
APRIL 2025 | VOL. 68 | NO. 4 | COMMUNICATIONS OF THE ACM 71

DOI:10.1145/3708552

Many Faces of
Ad Hoc Transactions
By Chuzhe Tang, Zhaoguo Wang, Xiaodong Zhang, Qianmian Yu,
Binyu Zang, Haibing Guan, and Haibo Chen

ABSTRACT
Transactions are the fundamental database abstraction
for ensuring application correctness under concurrency
and failures. Using database transactions, developers are
only tasked with demarcating critical business logic into
transactions, and the underlying database system is re-
sponsible for coordinating their execution. Yet, in today’s
Web applications, transactions are often constructed in
an ad hoc manner. That is, developers might explicitly use
locking primitives or manual validation to coordinate criti-
cal code fragments, instead of relying on database trans-
actions. We refer to such application-coordinated transac-
tions as ad hoc transactions.

This paper presents the first comprehensive study on
ad hoc transactions. Examining 91 ad hoc transaction
instances taken from eight popular open source Web ap-
plications, we find that (i) every application studied uses
ad hoc transactions (up to 16 per application), 71 of which
play critical roles; (ii) compared with database transac-
tions, coordination strategies of ad hoc transactions is
much more flexible; (iii) ad hoc transactions are error-
prone—53 of them have correctness issues, and 33 of them
are confirmed by developers; and (iv) ad hoc transactions
have the potential to improve performance in contentious
workloads by utilizing application semantics such as ac-
cess patterns. Finally, this paper concludes with a discus-
sion about the implications of ad hoc transactions and op-
portunities for future research.

1. INTRODUCTION
Web applications typically use database systems to store
and serve large amounts of data. Therefore, correctly coor-
dinating concurrent database operations is essential for ap-
plication correctness. The conventional approach is to use
database transactions,8 where developers encapsulate mul-
tiple database operations into individual units of work using
Transaction Start/Commit commands. The database
system carefully coordinates their concurrent execution so
they appear to run in isolation. In this way, developers are
relieved from reasoning about complex concurrent interleav-
ings. Another approach, as identified in Bailis et al.,2 is to use
object-relational mapping (ORM) invariant validation APIs.
Developers explicitly specify application invariants, such as

column uniqueness, through these APIs, and ORM frame-
works check and report errors on invariant violations.

Besides these two approaches, we have observed that ap-
plication developers often manually coordinate critical data-
base operations. They might explicitly use locking primitives
or validation procedures to implement concurrency control
(CC) amid the application code. We refer to such ad hoc coor-
dination of database operations as ad hoc transactions.

Figure 1 shows three real-world examples of ad hoc
transactions from open source Web applications. In each
example, the application code issues database operations
via ORM frameworks and uses ad hoc constructs to coordi-
nate them. The first two directly use locks for coordination,
while the third one implements a validation-based protocol
similar to optimistic concurrency control (OCC). We briefly
explain Figure 1a, an add-to-cart code snippet from an e-
commerce application. First, a lock identified by the cart ID
is acquired and held until the whole business logic finishes.
Then, database rows for the cart and corresponding items
are retrieved and converted into runtime objects cart and
items by the ORM. Next, a new item is added to the items
collection, and the total price of the cart object is recalcu-
lated. Finally, the ORM persists two updated objects back to
the database system.

As shown in these examples, ad hoc transactions are tight-
ly coupled with business logic, thus bringing difficulties to a
thorough investigation. As a result, there have been few stud-
ies on ad hoc transactions. Neither their roles in Web applica-
tions nor their characteristics have been clearly understood.
While some developers’ comments might suggest they imple-
ment ad hoc transactions for flexibility or efficiency reasons,
it is unclear whether ad hoc transactions meet these expecta-
tions and at what cost.

To address this gap, we spent five person-years conducting
a comprehensive study over 91 ad hoc transactions among
eight Web applications from six different categories. These
applications are considered the most popular in their respec-
tive categories, as measured by GitHub stars. They are devel-
oped in different languages (Java, Ruby, or Python) and differ-
ent ORM frameworks (Hibernate, Active Record, and Django).
At a high level, we discovered the following interesting, per-
ceptive, and potentially alarming findings.

Every application studied uses ad hoc transactions on critical
APIs: Specifically, 71 out of 91 ad hoc transactions are on the
critical APIs in the Web applications studied. For example,
there are 37 ad hoc transactions across three e-commerce ap-
plications. Thirty-one ad hoc transactions are in critical APIs,
such as check-out, payment, and add-cart to coordinate
operations on critical data (for example, user credits).

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3708914 tp

This paper was originally published in Proceedings of
the Intern. Conf. on Management of Data, ACM (June
2022).

https://dx.doi.org/10.1145/3708552
https://doi.acm.org/10.1145/3708914
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708552&domain=pdf&date_stamp=2025-03-28

72 COMMUNICATIONS OF THE ACM | APRIL 2025 | VOL. 68 | NO. 4

research highlights

frameworks, such as Hibernate and Active Record. These
frameworks can transparently generate SQL statements that
fetch and persist data based on how applications manipulate
in-memory objects. ORMs also provide interfaces to assist de-
velopers in coordinating concurrent database accesses: data-
base transaction APIs and invariant validation APIs.

ORM frameworks usually allow developers to use database
transactions explicitly, with interfaces that directly translate
to Transaction Start, Commit, and Abort statements.
Developers use them to encapsulate multiple database op-
erations into units of work, and the database system takes
the responsibility of coordination. Coordinating concurrent
money transfers that consist of reading and writing com-
mon account balances is a textbook example of using data-
base transactions. Meanwhile, ORMs also provide built-in
invariant validation APIs. For example, with the Active Re-
cord library developers can specify column uniqueness as
“validates:col , uniqueness: true”. Before persisting
an object at runtime, the library checks if there is an existing
database row with the same col value, and reports errors on
duplication.

Ad hoc transactions in the wild.
Ad hoc transactions are the third coordination approach. Like
database transactions, ad hoc transactions provide isolation
to concurrent database operations. However, their coordina-
tion is manually programmed by application developers in-
stead of relying on database systems. Like ORM’s invariant
validation APIs, ad hoc transactions operate at the applica-
tion level. However, the former works by indirectly checking
database states for violations while the latter directly coordi-
nates conflicting database operations.

To understand ad hoc transactions’ roles and importance
in Web applications, we investigated eight representative
applications of six categories (Table 1). They are the most
popular Web applications in each categorya and are written
in different languages and different ORMs. We locate ad
hoc transactions by first searching keywords, such as “lock,”
“concurrency,” and “consistency” in source code, commit
histories, and issue trackers for potential instances. Then, we

a Redmine now is the second most popular project management applica-
tion. Its popularity has waned since we chose it as the investigation tar-
get.

Ad hoc transactions’ usages and implementations are much
more flexible than database transactions: For example, they
can perform coordination that is challenging, if not impos-
sible, using solely database transactions, such as partial co-
ordination (22 cases), cross-request coordination (10 cases),
and coordination over heterogeneous back-ends (eight cases).
Furthermore, developers can leverage domain knowledge for
optimization, such as tuning the coordination granularity
to increase parallelism (14 cases) and reduce the number of
locks required (58 cases).

Ad hoc transactions are prone to errors: Ad hoc transactions’
flexibility comes at a cost—53 cases of ad hoc transactions
manifest concurrency bugs, 28 of which even lead to severe
real-world consequences, such as overcharging customers.
In addition, both application server crashes and database
system crashes can easily cause inconsistent states and ulti-
mately buggy behavior. Among all issues, incorrect synchro-
nization primitive implementations are the most common
cause (47 cases). We have submitted 20 issue reports (covering
46 cases) to developer communities; seven issues (covering 33
cases) have been acknowledged.

Ad hoc transactions can have performance benefits under
high-contention workloads: Using application semantics such
as access patterns, ad hoc transactions’ concurrency control
(CC) could be implemented in a simple yet precise way. Thus,
they can avoid false conflicts under high contention work-
loads. For example, an ad hoc transaction may leverage the
knowledge of accessed columns to use column-level locks for
coordination, which can achieve up to 1.3 × API performance
improvement compared to row-level locking by avoiding false
conflicts on the contented rows.

The prevalence of ad hoc transactions and their unique
characteristics suggests the potential for improving existing
database systems that support these applications. We con-
clude by discussing the implications of our findings on future
database- and storage-systems research. This paper condens-
es our results from the previous conference version11 and the
extended journal version,12 and we refer interested readers to
the full versions for more details.

2. BACKGROUND AND MOTIVATION

Concurrency control in Web applications.
Most Web applications manipulate data with the help of ORM

Figure 1. Ad hoc transaction examples. Coordinated DB operations are shaded yellow; ad hoc constructs are shaded green.

(a) Ensuring consistent cart totals. (b) Avoiding excessive redemption. (c) Ensuring accurate poll statistics.

App-side map DB table: Carts and Items DB table: Invites DB table: PollsRedis KV

APRIL 2025 | VOL. 68 | NO. 4 | COMMUNICATIONS OF THE ACM 73

manually examine the coordination code that isolates data-
base operations and the purpose of those operations.

Finding 1.
Every application studied uses ad hoc transactions. There
are 91 ad hoc transactions identified in total and 71 cases
are considered critical to the Web applications.

Many ad hoc transactions are used in important APIs. In
e-commerce applications, such APIs include check-out and
add-cart where ad hoc transactions ensure business safety,
for example, by coordinating the reading and writing coupon
data to avoid coupon overuse. Among the three popular e-
commerce applications, Broadleaf, Spree, and Saleor, there
are 37 ad hoc transactions in total, and 31 of them are criti-
cal. Specifically, 13 cases ensure that orders are accepted only
when the stock quantity is sufficient, and five avoid inconsis-
tent capture of payment. Interestingly, all these applications
have ad hoc transactions to ensure sufficient stock quantity
and coupon validity. For important APIs in other categories,
see Tang et al.11 and Wang et al.12

3. CHARACTERISTICS OF AD HOC TRANSACTIONS
We have carefully studied the 91 identified ad hoc transac-
tion cases. An interesting but less surprising finding is that,
even though developers implement ad hoc transactions in
various ways, these cases can still be classified into pessimis-
tic ad hoc transactions (65/91) and optimistic ad hoc transac-
tions (26/91). In pessimistic cases, developers explicitly use
locks to block conflicting database operations in ad hoc
transactions. This method is similar to two-phase locking
(2PL) and its variants commonly used by existing database
systems.6 Unlike database transactions, pessimistic ad hoc
transactions’ locking primitives are usually implemented
from scratch by application developers (for example, Figures
1a and 1b) or provided by other systems (see §3.2). Mean-
while, optimistic ad hoc transactions execute operations
aggressively and validate the execution result before writ-
ing updates back to the database system (Figure 1c). This
approach is similar to OCC and its variants used in existing
database systems.10 We dissect ad hoc transactions in the
following subsections regarding what they protect, how they
protect, and how they handle failures. A detailed compari-
son with database transactions is available in Wang et al.12

3.1. What do ad hoc transactions coordinate?
In writing ad hoc transactions, developers explicitly place ad
hoc coordination constructs among the business logic. De-
velopers are thus flexible in choosing which and how opera-
tions are coordinated, resulting in interesting patterns such
as partial coordination, cross–HTTP request coordination,
and coordination with non-database operations.

Finding 2.
Among the 91 ad hoc transactions, 22 coordinate only
a subset of database operations in their scopes and 10
coordinate operations across multiple requests. Besides,
eight cases coordinate database operations along with
non-database operations.

All DB operations vs. specific DB operations. With ad hoc
transactions, developers can coordinate only specific data-
base operations instead of all operations in the transaction
scope. Consider the following example from the Spree e-com-
merce application.

1 in: sku _ id, requested
2 lock(sku _ id)
3 sku := Select * From SKUs Where id=sku _ id
4 if sku.quantity >= requested:
5 sku.quantity -= requested
6 // the following statements are auto-generated

by ORM.save(sku)
7 Transaction Start
8 Update SKUs Set quantity=sku.quantity Where

id=sku.id
9 Update Products Set updated _ at=now() Where

id=sku.product _ id
10 category _ ids := Select category _ id
11 From Categories Join ProductCategories

Using category _ id
12 Where product _ id=sku.product _ id
13 Update Categories Set updated _ at=now()

Where id In category _ ids
14 Transaction Commit
15 unlock(sku _ id)

This transaction processes customer orders. It first fetch-
es the stock-keeping unit (SKU) data from the SKUs table,
checks and updates the SKU’s stock quantity, and then per-
sists changes to the database system by invoking the ORM.
save() method. ORM.save() automatically starts a database
transaction, within which it issues three updates and one
query (lines 8–13). This transaction is running in the RDBMS’
default isolation level. The first update changes the quantity
in the SKUs table, and other updates refresh the update _ at
timestamps of corresponding Products and Categories
rows. Categories rows are identified by querying the Pro-
ductCategories table, which encodes the many-to-many
relationship between products and categories. In this exam-
ple, the only critical operations are those over SKUs (lines 3
and 8). Therefore, developers explicitly lock over sku _ id in
their ad hoc transaction implementation. Other operations,
such as product and category updates (lines 9 and 13), require

Table 1. The applications corpus. The “RDBMS” column lists
supported relational database management systems (RDBMSs).
“PG/MY/+” refers to PostgreSQL/MySQL/others.

Application Category Language/ORM RDBMS Stars

Discourse Forum Ruby/Active Record PG 33.8k

Mastodon Social network Ruby/Active Record PG 24.6k

Spree E-commerce Ruby/Active Record PG/MY 11.4k

Redmine Project mgmt. Ruby/Active Record PG/MY/+ 4.2k

Broadleaf E-commerce Java/Hibernate PG/MY/+ 1.5k

SCM Suite Supply chain Java/Hibernate PG/MY/ 1.5k

JumpServer Access control Python/Django PG/MY/+ 16.8k

Saleor E-commerce Python/Django PG/MY/+ 13.9k

74 COMMUNICATIONS OF THE ACM | APRIL 2025 | VOL. 68 | NO. 4

research highlights

no coordination but are still in the lock scope, as the appli-
cation-level ORM.save() call automatically generates them.
Interestingly, replacing the lock()/unlock() primitives with
Transaction Start/Commit may worsen performance due
to indiscriminately upgrading all operations to the same iso-
lation level. Furthermore, developers cannot exclude these
timestamp updates from the scope of database transactions
as the ORM hides the generation of such database operations.

Overall, 22 ad hoc transactions coordinate only a portion
of the database operations in the transaction scope. Other
operations require no coordination but are located in the
transaction scope as they are either automatically generated
by the ORM or needed by critical operations.

Individual requests vs. multiple requests. Database transac-
tions spanning multiple HTTP requests are a performance
anti-pattern, as they introduce long-lived transactions (LLTs).
Yet, we have found 10 ad hoc transactions with life spans
across multiple requests. Below is an example derived from
the Discourse forum application of editing a post that spans
two user requests. The user fetches the post content for local
editing in the first request. Then, the user’s edits are applied
in the second request. This ad hoc transaction ensures that
other concurrent edits do not overwrite the content read by
the first request when editing the post.

1 Request 1 // fetch a post & increment view count
2 in: post _ id
3 Update Post Set view _ cnt=view _ cnt+1,

ver=ver+1 Where id=post _ id
4 post := Select * From Posts Where

id=post _ id
5 response render(post) // this response

includes the version
6 Request 2 // detect interruptions & apply user
updates

7 in: post _ id, new _ content , prev _ ver
8 lock(post _ id)
9 current := Select * From Posts Where
 id=post _ id
10 if current.ver!=prev _ ver: unlock(post _ id);
 response FAILURE
11 Update Posts Set content=new _ content ,

ver=ver+1 Where id=post _ id
12 unlock(post _ id); response SUCCESS

Specifically, developers use an optimistic ad hoc transac-
tion to ensure the consistency of the post content. They asso-
ciate a version number with each post to track updates. Before
updating a post, the ad hoc transaction checks the consis-
tency (that is, not overwritten) by validating the version. Fur-
thermore, it needs to use a lock to ensure the validate-and-
commit atomicity. If the validation fails, the current request
handler will not update the content, thus avoiding overwrit-
ing others’ changes. Interestingly, unlike database transac-
tions that undo all effects if aborted, this ad hoc transaction
does not roll back the view count increment made in the pre-
vious request handler. Normally, Web applications choose
optimistic coordination instead of pessimistic coordination

to coordinate multiple requests to avoid long blocking. Exten-
sions to database transactions were proposed for LLTs, such
as Sagas7 and savepoints. Unfortunately, they usually provide
(potentially unnecessarily) stronger semantics than what ad
hoc transactions provide.

DB operations vs. non-DB operations. Ad hoc transactions’
flexibility also shines in coordinating non-database opera-
tions. A Web application may use multiple storage systems.
Thus, it needs to ensure data consistency across different sys-
tems. There are eight cases of ad hoc transactions that coordi-
nate both database operations and non-database operations,
such as operations over in-memory shared variables, local file
systems, and remote object/key–value (KV) stores. Consider
the following example of the timeline feature from the Mast-
odon social network application.

1 Create Post
2 in: follower _ id, post _ id, content
3 lock(post _ id)
4 Insert Into Posts Value (post _ id, content)
5 REDIS.add _ to _ set("timeline"+follower _ id,

post _ id)
6 unlock(post _ id)
7 Delete Post
8 in: follower _ id, post _ id
9 lock(post _ id)
10 REDIS.delete _ from _

set("timeline"+follower _ id, post _ id)
11 Delete From Posts Where id=post _ id
12 unlock(post _ id)

It uses a Redis KV store and an RDBMS as its back-end
storage. Redis holds the IDs of posts shown on each user’s
timeline, while the concrete post contents are resident in the
RDBMS. Mastodon must guarantee consistency between the
post contents in the RDBMS and the post IDs in Redis. Spe-
cifically, the post IDs in Redis should always refer to some
posts in the RDBMS, and this cannot be achieved solely with
database transactions. Thus, developers implement ad hoc
transactions to coordinate these operations. In general, when
applications require data consistency across multiple storage
systems (including multiple RDBMSs), the alternative option
is to use distributed transactions, such as WS-TX or XA trans-
actions. However, storage systems rarely support such dis-
tributed transaction protocols, making writing ad hoc trans-
actions the only feasible solution.

3.2. How is the coordination implemented?
Given the manual nature of ad hoc transactions, it is not sur-
prising that application developers have implemented many
flavors of coordination primitives.

Finding 3.
There are seven different lock implementations and two
validation implementations among the eight applications
we studied. Except for Broadleaf, developers consistently
use the same lock/validation implementation in individu-
al applications.

APRIL 2025 | VOL. 68 | NO. 4 | COMMUNICATIONS OF THE ACM 75

mit. As shown in the listing from §3.1, additional locks are
employed for this purpose. All validation procedures in Dis-
course’s and SCM Suite’s optimistic ad hoc transactions are
manually implemented. Broadleaf uses both implementa-
tions, introduced by different developers.

3.3. What are the coordination granularities?
With ad hoc transactions, developers can customize the co-
ordination granularity. Intuitively, one might think of using
finer-grained coordination rather than database transactions
to improve parallelism. However, we have found that ad hoc
transactions also employ coarser-grained coordination, by
grouping multiple operations and coordinating them with a
single lock. This can largely reduce ad hoc transactions’ CC
complexity and avoid deadlocks.

Finding 4.
Among the 91 ad hoc transactions identified, 14 cases
perform fine-grained coordination, such as column-based
coordination, while 58 cases perform coarse-grained
operations—that is, using a single lock to coordinate
multiple operations. Nine cases implement both types of
coordination for different accesses.

Single access vs. multiple accesses. Fifty-eight ad hoc trans-
actions use only one lock to coordinate multiple database
accesses, thanks to the following two access patterns in the
applications.

Associated access: Given two database rows, r1 and r2, if ac-
cesses to r2 always happen in a transaction that also accesses
r1, we say r2 is associatively accessed with r1. Access to rows as-
sociated with a one-to-many relationship, such as an is-part-of
relationship, often follows this pattern. Consider the example
in Broadleaf, shown in Figure 1a. A cart is represented as one
Carts row and several Items rows. When a user modifies the
cart, the transaction will associatively access these rows. This
pattern provides an opportunity to replace multiple locks (for
example, row locks) with one lock that coordinates these ac-
cesses. In the above example, developers use a single cart lock
to coordinate accesses to both Carts and Items tables. This
lock explicitly serializes conflicting transactions up front, thus
avoiding potential aborts when using database transactions.

There are about 37 ad hoc transactions that leverage the
associated access pattern. In all these cases, the associated
rows are connected by either one-to-many or one-to-one re-
lationships. We find that such one-to-many relationships all
stem from the application-specific data modeling that re-
flects the business semantics, like the cart-item relationship
in the example. Meanwhile, such one-to-one relationships all
come from inheritance.

Read–modify–write (RMW): With RMW, a transaction first
reads data from the database, then modifies it, and finally
writes it back. In a typical 2PL system such as MySQL, dead-
locks arise if concurrent transactions perform RMW on the
same row. Consider the example shown in Figure 1b: In the
forum application Discourse, RMW operations are issued
when creating a new account via invitations. The invitation is
first read from the RDBMS. After checking its validity, it gets
updated and written back to the RDBMS. If two users concur-

Locks from existing systems vs. manually crafted locks. All
eight applications studied have lock-based pessimistic ad hoc
transactions. They usually use a single locking primitive im-
plementation, from either existing systems or scratch.

Four applications directly use the locking primitives pro-
vided by the database systems or language runtimes. Specifi-
cally, Spree, Saleor, and Redmine use the database Select
For Update statements, while SCM Suite implements ad
hoc transactions based on the Java synchronized keyword.
Most commercial databases accept Select For Update
statements, which atomically fetch target rows and acquire
corresponding writer locks. The lock will be released when
the currently active transaction ends.

Three other applications—Discourse, Mastodon, and
Jump-Server—have locks implemented from scratch. Inter-
estingly, they all store lock information, including lock keys
and status (locked/unlocked), in the Redis KV store. However,
their implementation details are different. As shown in Fig-
ure 1b, Mastodon developers use the Redis SETNX (short for
SET if Not eXists) command to insert an entry for the
requested lock. Similar to the compare-and-swap instruc-
tion, this command succeeds only if no entry with the same
key exists. In contrast, Discourse developers use a combina-
tion of WATCH, GET, MULTI, and SET commands to optimis-
tically ensure the atomicity of checking existing locks and set-
ting new locks. As a result, Discourse’s Redis lock requires six
additional roundtrips compared to Mastodon’s, which only
needs one. Saleor uses SETNX to implement locks as Mast-
odon; it also adds a re-entrant feature, allowing locks to be
repeatedly acquired by the same thread.

Broadleaf is the only application using both from-scratch
lock implementations and existing systems’ primitives—the
Java synchronized keyword. More interestingly, it has three
from-scratch implementations: One uses a separate database
table to store lock information similar to Redis-based locks;
the other two use in-memory maps for lock information.
The latter two implementations differ in the specific maps
used: One directly uses a concurrent map from the standard
library, ConcurrentHashMap; the other uses a customized
ConcurrentHashMap, where developers added a least re-
cently used (LRU) eviction policy to remove excessive lock en-
tries. These implementations are introduced by different de-
velopers, and we have not found clear evidence that they serve
different purposes.

ORM-assisted validation vs. manual validation. Six out of
eight applications studied have validation-based optimistic
ad hoc transactions. Their validation procedures are either
provided by the ORM or the developers themselves.

Four applications use ORM-provided validation proce-
dures via framework-specific interfaces. For example, Active
Record recognizes columns named lock _ version and
uses them to store versions for individual rows. Upon each up-
date, as shown in Figure 1c, Active Record automatically adds
version checking to the Where clause and increment version
along with user-initiated updates, ensuring the atomicity be-
tween validation and commit.

When using hand-crafted validation procedures, develop-
ers must ensure the atomicity between validation and com-

76 COMMUNICATIONS OF THE ACM | APRIL 2025 | VOL. 68 | NO. 4

research highlights

In Txn 1, line 3 checks if any payment row exists for the
order identified by order _ id=10. Since an order can have
many payments (to allow mixed payment methods), the
order _ id index of the Payments table is non-unique.
Suppose it currently indexes values 9 and 12. Executing
line 3 of Txn 1 causes the RDBMS to acquire a gap lock
on the index interval (9, 12), blocking concurrent inserts
to this range so that re-executing line 3 can obtain repeat-
able results. Meanwhile, line 5 in Txn 2 inserts a new pay-
ment row for another order whose order _ id equals 11.
Though this insert does not interfere with Txn 1’s line 3,
it would nevertheless be blocked by the gap lock. By manu-
ally locking on specific order _ id values, developers can
avoid such false conflicts.

3.4. How are failures handled?
Similar to database transactions, ad hoc transactions are
faced with both runtime failures and system crashes.

Finding 5.
Ad hoc transactions are typically not equipped with com-
plex failure-handling logic, partly because individual ad
hoc transactions might face fewer potential failure scenar-
ios than general database transactions and partly because
developers seem to often assume failure-free executions.

Automated rollback vs. manual rollback. We first consider
runtime failures, which include deadlocks or validation
failures. Unlike database transactions, which have a sys-
tem-level catch-all rollback mechanism, application devel-
opers need to craft failure-handling logic on a case-by-case
basis.

Each pessimistic ad hoc transaction either uses a single
lock (52/65) or acquires locks in a consistent order (13/65).
Thus, none needs to handle deadlock at runtime. The same
applies to locking in optimistic ad hoc transactions. Interest-
ingly, some optimistic cases do not acquire any lock during
the validate-and-commit process, which eliminates dead-
locks but sacrifices correctness (see §4.1).

Therefore, rollback is only needed for validation failures
in optimistic ad hoc transactions. In 19 optimistic cases, de-
velopers follow the classic OCC paradigm, where no update
is persisted before validation, thus avoiding the need for roll-
back. In other cases, early persisted updates require develop-
ers to either use certain rollback methods to negate the effect
of updates or use repair techniques to roll forward and finalize
changes.

To roll back, ad hoc transactions rely on either database
transactions’ atomicity property or hand-crafted rollback
procedures. There is one case using the former approach,
where a Read Committed database transaction is used to
enclose update and validation operations. If validation fails,
the application aborts the database transaction to roll back
all enclosed updates. Meanwhile, two cases use manually
programmed rollback procedures triggered by validation
failures and will undo persisted updates. Unlike database
rollback, developers can selectively undo only critical up-
dates. For example, in Broadleaf, if validation on SKU state
fails during checkout, updates to payment and order status

rently use the same invitation to join the forum, a deadlock
can easily appear, making both users unable to succeed. To
mitigate this, developers craft ad hoc transactions to acquire
exclusive locks before the first read, avoiding possible dead-
locks. Fifty-six out of 91 cases leverage this access pattern.
Among them, 35 cases also use the associated access pattern.

Fine-grained vs. coarse-grained. Ad hoc transactions can also
use fine-grained column- or predicate-based coordination.

Knowing which columns are used in the business logic al-
lows developers to coordinate database operations at the col-
umn granularity, and there are five such ad hoc transactions.
For example, in the forum application Discourse, two trans-
actions, create-post and toggle-answer, will issue the
following database operations accessing the Topics table.

1 Create Post
2 in: topic _ id, content
3 lock("create _ post"+topic _ id)
4 next _ post _ id := Select max _ post From

Topics Where id=topic _ id
5 Insert Into Posts Value (next _ post _ id,

content, topic _ id)
6 Update Topics Set max _ post=max _ post+1

Where id=topic _ id
7 unlock("create _ post"+topic _ id)
8 Toggle Answer
9 in: topic _ id, post _ id
10 lock("toggle _ answer"+topic _ id)
11 Update Posts Set is _ answer=true Where

id=post _ id
12 Update Topics Set answer=post _ id Where

id=topic _ id
13 unlock("toggle _ answer"+topic _ id)

Line 6 increments the max _ post field; line 12 sets the
answer field. Though these operations have no column-level
conflicts, if they access the same row, an RDBMS using row
locks cannot execute them in parallel. Therefore, instead of
using database transactions, Discourse developers imple-
ment two lock namespaces for these two transactions so their
locks do not interfere with each other.

Likewise, knowing the search conditions, developers can
use the precise predicate for coordination, and there are 10
such cases. Predicate-based coordination can avoid false con-
flicts caused by the gap lock used in the major RDBMSs, in-
cluding MySQL and PostgreSQL. For example, in the Spree e-
commerce application, RDBMSs might concurrently execute
the following code with order _ id of 10 and 11, correspond-
ing to two orders created by transaction Txn 1 and Txn 2,
respectively.

1 in: o _ id, ..
2 lock(order _ id=o _ id)
3 pays := Select * From Payments Where order _
id=o _ id

4 if pays is empty:
5 Insert Into Payments Value (o _ id, ..)
6 unlock(order _ id=o _ id)

APRIL 2025 | VOL. 68 | NO. 4 | COMMUNICATIONS OF THE ACM 77

are rolled back, while other updates like total order price cal-
culation are kept unaffected.

Meanwhile, four cases choose to repair the inconsistent
values instead of rolling back on conflicts. This idea relies on
developers’ knowledge of program dependency and is simi-
lar to recently proposed transaction repair optimizations.4,5,14
For example, in Discourse, multiple posts can reference the
same image and thus changes to images must be propagated
to all relevant posts. During a background image-shrinking
job, if a referencing post is updated by the user, instead of
aborting the whole process, Discourse uses per-post versions
to identify the changed post, only redoes updates for it, and
commits the image-shrinking process.

Crash handling. Since ad hoc transactions are not auto-
matically rolled back upon crashes, developers need to
manually ensure coordination metadata (for example,
locks) and database states are properly recovered. Among
the former case, version numbers and most lock states re-
quire no special handling, as optimistic ad hoc transac-
tions can always retry reading the latest version, and both
in-memory and Redis-based locks do not (forever) persist
across crashes. However, the database-based persistent
locks in Broadleaf require special handling. To avoid
deadlock caused by unreleased locks, developers associate
each lock using a boot-time generated universally unique
identifier (UUID) to distinguish each run. Thus, Broadleaf
can ignore prior unreleased locks after reboot by examin-
ing the saved UUIDs.

Recovering database states after crashes is more chal-
lenging than validation failure rollback since developers
are unaware of the progress of interrupted ad hoc transac-
tions. Though in the case of database crashes, applications
can spin-wait for database restart and then either roll back
or continue, all ad hoc transactions simply terminate im-
mediately and leave the database in an intermediate state.
Only one application, Discourse, has a fsck-like checker
that runs every 12 hours to actively restore inconsistent
references, such as missing avatars and thumbnails. Oth-
er applications either tolerate intermediate states with
preventative measures or simply let the inconsistency
propagate to end users (§4.3). An example of preventative
measures is Broadleaf, which sets any payment record left
unconfirmed during an interrupted checkout before start-
ing a new one.

4. CORRECTNESS ISSUES
Building bug-free ad hoc transactions is nontrivial. In this
section, we summarize the correctness issues we have found
and relate them to the ad hoc transaction design characteris-
tics. We have manually verified that all issues are reproduc-
ible and cause user-noticeable consequences.

In summary, 69 correctness issues are found in 53 cases;
some have multiple issues. Furthermore, 28 cases have severe
consequences (Table 2), such as charging customers incor-
rect amounts. Most issues relate to the primitives’ usage and
implementations (49/69), while others occur in the choosing
of what to coordinate (16/69) and handling abort (4/69). We
have submitted 20 issue reports (covering 46 cases) to devel-

oper communities; seven of them (covering 33 cases) have
been acknowledged.

4.1. Incorrect locks and validation procedures.

Finding 6.
Thirty-six out of 65 pessimistic ad hoc transactions incor-
rectly implement or use locking primitives; 11 out of 26
optimistic ad hoc transactions fail to provide atomic vali-
dation and commit, causing correctness issues.

Incorrect lock usage. When developers reuse existing sys-
tems’ locking primitives, misuses arise. Issues exist for both
types of locking primitive reuse: Select For Update from
database systems and Java’s synchronized keyword (§3.2).
For example, in some Spree cases, Select For Update
statements are not explicitly enclosed inside database trans-
actions, which causes the database lock to release as soon as
the statement returns. Another type of misuse happens when
developers use a single lock to coordinate RMW operations,
and they omit the first query from protection. This happens
often when developers have to first perform the query to ob-
tain the lock key, for example, an ID. In these situations, de-
velopers should re-execute the query after acquiring the lock
to protect the entire RMW. There are two cases where the de-
velopers forget to re-execute queries, leaving the initial read
in RMW uncoordinated.

Incorrect lock implementation. The locking primitives im-
plemented from scratch can also have correctness issues,
especially those using Redis or in-memory lock tables. For
example, the Redis lock in Mastodon implements the lease
semantics, where the lock might be released early when the
entry times out before the coordinated critical section fin-
ishes. Unfortunately, Mastodon does not check whether the
lock has expired early and experiences inconsistency, such as
deleted posts appearing in followers’ timelines.

Non-atomic validate-and-commit. Validation-based optimis-
tic ad hoc transactions need to avoid conflicting updates be-
tween validation and commit. Thus, they need to guarantee
validate-and-commit atomicity. However, atomicity violation
happens only when developers manually implement valida-
tion procedures (16 cases); all cases using ORM-generated
validation procedures we studied are correct.

Table 2. Consequences of incorrect ad hoc transactions.

App. Known severe consequences Cases

Discourse Overwritten post contents, page rendering failure,
excessive notifications.

6

Mastodon Showing deleted posts, corrupted account info,
incorrect polls.

4

Spree Overcharging, inconsistent stock level, inconsistent
order status, selling discontinued products.

9

Broadleaf Promotion overuse, inconsistent stock level,
inconsistent order status, overselling.

6

Saleor Overcharging. 3

78 COMMUNICATIONS OF THE ACM | APRIL 2025 | VOL. 68 | NO. 4

research highlights

4.2. Incorrect coordination scope.

Finding 7.
Sixteen issues arise from incorrect coordination scope.
Specifically, developers either omit some critical opera-
tions in existing ad hoc transactions (11/16) or forget to
employ ad hoc transactions for certain business proce-
dures altogether (5/16).

Omitting critical operations. Though the flexibility of choos-
ing what to coordinate is an advantage of ad hoc transactions
(§3.1), it comes with an increased chance of leaving critical
operations uncoordinated. For example, in Broadleaf, the ad
hoc transaction that coordinates the check-out process omits
coordination for all SKU-related operations. As a result, con-
current check-outs for the same SKU can lead to inconsisten-
cy between the SKU quantity decrement and the number of
sold items.

Forgetting ad hoc transactions. Forgetting to coordinate cer-
tain business logic with transactions is a general problem
with both ad hoc and database transactions. However, it is
more disastrous with ad hoc transactions. A conflicting busi-
ness procedure (for example, a request handler) without prop-
er ad hoc transactions installed can freely interleave with
other ad hoc transaction–coordinated procedures, reading
and writing “coordinated” data. For example, in Spree, all ad
hoc transactions are deployed in the request handlers that re-
turn HTML responses. However, another uncoordinated set
of handlers with the same functionality exists and produces
JSON responses. As a result, JSON handlers’ interleaving with
HTML handlers leaves RDBMS states inconsistent.

4.3. Incorrect failure handling.

Finding 8.
Ad hoc transactions are often vulnerable to incorrect han-
dling of both runtime failures and server crashes.

Incomplete repair. When using transaction repair to roll for-
ward an interrupted transaction, developers might derive an
incomplete repair, such that not all affected operations are
re-executed. In Discourse, when updating image references
of posts, developers use versions to detect concurrent modifi-
cation to fetched posts that use a given image (shown in §3.4).
However, their implementation cannot detect newly added
posts referencing this image. These new posts will end up
having dangling image references, showing end-users broken
links. There is only one case that has this issue.

Unexpected intermediate states after crashes. If an applica-
tion is not designed to tolerate intermediate database states,
and rollback handlers fail to prevent such states, the applica-
tion might fail to provide normal services if server or data-
base crashes occur. We thoroughly investigated the impact
of crashes in ad hoc transactions from Broadleaf and Spree.
We identified 31 unique crash scenarios where a crash leaves
writes partially executed and found that 28 of these scenari-
os have user-noticeable unexpected behaviors. For example,

in Spree, a crash during check-out can leave payments in an
intermediate state (that is, having the status column equal-
ling “processing”). Since these payments are not rolled
back after reboot, Spree can neither initiate new payment
operations due to the unfinished ones nor resume payments
initiated before the crash because they are considered under
“processing” by active threads. Therefore, users can never fin-
ish the check-out.

5. PERFORMANCE IN ACTION
We have evaluated the performance of different designs and
implementations of ad hoc transactions using actual appli-
cation codebases, and the results are summarized below.
First, there are order-of-magnitude performance differences
between different primitive implementations. Disk I/Os and
network roundtrips are the key factors. Second, all four cus-
tomized coordination granularities benefit API performance.
Ad hoc transactions perform up to 1 . 3 × better than database
transactions in contentious workloads and similarly in no-
contention workloads. Finally, among all failure-handling
approaches, repair achieves the lowest latency.

Due to space constraints, we only present the results with
different coordination granularities (§3.3). We evaluated four
real-world APIs, where the four customized granularities dis-
cussed earlier are employed, denoted as RMW (read–modify–
write), AA (associated access), CBC (column-based coordina-
tion), and PBC (predicate-based coordination). We measure
each API’s peak throughput with the original code base that
uses ad hoc transactions (denoted as AHT) and a modified one
that instead uses database transactions under the weakest
yet sufficient isolation level (denoted as DBT). As shown in Fig-
ure 2, under contentious workloads, AHT achieves up to 1 . 3 ×
higher throughput than DBT, and the geometric mean of im-
provements is 63.0%. Under no-contention workloads, AHT
and DBT have similar performance. These results confirm
our hypothesis on the potential benefits of using custom-
ized coordination granularities. Specifically, in RMW and AA,
acquiring locks early and aggressively prevents deadlocks in
MySQL and write–write conflicts in PostgreSQL. As a result,
conflicting API requests’ non-critical sections are effectively
pipelined with the one active critical section, improving CPU
efficiency. Meanwhile, by coordinating at a more fine-grained
and precise level, CBC and PBC avoid false conflicts that would
arise in database transactions.

6. DISCUSSION
We have shown that ad hoc transactions are error-prone
and difficult to identify and understand, but they are still

Figure 2. API throughputs using different coordination
granularities.

RMW

21
.8

13
.0

AA

(a) with contention

CBC PBCT
h

ro
u

g
h

p
u

t
(r

eq
/s

)

350
300
250
200
150
100

50
0

RMW AA

(b) without contention

CBC PBC

400

300

200

100

0

AHT DBT

APRIL 2025 | VOL. 68 | NO. 4 | COMMUNICATIONS OF THE ACM 79

widely used in Web applications, mostly among critical
APIs. Besides this study, others have also reported the use of
application-level manual coordination in large-scale Web
applications, including Taobao,b the largest e-commerce
platform in China.2,3,9 Rather than attributing such prac-
tice to developers collectively overlooking the power of da-
tabase transactions, we argue there is an emerging gap be-
tween the coordination requirements of Web applications
today and what database systems currently offer. Function-
ality-wise, as shown in §3.1 and 3.4, certain business logic
using ad hoc transactions exhibits characteristics that are
difficult, sometimes impossible, for database transactions
to handle, such as the use of multiple storage backends and
life span crossing multiple requests. Performance-wise, as
shown in §5, the flexibility of ad hoc transactions allows
developers to tailor coordination for individual APIs, which
can sometimes outperform general, one-size-fits-all data-
base transactions.

To address this gap, we envision a three-step approach.
First, we need to systematically quantify the gap. This paper
focuses mainly on the characteristics of ad hoc transactions
themselves and provides only an initial answer to the “what-
if” question: what if developers choose to work around data-
base transactions instead? We believe further study on both
development efforts and runtime overheads is still required.
Only with concrete measurements can we identify promising
future directions.

Next, we need to explore incremental remedies for exist-
ing applications. While it is tempting to propose new abstrac-
tions or tools from scratch, incremental remedies are often
a better fit for existing running applications. This consider-
ation is partly motivated by the fact that many existing da-
tabase systems already provide interfaces for passing hints
that customize the coordination. As summarized in Table 3
and in Tang11 and Wang,12 we have surveyed such coordina-
tion hints among the top ten RDBMSs in the db-engines.com
ranking and found that they can potentially prevent some of
the ad hoc transaction errors while retaining their benefits.
Therefore, we believe it is promising to explore new ways to
enhance existing applications using ad hoc transactions
with these tools. One possible direction would be to propose
proxy modules that hide the differences among different da-

b How do cloud users use cloud database systems? (in Chinese) https://
tinyurl.com/2aefkw3u

tabase systems and provide general coordination customiza-
tion interfaces.

Finally, we should explore alternative abstractions for
emerging applications. With the increasing complexity of
modern Web applications, new system architectures (such as
microservices and serverless) and new computation patterns
(such as cloud-edge collaboration and artificial intelligence of
things), are becoming the new norm. In this complicated con-
text, concurrency control is ever more important. This work
and others9 have observed that such applications are depart-
ing from the classic ACID transaction semantics. Therefore,
instead of focusing on intra-component coordination driven
by individual database systems, new global abstractions that
address inter-component concurrency are urgently needed.
For example, how to formalize non-ACID semantics in a way
that is intuitive and useful to developers while allowing effi-
cient system implementations is still an open question.

7. RELATED STUDIES
Researchers have studied various other approaches, such
as database-backed Web applications use to handle con-
currency. Bailis et al.2 studied how Rails applications adopt
invariant validation APIs to handle concurrency. They have
found that application-level invariant validations are used
much more often than database transactions. Furthermore,
using invariant confluence,1 they have found that most of
the validations are sound, that is, they preserve invariants
even under concurrent execution using weak isolation lev-
els, such as Read Committed, while the remainders do
not. Warszawski and Bailis13 focused on whether database
transactions are correctly used in Web e-commerce appli-
cations. They analyzed SQL logs to identify non-serial API
executions that potentially violate application invariants.
By manual inspection, they have identified 22 bugs caused
by insufficient isolation levels and incorrect transaction
scopes. Cheng et al.3 examined concurrency-related bug re-
ports of open-source Web applications to understand their
root causes, consequences, and fixes. Consistent with our
findings, they have found that developers typically opt for
manual, ad hoc solutions instead of resorting to strongly
isolated database transactions.

8. CONCLUSION
This paper presents the first comprehensive study of real-
world ad hoc transactions. We examined 91 cases from eight

Table 3. Coordination hints supported by the top 10 ranking RDBMSs. SQLite (6th), MS Access (7th), and Apache Hive (10th) are skipped due to
the lack of support for transactions and/or coordination hints.

Coordination Hints Oracle MySQL, MariaDB SQL Server, Azure SQL PostgreSQL IBM Db2

Explicit table locks
✓ They have different restrictions (for example, syntax) and behaviors (for example, lock modes and conflict handling)

Explicit row locks

Explicit user locks ✓ ✓ ✓

Other lock hints Instance lock Priority in deadlock handling Set default granularity

Per-op isolation ✓ ✓

Savepoints ✓ They differ in syntax and duplicate name handling

Other trans. hints Autonomous trans. Nested trans.

80 COMMUNICATIONS OF THE ACM | APRIL 2025 | VOL. 68 | NO. 4

research highlights

References
1. Bailis, P. et al. Coordination avoidance

in database systems. In Proc. VLDB
Endow. 8, 3 (Nov. 2014), 185–196.

2. Bailis, P. et al. Feral concurrency
control: An empirical investigation
of modern application integrity. In
Proceedings of the 2015 ACM SIGMOD
Intern. Conf. on Management of Data.
Association for Computing Machinery,
1327–1342.

3. Cheng, C. et al. Developer’s
responsibility or database’s
responsibility? Rethinking concurrency
control in databases. In Proceedings
of the 13th Biennial Conf. on Innovative
Data Systems Research (2023).

4. Dashti, M., Basil John, S., Shaikhha,
A., and Koch, C. Transaction repair for
multi-version concurrency control.
In Proceedings of the 2017 ACM
Intern. Conf. on Management of Data.
Association for Computing Machinery,
235–250.

5. Dong, Z. et al. Fine-grained re-execution

for efficient batched commit of
distributed transactions. In Proc. VLDB
Endow. 16, 8 (Apr. 2023), 1930–1943.

6. Eswaran, K.P., Gray, J.N., Lorie, R.A., and
Traiger, I.L. The notions of consistency
and predicate locks in a database
system. Commun. ACM 19, 11 (Nov.
1976), 624–633.

7. Garcia-Molina, H. and Salem, K. Sagas.
SIGMOD Rec. 16, 3 (Dec. 1987),
249–259.

8. Gray, J. The transaction concept:
Virtues and limitations. In Proceedings
of the 7th Intern. Conf. on Very Large
Data Bases 7, VLDB Endowment,
(1981), 144–154.

9. Helland, P. Life beyond distributed
transactions: An apostate’s opinion.
ACM Queue 14, 5 (oct 2016), 69–98.

10. Kung, H. T. and Robinson, J. T. On
optimistic methods for concurrency
control. ACM Trans. Database Syst. 6, 2
(June 1981), 213–226.

11. Tang, C. et al. Ad hoc transactions in

Chuzhe Tang is a Ph.D. candidate at
the Institute of Parallel and Distributed
Systems at Shanghai Jiao Tong University,
Shanghai, China, and a member of the
Engineering Research Center for Domain-
Specific Operating Systems (Ministry of
Education), Shanghai, China.

Zhaoguo Wang is an associate professor
at the Institute of Parallel and Distributed
Systems at Shanghai Jiao Tong University,
Shanghai, China, and a member of the
Engineering Research Center for Domain-
Specific Operating Systems (Ministry of
Education), Shanghai, China.

Xiaodong Zhang was a master’s student
at the Institute of Parallel and Distributed
Systems at Shanghai Jiao Tong University,
Shanghai, China, and a member of the
Engineering Research Center for Domain-
Specific Operating Systems (Ministry of
Education), Shanghai, China, at the time
of writing.

Qianmian Yu was a master’s student at
the Institute of Parallel and Distributed
Systems at Shanghai Jiao Tong University,

Shanghai, China, and a member of the
Engineering Research Center for Domain-
Specific Operating Systems (Ministry of
Education), Shanghai, China, at the time
of writing.

Binyu Zang is a professor at the Institute
of Parallel and Distributed Systems at
Shanghai Jiao Tong University, Shanghai,
China, and a member of the Engineering
Research Center for Domain-Specific
Operating Systems (Ministry of Education),
Shanghai, China.

Haibing Guan is a professor at Shanghai
Jiao Tong University, Shanghai, China,
and the director of the Shanghai Key
Laboratory of Scalable Computing and
Systems, Shanghai, China.

Haibo Chen is a distinguished professor
and director of the Institute of Parallel
and Distributed Systems at Shanghai Jiao
Tong University, Shanghai, China, and the
director of the Key Laboratory of System
Software (Chinese Academy of Sciences),
Beijing, China.

© 2025 Copyright held by owner/author(s). Publication rights licensed to ACM.

popular open-source Web applications, highlighting both the
prevalence and significance of ad hoc transactions. While ad
hoc transactions offer greater flexibility compared to tradi-
tional database transactions, this flexibility is a double-edged
sword—providing potential performance benefits but also
increasing the risk of correctness issues.

9. ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foun-
dation of China under Grant Nos. 61925206, 62132014, and
62272304.

web applications: The good, the bad,
and the ugly. In Proceedings of the
2022 Intern. Conf. on Management
of Data, Association for Computing
Machinery, (2022), 4–18.

12. Wang, Z. et al. Ad hoc transactions
through the looking glass: An empirical
study of application-level transactions
in web applications. ACM Trans.
Database Syst. 49, 1, feb 2024.

13. Warszawski, T. and Bailis, P. ACIDRain:
Concurrency-related attacks on

database-backed web applications.
In Proceedings of the 2017 ACM
Intern. Conf. on Management of
Data, Association for Computing
Machinery (2017), 5–20.

14. Wu, Y., Chan, C.-Y. and Tan, K.-L.
Transaction healing: Scaling optimistic
concurrency control on multicores. In
Proceedings of the 2016 Intern. Conf.
on Management of Data, SIGMOD
’16. Association for Computing
Machinery (2016), 1689–1704.

Learn more about ACM Student Research Competitions: https://src.acm.org

The ACM Student Research Competition (SRC) o� ers a unique forum for undergraduate and graduate students
to present their original research before a panel of judges and attendees at well-known ACM-sponsored and co-
sponsored conferences. The SRC is an internationally recognized venue enabling undergraduate and graduate
students to earn many tangible and intangible rewards from participating:

• Awards: cash prizes, medals, and ACM student memberships

• Prestige: Grand Finalists receive a monetary award and a Grand Finalist certi� cate that can be framed
and displayed

• Visibility: opportunities to meet with researchers in their � eld of interest and make important connections

• Experience: opportunities to sharpen communication, visual, organizational, and presentation skills in
preparation for the SRC experience

ACM Student Research Competition

Attention: Undergraduate and Graduate
Computing Students

