snapshot reads must be delayed due to concurrent transactions and clock drift. Sun-
dial [193] uses logical timestamps as leases to reduce aborts in distributed read-write
transactions. Pelieus [173] derives a commit timestamp for the read-write transaction
from all involved servers (not tuples), which is used in the validation phase with different

— 127 —

rules to support different concurrency levels (e.g., SI and Serializability).
Differently, DST is a decentralized timestamp scheme for various CC protocols and

can piggyback on them efficiently. Thus, DST will not interfere with the execution of
read-write transactions and has no need of extra validations and aborts.

5.7 Conclusion
This chapter presents DST, a decentralized scalar timestamp that can unify times-

tamp management with existing CC protocols. We have integrated DST with two classic
protocols, namely 2PL and OCC, and a recent research proposal, Rococo. Our evalua-
tion with three transactional systems (MySQL cluster,DrTM+H and Rococo) and three
benchmarks (TPC-E, TPC-C and SmallBank) confirmed the benefit of DST.

DST is a general timestamp scheme, which applies to settings with or without
RDMA. Our experience with DST reveals that besides offloading transaction protocols
to new hardware features (e.g., RDMA), people should also improve transaction protocol
for different workloads. DST enables efficient MVCC for distributed transactions and can
improve the performance of read-only transactions.

— 128 —

Chapter 6 Put It All Together: A Fast Distributed
Transaction System

In this chapter, we put all our prior designs together (§2—§5) and present DrTM+X,
a fast distributed transaction system using RDMA and NVM. Since we have conducted
extensive end-to-end comparisons of its core components (e.g., DrTM+H (§4)) with their
counterparts, the evaluations in this chapter focus on the uncovered parts, namely, howwe
boost the secondary index lookup with XStore and the efficiency of durability support
with RDPMA in DrTM+X.

Overview. Figure 1–2 presents an overview of DrTM+X, which has two system layers
atop of R2 and RDPMA:

• Storage layer (§6.1). DrTM+X adopts an RDMA-friendly layer to store all the
data required for distributed transactions. We follow priori designs to use a key-
value interface for transactions [13, 17, 25]. The key-value store adopts a hybrid
deployment of DrTM-KV [17] for unordered accesses and XStore (§3) for or-
dered key-value accesses.

• Transaction execution layer (§6.2). The coordinator at the transaction layer
receives the transaction requests from clients and executes them with DrTM+X’
s protocol. DrTM+X mainly leverages DrTM+H (§4) to execute read-write trans-
actions and uses DST (§5) to accelerate read-only transactions. The read-write
transactions use logging to ensure high availability (§4.3.4). The transaction layer
can further deploy Optane PM to support fast durable transactions (§6.3) with the
help of RDPMA (§2.3).

6.1 RDMA-friendly storage layer
As we have mentioned before, DrTM+X adopts an RDMA-friendly key-value store to

store transaction’s data. Specifically, all the static key-value operations (e.g., GET) are of-
floaded to one-sided RDMA, while complex dynamic key-value operations (INSERT) are
handled by two-sided RDMA. DrTM+X further differentiates the mechanisms to support
ordered key-value and unordered key-value operations, since unordered key-value opera-

— 129 —

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0 100 200 300 400 500 600

M
ed

ia
n

la
te

nc
y

(m
s)

Thpt per machine (K reqs/s)

DrTM+X

DrTM+H

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000

M
ed

ia
m

 la
te

nc
y

(m
s)

Thpt (K txns/s)

 0

 40

 80

 120

 160

 0 2 4 6 8 10

M
ed

ia
m

 la
te

nc
y

(µ
s)

Thpt (M txns/s)

DRAM
+NVM

+OPT(H1-H8)
+Persist

+OPT(H9)

Figure 6–1 (a) Comparison of DrTM+H and DrTM+X on TPC-C. DrTM+X further adopts XStore.
The performance of DrTM+X on (b) TPC-C/no and (c) SmallBank.

tions backed by hash index can better utilize one-sided RDMA than the ordered key-value
operations backed by tree-based index (§3.1). In default, DrTM+X adopts an in-memory
setup. Nevertheless, DrTM+X can deploy Optane PM to support a larger memory capac-
ity. Since Optane PM has the same interface as DRAM, DrTM+X can seamlessly switch
between these two types of memory.

Unordered access. For data that only has unordered accesses, DrTM+X use DrTM-
KV [17], a state-of-the-art unordered key-value store to store them. DrTM-KV uses
an RDMA-friendly hash structure—cluster–chaining to facilitate hash lookup over one-
sided RDMA and concurrent updates at the server. In most cases, it only requires one
one-sided RDMAREAD to retrieve the transaction’s data. We have used it as the default
storage engine in DrTM+H and evaluate its effectiveness in common transactionworkloads
(§4).

Ordered access. Ordered key-value access is an important workload in distributed
transactions, e.g., searching the secondary index. DrTM+X uses XStore (§3) to support
such accesses. XStore adopts a learned approach to accelerate ordered key-value access
over one-sided RDMA. It can retrieve the value of a given key only using two network
roundtrips.

6.1.1 Evaluations

As we have extensively evaluated the effectiveness of XStore as a stand-alone key-
value store (§3) and the performance of unordered accesses in DrTM+H (§4) , we focus on
the performance of unordered key-value access in distributed transactions in this section.

— 130 —

Experimental setup. Weuse TPC-C [124] to compare the performance of DrTM+X and
DrTM+H (§4), since they adopt the same concurrency control protocol, allowing an apple-
to-apple comparison. In default, DrTM+H uses two-sided RDMA to support ordered key-
value accesses while DrTM+X adopts XStore.

We run both systems in an asymmetric setting, which is widely adopted in cloud
databases [26, 94, 194]. More specifically, we deploy 96 warehouses on four data servers
and use the rest of the machines in our testbed as clients in the VAL cluster (see Table 2–
1). Both DrTM+H and DrTM+X rely on the data server to update tuples, while DrTM+X
uses one-sided RDMA READs to retrieve tuples from the data server with the help of
XStore. Therefore, we use a read-heavy TPC-C workload in the experiment, which con-
sists of NEW-ORDER transactions (10%) and ORDER-STATUS transactions (90%). NEWORDER
transaction inserts a new order with five to fifteen order lines; ORDERSTATUS transaction
retrieves the recently inserted orders first and then scans related order lines.

Performance. As shown in Figure 6–1 (a), DrTM+X improves the peak throughput of
DrTM+H by 2.27×, reaching 490K reqs/s. DrTM+H is bottlenecked by server CPUs since
the data server traverses the index and performs the read request locally. Consequently,
the read requests of ORDERSTATUS transactions would compete CPUs with the write re-
quests of NEWORDER transactions at the servers. Differently, DrTM+X uses RNICs at the
clients to lookup and retrieve tuples for ORDERSTATUS transactions. Hence, it relaxes the
burden on server CPUs and improves performance significantly.

6.2 RDMA-friendly transaction execution layer
The transaction layer of DrTM+X mainly adopts DrTM+H (§4) to execute transac-

tions. DrTM+H uses an RDMA-friendly optimistic concurrency control to provide strict
serializability and primary-backup replication with vertical paxos to provide high avail-
ability. It chooses the optimal RDMA primitive for each of the transaction’s execution
phase. Based on DrTM+H, DrTM+X further supports MVCC with the help of DST (§5).
Table 6–1 summarizes DrTM+X’s primitive choicewith other RDMA-enabled distributed
transaction systems. DrTM+X only makes a different choice than DrTM+H when the user
uses DST to accelerate read-only transactions.

— 131 —

Table 6–1 A comparison of the primitive choice of DrTM+X with existing RDMA-enabled
transaction systems. DrTM+X only makes a different choice than DrTM+H when supports MVCC
with DST. I and II stand for one-sided and two-sided primitives. ’-’ means not required. E states

for the execution phase, V states for the validation phase, L represents the logging phase, C
represents the commit phase and R states for the read phase. §4 described these phases.

Read-write TX Read-only TX

E V L C R V

FaRM [13] I II+I I II I I
DrTM+R [18] I I+I I I+I I I
FaSST [25] II II II II II II
DrTM+H（§4） I/II I/II I I/II I/II I
DrTM+X I/II I/II I I/II II/I -/I

Execution. DrTM+X uses a hybrid design of one-sided READs with caching and two-
sidedRPC, as DrTM+H. IfMVCC is enabled, the executionwill further read the timestamp
of the record according to DST (§5.3.2).

Validation. If MVCC is disabled, DrTM+X follows DrTM+H, which selects RDMA
primitive based on whether the NIC has an atomic issue. Otherwise, DrTM+X use two-
sided RDMA since integrating with DST requires more functions executed in the valida-
tion phase.

Logging. As DrTM+H, DrTM+X always uses one-sided WRITEs to replicate transaction
logs to all backups and uses two-sided primitive to lazily reclaim logs on backups.

Commit. If MVCC is disabled, DrTM+X uses one-sided WRITEs to commit if one-sided
ATOMIC is used in the validation phase. Otherwise DrTM+X uses two-sided RDMA.
Besides, DrTM+X always enables the passive ACK optimization (§2.2.3) in the commit
phase. If MVCC is enabled, DrTM+X only uses two-sided RDMA in this phase.

Read. If MVCC is disabled, DrTM+X follows DrTM+H, which uses the same primitive
choice as the execution phase. Otherwise, DrTM+X uses two-sided RDMA since travers-
ing the multiple versions with one-sided RDMA is inefficient.

— 132 —

Validation (Read-only). If MVCC is disabled, DrTM+X adopts one-sided RDMA for
the validation in read-only transactions. Otherwise, DrTM+X does not need to execute
this phase because it uses DST to guarantee that results read in theRead phase are always
consistent.

Since we have extensively evaluated each design choice of the transaction execution
layer in §4.4 and §5.5, we omit the evaluation in this section.

6.3 Supporting durability with RDPMA
Finally, we describe how we use RDPMA (§2.3) to support durable transactions in

DrTM+X. As we havementioned in the introduction, DrTM+X leverages RDMA and NVM
to reduce the durability cost in distributed transactions. To add durability support with
Optane PM and RDMA, we need to put all the storage (including transaction’s data
and log) in Optane PM, and ensures that when the logging phase finishes, the log should
be persistently written to the Optane PM. Therefore, we first use RDPMA for all the data
allocation in the storage layer. Second, we use the interface in RDPMA to write logs and
records.

Using RDPMA alone is not sufficient to fully leverage Optane PM, because several
RDMA-NVM optimization hints summarized in §2.3.4 depend on application semantics
(e.g., H1). Thus, DrTM+X further applies several optimizations according to the study.
These optimizations (some have been already incorporated in RDPMA) are summarized as
follows:

• Separate the memory pool from different sockets to avoid cross-socket NVM ac-
cess (H1).

• Configure DrTM+X with DDIO disabled (H3). Note that RDPMA has incorporated
this optimization.

• Use ntstore to optimize the commit phase (H4). RDPMA has incorporated this
optimization.

• Align and pad logs/records larger than 256B to XPLine granularity (H5). RDPMA
has incorporated this optimization.

• Align and pad logs/records smaller than 256B to 64B granularity (H6 + H7).
RDPMA has incorporated this optimization.

• Implement a DRAM-based lock service for the validation phase (H8). Note that
it is safe not persisting the locks in NVM because DrTM+X does not require the

— 133 —

 0

 200

 400

 600

 800

TPC-C new-order

41
6 46

0 51
2

51
7

50
8

50
8

51
1 60

0
57

3
58

0

T
hp

t (
K

 tx
ns

/s
)

NVM
+H4

+H1
+H5

+H3
+H6

+H7
+H8

+Persist
+H9

 0

 2

 4

 6

 8

 10

SmallBank	standard-mix

3.
3 4.

0 4.
6

4.
6

3.
9 4.
2

5.
9 7.

0
5.

9 6.
9

T
hp

t (
M

 tx
ns

/s
)

Figure 6–2 The contribution of optimizations from RDPMA to the throughput of DrTM+X for (a)
TPC-C and (b) Smallbank.

locks to be persistent even when durability is enabled.
• Implement remote persistent log with H9 in one roundtrip. RDPMA has incorpo-

rated this optimization.

6.3.1 Evaluations

Experimental setup. We evaluate the performance of DrTM+X by comparing the
vanilla DrTM+H without optimizations mentioned in the previous chapter. We use the
R74V cluster (see Table 2–1) where the machine capable of NVM serves as the server,
while other machines are configured as clients. Like DrTM+H, we use two representative
workloads, namely TPC-C/no and Smallbank for the evaluations. A detailed descriptions
of the workloads can be found at §4.3.

Comparing targets. In Figure 6–1 (b) and (c), DRAM is the DrTM+X without dura-
bility support. +NVM runs it on Optane PM, and +OPT(H1-H8) further applies opti-
mizations (§6.3). +Persist adopts an existing approach[75] to support durability atop of
+OPT(H1-H8). Finally, +OPT(H9) optimizes+Persist withH9. It is the DrTM+X that
supports durable transactions.

Performancewithout durability. Athough this section focuses on durable transactions
in DrTM+X. DrTM+X can also leverage Optane PM to support a large DRAM capacity,
More importantly, most optimizations from this section also apply to this scenario (H1–
H8). Therefore, we first present the performance of DrTM+X using Optane PM without
guaranteeing durability.

— 134 —

Figure 6–1 (b) and (c) present the throughput-latency results of both workloads.
We plot the graph by increasing the number of clients until the throughput is saturated.
+OPT(H1-H8) improves the DrTM+X’s performance under TPC-C/no and SmallBank
by 1.45X and 2.20X, respectively.

To analyze the contributions of each optimization, Figure 6–2 further presents a fac-
tor analyses of evaluation results on TPC-C/no and SmallBank, respectively. First, we
can see that several hints are beneficial to both workloads. For example, H8 (use atomic
operations less on NVM) speedups TPC-C/no and SmallBank by 1.17X and 1.19X, re-
spectively. On the other hand, some hints have negative effects for certain workloads:
SmallBank drops 15% throughput when adding H3, this is because H3 is only benefi-
cial when the application is bottlenecked by NVM’s bandwidth. Finally, some hints have
more contributions to SmallBank than TPC-C/no. For example, H7 has a 1.4X speedup
on SmallBank but does not affect TPC-C/no. H7 only improves transaction utilizations of
NVMwrite throughput, while SmallBank is more sensitive to the NVMwrite throughput
utilization due to its simpler workloads.

Performance with durability. As shown in Figure 6–1 (b) and (c), supporting durable
transaction (+Persist) adds 5% and 15% performance overhead to +OPT(H1-H8) on
TPC-C/no and SmallBank, respectively. The overhead is from the additional one-sided
RDMA READ at the logging phase. Hence, reducing this network roundtrip with H9 in
RDPMA improves TPC-C/no and SmallBank’s performance by 1.01X and 1.17X, respec-
tively.

6.4 Conclusion
This chapter presents DrTM+X, a fast distributed transaction processing system that

incorporates all the techniques proposed in this dissertation. DrTM+X can fully utilize
RDMA and NVM for executing distributed transactions. Its storage layer adopts XStore
for data storage, and its transaction execution layer uses DrTM+H and DST to provide
serializability and high availability. Finally, we discuss how to use RDPMA to support
durable transactions. Extensive evaluations (including the ones presented in the previous
chapters) have shown the benefits of each design choice in DrTM+X.

— 135 —

Conclusion

This dissertation presents a study of how to fully leverage RDMA and NVM to re-
duce the cost of executing distributed transactions. We show that a bottom-up approach is
effective for finding the proper way of using RDMA and NVM in this scenario. Starting
from a systematic study of hardware features, we built frameworks to hide specific opti-
mizations to efficiently coordinate RDMA and NVM together. Second, we shown that a
learned approach can efficiently bridge the semantic gap between ordered data access—
a key function in transactions—with RDMA. Third, we demonstrated how to best se-
lect RDMA primitives for RDMA-enabled transactions with a phase-by-phase analysis.
Fourth, we presented how to use a new decentralized timestamp scheme to avoid perfor-
mance and scalability bottleneck—that can happen in traditional centralized timestamp
in distributed transactions—under fast-interconnects like RDMA. Finally, we brought
all the above techniques together and present how to build a fast distributed transaction
processing system with RDMA and NVM.

We believe techniques presented in this dissertation can also benefit other
RDMA/RDMA-NVM-enabled systems. Some of them can also apply to traditional dis-
tributed transaction processing systems without RDMA or NVM. Finally, we hope the
study in this dissertation can stimulate and provide a guideline for future co-design with
RDMA and NVM.

Acknowledgements. I would like to thank professor Rong Chen, who co-advisors me
throughout the p.h.d. It is him who brings me to the world of system research. He always
generously supports and helps me during the research. I would also like to thank my advi-
sor, professor Binyu Zang, for his generous support in my research. I would like to thank
professor Haibo Chen, he always gives us valuable insights. There are so many others
to thank. Professor Yubin and Professor Zhaoguo, it is always a wonderful experience
discussing with you. I would like to thank my girlfriend Xiating, who helps me a lot both
in research and life. Finally, I would like to thank my parents who brought me there.

— 137 —

Bibliography

[1] Michael Stonebraker. The Traditional RDBMS Wisdom is All Wrong[EB/OL].
2013. https://downloads.voltdb.com/datasheets_collateral/voltdb_STONEBRA
KERSAYS_webinar2.pdf.

[2] Dragojević A, Narayanan D, Hodson O, et al. FaRM: Fast Remote Mem-
ory[C/OL]. in: NSDI’14: Proceedings of the 11th USENIX Conference on Net-
worked SystemsDesign and Implementation. Seattle,WA: USENIXAssociation,
2014: 401-414. http://dl.acm.org/citation.cfm?id=2616448.2616486.

[3] Wang Z, Qian H, Li J, et al. Using Restricted Transactional Memory to Build
a Scalable In-memory Database[C/OL]. in: EuroSys’14: Proceedings of the
Ninth European Conference on Computer Systems. Amsterdam, The Nether-
lands: ACM, 2014: 26:1-26:15. http://doi.acm.org/10.1145/2592798.2592815.
DOI: 10.1145/2592798.2592815.

[4] Cowling J, Liskov B. Granola: low-overhead distributed transaction coordina-
tion[C]. in: USENIX ATC’12: Proceedings of the 2012 USENIX conference on
Annual Technical Conference. 2012.

[5] Diaconu C, Freedman C, Ismert E, et al. Hekaton: SQL server’s memory-
optimized OLTP engine[C]. in: Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data. 2013: 1243-1254.

[6] Thomson A, Diamond T, Weng S C, et al. Calvin: Fast Distributed Transactions
for Partitioned Database Systems[C/OL]. in: SIGMOD’12: Proceedings of the
2012 ACM SIGMOD International Conference on Management of Data. Scotts-
dale, Arizona, USA: ACM, 2012: 1-12. http://doi.acm.org/10.1145/2213836.22
13838. DOI: 10.1145/2213836.2213838.

[7] Tu S, Zheng W, Kohler E, et al. Speedy Transactions in Multicore In-memory
Databases[C/OL]. in: SOSP’13: Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles. Farminton, Pennsylvania: ACM, 2013:
18-32. http://doi.acm.org/10.1145/2517349.2522713. DOI: 10.1145/2517349.2
522713.

— 139 —

https://downloads.voltdb.com/datasheets_collateral/voltdb_STONEBRAKERSAYS_webinar2.pdf
https://downloads.voltdb.com/datasheets_collateral/voltdb_STONEBRAKERSAYS_webinar2.pdf
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://doi.acm.org/10.1145/2592798.2592815
https://doi.org/10.1145/2592798.2592815
http://doi.acm.org/10.1145/2213836.2213838
http://doi.acm.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
http://doi.acm.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1145/2517349.2522713

[8] Zhang Y, Power R, Zhou S, et al. Transaction chains: achieving serializability
with low latency in geo-distributed storage systems[C]. in: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 2013: 276-
291.

[9] Narula N, Cutler C, Kohler E, et al. Phase Reconciliation for Contended In-
memory Transactions[C/OL]. in: OSDI’14: Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation. Broomfield, CO:
USENIX Association, 2014: 511-524. http://dl.acm.org/citation.cfm?id=268504
8.2685088.

[10] Zheng W, Tu S, Kohler E, et al. Fast Databases with Fast Durability and Re-
covery Through Multicore Parallelism[C/OL]. in: OSDI’14: Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation.
Broomfield, CO: USENIX Association, 2014: 465-477. http://dl.acm.org/citatio
n.cfm?id=2685048.2685085.

[11] Xie C, SuC, KapritsosM, et al. Salt: CombiningACID andBASE in aDistributed
Database[C/OL]. in: OSDI’14: Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation. Broomfield, CO: USENIX
Association, 2014: 495-509. http://dl.acm.org/citation.cfm?id=2685048.268508
7.

[12] Lee C, Park S J, Kejriwal A, et al. Implementing linearizability at large scale
and low latency[C]. in: Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP’15). 2015.

[13] Dragojević A, Narayanan D, Nightingale E B, et al. No Compromises: Dis-
tributed Transactions with Consistency, Availability, and Performance[C/OL].
in: SOSP’15: Proceedings of the 25th Symposium on Operating Systems Princi-
ples. Monterey, California: ACM, 2015: 54-70. http://doi.acm.org/10.1145/2815
400.2815425. DOI: 10.1145/2815400.2815425.

[14] Zhang I, Sharma N K, Szekeres A, et al. Building Consistent Transactions with
Inconsistent Replication[C/OL]. in: SOSP’15: Proceedings of the 25th Sympo-
sium on Operating Systems Principles. Monterey, California: ACM, 2015: 263-
278. http://doi.acm.org/10.1145/2815400.2815404. DOI: 10.1145/2815400.281
5404.

— 140 —

http://dl.acm.org/citation.cfm?id=2685048.2685088
http://dl.acm.org/citation.cfm?id=2685048.2685088
http://dl.acm.org/citation.cfm?id=2685048.2685085
http://dl.acm.org/citation.cfm?id=2685048.2685085
http://dl.acm.org/citation.cfm?id=2685048.2685087
http://dl.acm.org/citation.cfm?id=2685048.2685087
http://doi.acm.org/10.1145/2815400.2815425
http://doi.acm.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
http://doi.acm.org/10.1145/2815400.2815404
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/2815400.2815404

[15] Aguilera M K, Leners J B, Kotla R, et al. Yesquel: scalable SQL storage for Web
applications[C]. in: SOSP. 2015.

[16] Xie C, Su C, Littley C, et al. High-performance ACID via modular concurrency
control[C]. in: Proceedings of the 25th Symposium on Operating Systems Prin-
ciples. 2015: 279-294.

[17] Wei X, Shi J, Chen Y, et al. Fast In-memory Transaction Processing Using
RDMA and HTM[C/OL]. in: SOSP ’15: Proceedings of the 25th Symposium
on Operating Systems Principles. Monterey, California: ACM, 2015: 87-104. htt
p://doi.acm.org/10.1145/2815400.2815419. DOI: 10.1145/2815400.2815419.

[18] Chen Y, Wei X, Shi J, et al. Fast and general distributed transactions using rdma
and htm[C]. in: Proceedings of the Eleventh European Conference on Computer
Systems. 2016: 26.

[19] Mu S, Cui Y, Zhang Y, et al. Extracting More Concurrency from Distributed
Transactions[C/OL]. in: OSDI’14: Proceedings of the 11th USENIXConference
on Operating Systems Design and Implementation. Broomfield, CO: USENIX
Association, 2014: 479-494. http://dl.acm.org/citation.cfm?id=2685048.268508
6.

[20] Corbett J C, Dean J, Epstein M, et al. Spanner: Google’s globally distributed
database[J]. ACM Transactions on Computer Systems (TOCS), 2013, 31(3): 8.

[21] Shamis A, Renzelmann M, Novakovic S, et al. Fast General Distributed Trans-
actions with Opacity[C/OL]. in: SIGMOD ’19: Proceedings of the 2019 Inter-
national Conference on Management of Data. Amsterdam, Netherlands: Associ-
ation for Computing Machinery, 2019: 433-448. https://doi.org/10.1145/329986
9.3300069. DOI: 10.1145/3299869.3300069.

[22] Kung H T, Robinson J T. On Optimistic Methods for Concurrency Con-
trol[J/OL]. ACM Trans. Database Syst., 1981, 6(2): 213-226. http : / / doi . acm
.org/10.1145/319566.319567. DOI: 10.1145/319566.319567.

[23] Hooker S. The hardware lottery[J]. ArXiv preprint arXiv:2009.06489, 2020.

[24] Thomas S, Voelker G M, Porter G. CacheCloud: Towards Speed-of-light Dat-
acenter Communication[C/OL]. in: 10th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 18). Boston, MA: USENIX Association, 2018. htt
ps://www.usenix.org/conference/hotcloud18/presentation/thomas.

— 141 —

http://doi.acm.org/10.1145/2815400.2815419
http://doi.acm.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
http://dl.acm.org/citation.cfm?id=2685048.2685086
http://dl.acm.org/citation.cfm?id=2685048.2685086
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069
http://doi.acm.org/10.1145/319566.319567
http://doi.acm.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://www.usenix.org/conference/hotcloud18/presentation/thomas
https://www.usenix.org/conference/hotcloud18/presentation/thomas

[25] Kalia A, Kaminsky M, Andersen D G. FaSST: Fast, Scalable and Simple Dis-
tributed Transactions with Two-sided (RDMA) Datagram RPCs[C/OL]. in:
OSDI’16: Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation. Savannah, GA, USA: USENIX Association, 2016:
185-201. http://dl.acm.org/citation.cfm?id=3026877.3026892.

[26] Zamanian E, Binnig C, Harris T, et al. The End of a Myth: Distributed Transac-
tions Can Scale[J]. Proc. VLDB Endow., 2017, 10(6): 685-696.

[27] Wei X, Shen S, Chen R, et al. Replication-driven Live Reconfiguration for Fast
Distributed Transaction Processing[C/OL]. in: 2017 USENIX Annual Technical
Conference (USENIX ATC 17). Santa Clara, CA: USENIX Association, 2017:
335-347. https://www.usenix.org/conference/atc17/technical-sessions/presentati
on/wei.

[28] Mitchell C, Montgomery K, Nelson L, et al. Balancing CPU and Network in the
Cell Distributed B-Tree Store[C]. in: 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16). 2016.

[29] Mitchell C, Geng Y, Li J. Using One-sided RDMA Reads to Build a Fast, CPU-
efficient Key-value Store[C/OL]. in: USENIX ATC’13: Proceedings of the 2013
USENIX Conference on Annual Technical Conference. San Jose, CA: USENIX
Association, 2013: 103-114. http://dl.acm.org/citation.cfm?id=2535461.253547
5.

[30] Kalia A, Kaminsky M, Andersen D G. Using RDMA Efficiently for Key-value
Services[C/OL]. in: SIGCOMM’14: Proceedings of the 2014 ACM Conference
on SIGCOMM. Chicago, Illinois, USA: ACM, 2014: 295-306. http://doi.acm.or
g/10.1145/2619239.2626299. DOI: 10.1145/2619239.2626299.

[31] Szepesi T, Wong B, Cassell B, et al. Designing a low-latency cuckoo hash table
for write-intensive workloads using RDMA[C]. in: First International Workshop
on Rack-scale Computing. 2014.

[32] Stuedi P, Trivedi A, Pfefferle J, et al. Crail: A High-Performance I/O Architecture
for Distributed Data Processing.[J]. IEEE Data Eng. Bull., 2017, 40(1): 38-49.

— 142 —

http://dl.acm.org/citation.cfm?id=3026877.3026892
https://www.usenix.org/conference/atc17/technical-sessions/presentation/wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/wei
http://dl.acm.org/citation.cfm?id=2535461.2535475
http://dl.acm.org/citation.cfm?id=2535461.2535475
http://doi.acm.org/10.1145/2619239.2626299
http://doi.acm.org/10.1145/2619239.2626299
https://doi.org/10.1145/2619239.2626299

[33] Poke M, Hoefler T. DARE: High-Performance State Machine Replication on
RDMA Networks[C/OL]. in: HPDC ’15: Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing. Portland,
Oregon, USA: ACM, 2015: 107-118. http://doi.acm.org/10.1145/2749246.2749
267. DOI: 10.1145/2749246.2749267.

[34] Wu M, Yang F, Xue J, et al. GraM: Scaling Graph Computation to the Tril-
lions[C/OL]. in: SoCC ’15: Proceedings of the Sixth ACMSymposium on Cloud
Computing. Kohala Coast, Hawaii: ACM, 2015: 408-421. http://doi.acm.org/10
.1145/2806777.2806849. DOI: 10.1145/2806777.2806849.

[35] Shi J, Yao Y, Chen R, et al. Fast and Concurrent RDF Queries with RDMA-
based Distributed Graph Exploration[C/OL]. in: OSDI’16: Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation.
Savannah, GA, USA: USENIX Association, 2016: 317-332. http://dl.acm.org/ci
tation.cfm?id=3026877.3026902.

[36] Zhang Y, Chen R, Chen H. Sub-millisecond Stateful Stream Querying over Fast-
evolving Linked Data[C/OL]. in: SOSP’17: Proceedings of the 26th Symposium
on Operating Systems Principles. Shanghai, China: ACM, 2017: 614-630. http:
//doi.acm.org/10.1145/3132747.3132777. DOI: 10.1145/3132747.3132777.

[37] Xie X, Wei X, Chen R, et al. Pragh: Locality-preserving Graph Traversal with
Split Live Migration[C/OL]. in: 2019 USENIX Annual Technical Conference
(USENIX ATC 19). Renton, WA: USENIX Association, 2019: 723-738. https:
//www.usenix.org/conference/atc19/presentation/xie.

[38] Dulloor S R, Kumar S, Keshavamurthy A, et al. System Software for Persistent
Memory[C/OL]. in: EuroSys ’14: Proceedings of the Ninth European Confer-
ence on Computer Systems. Amsterdam, The Netherlands: Association for Com-
puting Machinery, 2014. https : / / doi . org / 10 . 1145 / 2592798 . 2592814. DOI:
10.1145/2592798.2592814.

[39] Xu J, Swanson S. NOVA: A Log-structured File System for Hybrid Volatile/Non-
volatile Main Memories[C/OL]. in: 14th USENIX Conference on File and Stor-
age Technologies (FAST 16). Santa Clara, CA: USENIX Association, 2016: 323-
338. https://www.usenix.org/conference/fast16/technical-sessions/presentation
/xu.

— 143 —

http://doi.acm.org/10.1145/2749246.2749267
http://doi.acm.org/10.1145/2749246.2749267
https://doi.org/10.1145/2749246.2749267
http://doi.acm.org/10.1145/2806777.2806849
http://doi.acm.org/10.1145/2806777.2806849
https://doi.org/10.1145/2806777.2806849
http://dl.acm.org/citation.cfm?id=3026877.3026902
http://dl.acm.org/citation.cfm?id=3026877.3026902
http://doi.acm.org/10.1145/3132747.3132777
http://doi.acm.org/10.1145/3132747.3132777
https://doi.org/10.1145/3132747.3132777
https://www.usenix.org/conference/atc19/presentation/xie
https://www.usenix.org/conference/atc19/presentation/xie
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

[40] Dong M, Chen H. Soft Updates Made Simple and Fast on Non-volatile Mem-
ory[C/OL]. in: 2017USENIXAnnual Technical Conference (USENIXATC17).
Santa Clara, CA: USENIX Association, 2017: 719-731. https://www.usenix.org
/conference/atc17/technical-sessions/presentation/dong.

[41] Zuo P, Hua Y, Wu J. Write-Optimized and High-Performance Hashing Index
Scheme for Persistent Memory[C/OL]. in: 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, 2018: 461-476. https://www.usenix.org/conference/osdi18/present
ation/zuo.

[42] Venkataraman S, Tolia N, Ranganathan P, et al. Consistent and Durable Data
Structures for Non-Volatile Byte-Addressable Memory[C]. in: FAST’11: Pro-
ceedings of the 9th USENIX Conference on File and Stroage Technologies. San
Jose, California: USENIX Association, 2011: 5.

[43] Kannan S, Bhat N, GavrilovskaA, et al. Redesigning LSMs for NonvolatileMem-
ory with NoveLSM[C/OL]. in: 2018 USENIX Annual Technical Conference
(USENIX ATC 18). Boston, MA: USENIX Association, 2018: 993-1005. http
s://www.usenix.org/conference/atc18/presentation/kannan.

[44] WuM, Zhao Z, Li H, et al. Espresso: Brewing Java For More Non-Volatility with
Non-Volatile Memory[C/OL]. in: ASPLOS ’18: Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. Williamsburg, VA, USA: Association for Com-
puting Machinery, 2018: 70-83. https://doi.org/10.1145/3173162.3173201. DOI:
10.1145/3173162.3173201.

[45] Shull T, Huang J, Torrellas J. AutoPersist: An Easy-to-Use JavaNVMFramework
Based on Reachability[C/OL]. in: PLDI 2019: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
Phoenix, AZ, USA: Association for Computing Machinery, 2019: 316-332. http
s://doi.org/10.1145/3314221.3314608. DOI: 10.1145/3314221.3314608.

[46] Volos H, Tack A J, Swift M M. Mnemosyne: Lightweight Persistent Mem-
ory[C/OL]. in: ASPLOS XVI: Proceedings of the Sixteenth International Con-
ference onArchitectural Support for Programming Languages andOperating Sys-
tems. Newport Beach, California, USA: Association for Computing Machinery,

— 144 —

https://www.usenix.org/conference/atc17/technical-sessions/presentation/dong
https://www.usenix.org/conference/atc17/technical-sessions/presentation/dong
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/atc18/presentation/kannan
https://www.usenix.org/conference/atc18/presentation/kannan
https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1145/3173162.3173201
https://doi.org/10.1145/3314221.3314608
https://doi.org/10.1145/3314221.3314608
https://doi.org/10.1145/3314221.3314608

2011: 91-104. https://doi.org/10.1145/1950365.1950379. DOI: 10.1145/195036
5.1950379.

[47] Hsu T C H, Brügner H, Roy I, et al. NVthreads: Practical Persistence for Multi-
Threaded Applications[C/OL]. in: EuroSys ’17: Proceedings of the Twelfth
European Conference on Computer Systems. Belgrade, Serbia: Association for
Computing Machinery, 2017: 468-482. https://doi.org/10.1145/3064176.306420
4. DOI: 10.1145/3064176.3064204.

[48] Liu M, Zhang M, Chen K, et al. DudeTM: Building Durable Transactions with
Decoupling for Persistent Memory[C/OL]. in: ASPLOS ’17: Proceedings of the
Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems. Xi’an, China: Association for Comput-
ing Machinery, 2017: 329-343. https://doi.org/10.1145/3037697.3037714. DOI:
10.1145/3037697.3037714.

[49] Memaripour A, Badam A, Phanishayee A, et al. Atomic In-Place Updates for
Non-Volatile Main Memories with Kamino-Tx[C/OL]. in: EuroSys ’17: Pro-
ceedings of the Twelfth European Conference on Computer Systems. Belgrade,
Serbia: Association for Computing Machinery, 2017: 499-512. https://doi.org/1
0.1145/3064176.3064215. DOI: 10.1145/3064176.3064215.

[50] Hu Q, Ren J, Badam A, et al. Log-Structured Non-Volatile Main Mem-
ory[C/OL]. in: 2017USENIXAnnual Technical Conference (USENIXATC17).
Santa Clara, CA: USENIX Association, 2017: 703-717. https://www.usenix.org
/conference/atc17/technical-sessions/presentation/hu.

[51] Lu Y, Shu J, Chen Y, et al. Octopus: an RDMA-enabled Distributed Persistent
Memory File System[C/OL]. in: USENIX ATC’17: Proceedings of the 2017
USENIX Annual Technical Conference. Santa Clara, CA: USENIX Association,
2017: 773-785. https://www.usenix.org/conference/atc17/technical-sessions/pre
sentation/lu.

[52] Yang J, Izraelevitz J, Swanson S. Orion: A Distributed File System for Non-
VolatileMainMemory and RDMA-Capable Networks[C/OL]. in: 17th USENIX
Conference on File and Storage Technologies (FAST 19). Boston, MA: USENIX
Association, 2019: 221-234. https://www.usenix.org/conference/fast19/presenta
tion/yang.

— 145 —

https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/3037697.3037714
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3064176.3064215
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yang

[53] Zhang Y, Yang J, Memaripour A, et al. Mojim: A Reliable and Highly-Available
Non-Volatile Memory System[C/OL]. in: ASPLOS ’15: Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems. Istanbul, Turkey: Association for Comput-
ing Machinery, 2015: 3-18. https: / /doi .org/10.1145/2694344.2694370. DOI:
10.1145/2694344.2694370.

[54] Shan Y, Tsai S Y, Zhang Y. Distributed Shared Persistent Memory[C/OL]. in:
SoCC ’17: Proceedings of the 2017 Symposium on Cloud Computing. Santa
Clara, California: Association for Computing Machinery, 2017: 323-337. https
://doi.org/10.1145/3127479.3128610. DOI: 10.1145/3127479.3128610.

[55] Taleb Y, Stutsman R, Antoniu G, et al. Tailwind: Fast and Atomic RDMA-based
Replication[C/OL]. in: 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, 2018: 851-863. https://www.usen
ix.org/conference/atc18/presentation/taleb.

[56] Ma T, Zhang M, Chen K, et al. AsymNVM: An Efficient Framework for Imple-
menting Persistent Data Structures on Asymmetric NVM Architecture[C/OL].
in: ASPLOS ’20: Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems. Lau-
sanne, Switzerland: Association for Computing Machinery, 2020: 757-773. http
s://doi.org/10.1145/3373376.3378511. DOI: 10.1145/3373376.3378511.

[57] Shen S, Chen R, Chen H, et al. Retrofitting High AvailabilityMechanism to Tame
Hybrid Transaction/Analytical Processing[C]. in: 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21). USENIX Associa-
tion, 2021.

[58] Wei X, Dong Z, Chen R, et al. Deconstructing RDMA-enabled Distributed Trans-
actions: Hybrid is Better![C]. in: OSDI ’18: 13th USENIX Symposium on Oper-
ating Systems Design and Implementation. 2018: 233-251.

[59] Lu H, Hodsdon C, Ngo K, et al. The SNOW theorem and latency-optimal read-
only transactions[C]. in: OSDI’16: Proceedings of 12th USENIX Symposium on
Operating Systems Design and Implementation. 2016: 135.

[60] MySQL Cluster[EB].

— 146 —

https://doi.org/10.1145/2694344.2694370
https://doi.org/10.1145/2694344.2694370
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3127479.3128610
https://doi.org/10.1145/3127479.3128610
https://www.usenix.org/conference/atc18/presentation/taleb
https://www.usenix.org/conference/atc18/presentation/taleb
https://doi.org/10.1145/3373376.3378511
https://doi.org/10.1145/3373376.3378511
https://doi.org/10.1145/3373376.3378511

[61] Novakovic S, Shan Y, Kolli A, et al. Storm: a fast transactional dataplane for
remote data structures[C]. in: Proceedings of the 12th ACM International Con-
ference on Systems and Storage. 2019: 97-108.

[62] Technologies M. Libmlx4 driver[EB/OL]. 2017. http://www.mellanox.com/do
wnloads/ofed/MLNX_OFED-4.0-1.0.1.0/MLNX_OFED_LINUX-4.0-1.0.1.0-
ubuntu16.04-x86_64.tgz.

[63] Tsai S Y, Zhang Y. LITE Kernel RDMA Support for Datacenter Applica-
tions[C/OL]. in: SOSP ’17: Proceedings of the 26th Symposium on Operating
Systems Principles. Shanghai, China: ACM, 2017: 306-324. http://doi.acm.org
/10.1145/3132747.3132762. DOI: 10.1145/3132747.3132762.

[64] Su M, Zhang M, Chen K, et al. RFP: When RPC is Faster Than Server-Bypass
with RDMA[C/OL]. in: EuroSys ’17: Proceedings of the Twelfth European Con-
ference on Computer Systems. Belgrade, Serbia: ACM, 2017: 1-15. http://doi.ac
m.org/10.1145/3064176.3064189. DOI: 10.1145/3064176.3064189.

[65] Kalia A, Kaminsky M, Andersen D. Datacenter RPCs can be general and fast[C].
in: 16th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 19). 2019: 1-16.

[66] Kalia A, Kaminsky M, Andersen D G. Design Guidelines for High Performance
RDMA Systems[C/OL]. in: USENIX ATC ’15: 2016 USENIX Annual Techni-
cal Conference. Denver, CO: USENIX Association, 2016: 437-450. https://www
.usenix.org/conference/atc16/technical-sessions/presentation/kalia.

[67] Stonebraker M, Madden S, Abadi D J, et al. The end of an Architectural Era:
(It’s Time for a Complete Rewrite)[C/OL]. in: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases. Vienna, Austria: VLDB
Endowment, 2007: 1150-1160. http://hstore.cs.brown.edu/papers/hstore-endofer
a.pdf.

[68] Association. I T. InfiniBand Architecture Specification[EB/OL]. 2015. https://c
w.infinibandta.org/document/dl/7859.

[69] Liu X, Hua Y, Li X, et al. Write-Optimized and Consistent RDMA-based NVM
Systems[J]. ArXiv preprint arXiv:1906.08173, 2019.

[70] The Volatile Benefit of Persistent Memory.[EB/OL]. 2020. https://memcached
.org/blog/persistent-memory/.

— 147 —

http://www.mellanox.com/downloads/ofed/MLNX_OFED-4.0-1.0.1.0/MLNX_OFED_LINUX-4.0-1.0.1.0-ubuntu16.04-x86_64.tgz
http://www.mellanox.com/downloads/ofed/MLNX_OFED-4.0-1.0.1.0/MLNX_OFED_LINUX-4.0-1.0.1.0-ubuntu16.04-x86_64.tgz
http://www.mellanox.com/downloads/ofed/MLNX_OFED-4.0-1.0.1.0/MLNX_OFED_LINUX-4.0-1.0.1.0-ubuntu16.04-x86_64.tgz
http://doi.acm.org/10.1145/3132747.3132762
http://doi.acm.org/10.1145/3132747.3132762
https://doi.org/10.1145/3132747.3132762
http://doi.acm.org/10.1145/3064176.3064189
http://doi.acm.org/10.1145/3064176.3064189
https://doi.org/10.1145/3064176.3064189
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://memcached.org/blog/persistent-memory/
https://memcached.org/blog/persistent-memory/

[71] Ryan Smith. Intel Announces Optane Storage Brand For 3D XPoint Prod-
ucts[EB]. 2015.

[72] Kalia A, Andersen D, Kaminsky M. Challenges and solutions for fast remote
persistent memory access[C]. in: Proceedings of the 11th ACM Symposium on
Cloud Computing. 2020: 105-119.

[73] Volos H, Magalhaes G, Cherkasova L, et al. Quartz: A Lightweight Performance
Emulator for Persistent Memory Software[C/OL]. in: Middleware ’15: Proceed-
ings of the 16th Annual Middleware Conference. Vancouver, BC, Canada: Asso-
ciation for Computing Machinery, 2015: 37-49. https://doi.org/10.1145/281457
6.2814806. DOI: 10.1145/2814576.2814806.

[74] Yang J, Kim J, Hoseinzadeh M, et al. An empirical guide to the behavior and use
of scalable persistent memory[C]. in: 18th {USENIX} Conference on File and
Storage Technologies ({FAST} 20). 2020: 169-182.

[75] Intel. The librpmem library[EB]. 2020.

[76] Build Persistent Memory Applications with Reliability Availability and Service-
ability.[EB]. 2021.

[77] Ipmctl.[EB/OL]. 2021. https://github.com/intel/ipmctl.

[78] Intel. Intel® Data Direct I/O Technology[EB]. 2019.

[79] Intel. Persistent Memory Replication Over Traditional RDMA[EB]. 2020.

[80] Shi J, Yao Y, Chen R, et al. Fast and Concurrent RDFQueries with RDMA-Based
Distributed Graph Exploration[C/OL]. in: 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016: 317-332. https://www.usenix.org/conference/osdi16/technic
al-sessions/presentation/shi.

[81] Intel. Intel® Memory Latency Checker v3.7[EB]. 2019.

[82] Neugebauer R, Antichi G, Zazo J F, et al. Understanding PCIe performance for
end host networking[C]. in: Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. 2018: 327-341.

— 148 —

https://doi.org/10.1145/2814576.2814806
https://doi.org/10.1145/2814576.2814806
https://doi.org/10.1145/2814576.2814806
https://github.com/intel/ipmctl
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi

[83] Lim H, Han D, Andersen D G, et al. MICA: A Holistic Approach to Fast
In-Memory Key-Value Storage[C/OL]. in: 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, 2014: 429-444. https://www.usenix.org/conference/nsdi14/technic
al-sessions/presentation/lim.

[84] Wang S, Lou C, Chen R, et al. Fast and Concurrent RDF Queries using RDMA-
assisted GPU Graph Exploration[C/OL]. in: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). Boston, MA: USENIX Association, 2018: 651-
664. https://www.usenix.org/conference/atc18/presentation/wang-siyuan.

[85] Ziegler T, Tumkur Vani S, Binnig C, et al. Designing Distributed Tree-Based
Index Structures for Fast RDMA-Capable Networks[C/OL]. in: SIGMOD ’19:
Proceedings of the 2019 International Conference on Management of Data. Am-
sterdam, Netherlands: Association for Computing Machinery, 2019: 741-758. ht
tps://doi.org/10.1145/3299869.3300081. DOI: 10.1145/3299869.3300081.

[86] Smolyar I, Markuze A, Pismenny B, et al. IOctopus: Outsmarting Nonuniform
DMA[C/OL]. in: ASPLOS ’20: Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. Lausanne, Switzerland: Association for Computing Machinery, 2020:
101-115. https://doi.org/10.1145/3373376.3378509. DOI: 10.1145/3373376.33
78509.

[87] NetCAT[EB/OL]. https://www.vusec.net/projects/netcat/.

[88] Intel. Intel® Xeon® Processor E5 v4 Product Family[EB]. 2019.

[89] Farshin A, Roozbeh A, Jr. G QM, et al. Reexamining Direct Cache Access to Op-
timize I/O Intensive Applications for Multi-hundred-gigabit Networks[C/OL].
in: 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 2020: 673-689. https://www.usenix.org/conference/atc20/presentat
ion/farshin.

[90] Kashyap S, Qin D, Byan S, et al. Correct, fast remote persistence[J]. ArXiv
preprint arXiv:1909.02092, 2019.

[91] Intel. Intel® Optane persistent memory 200 series[EB]. 2020.

[92] 200Gb/s ConnectX-6 Ethernet Single/Dual-Port Adapter IC[EB]. 2021.

— 149 —

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/atc18/presentation/wang-siyuan
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3373376.3378509
https://doi.org/10.1145/3373376.3378509
https://doi.org/10.1145/3373376.3378509
https://www.vusec.net/projects/netcat/
https://www.usenix.org/conference/atc20/presentation/farshin
https://www.usenix.org/conference/atc20/presentation/farshin

[93] Talpey T, Kamer G. High Performance File Serving With SMB3 and RDMA via
SMB Direct[C]. in: Storage Developers Conference. 2012.

[94] Verbitski A, Gupta A, Saha D, et al. Amazon aurora: Design considerations for
high throughput cloud-native relational databases[C]. in: Proceedings of the 2017
ACM International Conference on Management of Data. 2017: 1041-1052.

[95] Mitchell C, Geng Y, Li J. Using One-sided RDMA Reads to Build a Fast, CPU-
efficient Key-value Store[C/OL]. in: USENIX ATC’13: Proceedings of the 2013
USENIX Conference on Annual Technical Conference. San Jose, CA: USENIX
Association, 2013: 103-114. http://dl.acm.org/citation.cfm?id=2535461.253547
5.

[96] Li B, Ruan Z, Xiao W, et al. Kv-direct: High-performance in-memory key-value
store with programmable nic[C]. in: Proceedings of the 26th Symposium on Op-
erating Systems Principles. 2017: 137-152.

[97] Ziegler T, Tumkur Vani S, Binnig C, et al. Designing Distributed Tree-based
Index Structures for Fast RDMA-capable Networks[C/OL]. in: SIGMOD ’19:
Proceedings of the 2019 International Conference on Management of Data. Am-
sterdam, Netherlands: ACM, 2019: 741-758. http://doi.acm.org/10.1145/329986
9.3300081. DOI: 10.1145/3299869.3300081.

[98] Kraska T, Beutel A, Chi E H, et al. The case for learned index structures[C]. in:
Proceedings of the 2018 International Conference onManagement of Data. 2018:
489-504.

[99] Cooper B F, Silberstein A, Tam E, et al. Benchmarking Cloud Serving Systems
with YCSB[C/OL]. in: SoCC’10: Proceedings of the 1st ACM Symposium on
Cloud Computing. Indianapolis, Indiana, USA: ACM, 2010: 143-154. http://doi
.acm.org/10.1145/1807128.1807152. DOI: 10.1145/1807128.1807152.

[100] OpenStreetMap (OSM) on AWS[EB/OL]. 2021. https://aws.amazon.com/publi
c-datasets/osm.

[101] Lepers B, Balmau O, Gupta K, et al. KVell: the design and implementation of a
fast persistent key-value store[C]. in: Proceedings of the 27th ACM Symposium
on Operating Systems Principles. 2019: 447-461.

— 150 —

http://dl.acm.org/citation.cfm?id=2535461.2535475
http://dl.acm.org/citation.cfm?id=2535461.2535475
http://doi.acm.org/10.1145/3299869.3300081
http://doi.acm.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://aws.amazon.com/public-datasets/osm
https://aws.amazon.com/public-datasets/osm

[102] Lim H, Han D, Andersen D G, et al. {MICA}: A holistic approach to fast in-
memory key-value storage[C]. in: 11th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 14). 2014: 429-444.

[103] Cassell B, Szepesi T,Wong B, et al. Nessie: A decoupled, client-driven key-value
store using RDMA[J]. IEEE Transactions on Parallel and Distributed Systems,
2017, 28(12): 3537-3552.

[104] Mao Y, Kohler E, Morris R T. Cache Craftiness for Fast Multicore Key-value
Storage[C/OL]. in: EuroSys’12: Proceedings of the 7th ACM European Confer-
ence on Computer Systems. Bern, Switzerland: ACM, 2012: 183-196. http://doi
.acm.org/10.1145/2168836.2168855. DOI: 10.1145/2168836.2168855.

[105] BronsonN, Amsden Z, Cabrera G, et al. TAO: Facebook’s DistributedData Store
for the Social Graph[C/OL]. in: 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX Association, 2013: 49-60. https://w
ww.usenix.org/conference/atc13/technical-sessions/presentation/bronson.

[106] Aguilera M K, Keeton K, Novakovic S, et al. Designing Far Memory Data Struc-
tures: Think Outside the Box[C/OL]. in: HotOS’19: Proceedings of the Work-
shop on Hot Topics in Operating Systems. Bertinoro, Italy: Association for Com-
puting Machinery, 2019: 120-126. https://doi.org/10.1145/3317550.3321433.
DOI: 10.1145/3317550.3321433.

[107] Wang Y, Meng X, Zhang L, et al. C-Hint: An Effective and Reliable Cache
Management for RDMA-Accelerated Key-Value Stores[C/OL]. in: SoCC’14:
Proceedings of the ACM Symposium on Cloud Computing. Seattle, WA, USA:
ACM, 2014: 23:1-23:13. http://doi.acm.org/10.1145/2670979.2671002. DOI:
10.1145/2670979.2671002.

[108] Shamis A, Renzelmann M, Novakovic S, et al. Fast General Distributed Trans-
actions with Opacity[C/OL]. in: SIGMOD’19: Proceedings of the 2019 Inter-
national Conference on Management of Data. Amsterdam, Netherlands: Associ-
ation for Computing Machinery, 2019: 433-448. https://doi.org/10.1145/329986
9.3300069. DOI: 10.1145/3299869.3300069.

[109] Guo C, Wu H, Deng Z, et al. RDMA over Commodity Ethernet at Scale[C/OL].
in: SIGCOMM’16: Proceedings of the 2016 ACM SIGCOMM Conference. Flo-

— 151 —

http://doi.acm.org/10.1145/2168836.2168855
http://doi.acm.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.1145/3317550.3321433
https://doi.org/10.1145/3317550.3321433
http://doi.acm.org/10.1145/2670979.2671002
https://doi.org/10.1145/2670979.2671002
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069

rianopolis, Brazil: ACM, 2016: 202-215. http://doi.acm.org/10.1145/2934872.2
934908. DOI: 10.1145/2934872.2934908.

[110] Zhang H, Andersen D G, Pavlo A, et al. Reducing the storage overhead of main-
memory OLTP databases with hybrid indexes[C]. in: Proceedings of the 2016
International Conference on Management of Data. 2016: 1567-1581.

[111] Galakatos A, Markovitch M, Binnig C, et al. FITing-Tree: A Data-Aware Index
Structure[C/OL]. in: SIGMOD’19: Proceedings of the 2019 International Con-
ference onManagement of Data. Amsterdam, Netherlands: Association for Com-
puting Machinery, 2019: 1189-1206. https://doi.org/10.1145/3299869.3319860.
DOI: 10.1145/3299869.3319860.

[112] Graefe G. Write-Optimized B-Trees[C]. in: VLDB ’04: Proceedings of the
Thirtieth International Conference on Very Large Data Bases. Toronto, Canada:
VLDB Endowment, 2004: 672-683.

[113] Sowell B, Golab W, Shah M A. Minuet: A Scalable Distributed Multiversion B-
Tree[J/OL]. Proc. VLDB Endow., 2012, 5(9): 884-895. https://doi.org/10.1477
8/2311906.2311915. DOI: 10.14778/2311906.2311915.

[114] Tang C, Wang Y, Dong Z, et al. XIndex: A Scalable Learned Index for Multicore
Data Storage[C/OL]. in: PPoPP’20: Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. San Diego, Cal-
ifornia: Association for Computing Machinery, 2020: 308-320. https://doi.org/1
0.1145/3332466.3374547. DOI: 10.1145/3332466.3374547.

[115] Ding J, Minhas U F, Yu J, et al. ALEX: An Updatable Adaptive Learned In-
dex[C/OL]. in: SIGMOD ’20: Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. Portland, OR, USA: Association for
Computing Machinery, 2020: 969-984. https://doi.org/10.1145/3318464.338971
1. DOI: 10.1145/3318464.3389711.

[116] Dai Y, Xu Y, Ganesan A, et al. From WiscKey to Bourbon: A Learned Index for
Log-Structured Merge Trees[C/OL]. in: OSDI ’20: 14th USENIX Symposium
on Operating Systems Design and Implementation. USENIX Association, 2020.
https://www.usenix.org/conference/osdi20/presentation/dai.

[117] Gupta M, Cotter A, Pfeifer J, et al. Monotonic Calibrated Interpolated Look-up
Tables[J]. J. Mach. Learn. Res., 2016, 17(1): 3790-3836.

— 152 —

http://doi.acm.org/10.1145/2934872.2934908
http://doi.acm.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.14778/2311906.2311915
https://doi.org/10.14778/2311906.2311915
https://doi.org/10.14778/2311906.2311915
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.1145/3318464.3389711
https://www.usenix.org/conference/osdi20/presentation/dai

[118] You S, Ding D, Canini K, et al. Deep lattice networks and partial monotonic
functions[C]. in: Advances in neural information processing systems. 2017: 2981-
2989.

[119] Blundell C, Lewis E C, Martin M M. Subtleties of Transactional Memory Atom-
icity Semantics[J]. IEEE Computer Architecture Letters, 2006, 5(2).

[120] Intel’s Math kernel library[EB/OL]. 2021. https://software.intel.com/content/w
ww/us/en/develop/tools/math-kernel-library.html.

[121] Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library[G/OL]. in: Wallach H, Larochelle H,
Beygelzimer A, et al. Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019: 8024-8035. http://papers.neurips.cc/paper/9015-p
ytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[122] Robbins H, Monro S. A stochastic approximation method[J]. The annals of math-
ematical statistics, 1951: 400-407.

[123] Martı́n Abadi, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-ScaleMa-
chine Learning on Heterogeneous Systems[EB/OL]. 2015. http://tensorflow.or
g/.

[124] The Transaction Processing Council. TPC-C Benchmark V5.11[EB/OL]. 2021.
http://www.tpc.org/tpcc/.

[125] Cooper B F. YCSB Core Workloads[EB]. 2021.

[126] Atikoglu B, XuY, Frachtenberg E, et al.Workload Analysis of a Large-scale Key-
value Store[C/OL]. in: SIGMETRICS ’12: Proceedings of the 12th ACM SIG-
METRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems. London, England, UK: ACM, 2012: 53-64.
http://doi.acm.org/10.1145/2254756.2254766. DOI: 10.1145/2254756.2254766.

[127] High-Performance Big Data (HiBD). RDMA-based Memcached (RDMA-
Memcached)[EB].

[128] Memcached[EB].

— 153 —

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://tensorflow.org/
http://tensorflow.org/
http://www.tpc.org/tpcc/
http://doi.acm.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766

[129] Nathan V, Ding J, Alizadeh M, et al. Learning Multi-Dimensional In-
dexes[C/OL]. in: SIGMOD ’20: Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data. Portland, OR, USA: Association
for Computing Machinery, 2020: 985-1000. https://doi.org/10.1145/3318464.33
80579. DOI: 10.1145/3318464.3380579.

[130] Wang Y, Tang C, Wang Z, et al. SIndex: A Scalable Learned Index for String
Keys[C/OL]. in: APSys ’20: Proceedings of the 11th ACMSIGOPSAsia-Pacific
Workshop on Systems. Tsukuba, Japan: Association for Computing Machinery,
2020: 17-24. https://doi.org/10.1145/3409963.3410496.

[131] Kallman R, Kimura H, Natkins J, et al. H-Store: A High-performance, Dis-
tributed Main Memory Transaction Processing System[J/OL]. Proc. VLDB En-
dow., 2008, 1(2): 1496-1499. http : / /dx.doi .org/10.14778/1454159.1454211.
DOI: 10.14778/1454159.1454211.

[132] Lamport L, Malkhi D, Zhou L. Vertical Paxos and Primary-backup Replica-
tion[C/OL]. in: PODC’09: Proceedings of the 28th ACM Symposium on Prin-
ciples of Distributed Computing. Calgary, AB, Canada: ACM, 2009: 312-313.
http://doi.acm.org/10.1145/1582716.1582783. DOI: 10.1145/1582716.1582783.

[133] Yu X, Bezerra G, Pavlo A, et al. Staring into the Abyss: An Evaluation of Con-
currency Control with One Thousand Cores[J/OL]. Proc. VLDB Endow., 2014,
8(3): 209-220. http://dx.doi.org/10.14778/2735508.2735511. DOI: 10.14778/27
35508.2735511.

[134] HardingR,VanAkenD, PavloA, et al. An Evaluation ofDistributed Concurrency
Control[J/OL]. Proc. VLDB Endow., 2017, 10(5): 553-564. https://doi.org/10.1
4778/3055540.3055548. DOI: 10.14778/3055540.3055548.

[135] The H-Store Team. SmallBank Benchmark[EB/OL]. 2018. http://hstore.cs.bro
wn.edu/documentation/deployment/benchmarks/smallbank/.

[136] Jin X, Li X, Zhang H, et al. NetCache: Balancing Key-Value Stores with Fast
In-Network Caching[C/OL]. in: SOSP ’17: Proceedings of the 26th Symposium
on Operating Systems Principles. Shanghai, China: ACM, 2017: 121-136. http:
//doi.acm.org/10.1145/3132747.3132764. DOI: 10.1145/3132747.3132764.

— 154 —

https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3409963.3410496
http://dx.doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/1454159.1454211
http://doi.acm.org/10.1145/1582716.1582783
https://doi.org/10.1145/1582716.1582783
http://dx.doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3055540.3055548
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://hstore.cs.brown.edu/documentation/deployment/benchmarks/smallbank/
http://doi.acm.org/10.1145/3132747.3132764
http://doi.acm.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764

[137] Curino C, Jones E, Zhang Y, et al. Schism: A Workload-driven Approach to
Database Replication and Partitioning[J/OL]. Proc. VLDB Endow., 2010, 3(1-
2): 48-57. http://dx.doi.org/10.14778/1920841.1920853. DOI: 10.14778/192084
1.1920853.

[138] Pavlo A, Curino C, Zdonik S. Skew-aware Automatic Database Partitioning in
Shared-nothing, Parallel OLTP Systems[C/OL]. in: SIGMOD’12: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data.
Scottsdale, Arizona, USA: ACM, 2012: 61-72. http://doi.acm.org/10.1145/2213
836.2213844. DOI: 10.1145/2213836.2213844.

[139] Khandelwal A, Agarwal R, Stoica I. BlowFish: Dynamic Storage-Performance
Tradeoff in Data Stores[C/OL]. in: NSDI’16: 13th USENIX Symposium on Net-
worked Systems Design and Implementation. Santa Clara, CA: USENIX Asso-
ciation, 2016: 485-500. https://www.usenix.org/conference/nsdi16/technical-ses
sions/presentation/khandelwal.

[140] Neuvonen S, Wolski A, Manner M, et al. Telecom Application Transaction Pro-
cessing (TATP) Benchmark[EB]. 2011.

[141] The Transaction Processing Council. TPC-E Benchmark V1.14[EB/OL]. 2021.
http://www.tpc.org/tpce/.

[142] Herlihy M, Moss J E B. Transactional memory: Architectural support for lock-
free data structures[C]. in: Proceedings of the 20th annual international sympo-
sium on Computer architecture. 1993: 289-300.

[143] Chen H, Chen R, Wei X, et al. Fast In-Memory Transaction Processing Using
RDMA and HTM[J/OL]. ACM Trans. Comput. Syst., 2017, 35(1): 3:1-3:37. htt
p://doi.acm.org/10.1145/3092701. DOI: 10.1145/3092701.

[144] Mellanox Technologies. NVMe Over Fabrics Standard is Released[EB/OL].
2018. http://www.mellanox.com/blog/2016/06/nvme-over- fabrics- standard
-is-released/.

[145] Mellanox Technologies. Products Overview[EB/OL]. 2018. http://www.mellan
ox.com/page/products_overview.

— 155 —

http://dx.doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.14778/1920841.1920853
http://doi.acm.org/10.1145/2213836.2213844
http://doi.acm.org/10.1145/2213836.2213844
https://doi.org/10.1145/2213836.2213844
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khandelwal
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/khandelwal
http://www.tpc.org/tpce/
http://doi.acm.org/10.1145/3092701
http://doi.acm.org/10.1145/3092701
https://doi.org/10.1145/3092701
http://www.mellanox.com/blog/2016/06/nvme-over-fabrics-standard-is-released/
http://www.mellanox.com/blog/2016/06/nvme-over-fabrics-standard-is-released/
http://www.mellanox.com/page/products_overview
http://www.mellanox.com/page/products_overview

[146] Daglis A, Ustiugov D, Novaković S, et al. SABRes: Atomic Object Reads
for In-memory Rack-scale Computing[C/OL]. in: MICRO-49: The 49th An-
nual IEEE/ACM International Symposium onMicroarchitecture. Taipei, Taiwan:
IEEE Press, 2016: 6:1-6:13. http://dl.acm.org/citation.cfm?id=3195638.319564
6.

[147] Raikin S, Liss L, Shachar A, et al. Remote transactional memory[EB]. 2015.

[148] Zhu Y, Eran H, Firestone D, et al. Congestion Control for Large-Scale RDMA
Deployments[C/OL]. in: SIGCOMM’15: Proceedings of the 2015 ACMConfer-
ence on Special Interest Group on Data Communication. London, United King-
dom: ACM, 2015: 523-536. http://doi.acm.org/10.1145/2785956.2787484. DOI:
10.1145/2785956.2787484.

[149] Ajoux P, Bronson N, Kumar S, et al. Challenges to adopting stronger consistency
at scale[C]. in: 15thWorkshop on Hot Topics in Operating Systems (HotOS XV).
2015.

[150] Bernstein P A, Goodman N. Multiversion Concurrency Control Theory and Al-
gorithms[J/OL]. ACM Trans. Database Syst., 1983, 8(4): 465-483. http://doi.ac
m.org/10.1145/319996.319998. DOI: 10.1145/319996.319998.

[151] Wu Y, Arulraj J, Lin J, et al. An Empirical Evaluation of In-memory Multi-
version Concurrency Control[J/OL]. Proc. VLDB Endow., 2017, 10(7): 781-
792. https : / / doi . org /10 .14778 /3067421 .3067427. DOI: 10 .14778 /3067421
.3067427.

[152] PostgreSQL[EB].

[153] Oracle Database Concepts: Data Concurrency and Consistency[EB]. 2017.

[154] MySQL/InnoDB[EB].

[155] Sikka V, Färber F, Lehner W, et al. Efficient transaction processing in SAP
HANA database: the end of a column store myth[C]. in: Proceedings of the 2012
ACM SIGMOD International Conference on Management of Data. 2012: 731-
742.

[156] Binnig C, Crotty A, Galakatos A, et al. The end of slow networks: It’s time for a
redesign[J]. Proceedings of the VLDB Endowment, 2016, 9(7): 528-539.

— 156 —

http://dl.acm.org/citation.cfm?id=3195638.3195646
http://dl.acm.org/citation.cfm?id=3195638.3195646
http://doi.acm.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484
http://doi.acm.org/10.1145/319996.319998
http://doi.acm.org/10.1145/319996.319998
https://doi.org/10.1145/319996.319998
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.14778/3067421.3067427

[157] Pavlo A, Aslett M. What’s Really New with NewSQL?[J/OL]. SIGMOD Rec.,
2016, 45(2): 45-55. http://doi.acm.org/10.1145/3003665.3003674. DOI: 10.114
5/3003665.3003674.

[158] Peng D, Dabek F. Large-scale Incremental Processing Using Distributed Trans-
actions andNotifications[C/OL]. in: 9th USENIX Symposium onOperating Sys-
tems Design and Implementation (OSDI 10). Vancouver, BC: USENIX Associ-
ation, 2010. https://www.usenix.org/conference/osdi10/large-scale-incremental
-processing-using-distributed-transactions-and.

[159] Binnig C, Hildenbrand S, Färber F, et al. Distributed snapshot isolation: global
transactions pay globally, local transactions pay locally[J]. The VLDB Journal,
2014, 23(6): 987-1011.

[160] Akkoorath D D, Tomsic A Z, Bravo M, et al. Cure: Strong semantics meets high
availability and low latency[C]. in: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS). 2016: 405-414.

[161] Vasudevan V, Kaminsky M, Andersen D G. Using vector interfaces to deliver
millions of IOPS from a networked key-value storage server[C]. in: Proceedings
of the Third ACM Symposium on Cloud Computing. 2012: 8.

[162] Balakrishnan M, Malkhi D, Wobber T, et al. Tango: Distributed data structures
over a shared log[C]. in: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. 2013: 325-340.

[163] Lim H, Kaminsky M, Andersen D G. Cicada: Dependably fast multi-core in-
memory transactions[C]. in: Proceedings of the 2017 ACM International Confer-
ence on Management of Data. 2017: 21-35.

[164] Larson P Å, Blanas S, Diaconu C, et al. High-performance concurrency control
mechanisms for main-memory databases[J]. Proceedings of the VLDB Endow-
ment, 2011, 5(4): 298-309.

[165] Faleiro J M, Abadi D J. Rethinking serializable multiversion concurrency con-
trol[J]. Proceedings of the VLDB Endowment, 2015, 8(11): 1190-1201.

[166] Baker J, Bond C, Corbett J C, et al. Megastore: Providing Scalable, Highly Avail-
able Storage for Interactive Services.[C]. in: CIDR’11: Proceedings of the 5th
biennial Conference on Innovative Data Systems Research. 2011: 223-234.

— 157 —

http://doi.acm.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
https://www.usenix.org/conference/osdi10/large-scale-incremental-processing-using-distributed-transactions-and
https://www.usenix.org/conference/osdi10/large-scale-incremental-processing-using-distributed-transactions-and

[167] Ding B, Kot L, Demers A, et al. Centiman: Elastic, High Performance Optimistic
Concurrency Control by Watermarking[C/OL]. in: SoCC ’15: Proceedings of
the Sixth ACM Symposium on Cloud Computing. Kohala Coast, Hawaii: ACM,
2015: 262-275. http://doi.acm.org/10.1145/2806777.2806837. DOI: 10.1145/28
06777.2806837.

[168] Li J, Michael E, Ports D R. Eris: Coordination-free consistent transactions using
in-network concurrency control[C]. in: Proceedings of the 26th Symposium on
Operating Systems Principles. 2017: 104-120.

[169] Larson P, Blanas S, Diaconu C, et al. High-performance Concurrency Control
Mechanisms for Main-memory Databases[J/OL]. Proc. VLDB Endow., 2011,
5(4): 298-309. http://dx.doi.org/10.14778/2095686.2095689. DOI: 10.14778/20
95686.2095689.

[170] Reimer M. Solving the Phantom Problem by Predicative Optimistic Concurrency
Control[C/OL]. in: VLDB ’83: Proceedings of the 9th International Conference
on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1983: 81-88. http://dl.acm.org/citation.cfm?id=645911.671118.

[171] Mohan C. ARIES/KVL: A Key-value Locking Method for Concurrency Control
ofMultiaction Transactions Operating on B-tree Indexes[C/OL]. in: Proceedings
of the Sixteenth International Conference on Very Large Databases. Brisbane,
Australia: Morgan Kaufmann Publishers Inc., 1990: 392-405. http://dl.acm.org/c
itation.cfm?id=94362.94465.

[172] Terry D B, Demers A J, Petersen K, et al. Session Guarantees for Weakly Consis-
tent ReplicatedData[C/OL]. in: PDIS ’94: Proceedings of the Third International
Conference on on Parallel and Distributed Information Systems. Autin, Texas,
USA: IEEE Computer Society Press, 1994: 140-150. http://dl.acm.org/citation.c
fm?id=381992.383631.

[173] Terry D, Prabhakaran V, Kotla R, et al. Transactions with Consistency Choices
on Geo-Replicated Cloud Storage[J/OL]., 2013. https://www.microsoft.com/en
-us/research/publication/transactions-with-consistency-choices-on-geo-replicat
ed-cloud-storage/.

— 158 —

http://doi.acm.org/10.1145/2806777.2806837
https://doi.org/10.1145/2806777.2806837
https://doi.org/10.1145/2806777.2806837
http://dx.doi.org/10.14778/2095686.2095689
https://doi.org/10.14778/2095686.2095689
https://doi.org/10.14778/2095686.2095689
http://dl.acm.org/citation.cfm?id=645911.671118
http://dl.acm.org/citation.cfm?id=94362.94465
http://dl.acm.org/citation.cfm?id=94362.94465
http://dl.acm.org/citation.cfm?id=381992.383631
http://dl.acm.org/citation.cfm?id=381992.383631
https://www.microsoft.com/en-us/research/publication/transactions-with-consistency-choices-on-geo-replicated-cloud-storage/
https://www.microsoft.com/en-us/research/publication/transactions-with-consistency-choices-on-geo-replicated-cloud-storage/
https://www.microsoft.com/en-us/research/publication/transactions-with-consistency-choices-on-geo-replicated-cloud-storage/

[174] Lu H, Veeraraghavan K, Ajoux P, et al. Existential Consistency: Measuring and
Understanding Consistency at Facebook[C/OL]. in: SOSP ’15: Proceedings of
the 25th Symposium on Operating Systems Principles. Monterey, California:
ACM, 2015: 295-310. http : / / doi . acm.org /10 .1145 /2815400 .2815426. DOI:
10.1145/2815400.2815426.

[175] Kim K, Wang T, Johnson R, et al. Ermia: Fast memory-optimized database sys-
tem for heterogeneous workloads[C]. in: Proceedings of the 2016 International
Conference on Management of Data. 2016: 1675-1687.

[176] Neumann T, Mühlbauer T, Kemper A. Fast serializable multi-version concur-
rency control for main-memory database systems[C]. in: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. 2015: 677-
689.

[177] Wu Y, Arulraj J, Lin J, et al. An empirical evaluation of in-memory multi-version
concurrency control[J]. Proceedings of the VLDBEndowment, 2017, 10(7): 781-
792.

[178] Leis V, Kemper A, Neumann T. Exploiting hardware transactional memory in
main-memory databases[C]. in: ICDE’14: IEEE 30th International Conference
on Data Engineering. 2014: 580-591.

[179] Cahill M J, Röhm U, Fekete A D. Serializable Isolation for Snapshot
Databases[J/OL]. ACM Trans. Database Syst., 2009, 34(4): 20:1-20:42. http://d
oi.acm.org/10.1145/1620585.1620587. DOI: 10.1145/1620585.1620587.

[180] Sovran Y, Power R, Aguilera M K, et al. Transactional storage for geo-replicated
systems[C]. in: Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles. 2011: 385-400.

[181] Bailis P, Fekete A, Ghodsi A, et al. Scalable atomic visibility with RAMP trans-
actions[J]. ACM Transactions on Database Systems (TODS), 2016, 41(3): 15.

[182] Ports DR, Clements AT, Zhang I, et al. Transactional Consistency andAutomatic
Management in an Application Data Cache.[C]. in: OSDI: vol. 10. 2010: 1-15.

[183] Roohitavaf M, Demirbas M, Kulkarni S. Causalspartan: Causal consistency for
distributed data stores using hybrid logical clocks[C]. in: 2017 IEEE 36th Sym-
posium on Reliable Distributed Systems (SRDS). 2017: 184-193.

— 159 —

http://doi.acm.org/10.1145/2815400.2815426
https://doi.org/10.1145/2815400.2815426
http://doi.acm.org/10.1145/1620585.1620587
http://doi.acm.org/10.1145/1620585.1620587
https://doi.org/10.1145/1620585.1620587

[184] Bernstein P A, Goodman N. Timestamp-based algorithms for concurrency con-
trol in distributed database systems[C]. in: Proceedings of the sixth international
conference on Very Large Data Bases-Volume 6. 1980: 285-300.

[185] Adya A, Gruber R, Liskov B, et al. Efficient Optimistic Concurrency Control
Using Loosely Synchronized Clocks[C/OL]. in: SIGMOD ’95: Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data. San
Jose, California, USA: ACM, 1995: 23-34. http://doi.acm.org/10.1145/223784.2
23787. DOI: 10.1145/223784.223787.

[186] Cowling J, Liskov B. Granola: Low-Overhead Distributed Transaction Coordina-
tion[C/OL]. in: Presented as part of the 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12). Boston, MA: USENIX, 2012: 223-235. https://ww
w.usenix.org/conference/atc12/technical-sessions/presentation/cowling.

[187] Levandoski J, Lomet D, Sengupta S, et al. High performance transactions in
deuteronomy[J]., 2015.

[188] Levandoski J, Lomet D, Sengupta S, et al. Multi-version range concurrency con-
trol in Deuteronomy[J]. Proceedings of the VLDB Endowment, 2015, 8(13):
2146-2157.

[189] Lomet D, Fekete A, Wang R, et al. Multi-version Concurrency via Timestamp
Range Conflict Management[C]. in: ICDE: IEEE 28th International Conference
on Data Engineering. 2012: 714-725.

[190] Mahmoud H A, Arora V, Nawab F, et al. MaaT: Effective and Scalable Coor-
dination of Distributed Transactions in the Cloud[J/OL]. Proc. VLDB Endow.,
2014, 7(5): 329-340. http://dx.doi.org/10.14778/2732269.2732270. DOI: 10.147
78/2732269.2732270.

[191] Yu X, Pavlo A, Sanchez D, et al. TicToc: Time Traveling Optimistic Concurrency
Control[C/OL]. in: SIGMOD ’16: Proceedings of the 2016 International Con-
ference on Management of Data. San Francisco, California, USA: ACM, 2016:
1629-1642. http://doi.acm.org/10.1145/2882903.2882935. DOI: 10.1145/28829
03.2882935.

[192] Du J, Elnikety S, Zwaenepoel W. Clock-SI: Snapshot isolation for partitioned
data stores using loosely synchronized clocks[C]. in: IEEE 32nd International
Symposium on Reliable Distributed Systems (SRDS). 2013: 173-184.

— 160 —

http://doi.acm.org/10.1145/223784.223787
http://doi.acm.org/10.1145/223784.223787
https://doi.org/10.1145/223784.223787
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cowling
http://dx.doi.org/10.14778/2732269.2732270
https://doi.org/10.14778/2732269.2732270
https://doi.org/10.14778/2732269.2732270
http://doi.acm.org/10.1145/2882903.2882935
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.1145/2882903.2882935

[193] Yu X, Xia Y, Pavlo A, et al. Sundial: Harmonizing Concurrency Control and
Caching in a Distributed OLTP Database Management System[J/OL]. Proc.
VLDB Endow., 2018, 11(10): 1289-1302. https : / /doi .org /10 .14778/3231751
.3231763. DOI: 10.14778/3231751.3231763.

[194] Cao W, Liu Z, Wang P, et al. PolarFS: An Ultra-Low Latency and Failure Re-
silient Distributed File System for Shared Storage Cloud Database[J/OL]. Proc.
VLDB Endow., 2018, 11(12): 1849-1862. https://doi.org/10.14778/3229863.32
29872. DOI: 10.14778/3229863.3229872.

— 161 —

https://doi.org/10.14778/3231751.3231763
https://doi.org/10.14778/3231751.3231763
https://doi.org/10.14778/3231751.3231763
https://doi.org/10.14778/3229863.3229872
https://doi.org/10.14778/3229863.3229872
https://doi.org/10.14778/3229863.3229872

	Title Page
	Contents
	Chapter 1 Introduction
	1.1 Opportunities and challenges of using RDMA and NVM for distributed transactions
	1.2 Thesis contributions
	1.3 Thesis overview
	1.4 Open-source code

	Chapter 2 A Study of using RDMA and NVM
	2.1 Evaluation clusters
	2.2 R2: a high-performance execution framework with RDMA
	2.2.1 Background on RDMA
	2.2.2 Basic design of R2
	2.2.3 Optimizations review and passive ACK
	2.2.4 A primitive-level performance analysis
	2.2.5 Summary: offloading when completion is required
	2.2.6 Related work on RDMA-aware optimizations

	2.3 RDPMA: fast remote persistent memory with RDMA and NVM
	2.3.1 Introduction
	2.3.2 Background on NVM
	2.3.3 Methodology
	2.3.4 Design advice for RDMA-NVM systems
	2.3.5 RDPMA and improved system design
	2.3.6 Summary
	2.3.7 Related work on NVM

	2.4 Discussion and future trends
	2.5 Conclusion

	Chapter 3 Learned cache for RDMA-based Ordered Key-value Store
	3.1 Background of RDMA-based ordered key-value store
	3.2 Analysis of RDMA-based ordered key-value stores
	3.3 An overview of XStore
	3.4 Design and implementation of XStore
	3.4.1 Data structures
	3.4.2 Client-direct operations
	3.4.3 Server-centric operations
	3.4.4 Durability
	3.4.5 Scaling out XStore

	3.5 Implementation of XModel
	3.5.1 Implementation of ML models
	3.5.2 ML Model selection

	3.6 Discussion
	3.7 Evaluation
	3.7.1 Experimental Setup
	3.7.2 YCSB performance
	3.7.3 Effects of optimizations
	3.7.4 Production workload performance
	3.7.5 Scale-out performance
	3.7.6 Model (re-)training and expansion
	3.7.7 Memory footprint of XCache
	3.7.8 Data distribution
	3.7.9 Durability

	3.8 Related work on learned index
	3.9 Conclusion

	Chapter 4 Phase-by-phase Analysis for Hybrid RDMA-enabled Concurrency Control
	4.1 Background on RDMA-enabled distributed transactions
	4.2 One-sided vs. Two-sided: an on-going debate
	4.3 A phase-by-phase performance analysis
	4.3.1 Execution (E)
	4.3.2 Validation (V)
	4.3.3 Commit (C)
	4.3.4 Logging (L)
	4.3.5 Read-only transaction (R+V)

	4.4 DrTM+H: Fast transactions using hybrid schemes
	4.4.1 Design of DrTM+H
	4.4.2 Performance evaluation
	4.4.3 Comparison against prior designs

	4.5 Discussion
	4.5.1 Related work on RDMA-enabled systems

	4.6 Conclusion

	Chapter 5 Using DST for Scalable Multi-version Concurrency Control
	5.1 Background and motivation
	5.1.1 Target systems
	5.1.2 MVCC and timestamps
	5.1.3 Analysis of network overhead

	5.2 Decentralized scalar timestamp (DST)
	5.2.1 Timestamps in read-write transaction
	5.2.2 Timestamps in read-only transaction
	5.2.3 Proof of correctness
	5.2.4 Hybrid timestamp and bounded staleness
	5.2.5 Failure and recovery

	5.3 Generality of DST
	5.3.1 A guideline for integrating DST
	5.3.2 Case study

	5.4 Discussion
	5.5 Evaluation
	5.5.1 DrTM+H
	5.5.2 MySQL cluster
	5.5.3 Rococo
	5.5.4 A study of DST cost

	5.6 Related work on timestamps
	5.7 Conclusion

	Chapter 6 Put It All Together: A Fast Distributed Transaction System
	6.1 RDMA-friendly storage layer
	6.1.1 Evaluations

	6.2 RDMA-friendly transaction execution layer
	6.3 Supporting durability with RDPMA
	6.3.1 Evaluations

	6.4 Conclusion

	Conclusion
	Bibliography

