
XIndex: A Scalable Learned Index for
Multicore Data Storage

Chuzhe Tang†‡, Youyun Wang†‡, Zhiyuan Dong†‡, Gansen Hu†‡
Zhaoguo Wang†‡, Minjie Wang⋄, Haibo Chen†‡

† Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
‡ Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

⋄ Department of Computer Science, New York University

Abstract
We present XIndex, a concurrent ordered index designed
for fast queries. Similar to a recent proposal of the learned
index, XIndex uses learned models to optimize index effi-
ciency. Comparing with the learned index, XIndex is able to
effectively handle concurrent writes without affecting the
query performance by leveraging fine-grained synchroniza-
tion and a new compaction scheme, Two-Phase Compaction.
Furthermore, XIndex adapts its structure according to run-
time workload characteristics to support dynamic workload.
We demonstrate the advantages of XIndex with both YCSB
and TPC-C (KV), a TPC-C variant for key-value stores. XIn-
dex achieves up to 3.2× and 4.4× performance improvement
comparing with Masstree and Wormhole, respectively, on a
24-core machine, and it is open-sourced1.

CCS Concepts • Information systems → Data struc-
tures; • Theory of computation → Concurrent algo-
rithms.

1 Introduction
The pioneering study on the learned index [15] opens up a
new perspective on how machine learning can re-sculpt the
decades-old system component, indexing structure. The key
idea of the learned index is to use learned models to approx-
imate indexes. It trains the model with records’ keys and
their positions, then uses the model to predict the position
with the given key.

1https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6818-6/20/02. . . $15.00
https://doi.org/10.1145/3332466.3374547

To deliver high lookup performance, the learned index
uses simple learned models such as linear models or single-
layer neural networks. To accommodate to the limited capac-
ity of simple models (inability to well fit complex functions),
the learned index adds extra requirements on the data lay-
out. For instance, to learn an ordered index, it requires the
data to be both ordered and contiguous, so the key-position
mapping is easier to learn. Using simple learned models, the
learned index2 performs 1.5-3× better than B-tree [15].
However, the current study of the learned index is still

preliminary and lacks practicability in a broad class of real-
world scenarios because of two limitations. First, it does not
support any modifications, including inserts, updates, or re-
moves. Second, it assumes the workload has a relative static
query distribution3 — it assumes all data are uniformly ac-
cessed. Nevertheless, making the learned index practical for
dynamic workloads with writes is not an easy task, because
its high performance is tied closely to both data distribution
and query distribution, especially for ordered index. First,
the learned index requires simple data distribution by en-
forcing ordered and contiguous data layout. Thus, it needs
to reconstruct the layout and retrain the model to handle
every write request. Although there are proposals [9, 18]
which try to handle writes for the learned index efficiently,
none of them can ensure the correctness in the face of con-
current operations. Second, the learned index is sensitive to
the changes of the data and query distribution at runtime.
Its current design employs several learned models, and each
is in charge of a portion of data. However, the prediction
error of every model varies. At the same time, queries in real-
world workloads tend to be skew, where some “hot” keys
are much more frequently queried than others [7, 10, 16, 25].
As a result, when the models that index those hot keys have
large errors, queries can incur high overhead (Section 2.2).

In this paper, we present XIndex, a new fully-fledged con-
current index structure inspired by the learned index. While
XIndex leverages learned models to speed up the lookup, it
can handle concurrent writes efficiently with good scalability.

2In following paragraphs, we refer to the learned range index proposed in
[15] as “the learned index”.

3The query distribution describes the access frequencies of keys among
queries within a specific workload. By contrast, data distribution describes
the keys and their lookup positions within a dataset.

https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
https://doi.org/10.1145/3332466.3374547

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

Moreover, it is designed to adapt its structure deterministi-
cally at runtime and decouple its efficiency from runtime
workload characteristics. Specifically, this paper makes the
following contributions:

A scalable and concurrent learned index, XIndex.
With understandings of the learned index’s pros and cons,
XIndex range-partitions data into different groups, each at-
tached with learned models for lookup and a delta index
to handle inserts. To achieve high performance, XIndex ex-
ploits a combination of innovative methods (e.g., Two-Phase
Compaction) and classic techniques (e.g., read-copy-update
(RCU) [21], optimistic concurrency control [3, 4, 20]).

Data structure adjustment according to runtime
workload characteristics. Unlike B-tree, whose structure
is decided by the fanout, XIndex adapts its structure to run-
time workload characteristics through structure update op-
erations, such as group split and group merge. Users can
configure the expected behaviors through parameters such
as error bound threshold and delta index size threshold.

Implementation and evaluation withmacro andmi-
cro benchmarks. We implement XIndex and compare it
against state-of-the-art structures (The learned index [15],
Wormhole [24], Masstree [20] and stx::Btree [1]). The bench-
marks we used include different microbenchmarks, the YCSB
benchmark, and the TPC-C (KV) benchmark, which is a TPC-
C variant for key-value stores. The experimental results show
that, with 24 CPU cores, XIndex achieves up to 3.2× and
4.4× performance improvement comparing with Masstree
and Wormhole, respectively.
The rest of the paper is organized as follows: Section 2

describes the background and motivation; Section 3 gives
the design of XIndex; Section 4, 5, 6 present the concur-
rent support, the runtime structure adjustment strategy, and
optimizations accordingly; Section 7 shows the evaluation
results; Section 8 provides a short discussion on alternative
design choices and limitations; Section 9 summarizes related
works; Section 10 concludes this paper.

2 Background & Motivation
2.1 The learned index
The insight of the learned index is that range indexes can
be viewed as functions mapping keys to data positions. For
fixed-length key-value records, assuming they are sorted in
an array, this function is effectively a cumulative distribution
function (CDF) of keys’ distribution. Given the CDF F , the
position of a record is ⌊F (key) × N ⌋, where N is the total
number of records.

The core idea behind the learned index is to approximate
the CDF with machine learning models, such as deep neural
networks, and predict record positions using models. In or-
der to provide the correctness guarantee despite prediction
errors, the learned index stores the maximal and minimal
prediction errors of the model. After training the model,

 0

 1

 2

 3

100 1k 10k 100k 1M 10M 100M 1G

Dataset Size

stx::Btree

3
9

.3

2
2

.7

1
1

.8

7
.5

4
.8

2
.5

1
.5

0
.6

Learned

Figure 1. The learned index throughput normalized to
stx::Btree. The numbers are stx::Btree’s absolute throughputs
in MOPS. The learned index uses 10k models in 2-staged
RMI where both stages use linear models. stx::Btree uses the
default fanout, 16.

the learned index calculates the errors by taking the differ-
ence between the actual and predicted positions of each key
and stores the maximum and minimum. For a record in the
sorted array, its actual position must fall in [pred(key) +
min_err , pred(key) +max_err], where pred(key) is the pre-
dicted position. Therefore, the learned index uses binary
search within the range to locate the record. We use error
bound, loд2(max_err − min_err + 1), to express the cost
of lookup. The learned index will be more effective with
a smaller error bound. In contrast with common machine
learning practices where model generalization matters, the
learned index expects the model to overfit to reduce errors
over existing data.
However, using a single model to learn the entire CDF

falls short in prediction accuracy due to the complexity of
CDFs. To improve the prediction accuracy and reduce the
error bound, the paper proposes a staged model architec-
ture, termed Recursive Model Indexes (RMI). RMI contains
multiple stages of models, which resemble the multi-level
structure of B-tree. The model at each internal stage predicts
which model to be activated at the next stage; the model in
the leaf stage directly predicts the CDF values. With RMI ar-
chitecture, each leaf stage model only approximates a small
part of the complete CDF, a much simpler function to learn,
which in turn reduces the model error bounds.

We evaluated the learned index with different dataset
sizes under a normal distribution and compared it against
stx::Btree [1], an open-sourced B-tree (Figure 1). The learned
index can outperform stx::Btree with large datasets (≥ 10k)
due to small binary search costs, while with small datasets,
its performance is limited by the model computation cost.
For example, when the dataset size is 100, the learned index
spends much time on model computation (20 ns out of 42
ns). In contrast, stx::Btree only needs 25 ns to traverse two
nodes for each query. When the dataset size increases, the
learned index’s binary search cost increases much slower
than stx::Btree’s query time and its model computation cost
is constant. For example, when dataset size increases from
1M to 10M, the learned index’s binary search time only grows
37% (68 ns to 94 ns) and the error bound increases from 4.7
to 6.6. However, stx::Btree’s query time increases by 92%

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Data	Array

Delta	Index

New	Data	Arrayr1

copied

r1 ···

op1:	in-place	update	r1
op2:	copy	all	records	from
data	array	&	delta	index

after	r1	is	copied

Data	Array

Delta	Index

r1'
r1 ···

New	Data	Array

in-place
update	is	lost

1 2

3

Figure 2. Consistency issue with concurrent operations.

(207 ns to 399ns). Therefore, the learned index has better
performance than stx::Btree with larger datasets.

2.2 The issues
Despite of the performance advantage of the learned index,
there are two issues that limit its practicability.

First, the learned index does not provide an efficientmethod
to handlewrites, especially under concurrent scenarios. Based
on the current design, an intuitive solution is to buffer all
writes in a delta index, then periodically compact it with
the learned index. The compaction includes merging the
data into a new sorted data array and retraining the mod-
els. Though straightforward, this method suffers from se-
vere slowdown for queries. One reason is that each request
has to first go through the delta index before looking up
the learned index. Considering building the learned index
with 200M records, and using Masstree to be the delta index,
with a workload of 10% writes, the query latency increases
from 530ns to 1557ns due to the cost of searching Masstree.
Another reason is that concurrent requests are blocked by
the compaction, which is time-consuming. It takes up to 30
seconds to compact a delta index of 100k records with the
learned index with 200M records.

A possible improvement for the above method is perform-
ing updates in-placewith a non-blocking compaction scheme.
When we perform updates to existing records in-place, then
only newly inserted records are in the delta index. Thus,
a query can only lookup the delta index when it fails to
find a matching record in the learned index. Meanwhile, to
avoid blocking query requests, we can compact the data
asynchronously with background threads. However, the cor-
rectness issue arises if we simply use these two methods
together — the effect of updates might be lost due to the
data race with background compaction. Let us consider this
example (Figure 2), where operation op1 updates record r1
in-place and operation op2 concurrently merges the delta
index with the learned index into a new data array. With the
following interleaving, op1’s update to r1 will be lost due to
the concurrent compaction: 1) op2 starts the compaction and
copies r1 to the new array; 2) op1 updates r1 in the old array;
3) op2 finishes the compaction, updates the data array, and
retrains the model.

Systems Workloads
Skewed 1 Skewed 2 Skewed 3 Uniform

stx::Btree 1.84 1.86 1.83 1.16
learned index 1.57 3.71 1.41 2.38
Error bound 15.71 5.87 19.52 6.95

Table 1. Performance of stx::Btree and the learned index un-
der different query distributions on the osm dataset. Through-
puts are shown in MOPS. Error bound refers to the average
error bound weighted by models’ access frequencies.

Second, the learned index’s performance is tied closely
to workload characteristics, including both data and query
distributions. This is because the lookup efficiency depends
on the error bounds of specific leaf stage models activated
for the queries. Meanwhile, the error bounds of different
models vary. As a result, the learned index can have worse
performance than B-tree with certain workloads. Table 1
shows the performance of the learned index and stx::Btree
under both uniform and skewed query distributions on the
osm dataset (details in Section 7). Under the uniform query
distribution, all keys have the same chance to be accessed.
Under the skewed query distribution, 95% queries access 5%
hot records, and the hot records of each workload reside
in different ranges. “Skewed 1” chooses hot keys from the
94th to 99th percentiles of the sorted data array. “Skewed
2” chooses from the 35th to 40th, while “Skewed 3” chooses
from the 95th to 100th.

The learned index has better performance than stx::Btree
under the workloads of “Skewed 2” and “Uniform”, but is
outperformed under “Skewed 1” and “Skewed 3”. This is
because under workload “Skewed 1” and “Skewed 3”, the
learned index has much higher average error bounds on
the frequently accessed records, which hinders the query
performance. The underlying cause is that the learned index
only minimizes each model’s error individually, lacking the
consideration for model accuracy differences. Similar results
can be observed in other workloads as well (Section 7.3).

3 XIndex Data Structure
3.1 Overview
XIndex adopts a two-layer architecture design (Figure 3).
The top layer contains a root node which indexes all group
nodes in the bottom layer. The data is divided into groups
by range partitioning. The root node uses a learned RMI
model to index the groups. Each group node uses learned
linear models to index its data. For writes, XIndex performs
updates in-place on existing records, and associates each
group with a delta index to buffer insertions.

XIndex introduces a new compaction scheme, Two-Phase
Compaction (Section 3.4), to compact the delta index condi-
tionally. The compaction is performed in the background and
does not block any concurrent operations. The compaction

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

ro
ot
		n
od
e

gr
ou
p	
no
de
s

RMI	Model

Group	Pointers

Group2Data	Array
Delta	Index

Linear	Models
Groupn···

Figure 3. The architecture of XIndex.

Data	Array

Delta	Index

New	Data	Arrayr1'
p1 ···

concurrent	operations
modify	record

merge	phase:	create	new
data	array	with	pointers

RCU	barrier

r1' ···

New	Data	Array

modification
is	kept

Data	Array

Delta	Index

all	values
are	pointers

copy	phase:	copy	values
from	the	pointers

r1'

Figure 4. Two-phase compaction prevents concurrent oper-
ations being lost.

has two phases: the merge phase and the copy phase. In the
merge phase, XIndex merges the current data array and delta
index into a new data array. Instead of directly copying the
data, XIndex maintains data references in the new data array.
Each reference points to records being compacted, residing
in either the old data array or the delta index. After ensuring
no accesses on the old data array through an RCU barrier,
XIndex performs the copy phase. It replaces each reference
in the new data array with the real value. Considering pre-
vious example (Figure 2) with Two-Phase Compaction in
Figure 4, after the merge phase, the new data array contains
references (e.g., p1) to each record (e.g., r1). If there is a con-
current writer which updates r1 to r ′1, the writer can safely
proceed as the record is already referenced in the new data
array. After an RCU barrier, no thread will access the old
data array anymore. XIndex replaces p1 with r ′1 in the copy
phase.

XIndex is able to adjust its structure according to runtime
workload characteristics (Section 5). At runtime, if some
group incurs high prediction error, XIndex adds more linear
models in that group with “model split” to improve the infer-
ence accuracy. If a group has too many models or its delta
index is too large, XIndex performs group split — replacing
the group with two new groups, each containing the half
data of the old group. XIndex also performsmodel merge and
group merge, if the merging does not affect the prediction

Algorithm 1: Structures
1 struct root_t:
2 rmi_t rmi;
3 uint32_t group_n;
4 key_t pivots[];
5 group_t* groups[];
6

7 struct record_t:
8 key_t key;
9 val_t val;

10 uint64_t // composite 8B
11 is_ptr : 1, removed : 1
12 lock : 1, version : 61;

13 struct group_t:
14 key_t pivot;
15 bool_t buf_frozen;
16 uint16_t model_n;
17 uint32_t array_size;
18 model_t

models[MAX_MODEL_N];
19 record_t data_array[];
20 buffer_t* buf;
21 buffer_t* tmp_buf;
22 group_t* next;

accuracy. Furthermore, if there are too many groups, XIndex
retrains the RMI model of the root node and may adjust its
structure to improve the accuracy.

3.2 Layout
XIndex maintains three basic structures — record_t, root_t,
and group_t, for the record, the root node, and the group
node, respectively (Algorithm 1).
The record_t is the basic representation of the data. It in-

cludes the key (key), the record data (val), and somemetadata.
The is_ptr flag indicates whether val is the actual value or
a memory reference. The removed flag is set when a record
is logically removed. The lock and version are concurrency
control information, which ensures execution exclusiveness
of concurrent operations.
The root_t contains the groups’ information and an RMI

model. The group information includes each group’s address
(groups), their smallest keys (pivots), and the total number of
groups (group_n). The RMI model (rmi) is used to predict the
group with a given key. It is trained with elements in pivots
and their indexes, {(pivots[i], i) | i = 0, . . . , group_n − 1}. In
the current design, XIndex uses a two-stage RMI architecture
solely consisting of linear models. The number of models in
its second stage is adjustable at runtime (Section 5).
The group_t has three basic components: the data, the

models, and the delta index. For the data, all records indexed
by the group is continuously stored in data_array. Each
group uses at least one linear model to index the record
in data_array, and the models are maintained in models.
The model_t includes parameters of the linear model and
the smallest key of the model’s belonging data range. The
buf is the delta index, which buffers all insertions. During
compaction, buf_frozen is set to be true and buf is frozen. The
tmp_buf serves as a temporary delta index, which buffers
all insertions temporarily during the compaction. The next
pointer is used by group split operation (Section 3.5). For
optimization purposes, the group_t maintains its smallest
key in a separate variable, pivot.

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 2: Get and Put
1 get(root, key):
2 group← get_group(root, key)
3 pos← get_position(group, key)
4 val← empty
5 if pos , empty
6 val← read_record(group.data_array[pos])
7 if val = empty
8 val← get_from_buffer(group.buf, key)
9 if val = empty && group.tmp_buf , null

10 val← get_from_buffer(group.tmp_buf, key)
11 return val
12

13 put(root, key, val):
14 retry:
15 group← get_group(root, key)
16 pos← get_position(group, key)
17 if pos , empty
18 if update_record(group.data_array[pos], val) = true
19 return
20 if group.buf_frozen = false
21 insert_buffer(group.buf, key, val)
22 else
23 if update_in_buffer(group.buf, key, val) = true
24 return
25 if group.tmp_buf = null
26 goto retry
27 insert_buffer(group.tmp_buf, key, val)

3.3 Basic operations
XIndex provides basic index interfaces — get, put, remove,
and scan (Algorithm 2). All operations first use the root to
find the corresponding group (Lines 2 and 15), then look
up the position of the requested record in data_array with
the given key (Lines 3 and 16). After then, their procedures
diverge.

To find the corresponding group (get_group), XIndex first
predicts a group number with the RMImodel in the root node
(root.rmi). Then, it corrects the group number with binary
search the root.pivots within an error-bounded range. After
finding a candidate group, it needs to check the group’s next
pointer further. If the pointer is not null, it follows the pointer
to find the corresponding group by comparing group.pivot
with the target key. Checking the next is necessary, this
is because some newly created group may be linked to a
group’s next, and not indexed by the root yet (Section 3.5).
After finding the group group, XIndex tries to look up

the record within its data_array. It first finds the correct
linear model for the prediction. It scans the group.models and
uses the first model whose smallest key is not larger than
the target key. Then, it uses the model to predict a position

Algorithm 3: Two-Phase Compaction
1 compact(group):
2 /* phase 1 */
3 group.buf_frozen← true
4 rcu_barrier()
5 group.tmp_buf ← allocate new delta index
6 new_group← allocate new group
7 new_group.data_array← merge(group.data_array,

group.buf)
8 new_group.buf ← group.tmp_buf
9 train new_group’s models with new_group.data_array

10 init new_group’s other fields
11 old_group← group
12 atomic_update_reference(group, new_group)
13 rcu_barrier()
14 /* phase 2 */
15 for each record in new_group.data_array
16 replace_pointer(record)
17 rcu_barrier()
18 reclaim old_group’s memory

in the group.data_array. Last, it corrects the position with
binary search in a range bounded by the model’s error.

After looking up data_array, the procedures diverge. For
get, if XIndex finds a record matching the requested key
(Line 5) in data_array, then it tries to read a consistent value
with helper function read_record (Line 6). An empty result
indicates a logically removed record. In this case, the get
proceeds to search buf (Line 7-8), then search the temporary
delta index if tmp_buf is not null (Line 9-10). A get request
returns as soon as a non-empty result is fetched, otherwise
it returns empty.
For put and remove, similar to get, if a matching record

is found inside data_array (Line 17), XIndex first tries to
update/remove the record in-place (Line 18). If XIndex cannot
perform update/remove in-place, then it proceeds to operate
on buf (Line 21) and optionally tmp_buf (Line 27) only if
the frozen_buf flag is true (Line 20). For scan, XIndex first
locates the smallest record that is ≥ requested key, and then
consistently reads n consecutive records.

We elaborate on the details of put, remove, and helper func-
tions in conjunction with concurrent background operations
in Section 4 since most subtleties stem from consistency
consideration.

3.4 Compaction
To ensure consistency in face of concurrent operations (Sec-
tion 2.2), XIndex divides the compaction into two phases,
merge phase and copy phase (Algorithm 3).

In the merge phase, XIndex merges a group’s data_array
and buf into a new sorted array where values are pointers to
existing records. XIndex first sets the old group’s buf_frozen
flag to stop newly issued puts inserting to buf (Line 3). Then

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

Algorithm 4: Group Split
1 split(group):
2 /* step 1 */
3 д′a , д′b ← allocate 2 new group
4 {д′a , д′b }.{data_array, buf}← group.{data_array, buf}
5 д′a .pivot← group.pivot
6 д′b .pivot← group.data_array[group.array_size / 2]
7 д′a .next← д′b
8 init other fields of д′a and д′b
9 old_group← group

10 atomic_update_reference(group, д′a)
11 {д′a , д′b }.buf_frozen← true
12 rcu_barrier()
13 {д′a , д′b }.tmp_buf ← allocate new delta indexes
14 /* step 2.1, merge phase */
15 дa , дb ← allocate 2 new groups
16 tmp_array← merge(old_group.data_array,

old_group.buf)
17 {дa , дb }.data_array← split(tmp_array, д′b .pivot)
18 {дa , дb }.buf ← {д′a ,д′b }.tmp_buf
19 train {дa , дb }’s models with {дa , дb }.data rray
20 {дa , дb }.pivot← {д′a , д′b }.pivot
21 дa .next← дb
22 init дa ’s and дb ’s other fields
23 atomic_update_reference(group, дa)
24 rcu_barrier()
25 /* step 2.2, copy phase */
26 for each record in {дa , дb }.data_array
27 replace_pointer(record)
28 rcu_barrier()
29 reclaim {old_group, д′a , д′b }’s memory

XIndex initializes tmp_buf to buffer insertions during com-
paction (Line 5). Afterwards, it creates a new group (Line 6)
and merges the old group’s data_array and buf into the new
group’s data_array (Line 7). In new_group.data_array, the
value of each record is the reference to the corresponding
record in either group.data_array or group.buf, and the is_ptr
flag of each record is set to be true. During merging, XIndex
skips the logically removed records. The old group’s tmp_buf
is reused as the new group’s buf (Line 8). After training lin-
ear models (Line 9) and initializing the remaining metadata
of the new group (Line 10), XIndex atomically replaces the
old group with the new one by changing the group reference
in root’s groups (Line 12).
In the copy phase, XIndex replaces each reference in the

new group’s data_array with the latest record value (Line 16).
The replacement is performed atomically with helper func-
tion replace_pointer (Algorithm 5). XIndex uses rcu_barrier
(Line 17) to wait for each worker to process one request, so
the old group will not be accessed after the barrier. Then it
can safely reclaim the old group’smemory resources (Line 18).

3.5 Structure update
XIndex adapts its structure to dynamic workloads at runtime
(Section 5) with model split/merge, group split/merge, and
root update operations.

Model split/merge. XIndex supports splitting and merg-
ing models within a group to improve lookup efficiency. For
model split, XIndex first clones the group node. Both group
nodes reference the same data_array and buf. Then, it incre-
ments the new node’s model_n, evenly reassigns the group’s
data to each model, and retrains all models. At last, XIndex
atomically updates the group reference in root’s groups to
the new group. For model merge, it essentially performs a
reverse procedure of model split.

Group split. To avoid blocking other operations, XIndex
uses two steps to split a group’s data evenly into two groups
(Algorithm 4).

In step 1, XIndex creates two logical groups. They share
the data and delta index, but each has its own temporary
delta index. As a result, both groups can buffer the inser-
tion in their temporary delta indexes during the split. In
detail, XIndex creates д′a and д′b (Line 3). They share the
same data_array and buf with the old group (Line 4) but
have different pivot keys (Line 5-6). XIndex links д′b to д′a ’s
next field (Line 7) and replaces the old group with д′a in
root’s groups (Line 10). Last, XIndex sets the buf_frozen flag
(Line 11) and allocates tmp_buf for д′a and д′b (Line 13).

In step 2, XIndex physically divides the data into two
groups. Similar to the compaction, this step has two phases.
In the merge phase, XIndex first merges the old group’s
data_array and buf into tmp_array (Line 16). Then, it splits
the tmp_array with the key of д′b .pivot, and initializes two
new groups, дa and дb accordingly (Line 17). It also reuses
the tmp_buf of д′a (д′b) as the buf of дa (дb)[Line 18]. In the
copy phase, for each group, the references in data_array are
replaced with real values (Line 27). Last, XIndex links дb at
дa .next (Line 21) and replaces д′a with дa in root’s groups
(Line 23).

Group merge. XIndex merges two consecutive groups’
data into one new group to reduce the cost to lookup groups.
Similar to the group split, data is merged in two phases. In the
merge phase, both groups’ data_arrays and buf s are merged
together while inserts are buffered in a single shared tmp_buf.
In the copy phase, the merged references are replaced with
concrete values. Finally, among the two consecutive groups
in root’s groups, the former is replaced with the new group
and the latter is marked as null, which will be skipped by
get_group. For brevity, we omit the pseudocode for group
merge.

Root update. XIndex flattens root’s groups to reduce
pointer access cost, retrains, and conditionally adjusts the
RMI model to improve prediction accuracy. For root update,
XIndex creates a new root node with a flattened groups and

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

Algorithm 5: Helper functions
1 read_record(rec):
2 while true
3 ver ← rec.ver
4 removed, is_ptr, val← rec.{removed, is_ptr, val}
5 if !rec.lock && rec.version = ver
6 if removed
7 val← empty
8 else if is_ptr
9 val← read_record(DEREF(val))

10 return val
11

12 update_record(rec, val):
13 lock(rec.lock)
14 succ← false
15 if rec.is_ptr
16 succ← update_record(DEREF(rec.val), val)
17 else if !rec.removed
18 rec.val← val
19 succ← true
20 rec.version ++
21 unlock(rec.lock)
22 return succ
23

24 replace_pointer(rec):
25 lock(rec.lock)
26 ref.val← read_record(DEREF(rec.val))
27 if ref.val = empty
28 rec.removed ← true
29 rec.is_ptr ← false
30 rec.version ++
31 unlock(rec.lock)

retrains the RMImodel. After a new root is initialized, XIndex
replaces the global root pointer atomically.

4 Concurrency
XIndex achieves high scalability on the multicore platform
using Two-Phase Compaction, along with classic techniques
such as fine-grained locking [2, 20, 24], optimistic concur-
rency control [3, 4, 20], and RCU [21]. We first discuss the
coordination between writers that ensures execution exclu-
siveness (Section 4.1), then discuss how readers can always
fetch a consistent result with concurrent writers (Section 4.2).
Afterwards, we discuss the interleaving with concurrent
background operations (Section 4.3) and provide a proof
sketch of the correctness condition (Section 4.4). The formal
proof can be found in the extended version4.

For brevity, we treat remove as a special put, which updates
existing records’ removed flag. We further omit group merge
and root update in the discussion, as the reasoning resembles
4https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf

compaction’s and group split’s. In XIndex, compaction and
structure updates are performed by dedicated background
threads sharing no conflicts, thus avoiding concurrency is-
sues due to their interleavings.

4.1 Writer-writer coordination
XIndex ensures that conflicting writers, put/removes with the
same key, will execute exclusively with the per-record lock
in data_array and the concurrent delta index. All writers
first try to update a matching record in data_array (Line 18,
Algorithm 2), and the per-record lock is acquired to prevent
interleaving with concurrent writers (Line 13, Algorithm 5).
If updating data_array is not feasible, writers then operate on
the delta index (Line 21, Algorithm 2), protected by a single
read-write lock in the basic version. We improve its scalabil-
ity with fine-grained concurrency control as an optimization
(Section 6).

4.2 Writer-reader coordination
XIndex ensures readers can always fetch a consistent re-
sult in face of concurrent writers with locks and versions
in data_array and the concurrent delta index. A get first
tries to read a value from data_array (Line 6, Algorithm 2).
It snapshots the version number before reading the value
(Line 3, Algorithm 5). After the value is fetched (Line 4, Algo-
rithm 5), get validates if the lock is being held (to detect con-
current writer) and if the current version number matches
the snapshot (to detect inconsistent or stale result)[Line 5,
Algorithm 5]. If the validation fails, the get repeats the proce-
dure until a successful validation, so the result is consistent
and the latest. If reading from data_array is not feasible, it
then tries to read from the delta index (Line 8, Algorithm 2).
The concurrent delta index with a single read-write lock
ensures the fetched result is consistent.

4.3 Interleaving with background operations
With the presence of background operations, XIndex ensures
that the effects of writers are preserved and can always be
correctly observed by readers. Space constraints preclude a
full discussion, but we mention two important conditions:
1) no successful put will be lost, and 2) no duplicate records
(records with the same key) will be created5.

To ensure no lost put, the key is to perform data move-
ment in two phases, the merge phase and the copy phase, to
preserve concurrent modifications. During the merge phase,
all records in the old group’s data_array and buf can be
correctly referenced in the new group’s data_array. This is
because both the data_array and buf of the old group are
read- and update-only, as the buf_frozen flag forbids inser-
tions (Line 3, Algorithm 3 and Line 11, Algorithm 4). In the

5Duplicate records do not directly violate correctness, as long as XIndex en-
forces a freshness ordering, data_array ≽ buf ≽ tmp_buf, where data_array
has the latest version. However, doing so requires non-trivial efforts.

https://ipads.se.sjtu.edu.cn/_media/publications/xindex_extended.pdf

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

R: Root, G: Group, M: Model

R

···
M2

M1

M2

M1

G1’

R

···
M1 M1

G1’

R

···
M2

M1

c.Group Split

R

···

G1

M1

a.Model Split

b.Model Merge

R'

···
M1 M1

f.Root Update

d.Group Split

e.Group Merge

b.Model Merge

a.Model Split

G1 G1 G1 G1Gn Gn Gn Gn G2 Gn+1

Figure 5. Dynamic adjustment procedure illustration.

copy phase, those references can be atomically replaced with
latest values by replace_pointer, since it uses the per-record
lock to coordinate with concurrent writers (Line 25, Algo-
rithm 5). To ensure all concurrent writers use the same lock,
XIndex places rcu_barrier before the copy phase (Line 13,
Algorithm 3 and Line 24, Algorithm 4), which waits for each
writer (and reader) to process one request. Therefore, later
conflicting puts will not reference the old group’s data_array.
In addition, concurrent inserts are preserved in the shared
temporary delta index (Line 8, Algorithm 3 and Line 18, Al-
gorithm 4).

To ensure no duplicate records, XIndex avoids insertions
to different delta indexes, namely buf and tmp_buf. XIndex
only initializes tmp_buf until all writers observe a frozen buf
using the rcu_barrier (Line 3-5, Algorithm 3 and Line 11-13,
Algorithm 4). Therefore, whenever tmp_buf is used to serve
requests, the buf is sure to be read- and update-only.

4.4 Proof sketch
The correctness condition of XIndex can be described as “a
get(k) must observe the latest committed put(k, v)”, namely,
linearizability [13]. XIndex formally provides the correctness
condition by ensuring the following inductive invariants. I1)
If there is a put(k, v) committed, then there is exactly one
record with key k in XIndex; I2) If there is a record with
key k in XIndex, then its value equals the value of the last
committed put(k, v); and I3) If there is a record with key k in
XIndex when a get commits, then the get returns the value
of the record.
For I1, in addition to no duplicate records guarantee we

discussed in Section 4.3, XIndex ensures that a new record
will be created by put if no record currently exists yet. This
is obvious as such put will invoke insert_buffer (Lines 21
and 27, Algorithm 2), and the concurrent delta index will
handle the record creation. For I2, the key is to ensure that
no put will be lost, as we discussed in Section 4.3. For I3,
the key is to let get and put have the same lookup order
(data_array→buf→tmp_buf). Since only the last place (buf
when tmp_buf is null, otherwise tmp_buf) is insertable, a
get returning an empty result only indicates that the put that

Operations Trigger Condition

a. Model Split error bound > e and # of models < m
b. Model Merge error bound ≤ e × f and # of models > 1
c. Group Split error bound > e and # of models =m
d. Group Split buf > s
e. Group Merge # of models = 1 and error bound ≤ e × f

and buf ≤ s × f
f. Root Update when groups are created and/or removed

Table 2. Conditions for structure update operations.

creates the record has not yet finished. Therefore, a get can
fetch the value correctly.

5 Adjusting XIndex at Runtime
To reduce the performance variation, XIndex adjusts its struc-
ture according to runtimeworkload characteristics. The basic
idea is to keep both error bound and delta index size small
with structure update operations (model split/merge, group
split/merge, and root update). Several background threads
periodically check error bound and delta index size of each
group and perform corresponding operations accordingly
(Table 2 and Figure 5).

First, XIndex leverages model split to lower the error
bound and model merge to reduce the cost of traversing
a group’s models array. Specifically, when a model’s error
bound is greater than the error bound threshold (e , specified
by the user) and the model number of the corresponding
group is less than the model number threshold (m, specified
by the user), XIndex will do model split (Figure 5-a). When
a model’s error bound is less than or equal to e × f and the
model number of the corresponding group is greater than
one, XIndex will performmodel merge (Figure 5-b). f ∈ (0, 1)
is a tolerance factor specified by the user.
When a model’s error bound is greater than e , but the

model number of the corresponding group equalsm, XIndex
will perform group split (Figure 5-c). Besides, if a group’s
delta index size is greater than the delta index size threshold
(s , specified by the user), XIndex will also split the group
(Figure 5-d). To reduce the cost of locating a group in the

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

root, XIndex performs group merge (Figure 5-e) when the
following conditions hold — for two neighboring groups, 1)
they both only have one model and the model’s error bounds
are less than or equal to e × f ; and 2) their delta index sizes
are both less than or equal to s × f .

XIndex periodically updates the root to reduce the access
cost. Specifically, XIndex first checks all groups and perform
model split/merge and group split/merge accordingly. If there
is any group created or removed, XIndex then performs root
update (Figure 5-f). During root update, if the average error
bound is greater than e , XIndex will increase the number of
2nd stage models of root’s 2-stage RMI6. If the average error
bound is less than or equal to e × f , XIndex reduces models.

6 Optimization
Scalable delta index. In the basic version, XIndex uses
stx::Btree protected by a global read-write lock as its delta
index. This limits the scalability when concurrent writers
insert records to the same group. One possible solution is di-
rectly using Masstree as the delta index. However, Masstree
provides unnecessary functionalities such as supporting vari-
able length, multi-column values, and epoch-based memory
reclamation. Thus, we implement a scalable delta index with
a simplified design — each index node has a version to ensure
that a get request can always fetch consistent content of the
node and a lock to protect node update and split.

Sequential insertion. Sequential insertion is a common
pattern in real-world workloads, such as periodically check-
pointing. For such cases, the user can provide hints to XIndex
so that XIndex can pre-allocate space to allow appending
records directly to data_array and conditionally retrain mod-
els. Specifically, each group maintains an additional capacity
field and a per-group lock. Only when XIndex detects the
sequential insertion pattern, will it use the lock to coordi-
nate concurrent sequential insertions. Otherwise, the lock is
not used, so the scalability of XIndex is intact. Since many
sequential insertion workloads have relatively static data
distribution, XIndex only retrains models when the current
model cannot generalize to newly appended data, namely,
when the error bound exceeds the threshold.

7 Evaluation
We evaluate XIndex with complex workloads as well as
micro-benchmarks of different characteristics and compare
it against state-of-the-art systems.

Benchmarks.We develop a TPC-C (KV) benchmark by
implementing TPC-C benchmark with only get and put op-
erations, which is the same as [20]. We assign 8 distinct
warehouses to each thread as their local warehouses for eval-
uation. Since XIndex does not support transactions, in order
to avoid the impact of transaction abortions due to conflicts,
we eliminate the conflicts by manipulating each thread to
6The number of models stops increasing when it reaches a given limit.

Name Description

linear Linear dataset with added noises
normal Normal distribution (µ = 0, σ = 1), scaled to

[0, 1 × 1012]
lognormal Lognormal distribution (µ = 0, σ = 2), scaled to

[0, 1 × 1012]
osm Longitude values of OpenStreetMap locations

scaled to [0, 3.6 × 109]

Table 3. Datasets. For the linear dataset, we first generate
keys {i × A | i = 1, 2, . . . }, then add a uniform random
bias ranging in [−A/2,A/2] for each key, where A = 1 ×
1014/dataset size. All keys are integers.

execute remote transactions on one of their own local ware-
houses. TPC-C (KV) benchmark can evaluate index systems
under data and query distribution of real-world database
workload while not requiring transaction support. YCSB
includes six representative workloads (A-F) with different
access patterns: update heavy (A), read mostly (B), read-
only (C), read latest (D), short ranges (E) and, read-modify-
write (F). For YCSB, besides its default data distribution, we
also evaluate with a real-world dataset OpenStreetMap [6].
For microbenchmarks, we evaluate the performance under
workloads with fixed read-write ratios (Section 7.2), under
dynamic workloads (Section 7.3). We also analyze different
factors that affect the performance in Section 7.4. All datasets
used are listed in Table 3. The default dataset size is 200M
unless otherwise noted, and each record has 8 bytes key and
8 bytes value by default.

Counterparts. stx::Btree [1] is an efficient, but thread-
unsafe B-tree implementation. Masstree [20] is a concurrent
index structure that hybrids B-tree and Trie. When the key
size is 8 bytes, Masstree can be regarded as a scalable con-
current B-tree. Wormhole [24] is a concurrent hybrid index
structure that replaces B-tree’s inner nodes with a hash-
table encoded Trie. The learned index [15] is the original
learned index. “learned+∆” is the learned index attached
with a Masstree as delta index, which buffers all writes.

Configuration&Testbed.We implement XIndex in C++,
and configure 1 out 12 threads as dedicated background
threads. Background thread(s) sleeps one second after it has
checked all groups and root to perform compaction and struc-
ture update accordingly. Throughout all experiments, the
error bound threshold (e) is 32, the delta index size threshold
(s) is 256, the tolerance factor (f) is 1

4 , and the model number
threshold (m) is 4. For the learned index, we test different
configurations and pick the best one — 250k models in the
2nd stage.7 For “learned+∆”, we use the same background
threads as XIndex for compaction. For stx::Btree, Masstree,
and Wormhole, we directly run their source code with the
default setting. For each experiment, we first warmup all the
7The candidates’ model number ranges from 50k to 500k (step is 50k).

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

0.5

1

1.5

2

2.5

3

 1 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
(1

0
6
 o

p
s
/s

)

Number of Threads

XIndex
Learned+∆

Masstree

Figure 6. TPC-C (KV) throughput.

0

40

80

120

160

A B C D E F
YCSB Workloads (Origin Keys)

XIndex

5
.7

2

Learned+∆

1
.9

2

Wormhole

1
.5

1

Masstree

4
.0

6

0

10

20

30

40

A B C D E F

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

YCSB Workloads (OSM Keys)

4
.7

7
1
.1

1
1
.9

7
1
.5

4

Figure 7. YCSB throughput.

0

5

10

15

20

25

30

 1 4 8 12 16 20 24

T
h

ro
u

g
h

p
u

t
(1

0
6
 o

p
s
/s

)

Number of Threads

XIndex
Learned+∆

Wormhole
Masstree

Figure 8. Read-write throughput.

0

1

2
(T= 1)

R
e
a
d

 L
a
te

n
c
y
 (

µ
s
)

XIndex Learned+∆ Wormhole Masstree

0

0.5

1

1.5
(T= 1)

0

10

20

30

10 20 30 40 50

(T= 24)

T
h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)

Write Ratio (%)

Figure 9. Read-write throughput and read latency with the
normal dataset. T indicates the number of threads.

systems and present steady-state results. The experiments
run on a server with two Intel Xeon E5-2650 v4 CPUs, and
each CPU has 12 cores. The hyperthreading is disabled dur-
ing evaluation.

7.1 Performance Overview
TPC-C (KV). Figure 6 shows the performance comparison
with different numbers of threads. Wormhole is excluded
because the Wormhole implementation we use does not sup-
portmultiple tables, while TPC-C (KV) requires them. XIndex
outperforms Masstree by up to 67% with 24 threads. First,
the data generated in TPC-C (KV) are multidimensional lin-
ear mappings. Therefore, the learned models can obtain a
good approximation. Second, 63% of the write operations up-
date existing records. Thus they can be efficiently executed
in-place. Lastly, 34% of the write operations perform sequen-
tial insertion, which can be improved by the optimization
(Section 6).

YCSB.We use both the default data distribution as well as
the osm dataset, and 24 threads for the experiment. As shown
in Figure 7, for workload A, B, E, and F, XIndex demonstrates
superior performance advantage. This is because these work-
loads are read- and update-intensive. For workload C, which
is read-only, XIndex is worse than “learned+∆” by 19% be-
cause XIndex has model computation cost both in the root
and groups. For workload D, XIndex performance is worse

0

10

20

30

40

50

 3 5 10 15 20

Lognormal Distribution

R
e
a
d
 T

h
ro

u
g
h
p
u
t
(1

0
6
 o

p
s
/s

)
Hotspot Ratio (%)

0

10

20

30

40

50

 3 5 10 15 20

Normal Distribution

Hotspot Ratio (%)

XIndex
learned index
Wormhole
Masstree
stx::Btree

Figure 10. 24-thread read throughput in skewed query dis-
tribution.

than the other systems by up to 30%. The reason is that work-
load D tends to read recently inserted records that might not
have been compacted, which brings overheads for read oper-
ations. With the osm dataset, the results are similar. However,
because of the complex real-world data distribution, the ad-
vantage of XIndex is reduced.

7.2 Performance with writes
To further evaluate the performance of writes, we configure
workloads with different read-write ratios. The ratio among
different type of writes are constant (1:1:2 for insert, remove,
and update) to keep the dataset size stable.

Scalability. Figure 8 shows the scalability with 10%writes
using the normal dataset. Overall, XIndex achieves the best
performance among all systems. With 24 threads, XIndex
scales to 17.6× of its single-thread performance, which is 30%
higher than Wormhole. “learned+∆” has the worst perfor-
mance because of its inefficient compaction, which severely
degrades the read performance.

Varying write ratios. Figure 9 shows both throughput
and latency with different write ratios with a single thread
and 24 threads. XIndex has the best performance for all the
listed write ratios, though the advantage tends to diminish
with larger write ratios. For latency, XIndex achieves the
lowest latency as most requests (80%) can be served without
accessing delta indexes.

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

0

1

2

0 30 60 90 120 150 180 210

T
h

ro
u

g
h

p
u

t
(1

0
6
 o

p
s
/s

)

XIndex
baseline

0 30 60 90 120 150 180 210
0

2

4

6

T
im

e
s
 o

f
X

In
d

e
x
’s

 g

ro
u

p
 s

p
lit

 &
 m

e
rg

e
 (

1
0

3
)

Time Duration (s)

Times of XIndex’s Split
Times of XIndex’s Merge

Figure 11. Read-write throughput and group split/merge
frequency under dynamic workload.

7.3 Performance of dynamic workload
Query distribution. For dynamic workload, we first eval-
uate the performance when the query distribution is non-
uniform. To control the skewness, we make the workload’s
90% queries access hotspot of different sizes (the hotspot ra-
tio). All hotspots are ranges that start from the same key but
end differently. The smaller the hotspot is, the more skewed
the query distribution is. Figure 10 shows the throughput
with different skewness levels under the normal and lognor-
mal datasets. All systems except for the learned index see
a performance improvement when the skewness level rises
since the skewed query distribution brings a more friendly
memory access locality. However, due to the learned index’s
large error bound in the hotspot, the learned index can per-
form even worse than stx::Btree and Wormhole. For the
lognormal dataset, when the hotspot ratio decreases under
5%, the increase of hot models’ error bounds slows down,
thus we can observe a slight performance improvement of
the learned index due to improved locality.

Data distribution. We then evaluate XIndex under the
workload, whose data distribution and read-write ratio will
be dynamically changed at runtime. As a baseline, we also
run XIndex without background group split and merge. Fig-
ure 11 shows the throughput and the number of XIndex’s
group split/merge under this workload using one worker
thread and one background thread.

Both XIndex and baseline are initialized with 50M normal
dataset, and the initial read-write ratio is 90:10. In the begin-
ning, they have similar performance. At the 20th second, the
write ratio becomes 100% (half inserts and half removes), and
we remove all existing keys and insert new keys with 50M
linear dataset. From this point, both throughput of XIndex
and baseline begin to degrade due to the increase of write
ratio and the dramatical changes of data distribution. While
for XIndex, background threads begin to do group split to
reduce the error of the group and delta index size, so we can
see the throughput starts to increase at the 30th second.

At the 120th second, XIndex finishes dataset shifting, and
at the 170th second, baseline ends shifting. Afterwards, the

0

10

20

30

 8 16 24 40 64 128

T
h

ro
u
g

h
p

u
t

(1
0

6
 o

p
s
/s

)

Value Size (Byte)

XIndex
Learned+∆

Wormhole
Masstree

Figure 12. Read-write
throughput of various value
sizes.

10

20

30

40

50

 0 200 400 600 800 1000

Lognormal Distribution

R
e
a
d

 T
h

ro
u
g

h
p

u
t

(1
0

6
 o

p
s
/s

)

Dataset Size (M)

XIndex
learned index

Wormhole
Masstree
stx::Btree

Figure 13. Read throughput
of various dataset sizes.

read-write ratio is 90:10, and keys follow the linear distri-
bution. XIndex’s background thread detects that both the
delta index size and the error bound of groups are small after
the shifting, so it invokes lots of group merge operations to
reduce the number of groups. Overall, XIndex shows up to
140% performance improvement during and after the change
of workload.

7.4 Other factors
Value size. We evalute the performance of XIndex with dif-
ferent value sizes under the normal dataset with 24 threads.
The read-write ratio is 90:10, and the value contains 8-128
random generated bytes. The result is shown in Figure 12.
With the increase of value size, the performance of all sys-
tems is reduced due to the large memory consumption. Nev-
ertheless, XIndex has the largest performance drop. This is
because the overhead of data copying during compaction
(128B’s overhead is 13.5× larger than 8B’s).

Dataset size. Figure 13 shows the performance of XIndex
with different dataset sizes under the lognormal dataset using
24 threads. As dataset size increases, both the learned index
and XIndex show a large performance advantage over other
systems. However, the performance of the learned index
degrades significantly because its error grows as the size in-
creases. In contrast, XIndex adjusts its structure to maintain
small model error bounds. Therefore, for large dataset sizes,
XIndex can achieve similar performance with the learned
index.

8 Discussion
Inline values v.s. separated values. XIndex contiguously
stores keys and values in data_array (inline values). Another
popular approach [19, 22] is to store values in separate stor-
age and only the pointers along with keys (separated values).
For small values, our approach has an advantage in reducing
DRAM accesses, since both the key and value can reside in
one cache line. For large values, separating value can reduce
compaction cost, since only pointers will be copied. How-
ever, both approaches require Two-Phase Compaction as the
record’s metadata, such as removed and lock, should be inline
and might be changed during compaction. As separating the
metadata may incur high compaction cost, since it needs

PPoPP ’20, February 22–26, 2020, San Diego, CA, USA Tang, et al.

additional memory accesses for each record to check if the
value has been logically removed.

Limitations. First, when the dataset is small, other in-
dex structures (e.g., stx::Btree) can outperform XIndex for
the model computation cost and the cost to traverse the
two-layer structure. Second, with long keys, the overhead
of model training and inference will increase significantly,
which can affect the efficiency of XIndex. For 64-byte keys,
there can be up to 50% performance degradation compared
with 8-byte keys. We leave the design of a more flexible
structure for variable-scale workloads and reducing the cost
of long keys as future work.

9 Related Works
There have been works that extend or build systems upon
the learned index. Many works extend the learned index to
support writes. ALEX [9] achieves this by reserving slots in
a sorted array for inserting new data. It allocates a new array
and retrains the model synchronously when there are not
enough reserved slots. AIDEL [18] handles insertions by at-
taching a sorted list for each record in the sorted array. When
the list is too long, it copies the data into a new sorted array
and retrains the model synchronously. Both data structures
are not designed for concurrent scenarios and operations
are blocked during rearranging data and retraining models.
PGM-index [11] extends the learned index to optimize the
structure with respect to given space-time trade-offs. It recur-
sively constructs the index structure and provides an optimal
number of linear models. Comparing with PGM-index, XIn-
dex adjusts its structure at runtime, does not assume an
already known query distribution. SageDB [14] is a database
that proposes to leverage the learned index for data indexing
as well as for speeding up sorting and join. FITing-Tree [12]
indexes data with a hybrid of B-tree and piece-wise linear
function, making it a variant of the learned index. It supports
insertions and provides strict error guarantees. Comparing
with FITing-Tree, XIndex is a fully-fledged concurrent index
structure and adapts its structure to both data and query
distribution at runtime.
Classic concurrency techniques have long been used in

concurrent data structures. Masstree [20] is a trie-like con-
catenation of B-trees and uses fine-grained locking and op-
timistic concurrency control to achieve high performance
under multi-core scenarios. It carefully crafts its protocol
to improve efficiency for reader-writer coordination. Worm-
hole [24] is a variant of B-tree that replaces B-tree’s inner
nodes with a hash-table encoded Trie. It uses per-node read-
write locks to coordinate accesses to leaf nodes and uses
a combination of locking and the RCU mechanism to per-
form internal node updates. Bonsai tree [5] is a concurrent
balanced tree. It allows reads to proceed without locks in
parallel with writes by using RCU mechanism, though a sin-
gle write lock is still required to coordinate writes. HOT [2]

is a trie-based index structure which aiming to reduce the
height of the trie. It uses per-node locks to coordinate writes
and uses copy-on-write (COW) to allow reads to proceed
with no synchronization overhead. The Bw-Tree [8, 17] is a
completely lock-free B-tree and achieves its lock-freedom
via COW and compare-and-swap (CAS) techniques. Building
upon existing works, XIndex leverages fine-grained locking
and optimistic concurrency control to coordinate to indi-
vidual records and uses the RCU mechanism to eliminate
interference with queries and writes due to background com-
paction and structures updates.
Dynamic data and query distributions are common in

real-world workloads. While XIndex strikes to reduce perfor-
mance variation between records, many works distinguish
hot and cold data and further optimize the performance for
hot data. Hybrid index structure [25] uses different storage
schemes for hot keys and cold keys. Storage systems such as
H-Store [7], COLT [23] are designed to detect the hotness
and manage data accordingly in a self-tuning process.

10 Conclusion
In this paper, we introduced XIndex, a concurrent and flexible
index structure based on the learned index. XIndex achieves
high performance on the multicore platform via a combina-
tion of the innovative Two-Phase Compaction and a num-
ber of classical concurrency techniques. Furthermore, it can
dynamically adjust its structure according to the runtime
workloads to maintain competitive performance. Extensive
evaluations demonstrate that XIndex can have a performance
advantage by up to 3.2× and 4.4×, compared with Masstree
and Wormhole, respectively. XIndex is publicly available at
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git.

Acknowledgments
We thank Jinyang Li, Yueying Li, and the anonymous review-
ers for their constructive feedback and suggestions. This
work is supported in part by the National Natural Science
Foundation of China (No. 61902242, 61925206), the HighTech
Support Program from Shanghai Committee of Science and
Technology (No. 19511121100), and a grant from Huawei
Technologies. Zhaoguo Wang (zhaoguowang@sjtu.edu.cn)
is the corresponding author.

References
[1] Timo Bingmann. 2008. STX B+ tree C++ template classes.
[2] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor

Leis. 2018. HOT: a height optimized Trie index for main-memory
database systems. In Proceedings of the 2018 International Conference
on Management of Data. ACM, 521–534.

[3] Nathan G Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A practical concurrent binary search tree. InACM Sigplan Notices,
Vol. 45. ACM, 257–268.

[4] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon.
2001. Cache-conscious concurrency control of main-memory indexes
on shared-memory multiprocessor systems. In VLDB, Vol. 1. 181–190.

https://ipads.se.sjtu.edu.cn:1312/opensource/xindex.git
mailto:zhaoguowang@sjtu.edu.cn

XIndex: A Scalable Learned Index for Multicore Data Storage PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

[5] Austin T Clements, M Frans Kaashoek, and Nickolai Zeldovich. 2012.
Scalable address spaces using RCU balanced trees. ACM SIGPLAN
Notices 47, 4 (2012), 199–210.

[6] OpenStreetMap contributors. [n.d.]. OpenStreetMap database. https:
//aws.amazon.com/public-datasets/osm. Accessed: 2019-4-24.

[7] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker,
and Stan Zdonik. 2013. Anti-caching: A new approach to database
management system architecture. Proceedings of the VLDB Endowment
6, 14 (2013), 1942–1953.

[8] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin
Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Heka-
ton: SQL server’s memory-optimized OLTP engine. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data. ACM, 1243–1254.

[9] Jialin Ding, Umar Farooq Minhas, Hantian Zhang, Yinan Li, Chi Wang,
Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, and
David Lomet. 2019. ALEX: An Updatable Adaptive Learned Index.
arXiv preprint arXiv:1905.08898 (2019).

[10] Ahmed Eldawy, Justin Levandoski, and Per-Åke Larson. 2014. Trekking
through siberia: Managing cold data in a memory-optimized database.
Proceedings of the VLDB Endowment 7, 11 (2014), 931–942.

[11] Paolo Ferragina and Giorgio Vinciguerra. 2019. The PGM-index:
a multicriteria, compressed and learned approach to data indexing.
arXiv:cs.DS/1910.06169 https://arxiv.org/abs/1910.06169

[12] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca,
and Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure.
In Proceedings of the 2019 International Conference on Management of
Data. ACM, 1189–1206.

[13] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A
correctness condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

[14] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding,
Ani Kristo, Guillaume Leclerc, Samuel Madden, Hongzi Mao, and
Vikram Nathan. 2019. Sagedb: A learned database system.

[15] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The case for learned index structures. In Proceedings of the 2018

International Conference on Management of Data. ACM, 489–504.
[16] Justin J Levandoski, Per-Åke Larson, and Radu Stoica. 2013. Identify-

ing hot and cold data in main-memory databases. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE, 26–37.

[17] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The
Bw-Tree: A B-tree for new hardware platforms. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE, 302–313.

[18] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. 2019. A Scal-
able Learned Index Scheme in Storage Systems. arXiv preprint
arXiv:1905.06256 (2019).

[19] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan
Gopalakrishnan, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2017. Wisckey: Separating keys from values in ssd-conscious
storage. ACM Transactions on Storage (TOS) 13, 1 (2017), 5.

[20] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache
craftiness for fast multicore key-value storage. In Proceedings of the
7th ACM european conference on Computer Systems. ACM, 183–196.

[21] Paul E McKenney, Jonathan Appavoo, Andi Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2001. Read-copy
update. In AUUG Conference Proceedings. AUUG, Inc., 175.

[22] Chris Nyberg, Tom Barclay, Zarka Cvetanovic, Jim Gray, and Dave
Lomet. 1994. AlphaSort: A RISC machine sort. In ACM SIGMOD Record,
Vol. 23. ACM, 233–242.

[23] Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis.
2007. On-line index selection for shifting workloads. In Proceedings
of the 2007 IEEE 23rd International Conference on Data Engineering
Workshop. IEEE Computer Society, 459–468.

[24] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Or-
dered Index for In-memory Data Management. In Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, 18.

[25] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kamin-
sky, Lin Ma, and Rui Shen. 2016. Reducing the storage overhead of
main-memory OLTP databases with hybrid indexes. In Proceedings
of the 2016 International Conference on Management of Data. ACM,
1567–1581.

https://aws.amazon.com/public-datasets/osm
https://aws.amazon.com/public-datasets/osm
http://arxiv.org/abs/cs.DS/1910.06169
https://arxiv.org/abs/1910.06169

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 The learned index
	2.2 The issues

	3 XIndex Data Structure
	3.1 Overview
	3.2 Layout
	3.3 Basic operations
	3.4 Compaction
	3.5 Structure update

	4 Concurrency
	4.1 Writer-writer coordination
	4.2 Writer-reader coordination
	4.3 Interleaving with background operations
	4.4 Proof sketch

	5 Adjusting XIndex at Runtime
	6 Optimization
	7 Evaluation
	7.1 Performance Overview
	7.2 Performance with writes
	7.3 Performance of dynamic workload
	7.4 Other factors

	8 Discussion
	9 Related Works
	10 Conclusion
	Acknowledgments
	References

