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Abstract—Memory fences are widely used to ensure the correctness for synchronization constructs on machines with relaxed

consistency models. However, they are expensive and usually impose over-constrained ordering that causes unnecessary CPU stalls.

In this paper, we observe that memory fences in TSO are merely intended to order synchronization variables. Based on this

observation, we rethink the hardware-software interface of synchronization constructs on multicore processors and propose a new

design called Sync-Order that differentiates synchronization variables (sync-vars) from normal ones. Sync-Order reduces hardware

complexity such that the processor only needs to serialize the ordering among sync-vars. Its simplicity makes it easy to be integrated to

the directory controller and it supports distributed directory, a missing feature in prior designs. We show that Sync-Order eliminates

traditional fences on all sides of synchronization constructs (instead of only one side in prior work) and requires small effort for a

programmer or compiler to annotate sync-vars. Our experimental results show that Sync-Order significantly reduces CPU stalls and

boosts the performance of a set of synchronization constructs and concurrent data structures by 10 percent; meanwhile, the fence

overhead of full applications from SPLASH-2 and PARSEC is reduced from 42 to 3 percent.

Index Terms—Fences, synchronization, memory consistency, sequential consistency, parallel programming, shared-memorymultiprocessors
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1 INTRODUCTION

MULTICORE applications and OS kernels intensively rely
on synchronization constructs to handle concurrency.

However, one key limiting factor of synchronization perfor-
mance is the memory fence (or briefly fence), a set of instruc-
tions that prevent hardware from dynamically reordering
memory accesses. Fences are essential to guarantee the correct-
ness of synchronization constructs (e.g., Dekker’s algorithm,
bakery algorithm) which typically assume an underlying
shared-memory system of sequential consistency [18]. While
fences are designed as a low-overhead coordination compared
to heavyweight synchronization mechanisms like locks, appli-
cations may still experience high latency due to fences. For
example, the commodity hardware implementation of a fence
instruction on Intel processors incurs 20-200 cycles over-
head [9]. The reason for the delay is thatmemory accesses after
a fence cannot complete until all accesses before the fence are
globally visible. Some commodity processors like Intel Xeon
even drain the entire store buffer upon a fence.

Because excessive fences degrade the performance of con-
current programs relying on fence-based synchronization
mechanisms, there has been extensive research trying to

reduce the fence overhead, which can be categorized into two
main threads. The first thread is to reduce the fence overhead
by allowing aggressive speculation [8], [9], [17], [19], [20].
Such designs dynamically detect possible races among multi-
ple instruction streams and skip fences when reordering
instructions does not hamper correctness. However, while
such designs can effectively reduce the number of fences
enforced, they usually require highly complex hardware and
none of them so far supports distributeddirectory. The second
thread is to avoidusing fenceswhen implementing synchroni-
zation primitives such as [6], [23], [25]. Such synchronization
algorithms safely remove fences on fast paths based on the
boundedness of the store buffer that a store buffer entry can
be observed by other cores within bounded time. Yet, those
approaches are usually algorithm-specific and only eliminate
fences on one side of the synchronization parts.

We observe that the function of fences, which is ensuring
sequential consistency for accesses to a set of variables (e.g.,
flags in Dekker’s algorithm), can be achieved by enforcing
specific inter-processor data dependencies instead of intra-
processor serialization with fences. To this end, we rethink
the hardware-software interface of synchronization design
and propose a combined approach, Sync-Order, to enforce
the correctness of parallel programs without fences. Our key
idea is to distinguish those memory accesses with ordering
requirements from the ordinary ones. We denote the varia-
bles that are key to the correct semantics of a program as
sync-vars and the instructions accessing them as sync-ops.

Instead of inferring sync-vars and sync-ops from the con-
text of a fence instruction, Sync-Order relies on pro-
grammers or the compiler to properly annotate variables
that should be properly ordered. The processors can
dynamically detect and enforce the annotated sync-ops to
avoid violation situations without unnecessary stalls. It is
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important to note that Sync-Order is not a complete replace-
ment for fences, but an incremental optimization for exist-
ing synchronization algorithms with simple hardware
modification. This is important as it provides an evolution-
ary path to evolve existing fence-based synchronization to
such a fence-free design.

We design and implement a prototype of Sync-Order
using a simulated eight-processor multicore architecture of
TSO consistency model with a distributed directory-based
coherence protocol. We choose TSO because it has been
widely adopted in commercial processors [27]. We compare
Sync-Order against conventional fence mechanism without
post-fence speculation using both microbenchmarks and par-
allel programs fromPARSEC and SPLASH-2. Our experimen-
tal results show that Sync-Order significantly reduces CPU
stalls and boosts the performance of a set of synchronization
constructs and concurrent data structures by 10 percent while
the percentage of delayed cycles in full applications is
reduced from 42.23 to 3.33 percent.

In summary, this papermakes the following contributions:

1) A new synchronization mechanism for the TSO
memory consistency model called Sync-Order that
only dynamically constrains sync-vars (Section 3).

2) An approach that leverages existing compiler analy-
sis to convey to hardware the information of mem-
ory operations whose ordering must be enforced
(Section 4).

3) A simple hardware extension that is more light-
weight than prior work yet supports distributed
directory (Section 5).

4) A simulation-based implementation as well as a set
of evaluations that confirms the efficiency of Sync-
Order (Section 7).

2 BACKGROUND AND MOTIVATION

2.1 Memory Consistency and Delay Analysis

A memory consistency model specifies how the memory
subsystem of a shared-memory multiprocessor behaves.
Specifically, the model specifies the possible final states and
impossible states of the shared memory with respect to the
results of read and write operations executed by multiple
processors.

Sequential consistency (SC), a model formally defined by
Lamport [18], is the most intuitive model expected by most
programmers. The two requirements of SC are:

1) Program order is respected: memory accesses from
the same processor appear in the order specified by
the program.

2) Single sequential order is maintained: all processors
have the same view of the sequential order of all
memory operations.

Despite several proposed SC architectures (such as [3],
[5], [12]), commercial processors typically implement
relaxed memory consistency models. Relaxed memory con-
sistency models enable finer-grained ILP by reordering and
overlapping memory accesses. Total Store Ordering (TSO),
a model used in x86-TSO and SPARC TSO processors,
relaxes the program order requirement of SC to facilitate
store latency hiding and store-to-load forwarding.

Specifically, TSO allows a load to be reordered with a previ-
ous store from the same processor targeting a different
memory location. However, such optimizations are
achieved at the cost of the good intuition of SC.

Consider the code in Fig. 1 with x and y initially being
zero. This code pattern is designed to ensure exclusive
access to the critical section under SC. Each solid arrow
denotes an inter-processor happened-before relation between
accesses to the same variable. If some store S happened
before some load L to the same variable, the result of L
should be the latest value written by S. Otherwise, L gets
the value before S applies the modification. Each dashed
arrow denotes the program order of two memory opera-
tions. In Fig. 1a, both Proc0 and Proc1 announce the inten-
tion to enter the critical section by writing 1 to x and y. Then
each processor reads the other’s flag to check whether some-
one else also wants to enter it. If Proc0 receives the value of y
as 1, as shown in Fig. 1b, it will not enter the critical section
because of the happened-before relation A1!B0. Therefore,
whether Proc0 enters the critical section does not break the
exclusiveness guarantee because at most one processors
will enter the critical section.

In the second case (Fig. 1c), Proc0 decides to enter the crit-
ical section as it observes y as 0 (indicated by the solid arrow
B0!A1). Assuming the program order A0!B0 is
respected, a programmer would infer A0!B1with the tran-
sitive property. Therefore, Proc1 shall not enter the critical
section and the exclusiveness is guaranteed.

However, the result becomes counter-intuitive when
TSO reorders loads before stores. This means the program
order constraints A0!B0 and A1!B1 in Fig. 1c are not
guaranteed by hardware. The case in Fig. 1d may happen if
Proc0 and Proc1 both reorder the memory accesses. In that
case, t0 and t1 both get old values of y and x, indicating hap-
pened-before relations B1!A0 and B0!A1. Inference
based on the program order will lead to a cycle indicating
that a total order of the memory operations is impossible to
determine and the exclusiveness is violated.

Delay Analysis: Shasha and Snir [28] propose delay analysis
to avoid such cases by delaying memory accesses until the
preceding accesses have completed. In the theory of delay
analysis, a partial order is an irreflexive, asymmetric, transi-
tive relation. Program order (P ) is defined as the order of
instructions described by the program. Conflict relation (C)
is an irreflexive, symmetric, transitive relation of a pair of
memory accesses to the same memory location with at least
one being a store operation. For example, Wx conflicts with

Fig. 1. Pseudo code for flag principle.
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Rx or Wx but Rx does not conflict with Rx. Execution order
(E) is an orientation of C. In other words if memory opera-
tions u and v access the same address with at least one being
store, they have conflict relation and uCv holds. Moreover,
either uEv or vEu holds. When there is a cycle in P [ C, this
cycle may lead to an execution result that breaks the intui-
tion of SC. This is called sequential consistency violation
(SCV). From Fig. 1d, we can find that:

P ¼ fðA0; B0Þ; ðA1; B1Þg
C ¼ fðA0; B1Þ; ðB1; A0Þ; ðA1; B0Þ; ðB0; A1Þg

Therefore, the set of pairs that form a cycle is
fðA0; B0Þ; ðB0; A1Þ; ðA1; B1Þ; ðB1; A0Þg � P[C. The four
pairs of relation cannot be satisfied simultaneously. TSO
allows ðA0; B0Þ or ðA1; B1Þ to be removed and reach a total
order where Proc0 and Proc1 both observe flags as 0, which
is apparently impossible under SC.

The proposed approach to breaking the cycle is to find a
subset of P called delay set (D) and to enforce the program
order within the subset using hardware. Specifically, If uDv
holds, the hardware prevents v from starting until u fin-
ishes. In the above example, D ¼ P ¼ fðA0; B0Þ; ðA1; B1Þg.
When D is enforced with hardware, the only way to break
the cycle is to preclude ðB1; A0Þ or ðB0; A1Þ and the final
states become legal under SC.

2.2 Modern Processors: Store Buffer and Fences

To see why relaxing the store to load order from the pro-
gram order causes confusion, it is necessary to understand
how store buffer changes the visibility of memory opera-
tions. In an out-of-order processor with TSO model, instruc-
tions are decoded into the reorder buffer (ROB) and
dispatched in program order. Once all the required oper-
ands are ready, an instruction can be issued immediately
out-of-order. A memory operation is issued as soon as its
address operands are ready and committed when it is at the
head of ROB. A memory instruction completes when its
result becomes globally visible after being committed. A load
is considered globally visible when the value loaded into
the destination register is determined [13]. Hence, a load
immediately completes when it is committed such that its
result cannot be squashed. A store may have its value buff-
ered in the store buffer to hide write latency after being com-
mitted. Thus, a store is globally visible when the value is
flushed from the store buffer to the memory hierarchy (e.g.,
CPU cache). By forwarding values from the store buffer to
later load operations reading the same variable, TSO effi-
ciently achieves the illusion of SC for a uniprocessor.

However, connecting multiple such uniprocessors does not
guarantee SC to a multiprocessor. Because values in the store

buffer are only accessible to the local processor, other process-
ors may get stale values from the memory hierarchy. Fig. 2a
shows the initial state of the fourmemory operations in the flag
example with Fig. 1a. Both processors are about to commit two
stores followed by two loads. After the store operations are
committed, as shown in Fig. 2b, the two loads get issued and
retrieve stale values from memory hierarchy before previous
stores complete. Finally, stores are globally visible (Fig. 2c) after
the completion of the two loads as if the two loads were reor-
dered before stores. This also demonstrates the architectural
cause for non-SC results in delay analysis.

To restore the intuition of SC, the TSO model provides
fence instructions with the functionality of delay. A fence
prevents post-fence memory instructions from being com-
mitted until all pre-fence memory accesses complete. In
practice, a fence at the head of ROB does not complete until
the store buffer is drained. Optimized implementations [11]
allow post-fence loads to be issued and speculatively fetch
data before being committed. Fig. 3a shows that two loads
speculatively retrieve values as 0s and wait for completion.
Fig. 3b shows fences block later loads until stores are
flushed. In Fig. 3c, updated cache lines of x and y send inva-
lidations to processors to force the two loads to reload.
Hence, fences can prevent unwanted reordering.

2.3 Issues with Fences

While the fence mechanism can prevent reordering, it has
several inherent issues:

1) Fences are Expensive. Fence instructions virtually neu-
tralize the effect of the store buffer that hides store
latency and can result in high latency for synchroni-
zation constructs. According to Duan et al. [9], a sin-
gle mfence instruction in Intel processors induces
20 to 200 cycles slowdown.

2) Fences are Enforced Conservatively. While the fence
mechanism does not require any knowledge of
memory operations in other processors, the serializa-
tion is sometimes unnecessary. In Fig. 4a, the fence
delays are conservatively enforced for Proc0 and
Proc1 despite that the memory operations do not
overlap.

3) Fences Cause Head-of-Line Blocking. A fence blocks all
memory operations after it. However, for specific
algorithms, reordering irrelevant loads and stores
targeting different addresses does not compromise
the correctness. As shown in Fig. 4b, B0 need not
wait for C0 to complete and C1 need not wait for A1.
Blocking the victim memory accesses causes addi-
tional delay.

Fig. 3. Fences prevent an SCV.Fig. 2. SCV under TSO model.
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2.4 Issues with Prior Approaches

A number of techniques [9], [17], [19], [20] have been pro-
posed to reduce the cost of fences. Among them, Wee-
Fence [9] and Address-aware Fences [20] are the most
aggressive ones that dynamically detect SCVs and only
enforce fence semantics when reordering can lead to a
potential SCV. They take a similar approach that allows a
load to complete before pre-fence stores complete only
when there is no risk of an SCV. However, they usually
require some relatively complex hardware mechanisms and
still have some limitations, as show in Table 1.

First, they require that fences must come in pairs to form
fence groups. Consider the case in Fig. 5, there is no need to
add a fence between ðA1; B1Þ because TSO does not reorder
store with store. Therefore when Proc0 is detecting global
pending memory operations, it cannot get the information
from Proc1. The conflicting order of B0 and A1 cannot be
detected and a cycle would occur by reordering B0 ahead of
A0. To solve this problem, both techniques add additional
complexity to the architectural design, namely watch list
and Bypass Set List accordingly.

Second, they have consistency issues when retrieving
global states from a distributed directory, which is a common
way to scale cache coherence to large multiprocessors.
Because a fence does not explicitly specify which memory
operations may cause conflicts, both approaches collect the
set of pre-fence stores on each processor and expose to other
processors. It is challenging to maintain the consistency of
such information pieces from multiple directory controllers.
Therefore, their approaches have to frequently fallback to
the traditional fence mechanism when using a distributed
directory.

3 APPROACH OVERVIEW

Sync-Order is a new synchronization mechanism that pre-
vents SCVs without inserting fences. It avoids SCVs while
still allowing the most acceptable extent of store-load reor-
dering. Our work focuses on the TSO model because TSO is

currently widely used in commodity architectures such as
x86-TSO.

Instead of using fences to serialize local execution of
memory operations according to the program order, Sync-
Order seeks to preclude inter-processor data dependencies
that can potentially result in SCVs. It monitors data depen-
dencies among memory accesses to specified variables and
coordinates such accesses to avoid SCV hazards. A load can
still complete ahead of a preceding store as long as inter-
processor data dependencies concerning those accesses
cannot result in an SCV. Sync-Order reduces unnecessary
serialization cost of fences and hence accelerates synchroni-
zation constructs.

It is important to note that Sync-Order does not aim at a
complete replacement for fences, but an incremental optimi-
zation with simple hardware modification for existing syn-
chronization algorithms. When critical memory accesses for
ensuring correctness are clearly identifiable, Sync-Order is
superior to fences due to its lower overhead and more per-
mitted reorderings.

In this section, we first describe the overlapping of mem-
ory accesses where non-SC results may arise. We then pro-
pose Sync-Order by showing how to prevent incorrect
results by delaying specific load accesses.

3.1 Sync-Order Semantics

The first step to detecting inter-processor data dependencies
is having a global order of beginnings and ends of memory
operations on all processors. Fig. 6a shows the timeline of
an interleaving of memory accesses with an SCV risk. In
each processor, the store operation is issued before the load
but the load completes before the store. However, P0:Ry
completes before P1:Wy and P1:Rx completes before P0:

Wx. The resulting data dependencies are shown as
P0 : Ry ! P1 : Wy and P1 : Rx ! P0 : Wx. This is a sign of
an SCV because both loads seem to be executed before
stores, and we cannot decide a total order of the four
accesses which is consistent under SC.

Sync-Order coordinates memory accesses based on one
basic principle: for two conflicting operations W and R from two
processors, if R is issued after W and before W completes, R must
not complete until W completes.

Fig. 4. Defects of fences.

TABLE 1
A Comparison of Efforts in Reducing Fence Overhead

lmfence C-Fence WeeFence AAF Conflict Ordering End-to-End SC Sync-Order TBTSO prwlock

Hardware solution @ @ @ @ @ @ @
Remove fences @ @ @
Allow skipping fences @ @ @ @ @ @
Compiler assistance @ @ @
Global state @ @ @ @

Fig. 5. Single fence problem.
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In Fig. 6b, when the load P0:Ry is issued, a conflicting
store P1:Wy from Proc1 has already been issued and is still
in progress. Proc0 becomes aware of the order of the issue
events of P1:Wy and decides P0:Ry must be correctly
ordered. So the load is kept from reading the value until
P1:Wy updates the value globally. On the other hand, P1:
Rx is issued before P0:Wx and cannot observe any ongoing
conflict access. Hence, Proc1 can commit P1:Rx without
stalling. Note that the program order is still violated after
coordination as P0:Ry is globally visible before its preced-
ing store P0:Wx and P1:Rx before P1:Wy. Nevertheless,
the violation result is effectively avoided. This indicates that
the program order need not be always enforced. Compared
with fence-based SC enforcements, Sync-Order shortens the
delay required.

3.2 Correctness of Sync-Order

We now present an informal proof to show that Sync-Order
guarantees mutual exclusion when being used in flag-based
synchronization algorithms. The proof discusses several
interleavings of issue events and completions, and explains
why Sync-Order can guarantee the correctness.

We say that a load retrieves the effective value at comple-
tion. Also, a store makes sure the new value is updated in
the memory hierarchy at completion. The period between
issue stage and completion represents the time that a mem-
ory access lasts, and is marked as the range between two
black cubes in Fig. 7.

Theorem 1. Given the code pattern in Fig. 1a, Sync-Order
ensures that at most one processor will enter the critical section.

Proof. If the execution traces of two store operations do not
overlap, the processor that issues the store later does not
enter the critical section. This case is shown in Fig. 7. The
store operation from Proc1 is issued at t1 and completes at
t2 while the store from Proc0 is issued at t3 and completes
at t4. There is no overlapping of the two ranges from the
two processors. In this condition, reordering loads and
stores within each processor does not yield non-SC results
because loads in Proc0 shall always observe the new value.

Considering the cases when two operations overlap.
The condition where the time ranges of the two stores
exactly overlap is a special case of Fig. 7c thus will not be
discussed. Without loss of generality, we assume P1
issues the store first. The store P0:Wx is issued at time t2
and completes at t4. Similarly the store P1:Wy is issued
at time t1 and completes at time t3. We divide the time
range into 3 phases separated by pipeline events at t1, t2,
t3 and t4, namely a, b and g.

1) Proc1 IssuesP1:Rxin Phase a. On one hand,
because at the issue time of P1:Rx, P0:Wx has
not been issued. Sync-Order does not enforce the
delay of the load. Hence, P1:Rx may get the old
value and P1may enter the critical section. On the
other hand, If P0:Ry is issued in phase g, P1:Wy
has already completed thus P0:Ry must get the
new value. As a result, P0 will not enter the criti-
cal section. If P0:Ry is issued in phase b, Sync-
Order will detect this since the load is issued
between the issue and completion stages of a con-
flicting store. Sync-Order will delay the comple-
tion of P0:Ry to phase g as shown in Fig. 7c.
Finally, P0 gets the new value of y and does not
enter the critical section.

2) Proc1 Issues P1:Rx in Phase g. Sync-Order will dis-
cover that P1:Rx is issued between the issue and
completion stages of P0:Wx and enforce the delay
action. After getting the new value of x, P1 also
backs off from the critical section. For P0, the dis-
cussion is the same for case 1. Finally, neither pro-
cessors will enter the critical section and mutual
exclusion is also guaranteed. tu

4 SYNCHRONIZATION VARIABLES

Though Sync-Order can enforce SC without fences, efficient
identification of sync-vars is essential since applying

Fig. 6. Examples of Sync-Order.

Fig. 7. Overlapping of store windows.
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dynamic detection to every instruction is inefficient and
unrealistic. This section describes the compiler analysis that
assists processors to reduce the detection overhead.

4.1 Sync-Vars: Reducing Detection Overhead

We try to reduce the detection overhead based on the obser-
vation that only a small portion of memory operations are of
interest to enforce SC. For TSO architectures, the occurrence
of an SCV is the result of several conditions. First, there
must be data races on multiple shared variables. Second,
the racy memory operations must overlap in time. Third,
the processors must reorder loads and stores of the racy
accesses to form dependency cycles. The main implication
here is that we only need to enforce SC of those racy accesses to
make the whole program correct.

So we aim at identifying critical memory accesses and
only applying detection to those operations. We refer to
such operations as synchronization operations (sync-ops). The
memory locations accessed by sync-ops are named synchro-
nization variables (sync-vars). For example, the flag-based
mutual exclusion algorithms (e.g., Dekker’s algorithm and
Lamport’s bakery algorithm) rely on a set of flags to guaran-
tee the exclusive access to a critical section; an SCV that
breaks the exclusiveness of such algorithms is only related
to the flag variables. Hence, we treat the flag accesses as
sync-ops and eliminates SCVs related to such sync-ops.

4.2 Identifying Sync-Vars

Though manually identifying and annotating sync-ops and
sync-vars in a parallel program is possible, it requires much
experience from programmers. We propose to utilize com-
piler analysis to automate the process to reduce the burden
of programmers.

Although Sync-Order differs from the fence mechanism
in that Sync-Order focuses on inter-processor data dependency
while the fence mechanism focuses on program order enforce-
ment, there are some useful techniques with the fence mech-
anism which are also applicable to Sync-Order. These two
different approaches have one common thing that they both
change the ordering of memory operations that could form cycles.
Therefore, the algorithms and analysis techniques to reduce
the number of fence insertions can also help reduce the
number of sync-ops.

Fortunately, there have been a lot of work on automatic
insertion of fences to enforce SC of parallel programs. Some are
based on the conservative algorithmusing thread escape analy-
sis ([7], [10]) to find delay sets. Liu et al. [22] uses dynamic syn-
thesis to expose violations of memory model specification and
insert fences to prevent violations. Some [2], [15], [16] focus on
reachability of error states in TSO, PSO andRMO.

In practice, we reuse Memorax [2] to identify the memory
operations that can result in violations. The result of this
tool is several synchronization sets instead of fence locations.
For the flag example, the synchronization sets are

f“P0 : Wx”;“P1 : Wy”g. The set is the same set required by
Sync-Order. We encode such information in program bina-
ries. The processors can dynamically distinguish and
enforce sync-ops upon detecting them.

Due to the complexity of existing fence insertion algo-
rithms, it is hard to verify the whole program accurately.
Here, we pick the core synchronization components which

are key to correctness (e.g., Dekker’s lock, bakery lock) for
verification and annotation. For other parts of the program,
we allow false positives in identifying sync-ops and sync-
vars, which means the compiler tool may treat some victim
memory accesses as sync-ops. This does not affect correct-
ness as the falsely annotated variables do not contribute to
the SCV cycles and Sync-Order will not enforce ordering on
them. Meanwhile, the rest of the program not analyzed and
verified can still leverage the fence mechanism to ensure
correct ordering.

4.3 Data-Race Free Programs

Some programming languages [4], [24] specify the memory
models implemented by the language runtimes. Those lan-
guages also provide high level abstraction of memory objects
and language-specific concurrency support. For example,
Java memory model promises that a Java program without
data races behaves as if it was under SC consistency even
though Java runtime allowsmany kinds of reordering. ADRF
(data-race free) program ensures that all conflicting memory
accesses are properly annotated by programmer or with the
help of the compiler. While such annotations indeed simplify
the sync-var identification in high level languages, the com-
piler analysis is still required to handle low-level languages
without rich semantics. We will extend Sync-Order to utilize
the rich semantics from language support to ease the process
of sync-var identification in the future.

5 ARCHITECTURAL SUPPORT

This section discusses in detail the hardware extension to
the existing TSO processor architecture with the sync-var
information collected in the compiler analysis step. Fig. 8
shows the overall architecture of Sync-Order with our mod-
ifications in gray. We then describe the components of our
extension and how to exploit the sync-var information to
enforce order.

Sync-Order mainly adds two extensions to the existing
TSO processors. First, the processor pipeline must identify
sync-ops dynamically. We divide sync-ops into two types:
sync-store and sync-load. The processor sends out messages
for different states of sync-stores and sync-loads and check
whether an SCV is possible for some sync-ops. If so, some
specific sync-load must be delayed at commit stage. Second,
a distributed controller is added to allow CPUs to share
pending store information. The controller collects messages
from processors and responds to queries about the state of
specific sync-vars. There are four types of messages that the
processor pipeline sends to the controller and one type that
controller sends to the pipeline.

Fig. 8. Architecture of Sync-Order.
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5.1 Pipeline Extension

First, we extend the processor pipeline with the ability to
identify sync-ops from the instruction streams. One solution
is adding new instructions “sync-store” and “sync-load”
which are memory operations that trigger SCV detection.
Theoretically, the identification of sync-ops can be done at
decode stage. However, we choose another solution to dif-
ferentiate sync-ops by allocating a range of linear addresses
for sync-vars and marking accesses to this range as sync-
ops. So the ISA remains unchanged and the program bina-
ries require no modification. But sync-op identification is
pushed off until the issue stage when the address calcula-
tion is done. A flag representing whether the operation is
sync-op is raised in the store buffer entry to notify future
pipeline stages. The problem with this approach is that the
compiler needs to instrument the program variables and
the memory allocator must allocate dynamic sync-vars in
the reserved area.

At the issue stage, when the addresses of sync-load and
sync-store are calculated, the processor must send messages
to the distributed controller to update or query states of
sync-vars. Messages must be sent out at the issue stage
because address operands are not ready until then. The pro-
cessor must revoke and resend messages of a sync-op if the
dependency instruction is invalidated.

5.2 Processing Sync-Ops

A sync-store is a store that updates a sync-var. Before a store
is issued, the processor calculates the target address from
the operands. If the store turns out to be a sync-store, the
processor sends a set message to the controller to notify the
start of a sync-store. At the same time, the sync-store contin-
ues to prepare data and puts the result in the store buffer.

When the processor gets a message from the cache that the
value of the sync-store has been updated in the cache, the
sync-store completes. The processor sends an UNSET mes-
sage to the controller to notify the completion event.

A sync-load operation is a load that reads from a sync-
var. The target address is also calculated before the issue
stage. Upon issuing a sync-load, the processor first sends a
get message to the controller to query the state of the target
sync-var. If the sync-var is being modified by some sync-
store indicated by a flag set by a previous set message, the
processor sets a flag in the re-order buffer (ROB) entry of
the sync-load. If the sync-load does not need to wait for a
pending sync-store, it directly reads the value of sync-var
from the cache. At the final commit stage where the entry at
the head of the ROB is committed and removed from ROB,
the sync-load instruction with a flag set will be prohibited
from committing. This causes a cycle of committing nothing
for the pipeline. In the following cycles, the sync-load can-
not be committed until a WAKEUP message from the con-
troller signals the completion of a pending sync-store. If a
message comes notifying the cache line of the sync-var is
modified before the sync-load is unblocked, the stale result
is also squashed and the sync-load has to be redone.

5.3 Pending Store Controller

As shown in Fig. 9, the PSC. is a controller in the memory
hierarchy consisting of two tables. The pending store table
(PST) keeps records of current pending stores from all the
processors. It uses 64-bit addresses of sync-vars as the index
and another 3-bit to record the dependency processor ID.
The dependency field will be discussed in Section 5.5 In the
worst case, all the processors can issue consecutive sync-
stores as many as the length of the store buffer of one proces-
sor. To buffer all the pending requests, a maximum number
of Nsb�Nproc entries are required, where Nsb is the number
of entries of the store buffer and Nproc is the total number of
processors. The other table, waiting load table (WLT), keeps
all blocked sync-loads which are waiting for pending sync-
stores to complete. Besides using 64-bit address as the index,
the table uses another Nproc fields to count the pending
stores on each processor for which this sync-load has to
wait. This is the theoretical maximum size of the two tables.
Later we will show how to practically determine the
required size.

5.4 Message Handling

PSC. receives four kinds of messages as shown in Table 2:
SET, UNSET, GET and ANNUL. Each message only contains
the target address, the processor ID and the message type.
SET messages are sent at the issue stage of sync-stores.

Fig. 9. Tables managed by PSC.

TABLE 2
Message Types

Message From To Function

SET sync-store PSC Set the pending bit in the controller
UNSET sync-store PSC Cancel the pending bit to denote completion of store
GET sync-load PSC Query whether there are pending stores to the same address
ANNUL sync-load PSC Cancel a previous get request
WAKEUP PSC sync-load Allow waiting sync-load to continue
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On receiving a SET message, the PSC. allocates a new entry
in the PST with the target address and the ID of the sender
processor. The entry indicates that a modification to some
sync-var is pending and any sync-load that observes this
event should wait for the sync-store to complete. AnUNSET
message is sent after a sync-store completes. PSC. reacts to
an UNSET message by removing the corresponding PST
record entry to represent the completion of some sync-store.

The GET messages are sent at the beginning of the issue
stage of sync-loads. Upon receiving a GET message, the
PSC. first searches PST for all entries with the same linear
address as the sync-load and then counts the number of
matches on each processor. If found, the numbers of
matches for all processors together with the address are
recorded in a newly allocated WLT entry. If no such pend-
ing sync-stores are found, PSC. will not record it but imme-
diately sends back aWAKEUPmessage to the processor.

When an entry in PST is cleared, the PSC. searches WLT
for sync-loads waiting with that address. If found, those
entries are updated by decreasing the counter for the pro-
cessor which just sends the UNSET message. Once all coun-
ters of some WLT entry are zero, it is removed from WLT
and a WAKEUP message is sent from PSC. to the waiting
processor to allow that sync-load to be committed.

When multiple processors issue multiple SET messages
targeting the same address to the PSC., multiple identical
entries are allocated in the PST with the same address.
When an UNSET from one processor comes, those entries

are cleared randomly. Because TSO guarantees that stores
are flushed from each processor in the program order and
does not reorder store with store, PSC. can be sure that
UNSET messages come in the same order as SET from the
same processor to the same sync-var. So it is sufficient for
stalled sync-loads to care only about the number of finished
stores to the target address by each core.

Example: In Fig. 10, two processors are executing the code
of the flag pattern. In Fig. 10a, P1 first issues P1:Wy and
P1:Rx. The PSC. updates the state of sync-var y as pending
by P1. P1 sends a GET message to PSC. and the response
indicates there is no conflicting pending sync-store. So P1:

Rx does not wait. In Fig. 10b, P0 issues P0:Wx and updates
PSC.. In Fig. 10c, P0 issues P0:Ry. Response of GET mes-
sage for P0:Ry shows there is one pending sync-store mod-
ifying y. So it cannot be committed until it receives a wakeup
message. However P1:Rx is not stalled and committed suc-
cessfully. Meanwhile the PSC. allocates a record in WLT to
show that “a sync-load from P0 should be stalled until 1 sync-
store from P1 completes”. In Fig. 10d, P1:Wy completes and
P0:Ry is released. So first the entry of sync-var y is
removed from PST and then the entry inWLT is removed.

5.5 Write-Write Conflict

However, the Sync-Order design so far cannot detect SC
violation caused by two conflicting writes. The case is
shown in Fig. 11a. P1 first writes to y then writes to x.
Therefore, P0:Wx and P1:Wx become conflicting opera-
tions. Because Sync-Order does not delay stores, an SC vio-
lation may arise as shown in Fig. 11b. The root cause for this
violation is that currently Sync-Order does not track the
ordering of stores.

In this case, one truth is that P0:Wx is issued earlier than
P1:Wx. This truth is provable because that P0:Ry fails to
get the new value of y means that P0:Ry’s GET reaches the
PST before P1:Wy’s SET. Given that Sync-Order ensures
sync-ops are issued in program order, we can infer that P0:
Wx is issued before P1:Wx.

Based on the observation, we propose a dependency
tracking mechanism to solve the problem. Each entry in
PST has a field for tracking its dependency. When a new
entry is added to PST, it scans the whole table to find the
most recent pending store to the same address. Then it
records the previous stores’s processor ID in its own field.
When the cache controller receives a sync-store request, the
cache controller first check the PST entry’s dependency.
Only when the dependent processor has completed the
sync-store may the current sync-store continue. Otherwise,
the cache controller bounces the request and the requester
processor must retry.

Fig. 10. Process of messages.

Fig. 11. Write-write conflict case.
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This mechanism effectively enforces that the completion
order of sync-writes conforms to the order of SETmessages. In
the scenario of Fig. 11b, the SCviolation can be avoided because
P0:Wx always sends SETmessage earlier thanP1:Wx.

5.6 Additional Considerations

5.6.1 Read-Modify-Write Instructions

AnRMW instruction usually combines several memory oper-
ations into one instruction. To execute an RMW atomically, a
lock prefixmust be added to opcode encoding. Standard spin-
locks use atomic RMWs to atomically check and set flags. We
assume that each atomic RMW implies a following conven-
tional fence and flushes the store buffer. This is true on Intel
machines [14]. Therefore, Sync-Order need not handle reor-
dering across RMWs because the fence semantic naturally
prevents pre-RMW accesses from being reordered with post-
RMW accesses. As for reordering that happens on either side
of an RMW, Sync-Order can handle it correctly.

5.6.2 Issuing Sync-Ops in Program Order

One important assumption in our approach is that sync-ops
are issued in the program order. Sync-Order relies on the
order of PST messages to reflect the program order on all
processors. Given that the current implementation sends
out PST messages in the issue stage after calculating the
address, in-order issue is necessary for the correctness. Oth-
erwise, Sync-Order may fail to detect possible SC violations.

However, we expect the influence to be small because
only a small portion of instructions are sync-ops. Instead of
enforcing the program order of sync-ops at the dispatch
stage, we adopt the abort-redo approach. When a sync-op A
is issued, the processor checks forward in the ROB. If any
subsequent sync-op B in program order has been issued
before the current sync-op, the processor must first redo B
by sending the combination of ANNUL message and SET
message to the PSC.. Because ROB entries are committed in
the program order, the processor can always abort and redo
previous execution of B. Hence, it is guaranteed that sync-
ops are issued in program order.

5.6.3 Combine PSC with Directory Controller

We implemented a standalone controller as PSC.. Combin-
ing PSC. with the directory controller is possible. But exist-
ing messages for directory-based coherence transactions are
insufficient for Sync-Order to enforce ordering. The main
reason is that messages for store operations are sent too late
to be used for ordering detection. When the store is being
committed and the processor emits a writeback message, a
load that follows the store may have already been issued or
even committed.

To integrate Sync-Order with existing directory-based
interconnect, there are some modifications required. A SET
messagemust be sent at the issue stage of a sync-store to allow
early detection of program order. This message is indepen-
dent of existing cache coherence messages because typically
store-related messages are sent when executing coherence
transactions. AnUNSET can be omitted because the PSC. can
directly get the status of a particular cache line from the direc-
tory.When PSC. observes a cache line is successfully updated

by some processor, it removes from PST the corresponding
entry and sends back an UNSET. A GET message is attached
to a READ message when a load is issued. A WAKEUP mes-
sage is attached to themessage that returns the value for some
sync-load. If the sync-load should block, the value is not
retrieved from cache until PSC. allows the sync-load to con-
tinue. An ANNUL message is sent when a sync-op is dis-
carded and replayed due to some events (e.g., cache
invalidation, branchmisprediction, sync-op replay).

5.6.4 Duplicated Messages

One design decision of Sync-Order is that we allow a proces-
sor to issue multiple SETmessages for multiple sync-stores to
the same variable. This design complicates the structure of
PSC. because the two tables have to treat duplicated SETmes-
sages as distinct instances. Nevertheless, the message mecha-
nism is simplified. Otherwise, if a later sync-store accesses the
same variable as the previous pending sync-store, the proces-
sor must invalidate the previous SET message using an
ANNUL message and resend a new SET message. We think
the simplicity of message mechanism outweighs the simplic-
ity of PSC. because our detectionmethod integrated with pro-
cessor pipeline should be as efficient as possible.

5.6.5 Distributed Controller

Previous fence optimization techniques [9], [20] have consis-
tency problems when retrieving information from distrib-
uted controllers. For Sync-Order, with the increasing
number of processors, the size of the two tables maintained
by PSC. also grows. To reduce the cost of address matching
on a large number of entries, we propose a distributed
design of PSC., which partitions PST and WLT and distrib-
utes them in multiple controllers. A message is dispatched
to one of the controllers according to the hash value of the
address. With a distributed controller, all messages target-
ing the same sync-var go to the same controller. In reaction
to a message the PSC. only updates entries having the
address contained in the message in PST and WLT. Hence,
all operations and events regarding one sync-var are serial-
ized within a single PSC. partition. For Sync-Order, there is
no need to update or query information of multiple sync-
vars in a single message. Hence, the consistency problem
caused by fetching memory operation information from dis-
tributed modules does not exist. A distributed directory
may shorten Sync-Order message roundtrip time while the
correctness is not affected.

In our simulation prototype, we have implemented a cen-
tralized PSC. aswell as a distributed version. Since the perfor-
mance of Sync-Order is not affected by distribution of PSC.,
we use the distributed version by default in our evaluation.

5.6.6 Support More Processors

So far we use SCVs caused by data races on two processors
for exposition simplicity. In fact, Sync-Order can be applied
to detect SCVs involving any number of cycles. Take the
program in Fig. 12b as an example, if an SCV happens, it is
possible that P0:Ry, P1:Rz and P2:Rx will complete
before stores and get old values. However in Sync-Order it
is not possible.
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First, let us consider sync-ops {P0:Ry, P1:Wy}. If P0:Ry
is issued after P1:Wy, Sync-Order guarantees P0:Ry will be
stalled until P1:Wy completes and a violation is prevented.
Otherwise, the violation is still possible. Similarly, P1:Rz
must be issued before P2:Wz if a violation were to happen.
The status of all operations is shown in Fig. 12b. From the
previous assumptions, we have P0:Ry issued before P1:

Wy and P1:Rz issued before P2:Wz. Combined with issue
order requirement, we finally come to that P0:Wx is issued
before P2:Rx. According to the semantics of Sync-Order,
P2:Rx is guaranteed to observe the result of P0:Wx because
it cannot be committed until the sync-store completes. So a
cycle in Fig. 12a is impossible because the edge P2:

Rx!P0:Wx is prevented.

5.6.7 Reduce Storage Cost

According to the structure in Section 5.3, the additional stor-
age required by Sync-Order for an 8-core processor with
64-bit memory address width and 48-entry store buffer is
about 76 KB. To reduce the storage overhead for tables, we
can limit the number of messages sent to the PSC. from each
processor. We regard a message as consumedwhen it no lon-
ger changes the behavior of a sync-op. A SET message is
considered consumed when an UNSET is sent after

completion of cache transaction. A GET message is consid-
ered consumed when either the sync-load does not wait or
the sync-load is released from blocking. We can set a limit
to the number of messages that have not been consumed.
When a processor is going to send a 9th SET message while
the limit of 8 is reached, the message will be held back until
a message is consumed, for example when a sync-store
completes. This optimization reduces the storage overhead
of maintaining dependency of sync-ops at the cost of possi-
ble delay for Sync-Order messages. In evaluation, we will
show that the maximum average number of entries per pro-
cessor in the PSC. is relatively small.

6 EVALUATION SETUP

6.1 Simulation

We implemented Sync-Order in the MARSS [26] simulator
targeting x86 architecture with the TSO model. MARSS is a
cycle accurate full-system multicore simulator which can
run multi-threaded applications on top of Linux. We model
a multicore architecture connected with crossbar switch
using MOESI coherence protocol using a distributed direc-
tory controller. As the simulation time significantly
increases for a 16- and 32-processor setting, we only model
up to 8 processors as prior work [9]. Each processor has its
private L1 and L2 cache and shares the L3 cache. Table 3
shows the detailed specifications. The message delays of
sync-loads and sync-stores are in one way direction, which
means that the round trip time should double. Since the
latency of fences are affected by many factors in reality, we
do not accurately simulate the fence latency but use the
default mechanism in the simulator.

We evaluate our design by comparing two multicore
architectures: the baseline architecture using conventional
fences and Sync-Order with a distributed PSC.. The baseline
architecture does not implement post-fence load specula-
tion and MARSS simulates the effect of store buffer via
memory request queueing mechanism at the different con-
trollers (e.g., CPU controller, cache controller).

A PST entry is 67-bit and a WLT entry has 136 bits for our
simulated 8-processor architecture. Assuming 48 store buffer
entries for each processor, each PSC. module requires about
9.5 KB storage for the two tables. As a result, the total storage
for our distributed controller is 76KBwith eightmodules.

6.2 Methodology

We measured two types of benchmarks: five microbe-
nchmarks of synchronization constructs from WeeFence [9]
(shown in Table 4) and several multi-threaded application
benchmarks from PARSEC and SPLASH-2. Microbe-
nchmarks frequently use mutual exclusion primitives for
synchronization while application benchmarks typically

Fig. 12. Apply Sync-Order with 3 processors.

TABLE 3
Simulated Architecture Specification

Architecture 8-core multicore CMP
Core Out-of-Order, four-issue wide
ROB & Store Buffer 128-entry ROB & 48-entry store buffer

& 48-entry load buffer
L1 cache Private 128K, eight-way, two-cycle RT,

64B lines
L2 cache Private 2M, eight-way, five-cycle RT,

64B lines
L3 cache Shared 8MWB, eight-way, eight-cycle RT,

64B lines
Cache coherence MOESI under TSO
On-chip network Bus, one-cycle latency
Sync-Store one-cycle message delay
Sync-Load one-cycle message delay
Distributed PSC. Each module contains a PST with 8� 48

entries and a WLT with 8� 48 entries,
two-cycle access delay

DRAM latency 50 ns

TABLE 4
The kernelsMicrobenchmarks

bakery Mutual exclusion algorithm for arbitrary # of threads
dekker Mutual exclusion algorithm for two threads
peterson Mutual exclusion algorithm for arbitrary # of threads
lazylist Concurrent list algorithm using bakery lock
ms2 Concurrent queue algorithm using bakery lock
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manifest different synchronization patterns and react differ-
ently to fence optimization. We selected some benchmarks
from PARSEC because others require unacceptably long
time to finish. We use simdev input for PARSEC programs.

To rule out the influence of fence semantics from atomic
RMWs, we replace the spin locks used in those applications
with bakery locks which do not apply atomic RMWs. For
the baseline version, the bakery lock uses mfence instruc-
tions to prevent reorderings; the Sync-Order version enfor-
ces sequential consistency among sync-vars in bakery locks.

We use Memorax [2] to analyze the specification of the
bakery lock which has been translated from C code to RMM
modeling language. The result is sets of variables which
may cause SCVs. We treat all the variables in the sets as
sync-vars and place them in a reserved linear address range.

Because sync-var identification is time-consuming, com-
pilers may perform over-annotation and trade the minimality
of sync-var sets for fast analysis. To simulate the overhead of
over-annotation, we add more fences or annotate more
sync-vars, as similarly done in prior work [9], [19], [20], we
annotate all possibly shared variables as sync-vars. For base-
line, we also add a fence after each store operation to such
possibly shared variables. The number of fences for baseline
applications is almost the same as the number of sync-store
and sync-load in Sync-Order.

7 EVALUATION

7.1 Performance with Microbenchmarks

Fig. 13 shows the execution time of microbenchmarks with
baseline and Sync-Order. For each microbenchmark, the
results are normalized to that of baseline and broken down
into delay and useful parts. The delay part is either caused by
fences or stalled sync-loads. The rest of execution time is use-
ful cycles not stalled due to ordering enforcement. The figure

shows that fences in microbenchmarks induce an average of
12:20 percent slowdown while Sync-Order reduces the over-
head to 2:21 percent. The overhead of Sync-Order depends on
the actual number of sync-loads that are stalled and sync-
stores almost incur no overhead because they are never stalled
by sync-loads. The delay for Sync-Order is almost negligible
because in most cases shared accesses to sync-vars frommul-
tiple processors do not cause cycles and sync-loads do not
block. Note that reduced time to acquire a lock can in turn
shorten the blocking time for a thread. For example, the execu-
tion time for dekker is reduced.

7.2 Performance with Over-Annotation

Fig. 14 shows the overhead of over-annotation with Sync-
Order. The applications without over-annotation have an
average of 0.71 percent overhead while the over-annotated
versions have 3.33 percent overhead. Over-annotation
slightly adds to the overhead of Sync-Order because the
unnecessarily annotated sync-ops still incur message over-
head. Another source of additional overhead is that a sync-
load always has to wait for the response from the controller
before it continues to load from cache or gets blocked.

Fig. 15 shows the execution overhead of fence and
Sync-Order with over-annotation. The baseline introduces
42.23 percent overhead on average. Some applications have
higher fence overhead because they have more shared vari-
ables after which fences are inserted conservatively. The
average overhead for Sync-Order is 3.33 percent. The over-
head is lower than microbenchmarks because of longer criti-
cal sections and more application logic. And cycles are less
likely to happen in real applications than microbenchmarks.

7.3 Impact of PSC Latency

We evaluate the influence of varying latencies of the PSC.
with several applications and compare the result with base-
line. Fig. 16 shows the overhead with different PSC. laten-
cies. The fence mechanism has constant overhead for each
program and appears as a horizontal line since we are only
modifying the latency of PSC.. Sync-Order has increased
overhead with increasing latency for PSC.. Note that even if
accessing the PSC. incurs much higher overhead than
accessing L3 cache (eight cycles), the overhead of Sync-
Order is still much lower than fences. But lower latency
indeed makes Sync-Order more efficient.

7.4 Impact of L3 Cache Latency

We evaluate the performance of Sync-Order with different
L3 cache latencies using microbenchmarks and the result in

Fig. 13. Performance impact on kernels. B and S stand for baseline and
Sync-Order.

Fig. 14. Execution overhead introduced by over-annotation on
Sync-Order.

Fig. 15. Execution overhead of over-annotation with fences or sync-vars.
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Fig. 17 shows that the execution time difference is negligi-
ble. Because Sync-Order mainly handles cache transactions
between L2 caches, L3 latency has little influence.

7.5 Characterizing Sync-Order

Table 5 gives the detailed characteristics of Sync-Order by
CPU statistics and PSC. statistics.

CPU statistics Column 3 to 5 show the results of the num-
ber of loads in every 1K instructions. Column 3 is the num-
ber of all loads including sync-loads and normal loads.
Column 4 is the number of sync-loads and column 5 shows
loads actually delayed due to conflicts. Generally, microbe-
nchmarks have more frequent sync-loads and delayed sync-
loads than multi-threaded applications because their critical
sections are shorter and contention is higher. Over-anno-
tated benchmarks have more manually added sync-loads
than their original versions but the delayed cycles do not
increase a lot. Column 4 and 5 show that only a small

fraction of sync-loads are actually stalled for conflicting
stores. This supports our observation that conflicts rarely
happen in execution.

Column 6 and 7 show the delayed cycles of all sync-loads
in column 4. Column 6 is the average cycles delayed with
every sync-load and column 7 gives the maximum. The
results show that the amortized cost of sync-load delay is
less than 5 cycles, but the maximum can be high. This is
caused by occasional overlapping of conflicting accesses
that results in multiple pending requests in the PSC.. A
sync-load is delayed for more cycles when there are multiple
conflicting sync-stores pending on remote processors, as it
must wait for all to finish.

Column 8 and 9 present the number of store instructions
of every 1K instructions. Column 8 shows the number of all
stores including sync-store and normal stores. Column 9
gives the number of sync-store. In application groups, sync-
loads are more than sync-stores but only a few are delayed.
This is expected as most reorderings can be allowed.

PSC statistics Column 10 to 13 characterize PSC by the
number of sync-load and and sync-store records in the tables

Fig. 16. Execution overhead impact of PSC latency.

Fig. 17. Performance impact of L3 cache latency.

TABLE 5
Characterization of Sync-Order

Groups Benchmarks

CPU statistics/1K inst PS controller statistics Traffic
inc
(%)

#ld sync #ld stalled #ld stalled cycles #st sync #st pending st waiting ld

Avg Max Avg Max Avg Max

Synchronization
Constructs

bakery 366.70 86.36 14.88 4.47 184 70.40 12.14 0.37 5 0.14 28 21
dekker 329.98 64.00 19.04 4.67 110 91.06 22.87 0.60 10 0.26 31 19
peterson 283.80 17.10 2.97 4.47 208 134.56 17.28 0.28 4 0.01 10 6
lazylist 330.46 13.39 0.14 4.12 165 128.16 6.66 0.16 8 0.01 16 9
ms2 293.91 35.39 1.19 4.35 181 103.78 6.89 0.09 4 0.03 17 4

Overannotated
Apps

fluidanimate 184.08 36.10 0.00 4.21 141 46.10 4.95 0.35 15 0.00 23 17
water-nsquared 174.20 55.46 0.00 4.06 258 59.73 4.36 2.99 64 0.01 69 25

ocean 203.71 4.40 0.00 0.51 7 112.99 0.10 0.00 3 0.00 0 1
radiosity 267.73 24.20 0.04 2.02 151 101.69 0.25 0.03 6 0.01 60 7

blackscholes 165.33 1.70 0.00 4.02 5 87.82 0.00 0.00 0 0.00 0 1
cholesky 258.41 59.20 0.00 4.05 156 38.51 3.92 1.66 67 0.00 34 21

fft 180.28 20.79 0.00 4.20 112 83.75 9.40 1.20 68 0.00 9 10
fmm 130.12 20.99 0.01 4.08 219 25.56 0.11 0.08 17 0.05 63 14
lu 164.55 5.53 0.00 4.01 162 76.91 0.00 0.00 5 0.00 9 2

radix 121.54 37.28 0.00 4.05 7 37.64 0.43 0.04 61 0.00 0 24
raytrace 264.26 24.34 0.00 2.74 73 43.81 0.10 0.01 2 0.00 12 8

streamcluster 248.43 1.32 0.00 4.88 429 79.67 0.01 0.00 15 0.40 13 0
swaptions 177.78 15.22 0.00 4.12 7 99.09 1.76 1.70 25 0.00 0 6

water-spatial 177.43 50.32 0.01 4.03 326 64.36 1.41 0.37 53 0.00 50 21
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of PSC. Column 10 and 11 show the averge and maximum
number of pending sync-stores at any time and the following
two give the number of waiting sync-loads. The number of
records really depends on the frequency of synchronization
of applications. But even for microbenchmarks and barrier-
intensive applications (e.g., fluidanimate and streamcluster),
the maximum is within 90. This reveals an opportunity to
reduce the size of PST andWLT.

7.6 Scalability

We replace mutexes in parallel application benchmarks
with bakery locks with Sync-Order version and mfence

version respectively and run applications with the number
of threads equal to the number of processors. Fig. 18a shows
the fence overhead with 2, 4, and 8 processors. The execu-
tion overhead of most benchmarks increases a lot with the
increasing number of processors. Fig. 18b shows the scal-
ability of Sync-Order which is better.

8 RELATED WORK

End-to-End SC. End-to-End SC proposes a memory access
type driven SC hardware design. It distinguishes between
private and shared memory accesses. For addresses that are
read-only or private, it does not try to enforce SC to optimize
but prohibit reordering of shared accesses. The limitation is
it does not allow possible safe reordering to shared accesses.

Location-Based Fence. Ladan-Mozes et al. [17] take a differ-
ent point of view of the fence problem. The paper proposes
to guarantee correctness by associating a fence with an
address of store. A fence does not stall unless the address is
accessed by another fence. However, the implementation is

based on the cache state and a conflict causes the executing
processors to serialize the execution which is inefficient.

Conflict Ordering. [21] is designed to ensure SC by order-
ing general data access conflicts under non-SC memory
models. This may incur additional overhead for TSO
because TSO only allows one kind of ordering relaxation.
Conflict Ordering may not achieve optimal performance
due to unnecessary enforcement for TSO.

Conditional Fence. [19] observes that only 8 percent of exe-
cuted fences are really necessary to ensure SC. They pro-
pose C-Fence that augments processors to monitor fences
on other processors. A C-Fence can allow reordering post-
fence loads with pre-fence stores if no other processor is
executing C-Fence. Otherwise, all C-Fences fall back to con-
ventional fences. C-Fence is a coarse-grained fence elimina-
tion approach and it still induces unnecessary delay.

Conditional Memory Ordering. [30] observes that there are
several sources of memory ordering redundancy in fences in
the current lock implementation. They propose a new pro-
gramming model that combines processor ID and synchroni-
zation semantics to dynamically reduce the overhead of
memory ordering. This approach is relatively specific to the
mutual exclusion algorithms and hard to be applied to other
scenarios.

WeeFence, AAF and Asymmetric Fences. WeeFence [9] and
AAF [20] share some similarities. They track the pending
stores, and enforce fences when an SCV is possible. Wee-
Fence extends the interconnect by adding a GRT which
manages pending sets consisting of pre-fence pending
stores. AAF allows stores to stores to complete out of order
implying the directory has the knowledge of all stores that
are active and not yet completed. WeeFence and AAF
achieves a similar result of collecting pending set of ongoing
stores with different approaches.

Asymmetric Memory Fences [8] points out their common
limitations. First, collecting pending stores from a distrib-
uted directory is subject to consistency issues. Second, both
approaches involves great hardware complexity to collect
information. Third, handling single fences cases on TSO
increases hardware complexity. Asymmetric Memory
Fence [8] does not solve the aforementioned problems
directly but turns to a hybrid solution instead.

Prwlock. Liu et al. [23] implemented a scalable reader-
writer lock with low reader-side latency by removing the
fences on the reader fast path. This approach is effective in
reducing reader side latency but no current hardware
claims to guarantee such bound and thus IPIs are still
needed to infer straggler readers.

TBTSO. Morrison et al. [25] proposed an hardware
approach called TBTSO to optimizing synchronization primi-
tives based on the flag principle. TBTSO also leverages the
observation that the time to drain a store buffer entry is
bounded to order the accesses to flags. This approach makes
too much assumption about the bound of different compo-
nents within a processor and thus requires significant design
and implementation complexity.

Automatic Fence Insertion. [1], [2], [7], [10], [15], [16], [22],
[29] use extensive compiler techniques to automatically
insert fences in multi-threaded programs and enforce
sequential consistency with low overhead. However, with-
out hardware extension, inserted fences still cannot

Fig. 18. Scalability of Sync-Order.
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dynamically avoid unnecessary delay. Also finding the min-
imal set of fences within reasonable time remains a chal-
lenge. Some approaches either conservatively insert more
fences or reduce state space in model checking. But even for
conservative approaches, Sync-Order can detect unneces-
sary fences and skip them.

9 CONCLUSION

This paper introduced Sync-Order, a mechanism combining
simple hardware extension with compiler assistance to
enforce the ordering of specific memory operations. Our
approach is different from conventional fence mechanism
provided by some relaxed memory models in that it allows
succeeding memory loads to bypass preceding memory
stores to some extent. With the knowledge from compiler
analysis, Sync-Order has low overhead when an SCV is pos-
sible and does not affect victim instructions. sys can handle
multiple processors in a centralized or distributed manner.
We implemented Sync-Order in a multiprocessor simulator
with TSO model. Our evaluation with synchronization
structs shows that Sync-Order can notably reduce the cost
of enforcing ordering.
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